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Abstract

Although deep networks have shown vulnerability to
evasion attacks, such attacks have usually unrealistic re-
quirements. Recent literature discussed the possibility to
remove or not some of these requirements. This paper con-
tributes to this literature by introducing a carpet-bombing
patch attack which has almost no requirement. Target-
ing the feature representations, this patch attack does not
require knowing the network task. This attack decreases
accuracy on Imagenet, mAP on Pascal Voc, and IoU on
Cityscapes without being aware that the underlying tasks
involved classification, detection or semantic segmentation,
respectively. Beyond the potential safety issues raised by
this attack, the impact of the carpet-bombing attack high-
lights some interesting property of deep network layer dy-
namic.

1. Introduction

Deep neural networks (DNNs) have given state-of-the-
art results in most computer vision tasks, including image
classification [16], semantic segmentation [21], and object
detection [29]. Due to their complexity, DNNs have showed
vulnerability to adversarial examples, i.e., small perturba-
tions of their inputs designed to fool them [2, 33]. Such
vulnerability has motivated researchers to try to develop
more robust DNNs [23], as well as to prove that they are
robust [5]. Other research has been dedicated to the design
of more powerful attacks [17] or the development of differ-
ent class of attacks, e.g., patch attacks and universal attacks
[3,35]. Although such attacks cause safety issues, they also
reveal interesting properties about DNNs and their internal

Figure 1. Carpet-bombing patch. Our attack only requires a deep
network and a proxy data source to design an adversarial patch. It
does not requires neither data from targeted source nor even the
knowledge of the task on these data. Yet it could strongly decrease
performance on this task.

structure. For example, invisible noise attacks have high-
lighted that DNNs sometimes focus on high-frequency [13].
Also, [15, 22, 26] have offered connections between adver-
sarial ML and broader topics like network interpretability.

In the same way, we propose in this paper several exper-
iments which highlight that the deep network features are
not activated alike by adversarial clutter or adversarial fore-
ground even when optimised to do so (following [15] which
introduces the idea to target middle features).

As major contribution, we show how these experiments
led us to find a new kind of adversarial patch attack which
requires less prior information than previous attacks as
highlighted by Figure 1 and Table 1. Built to disrupt the
feature representations of network encoder, this new patch
could affect multiple tasks at the same time. For this reason,
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Adversarial attacks Network Target image or dataset Task Access to pixel
[2, 33] (original) + + + +
[12, 36] (blackbox) ≈ + + +
[24] (universal) + ≈ + +
[25, 31] (patch) + ≈ + –
[15, 30] (feature) – + ≈ +
Ours + – – –

Table 1. Typology of adversarial attack depending on the require-
ment of the attack (less requirement is obviously better). Those
requirements are prior knowledge or the fact that the attack is per-
formed on pixel values (not feasible in real world). Our attack is
the first with almost not requirement: it is clearly the first tested
without knowledge of the task prior (and it also does not require
neither the target nor the dataset nor access to pixel).

this new attack we named carpet-bombing patch, should
interest (at least) the safety community. More broadly, it
raises questions about intermediary layer dynamics.

To explain the interest (from a safety point of view) in
our patch, we briefly present a typology of the different
attacks in the following. The original adversarial attacks
present the following requirements:

• the knowledge of the targeted testing data,

• the knowledge of the targeted task,

• the knowledge of the targeted network (architecture,
weights and training data),

• and, the access to the pixel value (i.e. the attack is
performed after image acquisition and not directly in
the physical world).

Many adversarial attacks try to remove one or more of the
above-mentioned requirements. For example, black box
usually refers to the fact that network is unknown1 [27], uni-
versal usually refers to the fact that the attack is not specific
to some target [24] and patch-attacks are more likely to be
printable in real-world [3].

In this paper, we introduce a new attack that requires al-
most no prior: this attack does not require knowing the task
(to our knowledge, this setting has not been explored), and
at the same time, it also does not require knowing the target
or to access the pixel. Finally, it offers a moderate effect in
blackbox setting. This is the main limitation of this attack
regarding recent works like [15, 39]. Yet it offers a stronger
effect in whitebox setting and is more physically plausible.

