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Abstract

Homogenized models are widely used in multiscale analysis for their computational

efficiency, but they often fail to provide sufficient accuracy in regions exhibiting high

variations in the solution fields. One way to address this limitation is to adaptively

couple the homogeneous model with a full field, heterogeneous one in designated

zones of interest. Within the framework of finite-element based higher-order asymp-

totic homogenization, this work introduces a modeling error estimator in order to

detect regions where refining the material model is necessary. We also analyze the

competition between discretization and modeling errors. We finally propose a multi-

scale enhancement of the classical displacement-based submodeling technique in or-

der to adequately couple the homogeneous and heterogeneous domains. The promise

of the proposed methods and the overall associated strategy is illustrated on various

numerical examples of elastic fiber-matrix composites.
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1. Introduction
Analyses of heterogeneous structures are conventionally performed using effec-

tive or homogenized material properties, instead of explicitly taking into account

each material phase and the geometrical arrangements of the microstructure. These

effective properties are usually obtained by homogenization methods, which can be

broadly divided into two main categories: closed-form (or analytical) methods and

computational methods.

Asymptotic homogenization, firstly introduced in the theoretical work of Sanchez-

Palencia (1983) and Bensoussan et al. (2011), is one of the most rigorous closed-form

homogenization approaches available in the literature. It is based on the assumption

of spatial periodicity of the microstructure where the unit-cell defines the Repre-

sentative Volume Element (RVE) without any ambiguity. This method consists in

using asymptotic expansions of the mechanical fields of the full-scale problem in or-

der to split it into a decoupled set of microscale unit-cell problems and a macroscale

problem. Solving the former allows one to compute the effective properties of the

equivalent homogeneous medium but also to estimate, by a localization process, local

fields within the material. Asymptotic homogenization, as an engineering tool, has

been explored in the seminal works of Kikuchi and coworkers (Guedes and Kikuchi,

1990; Hollister and Kikuchi, 1992; Terada and Kikuchi, 1995) where the finite ele-

ment method has been used to solve the unit-cell problems to compute equivalent

material properties, as well as local fields estimation. Such multiscale computa-

tional analyses have been conducted by Ghosh et al. (1995, 2001) where the asymp-

totic homogenization theory has been combined with the Voronoi cell finite element

method (VCFEM) to study elastic and elasto-plastic material behavior. Fish and

coworkers (Fish et al., 1994b; Fish and Belsky, 1995; Fish and Yu, 2001) have used

asymptotic homogenization to develop a multigrid method for the analysis of pe-
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riodic materials and to account for the damage phenomena occurring at different

scales. Recent works resort to asymptotic homogenization in a wide range of en-

gineering problems, e.g. to study metamaterial behavior (Yang et al., 2019, 2020;

Abali and Barchiesi, 2020; Abali et al., 2022; Yang et al., 2022), to optimize struc-

tures (Suzuki and Kikuchi, 1991; Sigmund, 1995; Hassani and Hinton, 2012), and to

evaluate localized stiffness degradation (Visrolia and Meo, 2013). Generalized non-

linear problems are more often tackled using so-called computational homogenization

methods (Moulinec and Suquet, 1998; Feyel and Chaboche, 2000; Kouznetsova et al.,

2001, 2002; Miehe and Koch, 2002), which have the same basic structure as other

asymptotic homogenization approaches, but rely on an incrementally linearized mul-

tiscale analysis, alternating macro-problem resolution to recover the global balance

and micro-problem analyses – often heavily parallelized – to recover local stresses and

Jacobians. The reader is referred to Kanouté et al. (2009) for a thorough review of

homogenization methods. In this article, we use asymptotic homogenization for mul-

tiscale linear behavior analyses. Therefore, only periodic heterogeneous structures

are considered.

Conventional or first-order asymptotic homogenization, which considers only the

first term in the asymptotic expansion, works well for cases with a complete sepa-

ration of scales. This assumption is only valid when the scale of the microstructure

or microstructural fluctuations are much smaller than the characteristic dimensions

of the macrostructure. For weak separation of scales, however, it generally becomes

inaccurate (Ameen et al., 2018). One solution to overcome this limitation is to

keep higher-order terms in the series expansion. Indeed, Boutin (1996) shows that

higher-order terms in asymptotic homogenization introduce successive gradients of

macroscale strain and tensors characteristic of the microstructure, which result in in-

troducing a non-local effect in the material behavior. Therefore, asymptotic homoge-
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nization may offer a better estimate of local fields, even in cases of a weak separation

of scales, by a higher-order localization process. Nevertheless, the construction of

a solution at the vicinity of the boundaries remains beyond the capabilities of this

method due to the loss of periodicity assumption in these regions, unless a boundary

layer correction is applied. In Fergoug et al. (2022b) a FEM numerical framework has

been proposed to perform a higher-order localization process associated with a gen-

eral boundary layer correction method. This work is limited to the assumption that

both the heterogeneous microscale mesh, constructed by translating the unit-cell,

and the overall macroscale mesh are identical, which can be computationally pro-

hibitive. In the present article, we propose an extension of the aforementioned work

to deal with different coarser macroscale meshes, requiring less computation time

than Direct Numerical Simulations (DNS, i.e. when the geometry of the microstruc-

ture is explicitly described in simulations). As a result, local fields corrected at the

boundaries needed, for example, to predict damage initiation, will be estimated on

the coarse macroscale mesh.

Numerical simulations of heterogeneous structures depend on several factors such

as the characteristics of the microstructure, the domain of interest, and the applied

loads as well as the targeted accuracy and the objective of the simulation. Conse-

quently to avoid a DNS, there is a need to adaptively select the appropriate scale

for each domain of interest. Toward this end, the concept of hierarchical modeling

was introduced to couple a multilevel material model in the same simulation. This

process of adaptivity is usually steered by criteria used to detect areas where re-

fining the material model is necessary. These criteria can be physically oriented,

for example, based on the level of stress, strain or damage (Ghosh et al., 2001) or

mathematically oriented by using the macroscale discretization error or the modeling

error (Zohdi et al., 1996; Fish et al., 1994a; Ghosh et al., 2007; Temizer and Wrig-
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gers, 2011; Vernerey and Kabiri, 2012). The non-exhaustive representative works

that have treated the subject of adaptivity are as follows:

• Zohdi et al. (1996) and Oden and Zohdi (1997) have initiated a hierarchical

modeling strategy based on the estimation of a global modeling error, which

quantifies the error induced by replacing the heterogeneous material with a

homogeneous one. Based on the observation that global estimates can be in-

sensitive to local features such as stress concentrations or average strains, Oden

and Vemaganti (1999, 2000) have proposed an extension of the modeling error

to quantities of interest. This error estimation and adaptivity process have

been extended to nonlinear problems by Oden et al. (2001). A disadvantage

of this class of methods is that it needs access to the full microscale material

fluctuations, and the modeling error estimation is thus conducted through an

integral over the corresponding heterogeneous domain, which can be computa-

tionally prohibitive.

