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ABSTRACT
Soil moisture estimation is a key component in hydrological processes and irrigation amounts' 
estimation. The synergetic use of optical and radar data has been proven to retrieve the surface 
soil moisture at a field scale using the Water Cloud Model (WCM). In this work, we evaluate the 
impact of staellite-derived vegetation descriptors to estimate the surface soil moisture. 
Therefore, we used the Sentinel-1 data to test the polarization ratio (σ0

VH=σ
0
VV) and the normal-

ized polarization ratio (IN) and the frequently used optical Normalized Difference vegetation 
Index (NDVI) as vegetation descriptors. Synchronous with Sentinel-1 acquisitions, in situ soil 
moisture were collected over wheat fields in the Kairouan plain in the center of Tunisia. To 
avoid the bare soil roughness effect and the radar signal saturation in dense vegetation 
context, we considered the data where the NDVI values vary between 0.25 and 0.7. The soil 
moisture inversion using the WCM and NDVI as a vegetation descriptor was characterized by an 
RMSE value of 5.6 vol.%. A relatively close performance was obtained using IN and (σ0

VH=σ
0
VV) 

with RMSE under 7. 5 vol.%. The results revealed the consistency of the radar-derived data in 
describing the vegetation for the retrieval of soil moisture.
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Introduction

Water shortages threaten the Mediterranean basin, 
especially in the southern part, where the impacts of 
climate change are the most felt (Schilling et al., 2020; 
Tramblay & Somot, 2018). Therefore, the optimization 
of water resource management is essential for sustain-
able agriculture (Massari et al., 2021). Surface soil 
moisture is a key component in the hydrological pro-
cesses that controls the amount of runoff and infiltrated 
water (Brocca et al., 2010, 2017; Koster et al., 2016). For 
soil water content estimation, several soil moisture 
monitoring techniques based on punctual soil sam-
pling, such as the gravimetric method, and automated 
soil moisture measurement techniques, such as time 
domain reflectometry and Thetaprobe sensors, have 
been used. These methods are time-consuming and 
require substantial labor to assess the spatial heteroge-
neities and the temporal dynamics of the soil moisture 
(Peng et al., 2021; Walker et al., 2004).

To overcome these limitations, remote sensing pro-
ducts were used as an alternative to retrieve surface 
soil moisture. Owing to the lower sensitivity of micro-
wave signals to weather conditions, operational soil 
moisture products are available with a spatial resolu-
tion varying between 25 and 35 km and a revisit time 

of up to one day and include the Soil Moisture and 
Ocean Salinity (SMOS) (Al Bitar et al., 2017; Kerr 
et al., 2001), Soil Moisture Active/Passive (SMAP) 
(Entekhabi et al., 2014) and Advanced Scatterometer 
(ASCAT) (Wagner et al., 2013). These products have 
been evaluated by a large number of studies (Albergel 
et al., 2009; Chen et al., 2018; El Hajj et al., 2018; 
Mohanty et al., 2017; Wagner et al., 2007; Kerr et al.,  
2010). The coarse resolution of these products is insuf-
ficient to cover soil moisture heterogeneities at the 
agricultural field scale. Therefore, a high spatial reso-
lution of soil moisture is needed. In this context, 
several efforts were devoted to retrieving the soil 
moisture using synthetic radar aperture (SAR) data 
owing to its sensitivity to the geometric and dielectric 
properties of the soil. At the field scale, various 
approaches have been developed to retrieve surface 
soil moisture using available radar acquisitions in the 
X-band (Aubert et al., 2013; El Hajj et al., 2016; 
Fontanelli et al., 2013; Gorrab et al., 2015), C-band 
(Amazirh et al., 2018; Amri et al., 2012; Bousbih et al.,  
2017; Ezzahar et al., 2019; Gao et al., 2017; Kumar 
et al., 2019; Ouaadi et al., 2020; Wang et al., 2018,  
2023) and L-band (Fascetti et al., 2017; Hamze et al.,  
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2021; Hosseini & McNairn, 2017; Lievens & Verhoest,  
2011; Shi et al., 1995, 1997; Zribi et al., 2019).

