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Abstract

Object detection using deep learning has recently gained sig-
nificant attention due to its impressive results in a variety of
applications, such as autonomous vehicles, surveillance, and
image and video analysis. State-of-the-art models, such as
YOLO, Faster-RCNN, and SSD, have achieved impressive
performance on various benchmarks. However, it is crucial
to ensure that the results produced by deep learning models
are trustworthy, as they can have serious consequences, espe-
cially in an industrial context. In this paper, we introduce a
novel confidence metric for object detection using neighbor-
hood sampling. We evaluate our approach on MS-COCO and
demonstrate that it significantly improves the trustworthiness
of deep learning models for object detection. We also com-
pare our approach against attribution-guided neighborhood
sampling and show that such a heuristic does not yield bet-
ter results.

Introduction
Recent advances in object detection have made it attractive
to use in industrial use-cases, for example for finding flaws
in manufactured motherboards, or for finding targets of in-
terest in satellite images (Lam et al. 2018). In most cases, a
major roadblock for the adoption of deep learning based im-
age detection in an industrial context is the inability to assess
the trustworthiness of network predictions.

A naive approach relies on the probability associated with
the highest ranking class in the output along with the bound-
ing box around the detected object. However, it is well-
known that this value is not representative of the quality of
the model prediction (Szegedy et al. 2013).

In this paper, we propose a novel confidence metric based
on neighborhood sampling (NS), whereby we test the con-
formance of the predictions for samples picked randomly in
the neighborhood of the input.

There are several advantages to this method:

• It is black-box, i.e. it does not depend on a particu-
lar model architecture, and by extension to its particu-
lar weights. The only assumption we make is about the
shape of the model’s output. In particular, this makes our
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Figure 1: A picture generated using an adversarial attack
produce wrong predictions with a high level of confidence
(Ren et al. 2020)

method compatible with most architectures for object de-
tection neural networks FasterR-CNN (Ren et al. 2015),
Yolo (Redmon et al. 2016) and SSD (Liu et al. 2016).

• It is easy to implement. This is mainly because our ex-
periments showed that, on selected use-cases, the use of
attributions to pre-select samples had no real impact on
overall performance of the confidence metric. This al-
lowed us to focus on a naive, therefore simple imple-
mentation of neighborhood sampling, and test its perfor-
mance.

Given the fact that we use vanilla neighborhood sampling,
without intelligently selecting image pixels to turn-off (as
done in (Jha et al. 2019)), we put special focus on experi-
mentation to validate this NS confidence metric.

Our experiments have several goals:

1. Assess the validity of the method to be used as a confi-
dence metric.

2. Tune the hyper-parameters of the method, and especially
the sample size, which have a direct impact on metric
performance.

3. Validate the stability of hyper-parameters across classes
in a single use-case, and across use-cases.

In summary, we make the following contributions in this
paper:

• Provide a new and simple confidence score for object de-
tection

• Prove that using attributions to accelerate neighborhood
sampling is not necessary in practice.



Figure 2: Neighborhood sampling (NS) allows us to test the
distance of our input to the border with another class. The
closer to the border, the less confidence we have in the pre-
diction.

Related Work
Confidence metrics for classification
The confidence problem for image classification can be
stated as follows: given an image X and a model h, output
a prediction h(X) along with a confidence score CS(X)
between 0 and 1, that correlates negatively with prediction
uncertainty. Neural network classifier outputs (typically the
softmax function) can be seen as probabilities but are not
a good confidence estimators.

There exist two families of solutions to the confidence
problem:
• Look at the neighbors: a model is confident if its predic-

tion for input X is similar to its predictions for neighbors
of X.

• Look at the shape of the output: softmax is a poor
measure of confidence, but the statistics of softmax out-
puts on a large enough sample gives us an indication of
the confidence level.

There has been some reasonable success in providing con-
fidence metrics for image classification using methods in
these two families. We focus in this section on the neigh-
borhood sampling family.

NS has been successfully used for image classification as
done in (Jha et al. 2019) with attribution-based confidence
(ABC). The core of the ABC algorithm is focused on im-
proving performance by sampling mainly around pixels that
have a high influence on the output.

However, at the time of writing and to the best of our
knowledge, no work have been published with regards to
confidence metric for object detection. The goal of this pa-
per is to provide such metric.