• Fish and coworkers (Fish and Markolefas, 1993; Fish et al., 1994a; Fish and

Belsky, 1995; Fish and Shek, 2000) have proposed the adaptive s-method, a

coupling strategy of the macroscale with the microscale of an underlying pe-

riodic microstructure at a region of interest identified by multiscale reduction

error estimators/indicators derived from asymptotic homogenization. The lim-

itation of this method is that it does not take into account the boundary layer

effect, which is predominant in many industrial applications.

• Ghosh and coworkers (Ghosh et al., 2001; Raghavan and Ghosh, 2004; Ragha-

van et al., 2004; Ghosh et al., 2007) have suggested an adaptive multi-level

methodology to create a hierarchy of computational sub-domains with a varying
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resolution, from homogenized formulations to explicit microstructural model-

ing. The macroscale computations are done by conventional FEM models while

the VCFEM is used for micromechanical analysis. The switching criteria from

one level to another can be associated with the gradients of macroscale variables

(e.g. stress, strain, or strain energy) or the evolution of microscale damage.

This method has addressed damage evolution in composites accurately and

efficiently.

In this article, we present a novel modeling error estimation based on a higher-order

localization process derived from asymptotic homogenization. The main idea of the

proposed estimation is to quantify the terms neglected by conventional first-order

homogenization, necessary to capture the gradients of the macroscale field in case of

a weak separation of scales. Contrary to Fish et al. (1994b), our estimation quan-

tifies the modeling error that occurs on the boundaries thanks to the higher order

boundary layer correctors. Indeed, a rapid change of gradients generally occurs near

the boundaries, which, ultimately, may be responsible for the failure initiation of the

structure (Pipes et al., 1973). However, it should be noted that the mathematical es-

timation of such error associated with higher order correctors, though possible based

on theorems from mathematical homogenization (Tartar, 2009), is especially difficult

at boundaries and beyond the scope of the present work. The interested reader will

find some steps showing the direction towards such mathematical estimation near

interfaces in the recent work of Josien (2019).

The adaptivity process generally entails minimizing two types of errors, viz. the

discretization error, inherent to finite element approximation, and the modeling error,

as discussed by Fish et al. (1994a) and Zohdi et al. (1996). To this end, we also study

the competition of both discretization and modeling errors for different macroscale
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meshes and material phase ratios.

Finally, hierarchical modeling raises the challenge of adequately coupling the

macroscale and the microscale domains. Several coupling techniques have been pro-

posed in the literature such as the submodeling technique, which consists in perform-

ing two independent analyses, one on the macroscale global model with a coarser

mesh, and the other on the microscale local model with a refined mesh (submodel),

where the displacement obtained with the global model is prescribed to the boundary

of the local one. It will be shown later that this technique generally leads, in the

context of multiscale analyses, to high modeling errors on the interfaces. Other cou-

pling techniques that differ according to the physics of the problem exist, such as the

volume coupling of Arlequin method (Dhia, 1998), and surface coupling techniques

such as the mortar element method (Bernardi et al., 2005; Amini et al., 2009), linear

multi-point connection (Lloberas-Valls et al., 2012), or more recently a second-order

homogenization based coupling (Wangermez et al., 2020). In this article, we pro-

pose a multiscale enhancement of the classical submodeling technique where, instead

of applying the macroscale displacement on the local domain, a higher-order local-

ized displacement field corrected at the boundaries is applied. This is expected to

give better results since localized fields provide a good estimation of local microscale

fields, as will be shown later in this article.

Regarding the aforementioned aspects, the present work proposes the following

main novelties:

• A higher-order localization process with boundary layer correction conducted

on macroscale coarse meshes to provide an estimation of local microscale fields.

A modeling error, based on this estimation, is proposed.

• A multiscale enhanced submodeling technique based on the localized fields
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corrected at the boundaries to adequately couple the macroscale with the mi-

croscale domains.

To the best of our knowledge, such aspects have not been proposed in the literature

yet.

The outline of the paper is as follows. In Sec. 2, we first present the studied

boundary value problem and briefly recall the localization process and the boundary

layer correction method. In Sec. 3, we detail the proposed procedure to conduct

this localization process on coarse macroscale meshes. The suggested modeling error

estimation is elaborated in Sec. 4, and the multiscale submodeling technique is de-

picted in Sec. 5. Each section is accompanied by numerical example to demonstrate

the efficiency of the suggested approaches. The analysis is limited to linear elastic

material behavior under the small strain assumption.

2. Preliminaries
Asymptotic homogenization can be used to determine the effective properties

of periodic materials from the knowledge of local mechanical properties over one

unit-cell, representative of the microstructure. This method is also able to estimate,

by a localization process, local fields within a structure without conducting DNS.

Nevertheless, the solution provided by the localization process is inaccurate in the

vicinity of the boundaries due to the loss of periodicity assumption in these regions,

unless a boundary layer correction is applied.

In this section, we present the studied boundary value problem and briefly recall

the localization procedure and the boundary layer correction method to improve the

accuracy of estimated fields on the boundaries. We refer the reader to Fergoug et al.

(2022a,b) for more details.
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2.1. Statement of the boundary value problem

A heterogeneous periodic body is considered as a linearly elastic solid in static

equilibrium, whose heterogeneity arises from the distribution of separate phases

at the microscale. We define the bounded domain Ω, shown in Figure 1a, occu-

pied by this heterogeneous body and corresponding to the microscale. The bound-

ary ∂Ω consists of a portion Γu, on which the displacements are prescribed to the

value ud = 0, a portion Γt on which a pressure distribution P (x) is applied, and the

last portion Γs on which the structure is sliding freely. The size of the structure

is L = 12 mm, H = 6 mm, and W = 1 mm, with a fiber volume fraction of 25%.

The matrix and the inclusions are assumed to be isotropic elastic with coefficients

(Em = 500 MPa, νm = 0.3) and (Ef , νf = 0.3), respectively, where the value of

Ef will be varied across the examples. This boundary value problem will be solved

under the plane strain conditions.

(E , ν )
f f (E , ν )

m m

s s

u

t

0 120 0

06 6 12

(a) Structure geometry

y

y

(b) Unit-cell domain

y

y

(c) Unit-cell mesh

Figure 1: Illustration of the studied fiber-matrix composite. The corresponding microscale mesh is

built by repeating the unit-cell Y characterized by a heterogeneous behavior C (y) over the three

space directions. The structure is sliding on Γs, fixed on Γu and a pressure distribution P (x) is

applied on Γt.
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Due to its heterogeneous nature, the mechanical behavior of the body Ω is assumed

to depend on two scales:

• Macroscale with materially homogeneous domain Ω, having L as a character-

istic length and global coordinates x ∈ Ω, and endowed with homogenized

properties C0 (x), obtained from the resolution of the first-order homogeniza-

tion problem over the unit-cell;

• Microscale, having l as a characteristic length and with local coordinates y ∈ Y ,

where Y is the unit-cell domain, and endowed with heterogeneous proper-

ties C (y).

