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Abstract

When deployed, machine-learning (ML) adoption depends on
its ability to actually deliver the expected service safely, and
to meet user expectations in terms of quality and continuity of
service. For instance, the users expect that the technology will
not do something it is not supposed to do, e.g., performing
actions without informing users. Thus, the use of Artificial
Intelligence (AI) in safety-critical systems such as in avion-
ics, mobility, defense, and healthcare requires proving their
trustworthiness through out its overall lifecycle (from design
to deployment). Based on surveys on quality measures, char-
acteristics and sub-characteristics of AI systems, the Confi-
ance.ai program (www.confiance.ai) aims to identify the rel-
evant trustworthiness attributes and their associated Key Per-
formance Indicators (KPI) or their associated methods for as-
sessing the induced level of trust.

Motivation for ML trustworthiness assessment
Trustworthiness is tightly related to accountability: account-
ability can be considered as a factor of trust or as an alter-
native to trust [57]. Then, in [4], dependability is used to
represent the overall quality measure of a system based on
four sub-attributes including security, safety, reliability, and
maintainability. Thereafter, security and dependability be-
came key attributes for computer-based system trust [8]. In
2019, the U.S. National Artificial Intelligence Research and
Development Strategic Plan [54] emphasized that: ”stan-
dard metrics are needed to define quantifiable measures in
order to characterize AI technologies”. More recently, [65]
noted that “significant work is needed to establish what ap-
propriate metrics should be to assess system performance
across attributes for responsible AI and across profiles for
particular applications/contexts.”.

The Assessment List for Trustworthy AI [1] considers 7
pillars of trustworthiness: 1) human agency and autonomy,
2) technical robustness and safety, 3) privacy and data gov-
ernance, 4) transparency, 5) diversity, non discrimination
and fairness, 6) societal and environmental well-being, 7)
accountability. The European Commission has proposed a
set of rules for AI, the AI Act [19], regulating the technol-
ogy. Such proposals, which are still at the consultation stage,
would apply to AI systems developed or deployed in the EU
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and require companies to take measures to ensure their prod-
ucts are safe and comply with ethical principles based on a
risk analysis.

In the aeronautic domain, EASA [14] proposes a model
of trustworthiness based on: the characterization of the Ma-
chine Learning (ML) application (high-level function/task,
concept of operations, functional analysis, classification of
the ML application), safety assessment, information security
management, and ethics-based assessment (which includes
the 7 pillars of the ALTAI).

The Fraunhofer [52] offered an analysis of the standard
[39, Under development] on management system for AI,
stating compliance to the standard can contribute to ensur-
ing AI trustworthiness since it encompasses the pillars of
the ALTAI, provided that a third-party verification has been
performed and along with an adapted quality management
system.

In the same period, the NIST produced an analysis of
the components of trust [68] and highlighted several top
level aspects for the design of a trustworthiness model, that
should encompass the user experience, the perceived tech-
nical trustworthiness, the pertinence of each trustworthiness
characteristic in the user’s specific context of use, etc.

Moreover, ETSI set-up in 2019 an Industry Specifica-
tion Group on Securing AI (ISG SAI) from attack to re-
silience [17] providing existing and potential mitigation
against threats for AI-based systems.

However, as a property of a ML-based system, such trust-
worthy concept is complex and determined by considering
many characteristics as well as its application in particu-
lar contexts. This implies that the relative importance of
each attribute can fluctuate depending on the circumstances
wherein such system is operating [7]. While most active aca-
demic research on trustworthy ML has focused on the algo-
rithm properties, its holistic modeling has received very little
attention given the lack of literature.

The present work aims to characterize key trustworthy at-
tributes and their associated assessment methods and metrics
that can impact trustworthiness of ML-based systems [10].
In this paper, we highlight how trustworthiness characteri-
zation and assessment are positioned within ML engineering
process. Then, we present a ML trustworthiness meta-model
to capture relevant information and different inter-relations
needed to assess the level of trust. In the meantime, we fo-



Figure 1: Trustworthiness assessment within the ML algorithm engineering process [49]

cus on 6 key trustworthy attributes namely data quality, de-
pendability, operability, robustness, human centred quality
including explainability / interpretability, and human over-
sight, providing references illustrated with some KPIs.

