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A B S T R A C T

Eutrophication as a consequence of anthropogenic nutrient enrichment is one of the major threats to biodiversity
in nearshore and coastal marine waters, and consequently, for ecosystem functioning. This study explores
changes in the biological organization of copepod assemblages along a Chl a gradient through an upscaling
analysis of regional datasets from the coastal waters of the Mediterranean Sea. Results show that omnivorous
copepods using passive and/or ambush feeding strategy are favored as Chl a increases, and copepod community
shifts towards trophic homogenization by favoring generalist feeders against specialists. To our knowledge, this
is the first report of functional homogenization of copepods as the result of eutrophication. The present study
also demonstrates the potential use of trait-based approaches to explore the effect of human disturbances on
marine copepod assemblages in marine ecosystems.

1. Introduction

Coastal eutrophication as a result of anthropogenic nutrient en-
richment is one of the major threats to biodiversity (Halpern et al.,
2008; Howarth, 2008; Vitousek et al., 1997), and therefore, for the
stability of ecosystems and the functions and services they provide
(Cardinale et al., 2012; Hautier et al., 2015; Hooper et al., 2012; Zhang
et al., 2016). Besides the increase in primary production, nutrient en-
richment may induce profound compositional, functional, and/or ge-
netic changes of species assemblages (e.g. Alexander et al., 2017;
Cloern, 2001; Nelson et al., 2013). In particular, nutrient enrichment
may impoverish ecological communities by selecting more closely re-
lated species and/or replacing progressively specialists by generalists
resulting from the narrower niche breadth of the first ones and their
lower tolerance to high nutrient levels. Because specialists are con-
sidered to be efficient at capturing and consuming resources, it is ex-
pected that their loss may affect greatly the transfer of energy within
the ecosystem (Alexander et al., 2017; Olden et al., 2004). Such eu-
trophication-driven biotic homogenization, which may occur without
species loss and/or change in taxonomical diversity (Larsen et al.,
2018), has been highlighted in: a) terrestrial plants (Buhk et al., 2017;
Bühler and Roth, 2011); b) various kinds of freshwater organisms (fish:
Menezes et al., 2015; Villéger et al., 2014; diatoms: Wengrat et al.,

2018; daphniids: Rogalski et al., 2017; and benthic invertebrates:
Donohue et al., 2009; Zhang et al., 2019); and c) marine fish (Alexander
et al., 2017). Several studies have shown that while specialists and
generalists have the same probability of extinction, specialists en-
counter difficulty in recolonizing a site (Larsen et al., 2018, and re-
ference therein). Hence, given the potential complexity of the responses
of species assemblages to eutrophication, appropriate metrics and a
systematic examination of different facets of biodiversity are needed to
better understand the effect of eutrophication on biodiversity. And in so
doing, this will guide efforts to better manage, preserve, and ensure the
sustainable use of coastal ecosystems.

Taxonomical-based diversity indices are widely used under the
context of the EU Water Directive and the Marine Strategy Framework
Directive (EU MSFD) to assess the ecological and environmental status
of marine waters (Birk et al., 2012). However, since taxonomical-based
metrics do not consider functional traits of organisms (e.g. feeding
behavior, environmental tolerance, vulnerability to predation, etc..),
they often fail to detect the effect of human pressures on biodiversity
(Dornelas et al., 2014; Hillebrand et al., 2017; Lindenmayer et al.,
2015; Villéger et al., 2010). For the same reasons, taxonomical-based
diversity indices cannot detect some major driving mechanisms of
community assembly, such as environmental filtering and biotic inter-
actions (Cornwell and Ackerly, 2009). In contrast to traditional
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taxonomic metrics, functional ones relate to niche processes based on
the use of functional traits are better descriptors of the effect of an-
thropogenic stress on species assemblages, and have the potential to act
as an early warning signal for the deterioration of an ecosystems
(Cadotte et al., 2011; Mouillot et al., 2013; Villéger et al., 2010). In
other words, trait-based approaches may help to elucidate ecological
processes, as well as, the underlying mechanisms structuring commu-
nities and driving critical ecosystem functions. Furthermore, there is
the possibility to compare different systems composed of distinct spe-
cies assemblages and make predictions (McGill et al., 2006).