The coarse and fine scales are related by the parameter ϵ such that:

ϵ = l

L
, y = x

ϵ
. (1)

The finite element mesh describing the unit-cell is composed of 1, 008 twenty-node

brick elements as shown in Figure 1c. Therefore the microscale mesh describing the

entire structure including all heterogeneities is composed of 72, 576 (1, 008 × 6 × 12)

elements, corresponding to 1, 527, 345 degrees of freedom.

In Section 2, we consider that the macroscale mesh is identical to the microscale one,

but endowed with homogenized properties C0 (x).

2.2. Localization procedure

In Fergoug et al. (2022b), an estimation of heterogeneous fields has been proposed

by conducting a higher-order localization, up to the third-order. The obtained esti-

mates are expected to capture the effect of macroscale successive gradients neglected

by a conventional first-order localization. The main aspects of the estimation are
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briefly recalled here and the reader is referred to Fergoug et al. (2022b) for more

details.

The proposed estimation is constructed by solving the following problems:

• Homogeneous problem (Phom) with effective behavior C0 (x). Solving this

problem enables to compute the macroscale strain and its successive gradi-

ents (E (x) , ∇xE (x) , ∇x∇xE (x)). The gradient of the macroscale strain

field, ∇xE, is numerically evaluated by extrapolating corresponding strain val-

ues between integration points to the nodes and are averaged for each element

(at the nodes). Strain values are then appropriately differentiated using the

finite element symmetric gradient operator, usually denoted B. A similar

procedure is used to compute the second gradient of the macroscale strain

field ∇x∇xE.

• First
(
P1st

order

)
, second

(
P2nd

order

)
, and third-order

(
P3rd

order

)
homogenization prob-

lems over the unit-cell. First-, second-, and third-order localization tensors

(D0,A0,B0), (D1,A1,B1), and (D2,A2,B2) are obtained from the resolution of

these problems, respectively.

The proposed estimates read:

uest (x, y) = U (x)

+ ϵ D0 (y) : E (x)

+ ϵ2 D1 (y) ... ∇xE (x)

+ ϵ3 D2 (y) :: ∇x∇xE (x)


∀x ∈ Ω, ∀y ∈ Y, (2)
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εest (x, y) = A0 (y) : E (x)

+ ϵ A1 (y) ... ∇xE (x)

+ ϵ2 A2 (y) :: ∇x∇xE (x)


∀x ∈ Ω, ∀y ∈ Y, (3)

σest (x, y) = B0 (y) : E (x)

+ ϵ B1 (y) ... ∇xE (x)

+ ϵ2 B2 (y) :: ∇x∇xE (x)


∀x ∈ Ω, ∀y ∈ Y. (4)

Estimated fields in Eqs. 2, 3, 4 are computed using localization tensors combined with

the value of the macroscale strain or its gradients at the current point, and not its av-

erage over the unit-cell (see Figure 2). This localization process improvement, firstly

proposed by Kruch and Forest (1998), requires identical microscale and macroscale

meshes in order to locate each unit-cell on the macroscale structure (see Figure 2).

An extension of this localization process to different coarser macroscale meshes is

presented in Section 3. The use of nodal extrapolation on the macroscopic strain

field ∇xE(x) in order to compute its successive gradients may induce additional

pollution error. Using a higher-order finite element formulation – starting at order

three – would be a preferable alternative, but they are seldom available in most fi-

nite element softwares and would significantly increase the computational cost of the

macroscopic solution. A strain recovery procedure such as the super-convergent one

from Zienkiewicz-Zhu Zienkiewicz and Zhu (1992a) is another alternative. However

the extrapolation procedure used in this paper does not appear to be the source of

much error on the numerical examples, with the advantage of almost no additional

cost.
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Relocalization Homogenization

Microscale
element

Macroscale
element

Identical macroscale and miscroscale
meshes

y

y

Figure 2: Illustration of the localization procedure. The macroscale strain and its gradi-

ents (E (x) , ∇xE (x) , ∇x∇xE (x)) are stored at the integration points of the macroscale elements.

Strain and stress localization tensors (A,B) are stored at the integration points of the microscale

elements of the unit-cell, and the displacement localization tensor D on the nodes. Estimated fields

are computed after locating the unit-cell mesh on the macroscale one.

2.3. Boundary layer correction

Homogenization procedures are generally unable to provide an accurate estima-

tion of local fields near the boundaries. Indeed, a complex stress (or strain) field

occurs within a very local region near the boundaries, frequently referred to as a

boundary layer effect. Following previous work of Dumontet (1986), we have pro-

posed a general method to correct higher-order estimates on the boundaries, valid for

various Boundary Conditions (BCs): Dirichlet, Neumann, or mixed. The main idea

of the correction is summarized, for Dirichlet BCs, in Figure 3. The localization pro-
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# # #

# # #

v
-v

𝐴𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 
𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

Evanescent corrective terms 
to be added to estimated fields

𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐
 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

Before 
the correction

After
the correction

Figure 3: Illustration of the boundary layer correction method for a Dirichlet boundary. Local-

ization processes provide a spurious periodic fluctuation v on the boundary. The inverse of this

fluctuation is applied to an auxiliary problem over the unit-cell, providing boundary layer displace-

ment, strain, and stress localization tensors. After a localization process on the concerned boundary,

evanescent corrective terms are computed and added to estimated fields.

cess provides a spurious periodic fluctuation v on the boundary. The opposite of this

fluctuation is applied to an auxiliary problem subjected to adequate periodic bound-

ary conditions. Solving this problem enables to obtain first, second, or third-order

boundary layer displacement, strain, and stress localization tensors (D0,bl,A0,bl,B0,bl),

(D1,bl,A1,bl,B1,bl), and (D2,bl,A2,bl,B2,bl), respectively. Afterward, boundary layer cor-

rectors
(
ubl, ϵbl, σbl

)
are computed by conducting similar localization processes,

detailed in Figure 2, on the concerned boundary.

Remark 1. A particular treatment was considered for boundary layer correction of

14



corner cells, as explained by Fergoug et al. (2022a).

In what follows, we consider the following fields:

• Microscale fields obtained by solving problem (Pref ) using DNS, which will be

considered as our reference, indexed ref, with solution
(
uref , εref , σref

)
.

• Homogeneous fields obtained by solving problem (Phom), indexed hom, with

solution (displacement U , strain E, stress Σ).

• Proposed first-, second-, and third-order estimates of microscale fields obtained

by the first-, second-, and third-order localization processes, indexed est1, est2,

and est3, respectively.

• Proposed first-, second-, and third-order boundary layer corrections of esti-

mated fields indexed cor1, cor2, and cor3, respectively.

3. Extension of the localization procedure to arbitrary macroscale meshes

Asymptotic homogenization enables, by a localization process, to estimate the

microscale fields from the knowledge of the formerly determined macroscale fields.

In this section, we propose an extension of the localization process described in

Section 2, to deal with coarser macroscale meshes. As a result, global balance

and microscale fields are estimated on the macroscale mesh, requiring much less

computational cost than DNS.