ML Algorithm Engineering
ML algorithm engineering [9, 67, 69] is a field revisit-
ing algorithm engineering practices and processes [13, 64]
through classic considerations on specification, traceabil-
ity and validation [6, 56]; processing data requires new
processes with new best practices [77], as highlighted by
ML Model Operationalization Management (MLOps) ap-
proaches. ML system must present new assessments of
trustworthiness through security, safety, robustness, ex-
plainability etc. To capture such issues, Confiance.ai pro-
gram (www.confiance.ai) defines a ML pipeline (see fig. 1)
emphasizing requirements-driven, safety-driven and ML-
driven development. Main sub-tasks are encapsulated as a
series of steps such as [49]: Problem specification; data engi-
neering; ML Algorithm design; implementation; evaluation
and verification; model deployment to provide trustworthy
evidences on top of ML assurance [53, 66]. Each step has to
be evaluated through KPIs and/or assessment methods.

From a strict metrological point of view, trustworthiness
may not be measured as it is not a physical property that
can be compared to a reference quantity of the same kind.
Trustworthiness does not have units. More generally speak-
ing, “to measure” refers to assign an element of a scale to an
object in order to quantify an attribute of it. Thus, a trustwor-
thiness metric is defined as [10] an “objective, mathematical
measure of a ML-based component/system that is sensitive
to differences in safety-critical characteristics. It provides a
quantitative measure of an attribute which the body of solu-
tion exhibits”.

A new ML trustworthiness meta-model
A trustworthy software is defined [72] by a combination of
overlapping properties: reliability, safety, security, privacy,
availability and usability. For a ML-based system, this trans-
lates and extends to accuracy, robustness, fairness, account-
ability, transparency, explainability and ethics. [12] also con-
siders auditability. To capture the type of considered infor-
mation and the different inter-relations needed to assess ML
trustworthiness, we proposed a meta-model with concepts in
different abstraction levels (see fig. 2). The red part describes
the way the tree of attributes is built. It highlights the abstract
concepts central to trustworthiness assessment. An attribute
which aggregates other attributes is called a macro-attribute
(e.g. robustness, explainability, etc.). It is assessed with an
aggregation method. An atomic attribute (leaf attribute) is
assessed with a clear and actionable observable which can
take different forms (metric, ”expected proof”).

The green part of fig. 2 is the meta-model fragment with
concrete concepts. These concepts represent the different
possible subjects and relations between them. For example,
the product is developed following processes as technical
processes (through which the product must go: design defi-
nition, implementation, operation, ...), agreement processes
(with external organizations : acquisition, supply), and man-
agement processes (supporting the development of the prod-
uct: quality management, risk management, etc.). Risk and
quality management ensures the compliance with the spec-
ification which includes the different expected trustworthi-
ness attributes. Processes are applied with tools by people
respecting a certain governance.

The blue part summarizes systems engineering key con-
cepts more precisely part of the non-functional specification:
they do not define what the system ”does” or how the sys-
tem works, but what the system ”is”. The attributes are also



Figure 2: A new ML trustworthiness meta-model

commonly referred to as ”-ilities” as they often have this
suffix. They can also be referred to as quality requirements.
Whether a specification is functional or non-functional, it is
influenced by stakeholders such as the user, the operator, the
developer, etc.

As opposed to non-functional requirements which define
what the system is, functional requirements define what the
system does: should it move? roll? roll fast? under what con-
ditions? From this point of view, the Operational Design
Domain (ODD), which characterizes the conditions of op-
eration of the system, can be considered part of the func-
tional specification relating to trustworthiness attributes in
different ways: 1) Transparency on the ODD permits to un-
derstand the system’s capabilities and limits (which is part
of the AI Act’s requirements); 2) The ODD is the domain
to consider for the different operational trustworthiness at-
tributes; 3) The ODD has its own attributes (it should be
complete, free of inconsistencies, human readable, etc.).