The paper is organised as follows: The related works are
described in section 2 followed by the scientific story of
the proposed attack in section 3. The experiments proving
the harmfulness of this attack are presented in section 4.
Finally, the conclusions are provided in section 5.

1Despite it covers situations where queries of the network are allowed,
but inner variables of the network are not known, or, the situation where
no queries are allowed usually called transferable attacks.

2. Related works
2.1. Transferable invisible adversarial attacks

At the beginning, the community tried to build transfer-
able adversarial noises by directly targeting the white box
model loss [10,20]. Some works improve transferability by
adding a momentum [8] or by building an ensemble of white
box models on which the attack is built [20, 37]. However,
such methods show low transferability due to overfitting of
the source model. Zhou et al. [39] reduce the overfitting
by introducing a regulariser that maximises the distance be-
tween natural images and adversarial noises in the feature
space representation. Rozsa et al. [30], and Inkawhich et
al. [15] propose not to target the white box model loss,
but exclusively the feature representations. They propose
to minimise the L2 distance between a target point and a
source in the feature space for a chosen layer. The source
point is often the feature representation of a certain class.
This procedure is sensitive to the choice of the target and
shows low scalability to larger models, and dataset such as
Imagenet [7]. To better represent the target class in the fea-
ture space, Inkawhich et al. [14] propose to model the class-
wise feature distributions of the white box model. Instead
of targeting one single layer, they suggest to attack multiple
layers.

2.2. Adversarial patch attacks (APAs)

Classification: APAs were introduced first for image
classification by Brown et al. [3]. Instead of finding a small
additive adversarial noise, they constrained the optimization
procedure to a small part of the image but allowed it to be
unconstrained in magnitude. They produced a patch capa-
ble of fooling multiple ImageNet classification models in
digital or physical domains (just by printing the patch).

Object detection: Attacking object detectors was ex-
plored in several works working on different applications.
In the beginning, patches were directly applied on the struck
object. The first two works on patch-based attacks had tar-
geted stop signs [4, 32]. They produced stickers, when ap-
plied, can fool YOLOv2 or Faster RCNN. Thys et al. [34]
were the first to create a patch causing the disappearance of
people when it was applied on them. These works focused
on designing a patch that overlaps the targeting object to
change its class or suppress detection.

On the other hand, contextual patch attacks are patches
which without overlapping with the object of interest can
blind the detector. They were first explored by Liu et
al. [19]. Their patch, named Dpatch, showed transferabil-
ity over patch position, network architecture, and dataset.
However, their patches are never clipped to the image range,
which is unsuitable for real-world applications. Lee et al.
[18] studied the Dpatch attack in feasible physical condi-
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tions and compared it to their new attack. They outper-
formed the Dpatch method and showed real-time attack suc-
cess. The success of those attacks consists of adding a
salient patch in the image producing false positives. Saha et
al. [31] were among the first to develop attacks and defence
for contextual adversarial patches. They introduce the idea
of removing false positives on the patch to measure mainly
the contextual effect of patches.

Semantic segmentation: The first paper introducing real-
world APAs targeting semantic segmentation models is
[25]. The work presents a novel loss function that, when
used, leads to powerful attacks in both digital and real-world
scenarios. Unlike patches applied to classification or object
detection, the authors showed that semantic segmentation
models are not easily corruptible.

As is common throughout the APAs, patches are de-
signed to use the model loss function as the target objective.
For comparison, targeting the feature space of the model
encoder, we develop a new patch capable of fooling multi-
ple tasks which shows similar performance when attacking
with task knowledge. However, we find out that this kind of
patches do not keep the model transferability property as is
the case with invisible noises.

3. Another look to feature attacks
3.1. Trying to get the best of the two worlds

As recalled in related works, the best attacks (from a
requirement point of view) were, on one hand, patch at-
tacks [31], not requiring to access pixel value (and image
target), and, on the other hand, feature-based adversarial at-
tacks [14, 15], which are model transferable. The starting
point of our work was to try to combine the best of these
two attacks.