3.1. Proposed localization technique

The localization process is illustrated in Figure 4. A cell box, with the same di-

mensions of the unit-cell mesh, is being moved around the global mesh. Integration

Points (IPs) of the macroscale elements inside the moving box are then selected.
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For each of these macroscale IPs, its nearest microscale IP is then identified after

mapping the unit-cell on the current position of the moving box. A first localization

step is conducted over the global mesh by contracting the strain field (or its gradi-

ents) values of the current macroscale IP with localization tensors of the identified

nearest microscale IP. Afterward, the localized field is corrected at the boundaries

by using the same previously described approach on the concerned boundary. In-

stead of evaluating gradients on average, on macroscopic regions corresponding to a

unit-cell, we choose to evaluate them at macroscopic IPs. This does not stem from

an exact mathematical motivation but from necessity due to the absence of full sep-

aration of scales. This point is rarely discussed in the literature. Nevertheless, the

two approaches have been compared by Kruch and Forest (1998) and a clear advan-

tage has been empirically demonstrated for the evaluation at macroscopic IPs. This

approach has also been successfully applied by other authors Feyel and Chaboche

(2001); Yvonnet and Bonnet (2014); He and Pindera (2020).

The higher-order stress localization process is detailed in Algorithm 1 (the same

procedure is used for strain localization). To conduct the displacement localization

process, the displacement localization tensor D, originally stored at the nodes of

the unit-cell mesh, is interpolated to integration points. Therefore, the localization

process can be carried out as previously discussed. The obtained result, which is a

displacement correction on the macroscale mesh, is then extrapolated to nodes and

added to the macroscale displacement field, as shown for uest in Figure 2.
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Figure 4: Illustration of the localization process on a coarser macroscale mesh.
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Algorithm 1: Stress localization with boundary layer correction on the macromesh
Input: Macromesh, unit-cell mesh, E, ∇xE, ∇x∇xE, B, Bbl

Output: σcor1, σcor2, σcor3

Repetition of the unit-cell mesh in the macromesh

{Lx, Ly, Lz} ←− BoundingBox(Macromesh)

{lx, ly, lz} ←− BoundingBox(Micromesh)

n cell x = Lx/lx, n cell y = Ly/ly, n cell z = Lz/lz ▷ Number of repetitions of the unit-cell mesh on the macromesh

Localization with boundary layer correction

for i← 0 to (n cell x)− 1 do

for j ← 0 to (n cell y)− 1 do

for k ← 0 to (n cell z)− 1 do
unit-cell mesh box moving around the macromesh

cell x min = i ∗ lx; cell x max = (i + 1) ∗ lx;

cell y min = j ∗ lx; cell y max = (j + 1) ∗ ly ;

cell z min = k ∗ lx; cell z max = (k + 1) ∗ lz ;

Macroelements IPs contained in the unit-cell mesh moving box

Macroelem in Cell Box = {Elements s.t. barycentre ∈ unit-cell mesh box}

for elem← 0 to Macroelem in Cell Box do

for ip← 0 to Nb of IP(elem) do

if IP Coords (elem,ip) ∈ Moving Cell Box then
(MacroIP in Cell Box).append(IP Rank,IP Coords)

end

end

end

Localization

for (IP Rank,IP Coords) ∈ MacroIP in Cell Box do
IP Rank Micro = Locate.Nearest(IP Coords,Micromesh) ▷ Locate nearest micro IP of the current macro IP

B = Loc Tensor(IP Rank Micro) ▷ Load tensor stored in the identified micro IP

E = Macro Strain(IP rank), ∇xE = Macro GradStrain(IP rank), ∇x∇xE = Macro GradGradStrain(IP rank)

σest1 = B0 : E

σest2 = σest1 + B1
...∇xE

σest3 = σest2 + B2 :: ∇x∇xE

end

Boundary layer correction

for (IP Rank,IP Coords) ∈ MacroIP in Cell Box do

if Moving box with position (i,j,k) is located on boundaries then
IP Rank Micro = Locate.Nearest(IP Coords,Micromesh)

B0 = Loc Tensor(IP Rank Cell)

E = Macro Strain(IP rank), ∇xE = Macro GradStrain(IP rank), ∇x∇xE = Macro GradGradStrain(IP rank)

σcor1 = σest1 + (B0,bl : E)

σcor2 = σcor1 + (σest2 + B1,bl
...∇xE)

σcor3 = σcor2 + (σest3 + B2,bl :: ∇x∇xE)
end

end

end

end

end
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3.2. Numerical results

To illustrate the effectiveness of the proposed localization process, six macroscale

unstructured meshes composed of fifteen-node wedge elements are considered, as

shown in Figure 5. The ratio between the numbers of microscale and macroscale

degrees of freedom varies from 560 for the coarsest mesh (see Figure 5a) to 2 for the

finest one (see Figure 5f). A mesh adaptation technique, with a target elements size

obtained through the a posteriori discretization error estimator ZZ2 (Zienkiewicz and

Zhu, 1992a,b), is used to generate macroscale meshes (see Figures 5c, 5d, 5e, 5f) re-

fined in areas of interest, where stress concentrations occur. For the finest macroscale

mesh, the mesh adaptation procedure has been performed while preserving the topol-

ogy of the fibers (see Figure 5f). For this example, we consider a ratio Ef

Em
= 10 and

a localization process with boundary layer correction up to the second-order, as it is

sufficient to capture strain gradients in the present example.

A comparison of σ22 and σ12 is shown in Figures 6 and 7, respectively (other stress

and displacement components are presented in Appendix A). By comparing refer-

ence fields, σref
22 and σref

12 , with localized fields, one can notice that the quality of the

predicted stresses increases by refining the macroscale mesh. Nevertheless, the con-

tribution of different material phase (matrix and fibers) to the stress field becomes

visible starting from macroscale mesh 3, which provides an acceptable estimation

of reference fields even though it contains 113 times fewer degrees of freedom than

the microscale problem. Furthermore, high stress gradients, especially near regions

where the load is applied and on the interfaces, are correctly predicted starting from

macroscale mesh 3.

This localization process provides valuable insights on local responses of the con-

stituents, at any material point, for a given macroscale state computed on a coarse

mesh, which is significantly less computationally expensive than DNS. This is of spe-
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Macroscale mesh 1

(a) DOF micro

DOF macro ≈ 560

Macroscale mesh 2

(b) DOF micro

DOF macro ≈ 150

Macroscale mesh 3

(c) DOF micro

DOF macro ≈ 113

Macroscale mesh 4

(d) DOF micro

DOF macro ≈ 30

Macroscale mesh 5

(e) DOF micro

DOF macro ≈ 8

Macroscale mesh 6

(f) DOF micro

DOF macro ≈ 2

Figure 5: Macroscale meshes on which the global balance and localization processes are performed.

cial interest for identifying local deformation mechanisms and quantities of interest

such as damage. Furthermore, estimating local fields on macroscale meshes is a path

toward error estimation and efficient multiscale submodeling, as it will be shown in

the next sections.