The open Mediterranean Sea is characterized by high diversity and
oligo- ultra-oligotrophic waters (Coll et al., 2010). However, many
coastal Mediterranean areas suffer from eutrophication (Micheli et al.,
2013). Most of the monitoring studies consider phytoplankton since it is
directly affected by nutrients (e.g. Brucet et al., 2013). Yet, exploration
of the functional response of the copepod community could also inform
us on the quality of the ecosystem. Copepods dominate zooplankton
communities; they play a pivotal role in the link between primary
production and higher trophic levels (e.g. Beaugrand et al., 2003) in the
recycling of nutrients and dissolved organic matter (Mitra et al., 2014);
and their community structure is sensitive to environmental pollution
(e.g. Siokou-Frangou and Papathanassiou, 1991; Uriarte and Villate,
2005; Uye, 1994). Accordingly, a directional change in functional
dominance, i.e. towards smaller-sized and pollution tolerant/opportu-
nistic copepod species, have been reported in some regions - although
not rigorously quantified (e.g. Intxausti et al., 2012; Siokou-Frangou
and Papathanassiou, 1991; Uye and Sano, 1998). The present study
aimed to fill this gap by examining through an upscaling of original and
existing data in the Mediterranean Sea functional trait, functional di-
versity, and functional specialization of copepod communities across a
Chl a gradient as a proxy of eutrophication. Their consistency relative
to an expected deterioration of the ecosystem as a consequence of eu-
trophication was also considered. For that trait data of total body
length, trophic regime, feeding mode and feeding strategy were used
(Benedetti et al., 2016).

2. Material & methods

2.1. Datasets

Twelve studies of copepod abundance data were selected based on
the following criteria: (i) all the samples were collected in the upper
50 m together with Chlorophyll a (Chl a) data, which was collected at
the same time as the copepods, or obtained from satellite databases, (ii)
abundance data referred to adult copepods and copepodites (Fig. 1,
Table 1) except at Gulf of Gabes (see below) where nauplii were con-
sidered too because the authors of the existing datasets aggregated
them with the other copepod stages. Given the low contribution of
nauplii to this site (a maximum of 5% of the total copepod abundance)
and the total data points (3 points over a total of 162) used for GLMM
analysis (see 2.4. Model description) it was considered that they had
insignificant influence on the overall outcome of the analysis. (Fig. 1,
Table 1). These 12 field studies included the coastal waters of the: Al-
boran Sea (Berraho et al., 2016); Thyrrenian and Adriatic seas (Busatto,
2007; Mazzocchi, 2008a,b,c; Ragosta et al., 1995); Ligurian Sea
(Dauby, 1980), ; Northeastern Aegean Sea (Siokou-Frangou and
Papathanassiou, 1991; Isari et al., 2006), the Gulf of Annaba (Khelifi-
Thouami et al., 2007), the Gulf of Gabes (Drira et al., 2017); Bay of
Tunis (Ben Lamine et al. 2015); Nile delta (Eltohamy et al., 2017); and
Iskenderun Bay (Kurt and Polat, 2013) in the eastern basin. Added to
these datasets was an original field study realized in the Bay of Jijel
within the Algerian basin (Western Mediterranean Sea) at three stations
(S1: 36.83°N, 5.85°E; S2: 36.83°N, 5.79°E, and S3: 36.78°N, 5.57°E, cf.
Fig. S1) over an annual cycle in the first 30 m of depth (2016–2017, 33
samples). The net mesh size used in all these studies ranged from 54 to
300 µm (Table 1). The 300 µm mesh used at the Bay of Jijel could