Difference with classification
The confidence problem for object detection is a generalisa-
tion of the one for image classification, and can be stated as
follow: given an image X and a model h, output several de-
tected objects Oi, Oi being represented by a bounding box

and a class, along with a confidence score CS(Oi) that rep-
resents the confidence of the model in its prediction for ob-
ject Oi.

In the context of object detection, the concept of confi-
dence relates both to the position and class of detected ob-
jects (if there are any objects to detect to begin with), unlike
a typical classification setting where uncertainty surrounds
only the predicted class.

Note that we only consider confidence for detected ob-
jects. This means that if the model fails to detect an object
altogether, it is not reflected in the returned score. Such ex-
tension to the definition of confidence might be the subject
of future work.

Computational problem
Another concern is the computational problem. The essence
of neighborhood sampling being to verify the predictions of
the model in the neighborhood of the input, it is by construc-
tion very costly : in effect, if we sample N times, the com-
putation time is increased by a factor of N. The goals of the
methods for this family of solution has therefore been less
to improve the reliability of the confidence metric, than to
improve its performance by reducing the number of samples
that need to be produced.

One such attempt is described in (Jha et al. 2019). The
idea is that appropriate sampling suffers from the curse of
dimensionality, and needs to be addressed in order to prevent
an exponential increase in the number of samples that need
to be produced. They address this by sampling around very
targeted pixels, thereby dramatically reducing the number
of samples that need to be produced to provide a good con-
fidence score. This is done by calculating pixel attributions,
i.e. pixels that contribute the most to the final prediction.

The problem with this method is that computing attribu-
tions for detection is an order of magnitude more compli-
cated than for classification. This means two things:

1. Implementation is more tight to the architecture of the
model used for object detection, partially removing the
black-box feature.

2. The gain in performance we get by better targeting sam-
ples might be offset by the increase in complexity (and
therefore computation) in the computation of attribu-
tions.

We investigated the second problem, and found that the
use of attributions does not really increase performance. We
describe these results in the appendix. Based on this, we use
totally random sampling for our NS confidence metric.

NS Metric for Object Detection
Overview
The idea behind the NS confidence metric is to sample the
neighborhood of the input, and measure conformance w.r.t.
the original output.

The sampling of the input is performed the same way as
for classification (Jha et al. 2019): by randomly turning off
random pixels in the picture. Here, sampling is completely
random, which is computationally efficient. As shown in



the appendix, experimental results indicate that performance
gain using random sampling outweighs the gain with smart
(but very slow) sampling, for instance by modifying prefer-
entially high-attribution pixels.

The conformance w.r.t. the original output is a little more
complex to compute than for classification. Here, confor-
mance is computed at several levels:
• First, at image level, where we see whether the object

from the original image is detected at all in the modified
sample.

• Second, at bounding box level: here the original object
has been detected in the modified sample, which means
that bounding boxes have been drawn around the ob-
ject. We then check whether (a) the class in the bounding
box is the same as in the original bounding box, and (b)
the number of overlapping bounding-boxes before Non-
Maximum Suppression (NMS) (Rosenfeld and Thurston
1971) is roughly the same in the original image as in the
modified sample, the term roughly being quantified as a
specific hyperparameter to be tuned: if the percentage of
difference between the number of overlapping bounding
boxes is above a certain value, then the object is rejected
as non-conformal.

Algorithm
In this section we describe the algorithm to compute the NS
confidence metric.

Given an image X and a model h, we have a prediction
that detects N objects {O1, ..., On}. Each one of theses ob-
jects Oi is defined by the following:
• BB(Oi): a bounding box around the object Oi

• class(Oi): the class of the object Oi

• nNMS(Oi): the number of overlapping bounding boxes
around Oi that have been suppressed by NMS.

• P (Oi): the probability output for the class (usually the
max of the output of the softmax function for each
class)

We want to compute an array {C1, ..., Cn} of confidence
scores associated with each object.

The hyper-parameters of the NS confidence metric for de-
tection :
• S: Size of the sample
• P : Percentage of pixels randomly turned-off.
• nmsτ : Percentage of difference between number of over-

lapping bounding boxes
We define the following function:

Object(h,Xi,Oj) → object: detection of an object in a
modified image

This function is made possible because SSD, like other
implementations of detection using neural networks, has a
predefined set of bounding boxes. We can therefore perform
a 1-to-1 matching of detected objects in the bounding boxes
for the original image and the modified sample.