4. Modeling error: A bridge between scales

Solving DNS is generally intractable because of the resulting extremely fine spatial

discretization mesh. Nevertheless, there is a need to investigate what could occur

at the microscale, since the behavior of heterogeneous structures depends on the

characteristics of the heterogeneities. One method to tackle this is to adaptively

couple a fine heterogeneous material description in some regions of the domain and a

20



(a) σref
22 on microscale mesh

(b) σcor2
22 on macroscale mesh 1 (c) σcor2

22 on macroscale mesh 2 (d) σcor2
22 on macroscale mesh 3

(e) σcor2
22 on macroscale mesh 4 (f) σcor2

22 on macroscale mesh 5 (g) σcor2
22 on macroscale mesh 6

Figure 6: Comparison of σ22 (MPa) results.

coarse, less accurate macroscale model in the other regions. For this purpose, one can

use the well known submodeling techniques, which will be investigated in Section 5.

In this work, a modeling error is used to steer this adaptive modeling process by

detecting areas where refining the material model is required.
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(a) σref
12 on microscale mesh

(b) σcor2
12 on macroscale mesh 1 (c) σcor2

12 on macroscale mesh 2 (d) σcor2
12 on macroscale mesh 3

(e) σcor2
12 on macroscale mesh 4 (f) σcor2

12 on macroscale mesh 5 (g) σcor2
12 on macroscale mesh 6

Figure 7: Comparison of σ12 (MPa) results.

4.1. Formulation of the modeling error estimator

We recall that uref , solution to (Pref ), is the reference displacement field com-

puted by DNS. This field can be approximated with an asymptotic expansion in
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powers of the small parameter ϵ as:

uref (x) = u0 (x, y) + ϵu1 (x, y)︸ ︷︷ ︸
uest1

+ϵ2u2 (x, y)

︸ ︷︷ ︸
uest2

+ϵ3u3 (x, y)

︸ ︷︷ ︸
uest3

+ . . . , (5)

where the quantities un are Y −periodic functions called correctors of the displace-

ment field. The first-, second-, and third-order localized displacement fields, uest1, uest2,

and uest3, are obtained by truncating the asymptotic expansion to the first-, second-,

and third-order, respectively (see Equation 5).

As stated before, estimated fields are generally incorrect in the vicinity of the bound-

aries due to the loss of periodicity in these regions. Indeed, matching boundary

conditions requires the introduction of boundary layer correctors at each localization

order. As a result of this correction, ucor1, ucor2, and ucor3 are the first-, second-,

and third-order corrected fields on the boundaries, respectively (see Algorithm 1).

For the purpose of the following developments, we define the measure of the local

(element-wise) true modeling error in L2 norm as :

∥∥∥uref − uest1
∥∥∥

L2(Ωe)
=

(∫
Ωe

(
uref − uest1

)
·

(
uref − uest1

)
dΩe

) 1
2

, (6)

and the corresponding measure in energy norm as :
∥∥∥ucor3 − uest1

∥∥∥
E(Ωe)

=
(∫

Ωe

(
εcor3 − εest1

)
:

(
σcor3 − σest1

)
dΩe

) 1
2

, (7)

where Ωe denotes the domain of an element. The corresponding global true modeling

error
∥∥∥uref − uest1

∥∥∥
•(Ω)

, for both norms, reads:

∥∥∥uref − uest1
∥∥∥2

•(Ω)
=

∑
e

∥uref − uest1∥2
•(Ωe), (8)

where Ω denotes the structural domain area and • stands for L2 or E.
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For this study, the reference problem is tractable by Direct Numerical Simulation

(DNS) and its mechanical fields are used as reference results to validate our approach.

However, in the more general case where a DNS would be out of reach, common

practice would call for a tractable estimate.

Consequently, we choose to estimate the modeling error by replacing uref with the

best estimate of the displacement field yet, i.e. ucor3. The modeling error is then

estimated by: ∥∥∥uref − uest1
∥∥∥

•(Ω)
≈

∥∥∥ucor3 − uest1
∥∥∥

•(Ω)
. (9)

The proposed modeling error estimator quantifies the terms neglected by a first-order

localization. These terms are generally negligible in the case of a complete separation

of scales. Nevertheless, for weak separation of scales, these terms become significant

and necessary to capture gradients of the macroscale field. The proposed estimation

also quantifies the modeling error that occurs on the boundaries.

From a different perspective, since the macroscopic behavior remains a simple

Cauchy medium, all higher order localisation terms and all the boundary correc-

tor terms act as additional energy contributions that do not respect the Hill-Mandel

lemma. Therefore, the error estimator built on the basis of these contributions may

also be considered an Hill-Mandel energy error.

Remark 2. The modeling error estimation can be formulated using other mechan-

ical fields than the displacement in conjunction with the L2 norm, i.e. the strain,

or the stress field (∥εcor3 − εest1∥L2(Ω) = (
∫

Ω (εcor3 − εest1) : (εcor3 − εest1) dΩ)
1
2 and

∥σcor3 − σest1∥L2(Ω), respectively).

4.2. Comparison with the discretization error

In general, localized solutions, ucor3 and uest1, are obtained by a finite dimensional

approximation, which is, in our case, a finite element approximation ucor3,h and
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uest1,h, obtained on the macroscale mesh. By the triangle inequality, one can obtain:∥∥∥ucor3 − uest1
∥∥∥

•(Ω)
≤

∥∥∥uest1 − uest1,h
∥∥∥

•(Ω)
+

∥∥∥ucor3 − ucor3,h
∥∥∥

•(Ω)︸ ︷︷ ︸
Discretization error: ηdisc

+
∥∥∥ucor3,h − uest1,h

∥∥∥
•(Ω)︸ ︷︷ ︸

Modeling error: ηmod

.
(10)

Therefore, a bipartite discretization error, indexed ηdisc, occurs. The first and second

parts constituting this error are due to the numerical approximation of uest1 and

ucor3, respectively. As this study is mainly devoted to the modeling error estimation,

in order to estimate the true discretization error in a simple but accurate way, we shall

consider that the reference solutions of uest1 and ucor3 are obtained by conducting the

localization process and boundary layer correction on the fine microscale mesh (see

Figure 8). Therefore, an interpolation-based nodal field transfer of uest1,h and ucor3,h

from the macroscale mesh to the microscale one is considered (see Figure 8) in

order to compute the two terms involved in ηdisc. This nodal transfer preserves

the continuum fields with no information loss since the coarse finite element space is

included in the fine one (Dureisseix and Bavestrello, 2006). This allows us to compute

an accurate estimation of the discretization error, but is limited to a measure in the L2

norm. On the other hand, the modeling error estimation, indexed ηmod, is computed

on the macroscale mesh (see Figure 8) in both L2 and energy norm. Finally, we

also introduce the relative global discretization (resp. modeling) error ηdisc,rel (resp.