potentially underestimate the abundance of the smallest copepod spe-
cies (≤300 µm) such as the genera Oncaea (species minima, vodjanitskii,
atlantica, longipes, mollicula, tenella, and tregoubovi) and Spinoncaea
(species humesi and tenuis) (Brun et al., 2017; Hirst and Kiørboe, 2014;
Razouls et al., 2005–2019). However, given that these species occur
mainly in the Adriatic and Ionian Seas and in the eastern Mediterranean
Sea (Razouls et al., 2005–2019), and that they were absent from the
two adjacent studied areas (Morocco and Annaba coastal waters),
where a smaller net mesh size (147 and 200 µm) was used (Table 1), it
was assumed that there had been no underestimation of the smallest
species in this dataset. Each study included multiple stations, and/or
several seasonal campaigns, representing altogether, a total of 162
samples at a monthly scale and with environmental data (Table 1).
They included 4 orders, 73 genera, and 217 species, over a total rich-
ness of 561 copepod species recorded in the Mediterranean Sea and the
Black Sea (Razouls et al., 2005–2019); after taxonomy updating using
the World Register of Marine Species (WoRMS, http://www.
marinespecies.org/aphia.php?p=webservice). The final copepod spe-
cies abundance datasets are given in Table A1. In addition, salinity, Chl
a and seawater temperature data (Table A2) associated to the copepod
datasets were used. Missing Chl a data for copepod sampling from 2002
(i.e. Bay of Jijel, NE Aegean Sea, Northern Adriatic Sea, and Annaba
CW) were extracted from the MODIS-Aqua ocean color sensor available
at https://oceanwatch.pifsc.noaa.gov/erddap/griddap/OceanWatch_
aqua_Chl a_monthly.html. In addition, the mean of the temperature
values of the closest stations were used for the lacking temperature data
in the Bay of Thessaloniki and the Gulf of Theirmaikos, and salinity data
from Goffart et al. (2002) were used for the Bay of Calvi.

2.2. Copepod traits

Most of the trait data were obtained from the recent Mediterranean
copepod trait database provided by Benedetti et al. (2016) and com-
pleted by those of Hirst and Kiørboe (2014), and Brun et al. (2017).
Traits with the most complete coverage of the copepod species included
in the present study were chosen, i.e. total body length (mm), trophic
regime (herbivore, carnivore, detritivore), feeding mode (passive, ac-
tive, and mixed feeding), and feeding strategy (filter, cruise, and active
ambush feeding) (Table 2). All of these traits influence fitness indirectly
through growth, reproduction, and/or survival (Kiørboe and Hirst,
2014; Litchman et al., 2013), and most of them have been shown to be
responsive to environmental condition change including Chl a con-
centrations (McGinty et al., 2018). For each species, the degree of
herbivory (or carnivory) was calculated by applying a coefficient of 1/3
(or 1/3) for omnivore, 2/3 (or 1/8) for omnivore-herbivore, and 1/8 (or
1/8) for omnivore-detritivore species, 0 (or 1) for carnivore, and 1/8
(2/3) for omnivore-carnivore (Table 2). As a result, for 25% of the
species present in this study, no trait information was found. When
missing, trait values of copepod species were completed using in-
formation available at the genus level or higher. When copepodites
were identified at the genus (NE Aegean Sea and Iskenderun Bay) or
order level (Egypt coastal waters), the trait values were assessed by
considering only the adult copepod species recorded at this site and
belonging to the same taxonomical level. The final compiled trait values
used in this study are given in Table A3 (see supplementary data).
These include 166 copepod species with a complete coverage of trait
values, and 52 species (26 calanoid, 16 cyclopoid, 8 harcpacticoid, and
2 Monstrilloid species) with incomplete coverage in trophic trait values.