Conform(O1,O2) → boolean: conformance of two
objects

Algorithm 1: Object(h,Xi,O) → object

Inputs:
h: Model
Xi: sample image
O: an object from the original image

Output: The object from X with the same bounding
box as O

1: Let O1, ..., ON = h(X)
2: for i=1..N do
3: if BB(Oi) == BB(O) then
4: return Oi

5: else
6: return None
7: end if
8: end for

Algorithm 2: Conform(O1,O2) → boolean

Inputs: two objects O1 and O2

Output: boolean: conformance of the two objects

1: if class(O1) <> class(O1) then
2: return False
3: else
4: if |nNMS(O1)−nNMS(O2)

nNMS(O1)
| > nmsτ then

5: return False
6: else
7: return True
8: end if
9: end if

Features of the NS confidence metric
The features are the following:

It is black box. By this, we mean that the algorithm re-
quires no knowledge of (a) the artitecture of the model, and
(b) the weight of the neural network. For that matter, the
model could something completely different from a deep
neural network, the method would still work.

It is easy to implement. Although the method is simple
and black-box, we make for convenience some assumptions
about the structure of the model. It is important to note that
these assumptions can be relaxed.

• The model is a deep neural network, that outputs a large
set of bounding boxes from the original input, along with
a class and a probability for this class. This assumption
is in ligne with most state-of-the-art detection models

• The output above goes through a non-maximum suppres-
sion (NMS) phase, that merges overlapping bounding-
boxes around a same object. This phase is put in use to
fine-tune the confidence score, but is not necessary.

The performance is easy to calculate. Given the algo-
rithm described above, execution time is A + St, where
• t is the execution time of the model
• S is the number of samples



Algorithm 3: calculate-confidence(I , M ) : Float
Inputs: Model M , image I
Output: Confidence score

1: Let O1, ..., ON = M(I)
2: Let C1, ..., CN = 1, ..., 1
3: Let I1, ..., IS = S samples of I (generated by randomly

turning off P pixels of I)
4: for i=1..S do
5: for j=1..N do
6: if object(Ii, Oj)isNone)or(notConform(Oj , object(Ii, Oj))

then
7: Cj := Cj − 1/S
8: end if
9: end for

10: end for
11: return solution

• A is a constant

The number of samples is therefore a key parameter to
assess the performance of the NS confidence metric. The
evaluation of a proper number of samples to use is discussed
in the next section.

Experimental Evaluation
Overview
Goal We performed various evaluations of the NS confi-
dence metric. The goal of the evaluation is threefold: Firstly,
to validate the method. In other words, make sure that the
metric gives a good assessment of the confidence the model
has in its prediction. A more precise definition of such con-
fidence is given in the next paragraph. Secondly, to evaluate
the performance of the metric. Practically, since the perfor-
mance is closely linked to the number of samples, we exper-
imentally evaluate the number of samples required to pro-
duce good results on a given dataset. Lastly, to evaluate the
stability of the hyperparameters across datasets, and across
classes within a dataset. In other words, evaluate experimen-
tally the necessity to calibrate the metric.

Implementation In order to test the validity of the score
produced by the NS confidence metric, we feed the model
with some data we know will give some poor prediction,
hopefully with a capacity to calibrate.

In other words, given an image I from the validation
dataset, we want to product an image I’ = modif(I, p) where
p is a parameter between 0 and 9, and modif(I, p) is a mod-
ified version of I with a modification factor of p : I’ is equal
to I when p=0, and I’ is almost completely unrecognizable
when p=9.

What we expect then, is to have the confidence score de-
crease when p increases, and to quantify this evolution.

Use-cases For our experiments, we used the gaussian blur
as the modifications method : we blur our image with a blur-
ring factor p ranging from 0 to 9. At p = 0, the image is
not blurred at all, and we expect a good detection of objects

Figure 3: SoftMax vs NS confidence metric on all monoclass
instances from the Coco2017 validation dataset.

(the dataset being a validation dataset, the confidence score
is not expected to be close to 100%). At p=9, the image is
almost unrecognizable even for a human, and we expect the
confidence score to be close to zero.

We tested this method against the COCO 2017 dataset.
From the validation dataset of coco, we extracted all the im-
ages that contained only one object. This produced a dataset
of 1540 images. Although our method works well on mul-
tiple objects, doing so was more convenient for charting re-
sults.