More formally, let F a given pre-trained neural network
performing a certain task. We denote by f the encoder part
of F and denote by L = {1, ..., L} the set of the L layers
of f . One encoder f is often used in multiple F , each per-
forming a different task. Let δ be the adversarial perturba-
tion that can be whether an invisible adversarial noise or an
APA. Adversarial noises are obtained by optimising with-
out constraint in space but with a constraint for a certain Lp
norm of δ (i.e ||δ||p ≤ ε for ε > 0). On the other hand, APA
is optimised with constraint in space but without constraint
in norm. For both of them, to make a realistic attack, we
enforce that pixels of the perturbed input or of the APA are
in the [0, 1] range. Transferable invisible adversarial noises
are generally obtained by the following optimisation proce-
dure:

argmax
δ
Ltask(F, x, y, δ) + ηLfeature(F, x, δ), (1)

where x is the input image, y is the label associated with the
task and η > 0 is the weight corresponding to the contribu-
tion of the feature loss. We have two terms: the first one,
Ltask can be the model loss or a loss derived from the task.
This loss disturbs directly the model task. The second term
is a feature disruptive loss. This loss generally enforces that
the feature map of the perturbed input differs from the orig-
inal inputs. The adversarial patches are designed with the
objective:

argmax
δ
Ltask(F, x, y, δ). (2)

In the case of classification, we have Ltask =
Lcross−entropy. Concerning the object detection, the task
loss can be general like Ltask = Lobject−detector or can
be more specific such as Ltask = Lcross−entropy and for
semantic segmentation, we have Ltask ' Lcross−entropy.
The transferable invisible attack and the patch attack in-
volve a task loss term that implies knowledge of the task.
Our proposed carpet-bombing attack, inspired by the fea-
ture disruptive term of transferable noises, is described by
the following formula

argmax
δ
Lfeature(f, x, δ), (3)

with

Lfeature(f, x, δ) =
∑
l∈L

∑
k∈K

||(fl(xδ)k − fl(x)k)�ml||2,

(4)
where fl(xδ)k is the k-th feature map of layer l of f for
the corrupted image xδ , ml the binary mask which is 0 on
the patch and 1 everywhere else and � is the element-wise
product. If δ is an invisible noise we have

xδ = x+ δ (5)

and if, δ is a patch, we have

xδ = x� (1−m) + δ �m, (6)

wherem is a binary mask that is 1 on the patch and 0 every-
where else. Attacking features of f instead of F makes the
patch independent of the task considered by F . Hence, we
can generate one patch capable of fooling multiple F that
are based on the same f . It can correspond to the scenario
where the attacker does not know the task or when multiple
tasks use the same encoder f .

3.2. Intriguing behaviour of noise vs patch

Consequently, following [15], we adapt the idea of fea-
ture attack across a patch rather than a noise. Nevertheless,
we observe very different behaviour between these two at-
tacks, although they are basically designed for the same ob-
jective. We propose in this section to study the effects of the
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constraint on both the obtained attack and the feature space.
We also conduct several experiments to force the patch to
have the same effect on features as invisible noise and in-
versely.

3.2.1 Attack setting

Herein, we present the attacking procedure applied to in-
visible noises and designed patches. Our goal is to design
universal contextual attacks. We provide more details in the
following concerning these attributes.

Universal: We follow [24,31] and learn a universal attack
(invisible noise or a patch) on the training dataset that works
across the unseen test dataset. Instead of finding a specific
adversarial δ for each image x, we optimise δ through iter-
ating over training images. To do so, we sample two subsets
of images from the test dataset that the network is designed
for: one to train our patch and the other to evaluate it.

Contextual effects: The objective is to design patches
that deteriorate the performance metric by impacting the
whole feature map. It should not be sensitive to its place-
ment over an object or the rate of false alarms. For image
classification, instead of placing the patch in the middle of
the image, we fix the patch at the top-left corner i.e. pixel
(5, 5). For object detection, we extract images wherein ob-
jects do not overlap with the patch, which are placed at the
top-left corner. Secondly, we remove detections overlap-
ping the patch. Finally, since there are no objects of interest
for semantic segmentation, we follow the setup of [25]. The
patch is centred in the scene, and metrics are not measured
on patch pixels.