2.3. Functional diversity metrics and functional homogenization

Functional identity (also called functional dominance) was esti-
mated as the community-weighted mean of trait values (CWM; Garnier
et al., 2004). Concerning functional diversity indices, functional dis-
persion (FDis), according to Laliberté and Legendre (2010), was cal-
culated. For this, only the traits responding to the environment (and
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consequently being functional) were used, i.e. those for which a sig-
nificant relationship between CWMs and Chl a, seawater temperature,
and/or salinity was found. All the functional community components
were calculated using the ‘FD’ package (Laliberté and Legendre, 2010),
after the log-transformation of species abundances at the different
sampling stations/sites, to reduce the effect of potential outliers. The
CWM corresponds to the mean trait value amongst each community,
weighted by the relative abundance of each species (Garnier et al.,
2004). To reduce the number of copepod species for which trait data
were not available (maximum of 14% at Damietta harbor in Egypt),
CWMs were calculated per datasets and per trait. By applying such
procedure, the percentage of copepod species abundance with no trait
information was always < 10% except for Egypt (14 and 10% for
Damietta harbor and Estuary downstream, respectively). This 14%
maximum was lower than the threshold limit of 20% of the total co-
pepod abundance for CWMs to being representatives of the entire co-
pepod species community (Pakeman and Quested, 2007). FDis is the
mean distance in multidimensional trait space of individual species to
the centroid of all species (Laliberté and Legendre, 2010). One of the
advantages of FDis is that it is unaffected by species richness by con-
struction (Laliberté and Legendre, 2010). In such cases, there is no need
to estimate from the deviation (standardized effect size [SES]; Gotelli
and McCabe, 2002) of the observed functional diversity of one copepod
community from that expected from a random community (e.g. Breton
et al., 2017). FDis were calculated for each pair of functional traits and
for all combined functional traits. To calculate the multidimensional
trait space, a preliminary principal coordinate analysis (PCoA) was
performed, with the traits on a matrix of Gower distances (Podani,
1999), which account for the different types of traits (numeric, binary,
and ordinal). All the axes of the PCoA were retained. Then, the Podani
method and Lingoes correction (Lingoes, 1971) was applied to obtain
Euclidean distance matrices. The precision of functional diversity in-
dices is more sensitive to the incompleteness in species trait data than
CWMs (Pakeman, 2014). However, this same author showed also that

FDis was the functional diversity indicator the least affected by the
incompleteness in trait data, with a deviance at a maximum of 3.5%
(Pakeman, 2014). Finally, functional homogenization was calculated
according to Mondy and Usseglio-Polatera (2014). Given the in-
complete information on the minimum and maximum value of the
trait’s total body length, only the trophic traits (trophic regime, feeding
mode, and feeding strategy) were used for the calculation of functional
homogenization. For each copepod species and each trophic trait, a
Taxon Specialization Index (TSI) was first calculated using the Gini-
Simpson index formula (Gini, 1912; Simpson, 1949). Then, each TSI
was scaled by its respective minimum and maximum values to account
for the different number of categories among traits (Mondy and
Usseglio-Polatera, 2014). Finally, trophic homogenization as Commu-
nity Specialization Index, which varies from 0 (truly generalist) to 1
(truly specialist), was calculated as the CWMs of each TSI.

2.4. Model description

To evaluate how the whole community composition of copepods
differed between stations/sites and seasons, a non-metric multi-
dimensional scaling (nonparametric method nMDS, Taguchi and Oono,
2005) based on Bray-Curtis dissimilarity was performed using the ma-
trix of species abundances with the 'Vegan' package (Oksanen et al.,
2011). Prior to this, the abundance matrix was subject to square-root
transformation, followed by a Wisconsin double standardization. Sig-
nificance of nMDS was tested using Permanova (function Adonis in
'Vegan' package) with 10,000 permutations of the raw data, and
goodness of fit was evaluated based on stress S (S < 0.05 as excellent
representation in reduced dimensions, < 0.1 great,< 0.2 good, and
stress > 0.3 poor). Relationships between environmental variables and
the MDS axes were investigated with bioenv() function (Clarke and
Ainsworth, 1993; Oksanen, et al., 2011). To explore the difference
between sites, a post-hoc pairwise comparison test was performed using
the pairwise.adonis ‘pairwise.adonis’ function (Martinez Arbizu, 2019).