Due to the lack of available L-band data, most of the 
available works were developed using the X- and 
C-bands, especially after the launch of Sentinel-1 
A and B on 3 April 2014 and 25 April 2016, respec-
tively (ESA, 2012). These approaches are based on 
radar signal behavior modeling and inversion to esti-
mate soil moisture. Over bare soil fields, various 
empirical models, semiempirical models such as Oh 
and Dubois and physical models such as the integral 
equation model (IEM), have been used (Baghdadi & 
Zribi, 2006; Baghdadi et al., 2011; Choker et al., 2017; 
Panciera et al., 2014; Tao et al., 2015). The main aim of 
these models is to relate the radar signal to ground 
data such as ground truth soil moisture measurements 
and geometric statistical parameters, including the 
root mean square of height (Hrms) and the correlation 
length (Lc).

The presence of vegetation impacts the radar signal 
behavior. Therefore, different models were proposed 
in this context to consider the crop contribution in the 
scattering process (Ulaby et al., 1990; Ulaby, 1975; 
Ulaby et al., 1984). The water cloud model (WCM) 
(Attema & Ulaby, 1978) has been extensively used in 
many works due to its simplicity. The total backscat-
tering is the sum of the vegetation contribution, the 
attenuated bare soil contribution and the soil- 
vegetation interaction contribution. The interaction 
term is often neglected in the case of the C-band. 
The WCM may be coupled to the aforementioned 
bare soil models to calculate the soil contribution. 
The vegetation contribution and the attenuation 
term are calculated as a function of the crop descrip-
tor. Notably, crop description is critical for the soil 
moisture estimation process.

The choice of the vegetation descriptor was exten-
sively discussed and tested due to the complexity of 
the geometric structure and dynamics of vegetation. 
Some vegetation descriptors may be measured in situ, 
such as vegetation height, leaf area index, leaf water 
area index, aboveground biomass and vegetation 
water content (Chauhan et al., 2018; El Hajj et al.,  
2014; Kumar et al., 2015). Using optical data, crop 
descriptions may include indices such as the normal-
ized difference vegetation index (NDVI) (Ayari et al.,  
2021; Baghdadi et al., 2017; Bousbih et al., 2018; 
Prakash et al., 2012) or be directly extracted from 
MODIS products such as NDVI, the leaf area index 
(LAI) and the enhanced vegetation index (EVI) (Wang 
et al., 2019). Several studies have estimated the 
descriptors using established empirical relationships 
between SAR data and vegetation variables (Ouaadi 
et al., 2021) or between optical data and variables (Liu 
& Shi, 2016; Ma et al., 2020). Periasamy (2018) inves-
tigated the potential of C-band Sentinel-1 to estimate 

the Above Ground Biomass using the calculated SAR 
variables at i pixel: such as VH backscattering coeffi-
cients, the inverse dual polarization diagonal distance 
ðððσ0

VV;max � σ0
VV;iÞ þ σ0

VH;iÞ=
ffiffiffi
2
p
Þ, and the vertical 

dual de-polarization index σ0
VV;i þ σ0

VH;i

� �
=σ0

VV;i

� �
. 

To retrieve the soil moisture at field-scale, 
Bhogapurapu et al. (2022) used the copolarized purity 
parameter DpRVIC ¼

q qþ3ð Þ

qþ1ð Þ
2 , where q is the ratio para-

meter (σ0
XY=σ0

XXÞ and X and Y are H or V polariza-
tions, respectively, as the vegetation descriptor over 
croplands and shrublands. The aforementioned 
derived parameter already proved its pertinence to 
monitor the vegetation growth cycle in (Mandal 
et al., 2020).

In the L-band, Wang et al. (2021) tested four vege-
tation descriptors to retrieve the soil moisture, includ-
ing the vegetation water content (VWC-NDVI) 
estimated using the empirical relationship between 
in situ measurements and the NDVI and the derived 
SAR data, such as the RVI 
( 8� σ0

HV
� �

= 2� σ0
HV þ σ0

VV þ σ0
HH

� �
Þ, the polariza-

tion ratio (σ0
HV=σ0

VV ) and the VH backscattering coef-
ficients. A similar accuracy was obtained by the VWC- 
NDVI and the polarization ratio as crop descriptors 
with RMSE values equal to 8.8 vol.% and 9.1 vol.%, 
respectively (Wang et al., 2021).