According to the ML capabilities and the 7 pillars of trust-
worthiness [1], we characterize ML trustworthiness through
6 macro-attributes: data quality, dependability, operability,
robustness, human centered quality including explainability

/ interpretability, and human oversight (see. fig. 5).

Data quality
ML-based system quality strongly depends on the quality of
(training/test/validation) data sets where they are defined as
an identifiable collection of data. Without a systematic as-
sessment of their quality, ML approaches risk losing control
of the various steps of data engineering such as data collec-
tion, annotation, feature engineering, and corpus balancing.

As proposed by [34], a first Data Quality (DQ) structure
is based on 3 main key attributes (cf. Table 1): Inherent DQ:
the degree to which quality attributes of data have the intrin-
sic potential to satisfy stated and implied needs when data
is used under specified conditions; System-Dependent DQ:
the degree to which data quality is reached and preserved
within a computer system when data is used under specified
conditions; and Inherent and System-Dependent DQ.

Data quality (DQ) requirements should be characterized,
for each type of data representing an operating parameter
of the ODD. In the ML context, well-founded metrics are
needed to assess the DQ level. While both research and prac-
tice have realized the high relevance of well-founded DQ



Macro attributes Leaf attributes
System Availability [34]
Dependent DQ Portability [34]

Recoverability [34]
Timeliness [11], [48]

Inherent & Accessibility [48]
System Confidentiality [34]
Dependent DQ Compliance [34]

Efficiency [34]
Integrity [15]
Precision [34]
Traceability [34], [48]

Inherent DQ Accuracy [21], [11],[48], [60]
Completeness [71], [15], [23], [34]
Consistency [20], [34], [48], [28]
Correctness [21], [15]
Currency [61], [5], [47]
Diversification [44], [24]
Usability [48]
Representativeness [14], [48]
Reliability [18]

Table 1: Data Quality macro and leaf attributes

metrics such as accuracy, many of them still lack an appro-
priate methodical foundation [29] to cover the overall data
life cycle: data collection; data labeling needed for super-
vised ML; data augmentation to avoid overfitting on train-
ing data by introducing some data enrichment (diversity);
data preparation including pre-processing, data transforma-
tion, and feature engineering; identification of the various
datasets used in the learning phase (typically training, val-
idation, and test datasets); datasets validation and verifica-
tion (including accuracy, completeness, and representative-
ness, with respect to the ML requirements and the ODD);
independence requirements between datasets; identification
and elimination of unwanted biases inherent to the datasets...
The quality dimensions, e.g., accuracy, can be easily de-
tected in some cases (e.g., mispellings for natural language
processing application) but are more difficult to detect in
other cases (e.g., where admissible but not correct values are
provided) [21].

Many researchers have used metrics for data accuracy
based on the rate of correct data items over an entire dataset,
using a 1 for an accurate data item, and a 0 otherwise:
data accuracy =

∑N
i=1 α(di)/N where N is the number

of data elements in the data-set, and α(di) is 1 if data ele-
ment di is correct, and 0 otherwise. Data diversity is the ra-
tio between the number of available data sources, their size,
and the dataset are finally used [24]. Other DQ KPIs could
be find in [5, 18, 48, 50].

Operability
Operability is the ability to keep a piece of equipment, a sys-
tem or a whole industrial installation in a safe and reliable
functioning condition, according to pre-defined operational
requirements. This is thus considered one of the ilities and
is closely related to reliability, supportability and maintain-
ability. It is the degree to which a product or system is easy

Macro attributes Leaf attributes
Effectiveness Accuracy, Precision [15], [41]

Functional suitability [33]
Functional completeness [33]
Functional correctness [74]
Functional appropriateness [33]

Efficiency Performance efficiency [33]
Sustainability [70]

Adaptability/ Extensibility [33]
Durability Flexibility [31]

Controllability [38]

Table 2: Operability macro and leaf attributes

to operate, control and appropriate to use [33].
The words accuracy and precision are important differ-

entiated terms when referring to measurements in the sci-
entific and technical context. Generally speaking, accuracy
refers to how close a measured value is in relation to a known
value or standard. On the other hand, precision is related to
how close several measurements of the same quantity are
to each other. In ML context, classification is a prediction
type used to give the output variable in the form of cate-
gories with similar attributes. Some of the popular metrics
for its assessment are accuracy, precision, recall, F1 Score,
ROC Curve, Fowlkes–Mallows index [22] or the ABC met-
ric (attribution-based confidence metric) [9, 51] (see fig. 3).