ηmod,rel) as:

ηdisc,rel = ηdisc

∥uref∥•(Ωsub)
, ηmod,rel = ηmod

∥uref∥•(Ωsub)
. (11)

Remark 3. As the measure in the energy norm involves gradients of the displace-

ment solution, which are defined at integration points and, thus, does not belong to
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a functional space, applying the previous approach to compute the energy norm of

the discretization error estimate would imply to resort to integration point based field

transfer, such as nearest Gauss points, on εest1,h, εcor3,h, σest1,h and σcor3,h. This

would induce additional pollution error that may degrade the accuracy of the dis-

cretization error estimate. Consequently, only the modeling error estimation will be

studied in both L2 and energy norm.

Remark 4. On real use cases, localization procedure on the microscale mesh is com-

putationally intractable. In this case one can use well known a posteriori error es-

timators, which enables to estimate the discretization error in energy norm, such as

the ZZ2 discretization error estimator (Zienkiewicz and Zhu, 1992a,b).

Figure 8: Illustration of the error estimation process. The modeling error is computed on the

macroscale mesh. A nodal field transfer of uest1,h and ucor3,h to the microscale mesh is conducted

to compute the discretization error.

4.3. Numerical results

Relative point-wise contributions to modeling and discretization errors, for a

ratio Ef

Em
= 10 and Ef

Em
= 500, are shown in Figures 9 and 10, respectively. The
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localization process with boundary layer correction is considered up to the second-

order, as it is sufficient to capture strain gradient effects since the second gradient

of the macroscale field was found to be negligible in this case. A comparison of the

reference solution uref , with the obtained localized fields, uest1 and ucor2, is shown

in Appendix B.

Both parts of the discretization error decrease by refining the macroscale mesh and

start to cluster mainly on the fiber/matrix interfaces starting at mesh 4, until mesh 6

which preserves the topology of the fibers and, therefore, preserves the interfaces (see

Figure 5f). One can notice that the second part of the discretization error, related

to ucor2, is slightly higher than the first part due to numerical errors emanating

from the computation of second-order localization and boundary layer correctors.

The modeling error, contrarily to the discretization error, varies only a little bit by

refining the macroscale mesh.

Global relative discretization error, ηdisc,rel, and relative modeling error, ηmod,rel, in

L2 norm for different ratios Ef

Em
are shown in Figure 11. Global relative modeling

error ηmod in energy norm is also plotted in Figure 12a. Global values of the dis-

cretization error decrease by refining the macroscale mesh, whereas modeling error

remains relatively constant whatever the norm used.

The modeling (and discretization) error estimation is relatively independent of the

mismatch ratio Ef

Em
, especially for ratios higher than 50, as shown in Figure 11

and 12a. This low contrast dependency is a key difference with the modeling er-

ror estimator proposed by Zohdi et al. (1996), which highly depends on the material

phase contrast. This is explained by the fact that their estimator quantifies the er-

ror emanated from the difference between the heterogeneous and the homogeneous

materials, which can be high for important contrast ratios. Contrarily, our proposed

modeling error estimator is constructed based on the quality of the approximation
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of heterogeneous fields, explaining the low contrast dependency, a property desirable

in a modeling error estimator.

In order to measure the quality of our proposed modeling error estimator, we

introduce the associated effectivity index ζmod as:

ζmod = ηmod

ηmod,ref

, with ηmod,ref =
∥∥∥uref − uest1

∥∥∥
E(Ω)

. (12)

ηmod,ref stands for the approximation of the true modeling error, computed from the

DNS solution uref and the first-order relocalized solution uest1 of the homogenized

problem (Phom) on the fine microscale mesh. Both quantities involved in ηmod (resp.

ηmod,ref ) are defined on the same macroscale (resp. microscale) mesh, avoiding the

use of field transfer procedure and thus extra numerical pollution. Figure 12b shows

the evolution of ζmod for all the macroscale meshes and different ratios Ef

Em
. On the

problem studied, the proposed modeling error estimator in energy norm gives an

upper bound of the modeling error. Besides, the values tend to be independent of

the ratio Ef

Em
and quickly stabilize when the discretization error reach the same order

of magnitude than the modeling one.

Also, regarding the competition between the discretization and the modeling error

illustrated in Figure 11, one shall consider a mesh refinement procedure to reduce the

discretization error, and this until a refinement degree between mesh 3 and mesh 4

where the modeling error becomes dominant. One way to reduce this modeling error

is to conduct an adaptive modeling process. This is analogous to mesh refinement,

except that the refinement is in terms of the material model, i.e. replacing a homo-

geneous material by a heterogeneous one in regions with high modeling error.
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5. Multiscale submodeling

The relative modeling error estimation of the stress field, i.e.

∥σcor2 − σest1∥L2(Ωe)

∥σref∥L2(Ω)
, (13)

on macroscale mesh 3 and for a ratio Ef

Em
= 500 is illustrated in Figure 13. To

reduce this error, one can replace the homogeneous material by the heterogeneous

material in regions where the modeling error is relatively high. These regions to be

replaced depend on target accuracy, as suggested in Figure 13. Indeed, replacing

the microscale region labeled submodel 3 is expected to reduce the modeling error

more than inserting submodel 2, which itself will reduce the error more than inserting

submodel 1.

For hierarchical modeling, it is necessary to adequately couple the macroscale ho-

mogeneous domain with the selected microscale heterogeneous one. Such coupling is

proposed in this section.

5.1. Proposed coupling strategy

Submodeling, also called structural zoom or global-local analysis, is largely used

in the industry to conduct multiscale analyses since it is supported by most commer-

cial finite element software (e.g. Abaqus or Ansys). In this approach, homogenized

material properties are first determined, in our case using asymptotic homogeniza-

tion. The macroscale problem is then solved using these homogeneous properties.

The displacements are extracted from the boundary of a macroscale region of interest

(ΓG in Figure 14). These fields become the boundary conditions (on ΓL in Figure 14)

for a finite element submodel that contains microscale details, as shown in Figure 14.
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Remark 5. Using displacement field interpolation, the submodel boundary ΓL nodes

do not have to match with the macroscale boundary ΓG nodes.

Classical submodeling, i.e. applying u0, is expected to fail in appropriately coupling

the macroscale with the microscale, and this no matter the size of the submodel, as

it will be shown later, for the following reasons:

• The homogenized displacement u0, misses, by definition, the microscale details.

The coupling, therefore, neglects the heterogeneous nature of the submodel,

which result in high interface coupling errors. Consequently, it is necessary to

enlarge the submodel to avoid coupling errors in a region of interest as shown

in Figure 15, which can be computationally expensive.

• Homogeneous fields are only valid for infinite periodic arrays under a uniform

state of macro-stress (or macro-strain). This is not the case for weak separation

of scale scenarios.

• Homogenized solutions do not take into account the boundary layer effect due

to the loss of periodicity conditions on the boundaries.

In what follows, the proposed submodeling is performed by applying ucor2 instead of

ucor3, since the second gradient of the macroscale field was found to be negligible in

this case.

The proposed submodeling considers the aforementioned aspects since the displace-

ment field ucor2 is heterogeneous by construction, takes into account macroscale

strain gradients, and is corrected at the boundaries.