Hyper-parameters The second and third goals of our ex-
periments are closely linked to the hyper-parameters. The
three main hyper-parameters we want to tune are the follow-
ing:

• Number of samples (NS). This hyper-parameter is the
most important one with regards to performance. Our
goal is therefore to lower their required number of sam-
ples as much as possible, and possibly tune the other
hyper-parameters to get good results even with a low
number of samples.

• Probability for an feature to be turned off (p). In other
words, this hyper-parameter is how much ”salt” we add
to produce a sample in the neighborhood of the input.

• NMS threshold (nmsτ ). As described in the algorithm
for the score calculation, we discard a detected object
in the sample when the number of overlapping bound-
ing boxes that have been suppressed by the NMS dif-
fers in the sample than in the original input. This hyper-
parameters is the threshold for the discard condition. If
nmsτ is set to .9, this means that the number of overlap-
ping bounding boxes have to differ more than 90% for
the object in the sample image to be discarded as non
matching.

Results
Figure 3 as been produced with increasingly blurring the in-
put images, and with the following hyperparameters for cal-
culation the confidence score: nbsamples = 100; p = .0;



Figure 4: The pertinence of the NS confidence score as com-
pared to the softmax output varies depending on the class.
Top: person; pizza. Bottom: toilet ; cat

nmsth = .9. The graph is a mean value of all the scores
for all of the images in the dataset. As we see, the softmax
output is overconfident, while the NS confidence score de-
creases linearly with the blur factor.

As expected, the softmax output gives overconfident pre-
dictions even when the blur factor is high. On the other hand,
the confidence score drops progressively with the blur factor.

When we look at the results for specific class, we observe
some variations of the results depending on the class. Cer-
tain classes (person, pizza) present exceptionnaly good re-
sults for the confidence score as compared to the softmax
output. Other classes have a good confidence metric, but the
softmax output also presents good confidence results. Still
other classes have been discarded as not enough samples are
present.

Conclusion
We use neighborhood sampling to provide a confidence met-
ric on image detection. This method gives good results for
classification, and we applied the same principle to detec-
tion with reasonable success. Our method uses vanilla neigh-
borhood sampling, and we validated experimentally that this
works with reasonable performances (and sample of size 50
is sufficient in our settings).

So far, our experimentation is based on one dataset and
one method of image modification, whose goal is to make
the prediction less accurate and to experimentally verify a
drop in the confidence score. As such, the obvious next steps
are (1) to use other datasets, and (2) to use other image mod-
ification methods. For (2), we identified the following: (a)
use poisson-blending with images that are completely out of
the dataset; (b) use adversarial attacks.

Also, the metric can potentially be improved by including
in the calculation the bounding boxes around the object, the
detect another class than the true class, but that are discarded
by the NMS.

Finally, despite the results on classification, it might be

interesting to test the use of attributions to speed up calcula-
tion in the case of image detection.
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Appendix
Neighborhood sampling has been successfully used to cal-
culate confidence in image classification in (Jha et al. 2019),
but with the caveat that for images the neighborhood is high-
dimensional, leading to a computational challenge that is
solved by lowering the dimensions around high-attribution
features.

We implemented the code for (Jha et al. 2019) and repro-
duced the good results for the following datasets: MNIST,
FashionMNIST, and Cifar10. But we also tested these results
when the high-attribution calculation of the code is removed.

The method is to perform predictions on the validation
data of the aforementioned datasets, as well as on trans-
formed data. The goal of the transformation is to force the
model to produce invalid predictions. The transformations
are (a) rotation (parameterized by the angle of rotation), and
(b) alpha-blending with a random image in the dataset (pa-
rameterized with the percentage of blending).

The results in figure 5 show the average confidence score
for all predictions in the validation dataset for the various
transformations. We show the confidence scores calculated
with and without focusing on high-attribution features only.
Most importantly, these results are calculated using the exact
same number of samples, which means that the calculation
without using attributions is actually faster, because it does
not include the cost of calculating the attributions for the
input.

We conclude from this experiments that the use of attribu-
tions does not increase in practice the performance of con-
fidence score calculation using neighborhood sampling, and
it is reasonably safe to remove this additional computation
when performing neighborhood sampling.
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