Fig. 1. Location of the Mediterranean sampling
areas used in this study. (1) Morocco coastal waters,
(2) Bay of Jijel (Algeria), (3) Annaba coastal waters
(Algeria), (4) Gulf of Tunis (Tunisia), (5) Gulf of
Gabes (Tunisia), (6) Nile estuary/Diametta harbour/
Coastal waters (Egypt), (7) Bay of Iskenderun
(Turkey), (8) NE Aegean Sea (Greece), (9) Bay of
Thessaloniki/Gulf of Theirmaikos (Greece), (10)
Northern Adriatic Sea (Italy), (11) Thyrrenian
coastal waters (Italy), and (12) Bay of Calvi (Corsica,
France). Each one included several sampled stations
and/or sampling dates for a total of 162 samples
with environmental data available (see Table I for
details). The map was built with the ‘ggmap’
package (Kahle and Wickham, 2013).
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In order to account the potential non-independence of station and
seasonal samples within sites (random effect), the effect of Chl a, sea-
water temperature and salinity on copepod community composition,
and different facets of copepod biodiversity, were evaluated using
Generalized Linear Mixed Models (GLMM, Zuur et al., 2009). After
identification of potential outliers in the response variables via box plot
analysis, each GLMM model was sequentially built with backward
model selection, and with the predictor(s) (fixed effect(s)) and their
potential interactions, and by adding a random effect of sites and season
(1/site and 1/month), each one with 12 random-effect levels (i.e. 12
sites and 12 months). Given the strongly unbalanced datasets, potential
interactions were not taken into account in order to facilitate model
convergence and optimize the stability of models. The error distribution
of each response variable was chosen after drawing a Cullen and Frey
graph using the 'fidistrplus' package (Delignette-Muller and Dutang,
2015) and by fitting the resulting proposed distribution using the
package ‘gamlss' (Rigby and Stasinopoulos, 2005). All tools converged
for each model towards the use of a beta distribution.

Logit was chosen as the link function. Before choosing the final
model, i.e. the model having the lowest Akaike information criterion
(AIC) values and being the most simplified as possible, random effect
structure was tested, and then, simplified as far as possible by keeping
only the significant random effects via the likelihood ratio test using the
‘stats’ R package. Any final model chosen was checked for validation
using the DHARMa package (Hartig, 2018) by examining the Q-Q plot
of overall deviations from the expected distribution (with supplemen-
tary tests for uniformity and outliers), and by examining residual plots
including quantile regression lines (0.25, 0.5 and 0.75). Although
testing for phylogeny signal in the residuals of the GLMMs to correct for
potential autocorrelation/pseudo-replication, some 33% of copepod
species had an unresolved genome (http://lifemap-ncbi.univ-lyon1.fr/,
Table A3), preventing the building of an accurate phylogeny tree. Fi-
nally, goodness‐of‐fit of the models was assessed by calculating the
Nakagawa’s marginal and conditional r2 (Nakagawa et al., 2017) using
the ‘performance’ package (Lüdecke et al., 2019). GLMM analyses were
performed using the ‘glmmTMB’ package (Brooks et al., 2017). Con-
fidence intervals of fixed effect were calculated using the ‘ggeffects’
package (Lüdecke, 2018).

3. Results

3.1. Environmental context and copepod community structure

The Chl a gradient across coastal waters of the Mediterranean Sea
used in this study ranged from 0.11 to 17.3 µg Chl a/L, including someTa
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Table 2
Copepod traits used in this study. Most of the trait values have been gathered in
copepod databases (Benedetti et al., 2016; Brun et al., 2017; Hirst and Kiørboe,
2014).

Trait Type Range/Category Sub-category

Total body length Continuous 0.39–8.5 mm
Trophic regime Fuzzy coded Carnivory (C) C = 1a

0.2,0.5,0.75,1 Herbivory (H) Omnivory-C = 0.75a

Detritivory (D) Omnivory = 0.5a

Omnivory-H = 0.2a

Omnivory-D = 0.2a

Feeding mode Ordinal Passive = 0
Mixed = 0.5
Active = 1

Feeding strategy Fuzzy coded Filter
1,0 Cruise

Ambush
Particle
Parasite

a: values assigned for trait carnivory given as example.
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well-known eutrophication hotspots such as the Nile delta, Gulf of
Gabes, and Northern Adriatic Sea (Micheli et al., 2013). Salinity and
temperature ranged from 29.4 to 41.5 and 9.5 to 30.3 °C, respectively.