For both adversarial noises and patches, we solve their
corresponding optimisation problem and clip them to [0, 1].
Clipping ensures that the perturbed image is always main-
tained in the distribution of original images, and the pro-
duced patches are more realistic and do not contain inf val-
ues. When not specified, the patch is initialised as an all-
zeros tensor, and we launch the optimisation process for 100
steps, where 1 step corresponds to 1000 iterations. SGD is
used as an optimiser with a momentum of 0.9, a minibatch
size of 1, and 10 iterations per minibatch. We evaluate the
performance of attacks in the same condition as during the
training phase.

3.2.2 Comparative results

First, we evaluate the effects of both attacks on the train-
ing model and the hidden model (no knowledge of weights
or architecture). In our experiments, we use models pre-
trained on ImageNet-1K [7]: ResNet50 (R50) as the white-
box model and ResNet18 (R18) as the hidden model (ex-

Whitebox (R50) Hidden model (R18)
Clean 76.06 70.14
Noise 16.13 33.19
Patch 0.69 62.99

Table 2. Accuracies (%) on 10000 ImageNet images for both white
box and hidden model under adversarial attacks designed to break
internal feature map.

Figure 2. Classification of features for both attacks depending on
their frequency of top disruption evaluated on 1000 ImageNet im-
ages. The fifty top attacked features for the L2-norm are extracted
for each image. The label ”Not selected” correspond when the
feature does not appear once in the top attacked features through
1000 images.

actly like in [15]). For patches, we use the procedure
detailed in Sec. 3.2 and for invisible noises, following
[15], we use iterative gradient sign attack with momentum
(TMIFGSM) [8] for 100 steps. Both attacks are target-
ting uniquely layer 4 of R50 i.e., L = {L}. We split the
ImageNet-1K test set into two subsets. We train attacks on
40000 images and evaluate them on 10000 images. Once
attacks are learned, we apply them to the testing set. Table
2 shows that patches have a better severity but present less
transferability than invisible noises.

From this result, we can ask ourselves; What is making
adversarial noises transferable?

3.2.3 Attacked features

To find whether or not attacked features are responsible for
the transferability of the attack, we extract ”top attacked
features” from both types of attacks. To do so, we pass
1000 cleaned and corrupted images to the white box model
and extract features from layer 4 of R50. We measure the
L2-distance between cleaned and attacked features for each
image and save only the top fifty attacked features (ie largest
norm). We observe from figure 2 that patches are essentially
targeting a limited set of features (≈ 13%) and focusing on

4



Figure 3. Sorted bar chart of the average L2-distance between cleaned and attacked features over 1000 ImageNet images. On the left,
images are corrupted by patch and on the right, by invisible adversarial noise. The top attacked features for invisible noise are highlighted
on the left and on the right for the patch.

Figure 4. Sorted bar chart of the average relative L2-distance between forced and unforced attack. The average is done on 1000 ImageNet
images. On the left, images are corrupted by patch and on the right, by invisible adversarial noise. The top attacked features for invisible
noise are highlighted on the left and on the right for the patch. Those top features are used to design the forced attack.

a more significant part of features than invisible noises (4.5
% against 0.7 %). The latter targets a more extensive set
of features but in a random fashion (96.6 % for p < 50%).
In figure 3, we plot the sorted average L2 distance between
clean and attacked images for each feature and highlight the
top attacked features (p ≥ 50%) in red for the invisible at-
tack and in blue for the APA. We observe that patch attacks
significantly impact features more than invisible noise. We
retrieve the same dynamic as in figure 2: patches focus on
a smaller set of features than adversarial noises. By looking
at the dynamic of the graph, invisible noises seem to have a
diffusive effect on the features and patches show a sharper
effect. Interesting to note that they are attacking different
features by default.

That brings us to ask: Are the invisible noises transfer-
able due to the fact that they target these top features? Can
we force a patch to only target those features? Is this op-
eration make the patch transferable? Are some features in-
sensitive to a particular attack?