For grasslands, using X-band data, El Hajj et al. 
(2016) investigated the potential of vegetation descrip-
tors derived from optical data such as the fraction of 
absorbed active radiation, the fractional vegetation 
cover, the leaf area index and NDVI. For NDVI values 
fluctuating between 0.45 and 0.75, the RMSE value 
was 3.6 vol.% when the NDVI was used as the vegeta-
tion variable. When the NDVI exceeded 0.75, the 
RMSE increased to 6 vol.%. The soil moisture retrieval 
accuracy was similar for the rest of the tested descrip-
tors. The use of the NDVI as vegetation descriptor is 
limited by the cloud presence and its saturation within 
dense vegetation context. Therefore, in the present 
work, as an alternative to NDVI, we investigate the 
potential of the derived Sentinel-1 C-band SAR data to 
incorporate the wheat cover effects when estimating 
surface soil in the semi-arid Kairouan plain in Tunisia. 
The used data and the adopted methodology are 
described in the second section. In the third section, 
we present the results and the discussion. In the final 
section, we draw the conclusions.

Materials and methodology

Study area and ground-based data

The study area is located in the plain of Kairouan in 
Tunisia (35°1′–35°55′ N, 9°23′–10°17′ E) as illustrated 
in Figure 1. This alluvial flat landscape covers an area 
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of 3000 km2 and is characterized by a semi-arid cli-
mate. The annual quantity of precipitation is approxi-
mately 300 mm with an irregular spatiotemporal 
distribution. The temperature varies from 11°C in 
the coldest months, namely, December, January and 
February, to 30°C during July and August, the hottest 
months. The land use mainly comprises cereals, olive 
trees, orchards and seasonal market garden crops 
(Amri et al., 2012; Shabou et al., 2015; Zribi et al.,  
2011).

In the present work, we used collected insitu data in 
several selected wheat fields in the plain of Kairouan 
during two agricultural years (2015/2016; 2016/2017) 
and the spring of 2022 (from April to mid-May). The 
wheat cycle in Kairouan starts with sowing events in 
December, vegetation development, and the heading 
approximately during the mid of March and 

senescence phases. It ends with the harvest extending 
from the end of May to the end of June. Over the 
wheat reference fields and during S-1 acquisitions, soil 
moisture measurements were collected at approxi-
mately 20 points by the handheld Thetaprobe in the 
first top layer of soil (first 5 cm). The used 
Theataprobes were already calibrated with gravimetric 
measurements over the same studied area in (Zribi 
et al., 2014). As detailed in Table 1, the soil moisture 
values vary from 7.5 to 41.2 vol.%.

Satellite data

Sentinel-1 (S-1)
Since the launch of Sentinel-1A and B on 
3 April 2014 and 25 April 2016, respectively, 
C-band synthetic aperture radar (SAR) data are 

Figure 1. Location of the study area and the reference wheat fields in the Kairouan Plain.

Table 1. Characteristics of Sentinel-1 images and collected ground-based soil moisture during the agricultural years (2015–2016 
and 2016–2017) and the spring of 2022 (due to the failure of the Sentinel-1B, the C-band images in 2022 were acquired every 12  
days with Sentinel-1 A).

Total number of S-1 images Number of S-1 images Orbit Revisit time Number of test fields

Soil moisture (vol.%)

Min Max

2015–2016 19 7 Ascending 6 days 9 7.6 39.1
06/12–10/05 12 Descending
2016–2017 19 10 Ascending 6 days 10 7.5 41.2
23/12–23/04 9 Descending
2021–2022 8 4 Ascending 12 days 15 7.7 28.9
08/04–15/05 4 Descending

EUROPEAN JOURNAL OF REMOTE SENSING 3



available in a variety of modes, polarizations and 
resolutions. For the present study, we used Ground 
Range Detected S-1 images acquired in 
Interferometric Wide Swath (IW) mode at 
a frequency of 5.405 GHz in vertical-vertical (VV) 
and vertical-horizontal (VH) polarizations. For the 
study area, the selected images were characterized by 
a pixel spacing of 10 m × 10 m and an incidence 
angle between 39° and 40°, as described in Table 1.