Total copepod abundance was significantly different between sites
(Kruskal-Wallis chi-squared = 68.25, p-value = 0). However, these
differences did not always follow the Chl a pattern. For instance, the
highest Chl a concentrations recorded at the Egypt CW site were ac-
companied by one to two orders of magnitude lower copepod abun-
dances compared to other eutrophicated sites (N Adriatic Sea and Gulf
of Gabes). This same Egypt CW showed copepod abundances of the
same order as the low Chl a concentrations sites of the N Aegean Sea
and Morocco.

The nMDS results (p = 0.001, stress = 0.23) showed that the co-
pepod community structure was dissimilar between the investigated
Mediterranean sites. The adonis post-hoc test allowed to discriminating
five different groups of sites in copepod species composition: (1)
Thyrrenian sea and Morocco CW, (2) Bay of Jijel, Gulf of Annaba,
Egyptian coast, Iskenderun Bay, N Aegean Sea, and Calvi Bay, (3) Gulf
of Gabes and Gulf of Tunis, (4) Bay of Thessaloniki/Gulf of
Theirmaikos, and (5) N Adriatic Sea. Except for group 3, sites were not
associated in function of their geographical proximity (Fig. 2). Differ-
ences in copepod species composition was associated mostly to SST,
salinity, and Chl a, which were significantly correlated to MDS1 or
MDS2 (r2 = 0.11, p = 0.001, r2 = 0.16, p = 0.001, and r2 = 0.09,
p = 0.001, respectively). Accordingly, copepod composition in the N
Adriatic Sea was associated to high Chl a but low salinity, while in

Morocco CW and the Thyrrenian Sea, Chl a was low but salinity high.
Finally, for group 2, copepod species composition was not always as-
sociated to any particular amount of Chl a, salinity, and/or SST con-
ditions.

3.2. Functional identity, trophic homogenization and functional diversity of
the copepod community

The CWMs of feeding mode and ambush feeding strategy exhibited
significant differences between groups of sites (Table 3). Accordingly,
copepods exhibited mainly a passive mode in sites with the highest Chl
a (group 5, some of group 2 including the Nile delta, and at some
seasons in group 4), but an active one in sites with the lowest Chl a
(group 1, half of group 2; the Gulf of Annaba, Morocco CW, and the NE
Aegean Sea), with group 3 showing intermediary values. Moreover,
copepods with an ambush strategy were more abundant in groups 5,
some in group 2, and at some seasons in group 4. This was followed by
group 3, group 1, and half of group 2 - which showed intermediary
feeding mode values. Finally, CSI-trophic regime and CSI-feeding mode
exhibited significant differences between stations/sites (K-W,
p < 0.01). Hence, values of CSI-feeding mode were significantly lower
in sites having the highest Chl a values (group 5) than in the other
groups, and values of CSI-trophic regime decreased from the sites
having the lowest Chl a to those with the highest Chl a concentrations.

Furthermore, GLMM modelling showed significant relationships
between Chl a and CWMs of feeding mode, ambush strategy, and CSI-

Fig. 2. Non-metric Multidimensional Scaling based on Bray-Curtis similarity (stress: 0.23) performed on the abundance of copepod species within the 162 com-
munities (circles) sampled in coastal waters of the Mediterranean Sea. The five different groups of sites (G1-G5) depicted by ADONIS post-hoc test are between
brackets. Salinity (Sal) was significantly linked (r2 = 0.16, p = 0.001) to MDS1 while SST and Chl a were significantly linked to MDS2 (r2 = 0.11, p = 0.001 and
r2 = 0.09, p = 0.001, respectively).
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trophic regime (Fig. 3, Table 3). Accordingly, copepod assemblages
shifted towards the dominance of generalists using passive mode and
ambush feeding strategy (Fig. 3). Given their significant relationship
with Chl a, these traits were therefore considered as functional. All
these traits were used for the calculation of functional dispersion (FDis).
However, results showed that FDis did not follow the Chl a gradientfor
all functional traits used. Results from the analysis performed to iden-
tify the possible error distribution and diagnose residual of each sig-
nificant GLMM model are given in Figs S2, S3, and S4.