It is worth noting that the submodeling approach is a descending process in the sense

that there is no feedback from the submodel computation toward the macroscale one.
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Such feedback is necessary to conduct reliable hierarchical modeling. However, this

aspect is left for future works.

5.2. Numerical results

To compare the reference solution uref with the displacement field obtained us-

ing classical submodeling uL or the proposed submodeling uL∗ , the following local

(element-wise) error in energy norm is defined:

∥e∥E(Ωe) = ∥uref − uk∥E(Ωe)

=
(∫

Ωe

(
εref − εk

)
:

(
σref − σk

)
dΩe

) 1
2

,
(14)

where Ωe denotes the domain of an element and k = (L or L∗). Thus, the global

error ∥e∥E(Ωsub) on the submodel reads:

∥e∥2
E(Ωsub) =

∑
e

∥e∥2
E(Ωsub

e ), (15)

and its relative counterpart erel reads:

erel =
∥e∥2

E(Ωsub)

∥uref∥2
E(Ωsub)

, (16)

where Ωsub denotes the domain of the chosen submodel. We define the local (element-

wise) relative error as:

erel,e =
∥e∥2

E(Ωe)

∥uref∥2
E(Ωsub)

. (17)

We also consider a quantity of interest emean, corresponding to the mean error in the

region of interest Ωsub1 illustrated in Figure 14:

emean = 1
|Ωsub1|

[∑
e

∥e∥2
E(Ωsub1

e )

]1/2

, (18)

and its relative counterpart emean
rel defined as:

emean
rel = emean

umean
, (19)
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with:

umean = 1
|Ωsub1|

[∑
e

∥∥∥uref
∥∥∥2

E(Ωsub1
e )

]1/2

. (20)

Figure 15 shows a comparison of the relative error, defined in Equation 17, obtained

by using the classical submodeling (k = L) and the proposed one (k = L∗), for the

three submodels illustrated in Figure 13, and for ratio Ef

Em
= 500. The macromesh 3,

shown in Figure 5c, is used for the macroscale computation and the localization

process. The relative error is drastically reduced by the proposed submodeling

compared to the classical one, for the three submodels and the considered ratios.

Indeed, classical submodeling leads to large errors, especially in the vicinity of the

coupling interfaces. This coupling error increases by increasing the material phase

contrast. The proposed submodeling enables to reduce the mean error emean
rel by a

factor of ≈ 5 for submodel 1 and a factor of ≈ 3 for submodels 2 and 3.

Comparison of the global relative error erel, formulated in Equation 16, obtained

by using the classical and the proposed submodeling, is shown in Table 1, where

the macromesh 3 is also used for the macroscale computation and the localization

process. One can notice that the global error increases by increasing the material

phase contrast. The proposed coupling reduces the global error by a factor of ≈ 5

for submodel 1, a factor of ≈ 3 for submodel 2 and a factor of ≈ 4 for submodel 3.

To study the influence of the macroscale mesh on the proposed submodeling,

a comparative study is presented in Figure 16, investigating the relative error and

the mean error obtained for a coupling with different macroscale meshes, illustrated

in Figure 5, and for different submodels, shown in Figure 13. The material phase

contrast considered in this study is Ef

Em
= 500.
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Table 1: Comparison of the global relative error erel defined in Equation 16, obtained by using the

classical vs the proposed submodeling. The macromesh 3 (illustrated in Figure 5c) is used for the

macroscale computation and the localization process.

Ratio / Submodel 1 2 3

Classical Proposed Classical Proposed Classical Proposed

10 8.50% vs 1.74% 7.03% vs 2.11% 10.79% vs 2.90%

50 9.91% vs 2.06% 8.18% vs 2.51% 12.53% vs 3.41%

100 10.11% vs 2.04% 8.33% vs 2.54% 12.77% vs 3.46%

500 10.26% vs 2.06% 8.46% vs 2.56% 12.96% vs 3.50%
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(uest1−uest1,h)2

(uref )2 B C

Figure 9: Comparison of relative point-wise contributions to modeling and discretization errors for

a ratio Ef

Em
= 10 on different macroscale meshes illustrated in Figure 5.
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Figure 10: Comparison of relative point-wise contributions to modeling and discretization errors

for a ratio Ef

Em
= 500 on different macroscale meshes illustrated in Figure 5.
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Figure 11: Global relative discretization error ηdisc,rel and modeling error ηmod,rel on the L2 norm

of the displacement as a function of the mesh size for different ratios Ef

Em
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(a) Global relative modeling error ηmod,rel
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(b) Effectivity index ζmod

Figure 12: Global relative modeling error ηmod,rel in energy norm (12a) and corresponding effec-

tivity index ζmod (12b) as a function of the mesh size for different ratios Ef

Em
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Figure 13: Relative modeling error estimation of the stress field
∥σcor2−σest1∥

L2(Ωe)
∥σref ∥L2(Ω)

on macroscale

mesh 3, shown in Figure 5c, and for a ratio Ef

Em
= 500. Different submodels are detected depending

on target accuracy. For the sake of conciseness, the modeling error in the fixed boundary region

(highlighted in green) is neglected.

Figure 14: Illustration of the classical and the proposed submodeling techniques.
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Figure 15: Comparison, for a ratio Ef

Em
= 500, of the element-wise relative error erel,e defined in

Equation 17 and the relative mean error emean
rel (%) defined in Equation 19, both obtained by using

the classical submodeling and the proposed multiscale submodeling. The macromesh 3 (illustrated

in Figure 5c) is used for the macroscale computation and the localization process.
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Figure 16: Comparison of the element-wise relative error erel,e defined in Equation 17 and the

relative mean error emean
rel (%) defined in Equation 19 obtained for the proposed multiscale coupling

with different macroscale meshes, for different submodels and for a ratio Ef

Em
= 500.

39



The main features of these results are the following:

• Classical submodeling is almost insensitive to the macroscale mesh. Indeed,

the coupling error remains high even after refining the macroscale mesh, irre-

spective of the submodeling domain size. This is explained by the fact that the

homogenized displacement field, applied on the interface of the submodel, is

nearly the same for the six macroscale computations as it does not consider the

microscale details, but depends only on the effective behavior, unchanged for

the six macroscale computations. On the other hand, the proposed coupling is

sensitive to the macroscale mesh since the localization process depends on this

one.

• The proposed multiscale submodeling, with macroscale mesh 1 and 2, is signif-

icantly less accurate than with other meshes, since the localization process is

still largely incorrect, as shown in Figures 6, 7, and 11.

• For all the considered cases, the relative local coupling error induced by the

proposed submodeling is significantly smaller than the error obtained by the

classical submodeling.

• The mean error emean
rel is reduced, besides results obtained for mesh 1, by at

least a factor of 2 (for mesh 2 - submodel 1) and at the best by a factor of 5

(for mesh 3 - submodel 1).

A comparison of the global relative error and the relative mean error obtained for a

coupling with different macroscale meshes, and for different submodels are shown in

Figure 17 and Figure 18.