Figure 3: Performance metrics for classification problems

The functional completeness measures what proportion
of the specified functions has been implemented. A miss-
ing function is detected when the system or software product
does not have the ability to perform a specified function. It is
the fraction of 1) Number of functions missing and 2) Num-
ber of functions specified. For example, being evaluated for
ML-based systems, we interpret that “missing” functions are
the functions that were not successfully trained, even though
developers specified to train them.

Dependability
Dependability can be defined as the ability of a system to
deliver a service that can be justifiably trusted [4]. Over the
years, the dependability concept has evolved to integrate
other qualitative attributes such as: availability (readiness
for correct service); reliability (continuity of correct ser-
vice); safety; security; confidentiality (absence of unautho-
rized disclosure of information); integrity (absence of im-
proper system alterations); maintainability (ability to un-



dergo modifications, and repairs)... In real-time computing,
dependability is the ability to provide services that can be
trusted within a time period. The service guarantees must
hold even when the system is subject to attacks or natural
failures. Moreover, [1] defines dependability as the ability
to deliver services that can justifiably be trusted.

Concerning security, a cyber-attack can be generic, result-
ing in denial or degradation of service; or targeted, aiming
to cause a model to behave in a specific way. For example,
though poisoning attacks, ambiguity attacks etc., typically
affect the integrity of data, [17] notes that they can also be
considered attacks on availability, as the aim of an attacker
can be to increase misclassification to the point of making
a system unusable. [43] proposes some mitigation methods
based on three countermeasures that could be applied in or-
der to prevent ambiguity attacks.

Regarding safety, normative works such as the ISO/IEC
CD TR 5469 [37] (under development) offer principles for
functional safety of AI models used in E/E/PE (Electri-
cal/Electronic/Programmable Electronic) safety-related sys-
tems, including identification of risk factors and verifica-
tion and validation techniques. However, safety verification
needs are not limited to the sole proper functioning of the
safety-related components, but also relates to the adapted
and safe behavior of the complete system.

Macro attributes Leaf attributes
Availability [10], [16]
Safety [12], [18], [45]
Security Confidentiality [58]

Integrity [58], [17]
Non-repudiation [58]
Authenticity [58],[43]

Portability Adaptability [10]
Installability [10]
Replaceability [33]

Reliability Maturity [33], [48]
Fault Tolerance [33], [48], [18]
Recoverability [33]
Consistency [10]
Reproductibility/Repeatability [10]

Maintainability [55] Modularity [36], [48]
Reusability [25]
Modifiability [33], [25]
Analyzability [33]
Testability [33], [48]

Table 3: Dependability macro and leaf attributes

There is no single metric that can accurately capture the
notion of maintainability of an application. [55] introduced
a composite metric for quantifying software maintainability
which could be used for ML based software to help predict
the maintainability of the application using the Halstead Vol-
ume [25] (effort or volume), Cyclomatic Complexity, Total
SLOC (source lines of code) and Comments Ratio.

Robustness
Taking into account the recent progress in AI, the negative
consequences of its use have led to multiple initiatives from
the European Commission to set up the principles of a trust-
worthy and secure AI. Among the identified requirements,
the concept of robustness [26] has emerged as a key element
for a future regulation, recognized as a desirable property in
systems where the consequences were deemed unacceptable
relative to the initiating damage.

The IEEE software engineering glossary [3] defines ro-
bustness as the degree to which a system or component can
function correctly in the presence of invalid inputs or stress-
ful environmental conditions. In [40], it is also the ability of
an AI system to maintain its level of performance under any
circumstances.