4. Discussion

The upscaling of original and existing data in the Mediterranean
Sea, which included eutrophication hotspots such as the Nile delta, the
Gulf of Gabes, and the Northern Adriatic Sea (Micheli et al., 2013), was
conducted to explore how copepod assemblages responded to a Chl a
gradient across coastal waters of the Mediterranean Sea. It also tested
whether different functional indicators of copepod communities were
associated with this gradient. Our results showed that eutrophication
may lead to directional changes in the functional structure of copepod
communities including trophic homogenization by favoring generalist
against specialist feeders. To our knowledge, this is the first study
documenting biotic homogenization within the copepod community as
a result of eutrophication. Copepods play a pivotal role in the food webs
and they are relatively easy to collect. Monitoring copepods could be of
great importance in evaluating water quality and as a potential warning
signal of the eutrophication phenomena. Our results have shown the
effectiveness of applying a trait-based approach to copepods as a tool to
detect early signal of eutrophication.

4.1. Trait response and trophic homogenization of the copepod community
to increasing chlorophyll a

Our results have shown that omnivorous copepods using a passive

mode and an ambush feeding strategy were favored as Chl a increased.
Given that these traits typically characterize the cyclopoids of the genus
Oithona (Benedetti et al., 2016), our results are in accordance with
previous studies that have focused on species identity (e.g. Chang et al.,
2009; Gao et al., 2019; Serranito et al., 2016; Sriwoon et al., 2008; Uye,
1994).

Several hypotheses have been advanced to explain why the genus
Oithona is favored under eutrophic conditions including a shift in the
food web structure (Uye, 1994; Sriwoon et al., 2008). Given the inverse
relationship we found between the degree of resource specialization of
the copepod community and Chl a, our results suggest a different story,
i.e. the success of Oithona in eutrophicated environment is mainly due
to its capacity to better adapt to a changing environment than other
copepods. Generalists feed on many kinds of prey, and consequently,
are less affected by the temporal variations of resources. Oithona spp.
are typical ecological generalists (Paffenhöfer, 1993; Benedetti et al.,
2016), and therefore, able to adapt to disturbed environments, eu-
trophicated systems, and unstable environmental conditions (Hautier
et al., 2009; Hautier et al., 2015; Blüthgen et al., 2016; Pálffy and
Vőrős, 2019). Although Oithona spp. are poor competitors due to their
relative inefficiency at capturing both non-motile and motile preys
compared to active feeders (Kiørboe, 2011; van Someren Greve et al.,
2017), they are able to switch from motile prey to non-motile phyto-
plankton, such as diatoms, when their preferred prey of ciliates and
dinoflagellates are scarce (Castellani et al., 2005; Pond and Ward,
2011).

The lack of relationship between TL and Chl a should be considered
with caution. Size data encompassed a relatively large geographical
scale which is not necessarily representative to a restricted studied re-
gion. Size is considered as the ‘master trait’ for resource acquisition,
reproduction, and predator avoidance (Litchman and Klausmeier,
2008). However, TL may not be responsive to eutrophication gradient
because of an insufficient knowledge about copepod species size. Sev-
eral of the studies used here have reported a directional change in size
of the copepod community (e.g. Intxausti et al., 2012; Siokou-Frangou
and Papathanassiou, 1991; Uye and Sano, 1998), but they have given
no statistical evidence. Further studies are needed to clarify this point.