The main features of these results are the following:
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Figure 17: Comparison of the global relative error erel,e, defined in Equation 16, obtained for a

coupling with different macroscale meshes, and for different submodels.

• The global and the mean error induced by the classical submodeling are in-

sensitive to macroscale mesh refinement. Contrarily, the errors induced by the

proposed submodeling are sensitive to the macroscale mesh refinement since

the localization process is conducted on this one.
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Figure 18: Comparison of the relative mean error emean
rel (%), defined in Equation 19, obtained for

a coupling with different macroscale meshes, and for different submodels.

• For all the considered cases, the global error induced by the proposed submod-

eling is inferior to the one obtained by the classical submodeling. The error is

reduced at least by a factor of 1.2 and the best by a factor of 5.

• The mean error in the region of interest Ωsub1 decreases by increasing the size
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of the submodel.

• For all the considered cases, the mean error induced by the proposed submod-

eling is less than the one obtained by the classical submodeling. The error is

reduced at least by a factor of 1.12 and the best by a factor of 5.
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6. Conclusions

In this work, we have proposed a new numerical method to conduct, on a macroscale

coarse mesh, a higher-order localization process to estimate local heterogeneous fields

within a structure, without conducting any Direct Numerical Simulations (DNS).

This localization process, contrary to first-order homogenization, takes into account

additional terms of the asymptotic expansion, and thus captures the effect of macro-

scopic successive gradients, generally high in cases of low scale separation. The

proposed localization process also includes a boundary layer correction to correct

estimated fields on the boundaries. As a result, the proposed numerical method pro-

vides valuable insights on microscale fields, for a given macroscale state computed

solely on the coarse macroscale mesh, much less computationally expensive than

DNS.

We have also proposed a modeling error estimation based on the resulting fields

computed by the aforementioned localization process. Indeed, the suggested error

estimation quantifies the terms neglected by the first-order asymptotic expansion.

These terms are generally significant in cases where scales are not well separated

and necessary to capture gradients of the macroscale fields. The proposed error

estimation is also able to quantify the modeling error on the boundaries due to the

loss of periodicity assumptions in boundary regions. This modeling error estimation

is used to steer a hierarchical modeling process by detecting areas where refining the

material model is necessary.

To couple the microscale domain with the macroscale one, we have suggested a

multiscale enhanced submodeling based on the constructed local fields. As a result,

the proposed submodeling, contrary to the classical one, considers the heterogeneous

nature of the submodel and remains valid in regions with low scale separation, e.g.
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regions with high macroscale strain or stress gradients, and in the vicinity of the

boundaries.

The major conclusions that can be drawn from this work are:

• The quality of the estimated stress field increases by refining the macroscale

mesh. Nevertheless, it has been shown that the proposed localization process

conducted on a macroscale mesh containing 113 times fewer degrees of freedom

than the DNS already provides an acceptable estimation of the local stress field,

as illustrated in Figures 6, and 7.

• It is possible to reduce the discretization error by refining the macroscale mesh;

the modeling error, however, remains unchanged, as shown in Figure 11. To

reduce this error, a hierarchical modeling can be considered.

• Classical submodeling is less sensitive to macroscale mesh refinement, contrary

to the proposed submodeling, as illustrated in Figure 17 and 18.

• The proposed submodeling technique reduces the global coupling error by a

factor of 5, compared to the classical submodeling, as shown in Figure 17. It

also reduces the mean error in a region of interest by a factor of 5, as shown in

Figure 18.

Reliable hierarchical modeling requires a feedback from the submodel computa-

tion toward the macroscale one, which has not been investigated in this work. The

suggested methods could also be a path toward hierarchical modeling of realistic 3D

composite structures. This implies the use of irregular structure domains, locally

nonperiodic zones, and controlling simultaneously both the discretization and the

modeling error.
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Finally, while the extension of asymptotic homogenization to nonlinear problems

is possible using incrementally linearized solutions Bhattacharyya et al. (2020), the

derivation of a reliable estimator based on nonlinear analyses led at two different

scales is far from trivial.
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Appendix A: Comparison of localized fields on macroscale meshes

Comparison of U1, U2 and σ11 components, solution of the problem detailed

in Subsection 3.2, are presented in Figures A.1, A.2 and A.3, respectively. Same

conclusions as in Subsection 3.2 are drawn. Indeed, the quality of estimated fields

increases by refining the macroscale mesh. However, contribution of different material

phases (matrix and fibers) to estimated fields begins to be clearly distinguished

starting from mesh 3, which provides an acceptable estimation. It is also capable of

capturing high gradients developed near the region where the load is applied and on

the interfaces.

Appendix B: Comparison of the reference fields with the localized ones.

Figure B.4 shows a comparison of the reference solution uref , with the obtained

localized fields, uest1 and ucor2 for different ratios Ef

Em
. This comparison was con-

ducted by considering an identical macroscale mesh with the microscale one. The

second-order localized field corrected at the boundaries ucor2, highly reduces the

modeling error compared to the first-order localized field uest1. As a result, ucor2

provides a better estimation to uref than uest1.

A third-order localization is supposed to provide a better solution than ucor2 as

illustrated in Fergoug et al. (2022b), albeit at a higher computational cost. We have

chosen to restrict our study to ucor2 since it is sufficient to illustrate our purpose.
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(a) Uref
1 on microscale mesh

(b) Ucor2
1 on macroscale mesh 1 (c) Ucor2

1 on macroscale mesh 2 (d) Ucor2
1 on macroscale mesh 3

(e) Ucor2
1 on macroscale mesh 4 (f) Ucor2

1 on macroscale mesh 5 (g) Ucor2
1 on macroscale mesh 6

Figure A.1: Comparison of U1 (mm) results.
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(a) Uref
2 on microscale mesh

(b) Ucor2
2 on macroscale mesh 1 (c) Ucor2

2 on macroscale mesh 2 (d) Ucor2
2 on macroscale mesh 3

(e) Ucor2
2 on macroscale mesh 4 (f) Ucor2

2 on macroscale mesh 5 (g) Ucor2
2 on macroscale mesh 6

Figure A.2: Comparison of U2 (mm) results.
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(a) σref
11 on microscale mesh

(b) σcor2
11 on macroscale mesh 1 (c) σcor2

11 on macroscale mesh 2 (d) σcor2
11 on macroscale mesh 3

(e) σcor2
11 on macroscale mesh 4 (f) σcor2

11 on macroscale mesh 5 (g) σcor2
11 on macroscale mesh 6

Figure A.3: Comparison of σ11 (MPa) results.
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Figure B.4: Comparison of the relative local error (in the energy norm defined in Equation 14)

between uref and the obtained localized fields, uest1 and ucor2, for different ratios Ef

Em
.
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Fergoug, M., Parret-Fréaud, A., Feld, N., Marchand, B., Forest, S., 2022a. A gen-

eral boundary layer corrector for the asymptotic homogenization of elastic linear

composite structures. Composite Structures 285, 115091.
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