Macro attributes Leaf attributes
System-Dependent Adaptability [33]
Robustness Flexibility [31]

Agility [10]
Scalability [10]
Evolvability [10]

Inherent Global Robustness [12], [26], [75]
Robustness Local Robustness [26], [48], [75]

Stability [10]
Resilience Recoverability [48]

Survavibility [10]
Durability [10]

Table 4: Robustness macro and leaf attributes

Robustness matters for a number of reasons. First, trust
depends on reliable performance. Trust can erode when an
ML system performs in an unpredictable way that is diffi-
cult to understand. Second, deviation from anticipated per-
formance may indicate important issues that require atten-
tion. These issues can include malicious attacks, unmod-
eled phenomena, undetected biases, or significant changes
in data. Thus, robustness ensures nothing about “correct-
ness” of a model: robust predictions can still be wrong; a
very robust model can be completely useless. Then, Model
robustness refers to the degree that a model’s performance
changes when using new data versus training data. Ideally,
performance should not deviate significantly. To ensure that
a model is performing according to its intended purpose, it’s
critical to understand, monitor, and manage robustness as
part of model risk governance. In addition, robustness can
(should) be tested at two levels of possible perturbations as
follows [75]: Local robustness and Global robustness. Lo-
cal robustness is satisfied by a single data input x ∈ D
of a model M and a given perturbation x′ within a neigh-
borhood δ iff M(x) is identical to M(x′), in other words:
∀x′, d(x, x′) ≤ δ ⇒ M(x) = M(x′). Global robustness
is satisfied by the set of data D of a model M , considering
possible δ perturbations x′ for all inputs x ∈ D, and ex-
hibiting smooth convergence of M(x′) towards M(x) dur-
ing classification, in other words: ∀x, x′ ∈ D, d(x, x′) ≤
δ ⇒ M(x) → M(x′). If the model outputs M(D) con-
form a dense set allowing a distance metrics s(.), the con-



vergence can be validated for a given ε > 0 satisfying
s(M(x),M(x′)) < ε. In practice, such post-condition could
be difficult or unfeasible to verify depending upon the nature
of M(D). Further means are thus needed to understand how
perturbations impact misclassification.

Human centred quality and human oversight
Human-centered quality [32] concerns which requirements
for usability, accessibility, user experience and avoidance of
harm from use are met. From such perspective, trustworthy
AI should possess the properties of usability, and explain-
ability. People often confuse usability with user experience
and ease of use. The term ”user-friendly” is often employed
as a synonym for usable, though it may also refer to acces-
sibility. Usability describes the quality of user experience
across websites, software, products, and environments. Us-
ability is a component of user experience design. Specifi-
cally, ML-based systems should not cease operation at inap-
propriate times (e.g. at times when the lack of output could
lead to safety risks), and these programs or systems should
be easy to use for people with different backgrounds. Last,
but not least, trustworthy AI must allow for explanation and
analysis by humans, so that potential risks and harm can be
minimized, and human users can remain empowered. In ad-
dition, trustworthy ML should be transparent so people can
better understand its mechanism.

Usability issues are critical in many AI-based critical sys-
tems, where a human works with the system and apply re-
sults, and when the AI system serves as the user interface for
the user (as with chatbot systems). AI is also applied in some
systems to build a computer model of the user (e.g. digital
twin), which is then used to help anticipate the user’s needs
and optimize the interface (as in computer-aided instruction
systems and adaptive systems).

Explainability

Figure 4: the NIST four principles of XAI

Explainable artificial intelligence (XAI) is a set of pro-
cesses and methods that allows human users to compre-
hend and trust the outputs created by machine learning al-
gorithms. XAI is used to describe an AI model, its expected
impact and potential biases. It helps characterize model ac-
curacy, fairness, transparency and outcomes in AI-powered

decision-making. Some of today’s AI tools can be highly
complex, if not outright opaque. Workings of complex sta-
tistical pattern recognition algorithms, for example, can be-
come too difficult to interpret and the so-called ”black box”
models can be too complicated for even expert users to fully
understand. This is problematic for two reasons: Usability
and Regulatory compliance. Therefore, Explainability [48]
is a key attribute of Trustworthy AI, which is the extent to
which the behavior of a model can be made understandable
to humans. In basic terms, it is the understanding to the ques-
tion “why is this happening?”. Thus explainability [38] is a
property to express important factors influencing the AI sys-
tem results in a way that humans can understand. In line
with such assumption, the NIST [59] proposes four princi-
ples of explainable AI based on Explanation, Meaningful,
Explanation Accuracy, and Knowledge Limits (see fig. 4).