4.2. Functional diversity and community assembly

No significant relationship was found between FDis and Chl a. A
decline in functional diversity under eutrophication has been observed
in various ecological communities, including aquatic plants (Arthaud
et al., 2012) and benthic macroinvertebrates (Zhang et al., 2019). This
may result either from (i) environmental filtering, which under en-
vironmental stress selects species with the best-suited traits for survival
(Weiher et al., 1998; Grime, 2006); either from (ii) strong competition
resulting from the dominance of high competitive ability species
(Mayfield and Levine, 2010); and/or (iii) predation by generalists,
which are expected to cluster prey communities toward species having
defense traits (Cavender-Bares et al., 2009). In our study, it is possible
that opposite mechanisms driving copepod community assembly act
simultaneously along the eutrophication gradient; consequently off-
setting each other and resulting in the overall lack of change of FDis to
eutrophication gradient. Hence, by contrast to the different mechan-
isms cited above, competition based on the principle of limiting simi-
larity (MacArthur and Levins, 1967) and predation by specialists may
lead to trait over-dispersion (Cavender-Bares et al., 2009; Cornwell and
Ackerly, 2009).

Our results showed also that specialists, i.e. the species with narrow
ecological niches, are not necessarily functionally different from the
others. This has also been observed by different authors in benthic in-
vertebrates, butterflies, and forest birds (Larsen et al., 2018 and refer-
ences therein). These authors suggest that while specialists and gen-
eralists have the same risk to extinct, specialists encounter some
difficulty to recolonize a site.

Table 3
Significant generalized linear mixed models for community-weighted-means
(CWM) of trait values for feeding modes, ambush feeding strategy, and
Community Specialization Index of trophic regime (CSI-Trophic regime). Bold
values indicating significant relationships (p < 0.05) are those of the full
model. All the models were built with a beta error distribution and a logit link.

Estimate SE z value p

CWM-Feeding mode
(Intercept) 0.32 1 0.32 ns
Chla −0.08 0.02 −3.94 8.27E-05
Sal 0.02 0.02 0.77 ns
SST −0.005 0.01 −0.33 ns
Net mesh size 0.004 0.002 2.39 0.0167
random effect variance SD
Site 0.06 0.25
Season 0.06 0.24
CWM-Ambush feeding
(Intercept) −0.64 1.05 −0.61 ns
Chla 0.08 0.02 4.19 2.78E-05
Sal −0.01 0.03 −0.53 ns
SST 0.002 0.01 0.17 ns
Net mesh size −0.003 0.002 −1.98 0.0478
random effect variance SD
Site 0.05 0.23
Season 0.05 0.23
CWM-CSItrophic regime
(Intercept) −0.15 0.58 −0.26 ns
Chla −0.06 0.01 −5.09 3.61E-07
Sal −0.01 0.01 −0.74 ns
SST −0.002 0.009 −0.22 ns
Net mesh size 0.002 0.001 1.38 ns
random effect variance SD
Site 0.03 0.16
Season 0.02 0.13
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4.3. Multiple indices to detect the effect of eutrophication on the biological
organization of copepod communities

In our study, three indices from a total of six showed significant
relationships with Chl a emphasizing the need to use multiple indices to
give a chance to detect the effect of disturbance on copepod commu-
nities. Yet, our results showed clearly that the community composition
changed between sites, which led to changes both in functional trait
composition, and degree of specialization for resource of the copepod
community. Although taxonomical-based diversity indices are widely
used under the context of the EU Water Directive and the Marine
Strategy Framework Directive (EU MSFD) to assess the ecological status
of marine waters (Birk et al., 2012), the present study has shown that
functional diversity indices may give insights when exploring the effect
of environmental change on biodiversity.

5. Conclusion

Besides changes in community composition, we have shown that
eutrophication may drive changes in the functional trait composition of
the marine copepod community and alter the ratio between specialists

and generalists. Consequently, the use of multiple indices including
trait-based ones are needed to give a chance to detect the consequence
of eutrophication on the biological organization of the copepod com-
munity, and in general environmental changes in marine ecosystems.
This study has shown that the trait-based approach is a powerful tool to
help explore the biological organization of copepod communities in
response to anthropogenic stress and copepods as cost-effective in-
dicator of the environmental quality. Further studies on copepod
monitoring and laboratory experiments to better define copepod species
traits will help us to better understand the effect of anthropogenic ac-
tivities on marine ecosystems.
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