3.2.4 Mimetic attack

We extract the most attacked features for both adversarial
attacks (p ≥ 50%), and we denote them, Kpatch and Kinv

respectively. Now, we resolve (4) the same way as before,
except we replace K by Kinv when designing the patch
and by Kpatch when designing an invisible attack. Figure
4 plots the relative L2 norm when forced attacks target spe-
cific features. We highlight the previously top-attacked fea-
tures for each attack. This graph shows that the patch can
attack top invisible features (augmentation from previous
trials by a factor of ' 10 of the attack on those features). It
indicates the fact that patches are somehow capable of dis-
rupting top-attacked invisible features. On the other hand,
invisible noises could not target other features. Most values
around the value one indicate the difficulty of constructing
noises targeting a selected set of features. However, does it
affect the performance of both models? In Table 2, we re-
port performance when we constrain attacks. Both attacks
demonstrate less effectiveness on the white box than in de-
fault mode. However, concerning the hidden model, we do
not observe a gain when targeting invisible features and vice
versa.
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3.2.5 Spatial impact:

At this point, one could wonder if there is a difference be-
tween feature perturbation created by noise or patch, as the
perturbation designed by an adversarial noise works on dif-
ferent models, which is not the case for an adversarial patch.
One possible explanation is that, the spatial patterns of both
perturbations are structurally different (even if this is not
visible when considering the spatial average of a given fea-
ture channel).

We propose to study the spatial impact of attacks. We
apply attacks built by default (i.e., no constraint on the at-
tacked features) on 1000 images and measure the average
L2-distance between attacked features and clean features in
each cell of the feature map. We obtain a map represent-
ing the spatial impact of attacks (Fig. 5). The heat maps
of attack impact are shown in top figures when applied to
the white box model (Fig. 5a, 5b) and on the bottom, the
relative map when applied on the hidden and the white box
model (Fig. 5c, 5d). From these plots (Fig. 5a, 5b), it
could be clearly seen that patches are attacking their neigh-
bourhood area and the adversarial noises are diffused over
all features. We see that patches have a broader impact on
attacked cells than noises. But is this significant impact
capable of transfer to the hidden model? From plots 5c
and 5d, we observe that the patch effect on its neighbour-
hood almost disappears. Contrarily, concerning the invis-
ible noises, their effect decreases despite their significant
impact.

3.3. Transfer between related networks

Seeing the behaviour of the patch attack on a hidden
model, we consider different but closer models. For this
purpose, we consider a Darknet-19 [28] classifier trained on
Imagenet, and we finetune it into a Yolo on PASCAL VOC.
We save a snapshot of the Darknet-19 being finetuned every
300 iterations and measure the impact of the original patch
designed to target the Imagenet. Precisely, we choose to
target last layer i.e., L = {L}). We pass 1000 ImageNet
images and extract the top attacked features.

As a result, figure 6 shows the evolution of patch fea-
ture impact for Darknet-19 and evolutionary versions of
YoloV2. This graph shows that patch impact decreases very
quickly during YoloV2 training. First, the amplitude of the
attack strongly decreases. Then, we observe that the patch
has a significant pattern drift considering most attacked fea-
tures after 600 iterations. So, even when targeting the same
model with related weights, the original patch quickly be-
comes ineffective (we check that it is possible to design a
specific patch for each snapshot).

These experiments also point out that the features not
considered by the attack in the original model can become
the most important. At this point, it means either weight
changes too quickly so that the initial relationship between

(a) Impact map for patch on the
whitebox model (R50)

(b) Impact map for noise on the
whitebox model (R50)

(c) Impact map for patch on the hid-
den model (R18)

(d) Impact map for noise on the hid-
den model (R18)

Figure 5. Impact map obtained by averaging the L2-distance over
features in cells. On the top row are represented maps for the
different attacking procedures (patch or invisible) for the whitebox
model (R50) and on the bottom row for the hidden model (R18).

the two networks is irrelevant or that the network impor-
tantly reorganises the influence of features.

3.4. Carpet-bombing patch

Seeing previous experiments, it seems that combining
the best of the two worlds does not provide satisfying re-
sults: the conversion proposed in [15] into a patch attack
(to remove additional requirements) does not inherit from
[14, 15] property. Nevertheless, even though our patch at-
tack provides only a moderate effect in black box setting, a
second look at the noise-vs-patch experiments reveals some
interesting properties.