Macro attributes Leaf attributes
Usability Understandability [10]

Stakeholder satisfaction [35]
Explainability Explainability [26], [12], [48]

Completeness of explainability [10]
Precision of Explainability [10]
Interpretability [12]

Human oversight Fairness [10], [44]
Inclusiveness [10]
Transparency [10]
Trust [10]

Table 5: Human centered quality and human oversight
macro and leaf attributes

There are no unified methods or scales to evaluate ex-
plainability. Recent surveys, as the one offered by [73], sug-
gest that explainability can be decomposed by the methods
used to evaluate it.

Visualization methods pursue the characterization of a
ML model by visual observation of the levels of activa-
tion/deactivation according to the input data and their influ-
ence in the classification performance, sensitivity, and other
functional / structural properties.

Distillation methods aim to represent (distill) the knowl-
edge encoded in the ML/DL network after training via a
more human-readable format suitable for both user interpre-
tation and logic/machine reasoning. Some representative in-
stances in this family are:
• Local Approximation methods mimic the input/output

behavior of the target ML model on smaller datasets, and
using approximation functions, e.g. linear functions. Lo-
cal Approximation methods are based upon the hypoth-
esis that the ML behavior can be better and more easily
characterized on local areas rather than over the entire
dataset, e.g. LIME [62], Anchors [63].

• Model Translation methods aim to mimic input/output
behavior of the target ML model however considering
the whole dataset over a symbolic model, e.g. Graph-
based [76], Rule-based [27].

Intrinsic methods search to integrate the means for ex-



plainability as part of the design of the ML model. The ex-
plainability of ML networks should be intrinsic and thus in-
put/output behavior should be explicitly justified by the ML
model itself. Representative instances in this family are:
• Attention Mechanisms rely upon contextual vector and

attention mechanisms used to learn a conditional distri-
bution over data inputs which provide an interpretation
on the behavior of the weights of the operations of activa-
tion and deactivation, e.g. Single Modal Weighting [30],
Multimodal Interaction [2].

• Joint Training consists in introducing an additional task
in the ML/DL model, asides the original one, in charge of
providing direct or indirect explanations for the main task
behavior, e.g. Text Explanation [46], Explanation Asso-
ciation [42].

Conclusion
Software quality is defined as the capability of a software
product to satisfy stated and implied needs when used un-
der specified conditions. Software quality assurance is then
the systematic examination of the extent to which a safety
critical software product is capable of satisfying stated and
implied needs. AI components, especially based on super-
vised ML or DL, differ fundamentally from traditional com-
ponents because they are data-driven in nature, i.e., their be-
havior is non-deterministic, statistics-orientated and evolves
over time in response to the frequent provision of new data.
An AI component embedded in a system comprises the data,
the ML model, and the framework. Data are collected and
pre-processed for use. The learning program is the code for
running to train the model. Frameworks (e.g., scikit-learn,
TensorFlow) offer algorithms and other libraries for devel-
opers to write the learning program.

To characterize AI-based safety critical systems for the
purpose of quality assurance, it is meaningful to consider
the trustworthiness attributes defined in the report. But, trust-
worthiness is a complex notion, combining subjective con-
cepts, heterogeneity of granularity in the attributes compos-
ing it, and non-commensurability of the different attributes.

Our approach consists in defining the different attributes
constituting the notion of trustworthiness, exploring each
attribute to determine related KPIs, assessment methods
or control points, and defining an aggregation methodol-
ogy [51]. Some of such KPI examples were illustrated in
data-driven AI context. The work envisions the creation of
a methodological framework for the assessment of trustwor-
thiness leveraging expert knowledge (for example in the def-
inition of thresholds), a modeling of the environment of the
application (e.g. influence of the ODD on the selection of
attributes), and usability in an engineering process (each
atomic attribute is linked to a method or metric), covering
other AI paradigm in order to go beyond ML.
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