First, our patch attack is much more powerful than noise
based for modifying the feature map in white box setting:
in this setting, the feature norm modification is eight times
more intense with the patch than noise (in absolute value).
This is why we call our patch a carpet bombing patch: it
heavily modifies the targeted feature maps, eventually pro-
ducing an output modification. Moreover, we observe that
this heavy perturbation offers some interesting features:

• like most patch attacks, it does not need to know the
target image, but even stronger, it can be designed from
a proxy dataset;

• it does not need to know the underlying task;

• and as a patch attack, it does not need to access the
pixel.

6



(a) Darknet-19 (b) YoloV2 trained on 300 batches (c) YoloV2 trained on 600 batches

(d) YoloV2 trained on 900 batches (e) YoloV2 trained on 30000 batches (f) YoloV2 final version

Figure 6. Patch impact evolution during the fine-tuning of Darknet-19 to YoloV2, from top-left to bottom-right. For each step, a bar chart
of the average L2-distance between cleaned and attacked features for the last layer of Darknet-19. The average is computed over 1000
images. Highlighted the top attacked features by patch attack designed to disrupt Darknet-19 last layer features.

To our knowledge, those three features have never been ob-
served simultaneously: standard attacks rely on the task loss
and even [15] which targets features only consider classifi-
cation, and crafting a patch on proxy data source has never
been explored before (of course, the two data sources can
not be too different).

Despite combining network transferable attack [15] and
patch attack [31] was not satisfying, we still obtained a
threatening attack (described in 3.1) whose performances
are detailed in the next section.

4. Experiments
In the previous section, we have shown a first contribu-

tion2 by comparing the behaviour of adversarial noise and
adversarial shape. Yet, the main contribution, oriented to-
ward the safety community, is the design of a new adversar-
ial patch attack with even fewer requirements than previous
ones (as pointed in table 1). Numerous experiments are per-
formed in this section highlighting that the proposed attack
requires neither the underlying task, the target, or even the
knowledge of the exact data source.

4.1. Datasets

We report our results for image classification task on the
commonly-used dataset ImageNet [7], for object detection
task on PASCAL VOC [9] and for semantic segmentation

2potentially interesting for all computer vision community

task on Cityscapes [6] which is a popular dataset for urban
semantic segmentation.

Briefly, ImageNet is a set of 1M high resolution im-
ages (256x256 pixels) tagged with 1000 labels. Pascal
VOC is a set of 50K large images (some above 512x512
pixels) containing a few objects from 10 classes. Finally,
Cityscapes consists of a few thousand high-resolution im-
ages (1024 × 2048) taken from a car while driving (there
are 2975 images for training and 500 for validation).

4.2. Eliminating the requirement of knowing the
task

In this section, our goal is to design a patch capable of
fooling multiple tasks without any underlying knowledge
of them. In the following, we explain each task and the
corresponding results.

4.2.1 Image classification

We design our patch to attack the backbone of the well-
known ResNet-50 [11] from Pytorch Model Zoo. This
model has been pretrained on ImageNet-1K [7]. We split
the ImageNet-1K test set into training and test sets. The
patch is fixed at the top-left corner i.e., pixel (5, 5) with a
dimension 50× 50. We solve Equation (4) using the previ-
ously explained procedure (see Sec. 3.2) and choose to tar-
get only layer 4. We compare our attack to the well-known
patch attack for classification [3].
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Task Clean SOTA attack Ours

Classification (Acc) 76.06 0.17 [3] 0.69

Detection (mAP) 72.77 52.29 [31] 59.04

Segmentation (mIOU/mAcc) 69.00 78.00 44.59 54.54 [25] 43.11 54.81

Table 3. Comparison of performance (%) under our attack and
state-of-the-art task patch attacks for image classication, object
detection and semantic segmentation. SOTA is different for each
task, while our attack is unaware of the underlying task.

For this task, the model accuracy has dropped nearly to
0% (Tab 3). This result is impressive since our patch has
been designed without any knowledge of the underlying
task. It can deteriorate the feature map so the network can
not exploit it.

4.2.2 Object detection

Following the methodology and the conditions used in [31],
we compare our attack against their universal blindness at-
tack, where both methods target YoloV2 architecture [28].
We sample from the PASCAL VOC [9] test dataset, two
subsets of images that do not overlap with the patch. Each
image is rescaled to 416 × 416 dimensions, and we fixed
each patch to 100 × 100 dimensions at the top-left corner.
Again, we solve Equation (4) using the previously men-
tioned procedure (Sec. 3.2). For the encoder part (f ) of
YoloV2 architecture (F ), Darknet-19 is considered. We tar-
get the last layer of Darknet-19, i.e., L = {L}. Once the
patches are designed and learned by optimising the Equa-
tion (4) and [31], we evaluate them with the same emplace-
ment as during the training phase. In evaluation setting,
we set the confidence threshold of YoloV2 architecture to
0.0005, the Non-Maximum Suppression (NMS) to 0.45,
and the Intersection Over Union (IOU) to 0.5.

The corresponding results are shown in Table 3. Our at-
tacking performance is interesting because this performance
is reached without introducing false alarms to the patch.
The obtained result proves the weakness of object detec-
tors, which indicates that the disruption of feature represen-
tations can influence the decision of a complicated task like
detection.

4.2.3 Semantic segmentation

We compare the performance of the proposed patch against
the recent state-of-the-art patch attacks designed for seman-
tic segmentation task [25] and using Cityscapes dataset [6].
We use the same settings as in [25] to compare. For patch
training, we randomly sample 250 images from the train-
ing set and to evaluate the impact of patches, we use the
entire validation set. For the sake of comparison, we select
BiSeNet [38], one of the state-of-the-art real-time semantic
segmentation models. We target the two last layers of the

Task Clean ImageNet −→ D PASCALVOC −→ D Cityscapes −→ D
Classification (Acc) - R50 76.06 0.69 0.26 0.48
Detection (mAP) - YoloV2 72.77 64.33 59.04 63.10

Table 4. Comparison of performance (%) under our attack when
the targeted dataset is not known. The targeted dataset D is Ima-
geNet and PASCALVOC for classification and detection, respec-
tively.

Context Path module, i.e., L = {L−1, L}. Since we are not
using Expectation Over Transformation (EOT) [1], patches
are placed at the middle part of images following [25] and
have a dimensionality of 300 × 600 pixels. We use Adam
optimiser with a learning rate of 0.5 and run the optimisa-
tion process over 200 epochs. The evaluation has been done
with the same emplacement of image as during the training
phase.

Table 3 shows that we obtain similar results to state-of-
the-art segmentation attacks. Disrupting features of one
module of the model seems to degrade the performance
highly.

4.3. Removing the requirement of knowing the data
distribution

Finally, we test whether or not our attack could rely on
data from the targeted distribution. In a real-life scenario,
a hacker would often have access to the underlying target
model than to the data on which the model was built. We
evaluate the impact of our attack when trained on a com-
pletely different dataset. We considered two tasks and three
datasets. For image classification, our patch is built on PAS-
CALVOC [9], or on Cityscapes [6] to sway R50 trained on
ImageNet [7]. To target YoloV2 architecture [28] trained on
PASCALVOC [9], we design our attack on ImageNet [7] or
on Cityscapes [6]. We used the optimisation procedure de-
scribed in section 3.2. Once patches are learned, we apply
them to the data on which the model is trained. For clar-
ity, we report the performance of models when attacked by
patches designed on the targeted distribution.

We show impressive attacking results for both tasks (Tab
4). Our patch decreases the performance near to 0%, and
by 9 % points for classification and detection, respectively.
We demonstrate similar results for classification when the
patch is directly learned on the targeted distribution. And
for detection, mean average precision (mAP) falls signifi-
cantly independently from the fact that the patch is designed
on ImageNet, Cityscapes or PASCALVOC.

To the best of our knowledge, such a level of degradation
without knowledge of the task, the target (or the dataset of
the target) and without direct access to the image pixel has
never been reported before.
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5. Conclusion
This paper introduces a new evasion attack targeting

deep networks, which can be crafted without access to tar-
geted datum (or data distribution), targeted tasks and that
could plausibly be produced in the real world. Such easily
reproducible attack should be considered for safety reasons.
Beyond the proposed attack, this paper also reports inter-
esting experiments which highlight the difference between
adversarial noise and adversarial patch. These results may
interest more broadly than the strict attack-defence game
and should be deeply studied in future works.
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