The already processed S-1 images were downloaded 
from Google Earth Engine (https://developers.google. 
com/earth-engine/datasets/catalog/sentinel). For each 
S-1 scene, the backscattering coefficients were gener-
ated in dB scale in VV-polarization (σ0

VVÞand VH- 
polarization (σ0

VHÞin each pixel were derived after 
five processing steps, namely, orbit file application, 
border and thermal noise removal, radiometric cali-
bration and terrain correction. After converting each 
scene to the linear scale, the backscattering coefficients 
were averaged per field. The polarization ratio 
(σ0

VH=σ0
VV ) in linear scale was computed for each 

field. The normalized index IN was computed from 
the polarization ratio(σ0

VH=σ0
VV ) converted in dB scale 

for each reference field during each wheat growth 
season using the following equation in Rolle et al. 
(2022): 

IN ¼
σ0

VH=σ0
VV � σ0

VH=σ0
VVmin

σ0
VH=σ0

VVmax � σ0
VH=σ0

VVmin
(1) 

The normalization of the polarization ratio aims to have 
a radar index comparable to the NDVI, where the values 
range from 0 (when σ0

VH=σ0
VV min to 1 (when 

σ0
VH=σ0

VV ¼ σ0
VH=σ0

VV max) and the σ0
VH=σ0

VV min and 
σ0

VH=σ0
VV max are calculated per reference fieldand for 

each wheat growth season.

Sentinel-2 (S-2)
The surface reflectance data were cloud-free selected 
and downloaded from the Theia site (https://www. 
theia-land.fr/donnees-satellitaires/). The Sentinel-2 
data were corrected for atmospheric effects via the 
MAJA software (Hagolle et al., 2017), which detected 
clouds and their shadows and produced level 2A reflec-
tance data. We used the red and infrared bands, B4 and 
B8, respectively, to calculate the normalized difference 
vegetation index (NDVI). For each wheat field and each 
date, the mean value of NDVI is calculated.

Water cloud model (WCM)

As developed by (Attema & Ulaby, 1978), the WCM 
considers the total backscattering as the sum of the 
vegetation contribution, the bare soil contribution 
attenuated by the vegetation and the contribution of 
soil-vegetation interactions. Due to the limited pene-
tration depth of the C-band signal, the interaction 

term is often neglected. Consequently, the total back-
scattering coefficient at the field scale can be calculated 
using the following equations (2–4): 

σ0 ¼ σ0
veg þ τ2 � σ0

soil (2) 

σ0
veg ¼ AV1 cos θ 1 � τ2� �

(3) 

τ2 ¼ expð� 2BV2 sec θÞ (4) 

The bare soil backscattering σ0
soil was calculated using 

the integral equation model with the calibrated corre-
lation length (IEM-B) as detailed in (Baghdadi et al.,  
2006). The bare soil properties included the measured 
soil moisture and constant geometrical parameter 
(Hrms) for all the wheat reference fields. Due to the 
lack of roughness measurements, we considered that 
Hrms is equal to 1 cm as measured in semi-arid 
Mediterranean regions in (Bousbih et al., 2017; 
Ouaadi et al., 2021) and tested in (Ouaadi et al., 2020).

The Integral Equation Model was funded by Fung 
et al., 1992 as function of the SAR sensor parameters 
(incidence angle, polarization and the frequency) as well 
as the surface properties such as the roughness and 
dielectric properties. The potential of the IEM to simulate 
the radar backscattering coefficients was examined in 
several works. The correlation length is one of the inputs 
of IEM which is difficult to estimate and the less accurate 
among the roughness measurements. Therefore, 
Baghdadi et al. (2006), replaced the correlation length 
with a calibrated parameter expressed as function of the 
incidence angle θ and the Hrms values as the following 
equation for the C-band data in VV polarization and 
using the Gaussian correlation function: 

Lopt VVð Þ ¼ 1:281þ 0:134ðsinð0:19θÞÞ� 1:59Hrms
(5) 

In the present paper, our main concern is about cor-
recting the vegetation cover effect in the soil moisture 
retrieve process using different descriptors calculated 
whether from optical or radar data. In this context, we 
avoided the analysis of bare soil (NDVI >0.25) to allow 
a precise estimation of each descriptor’s contribution.

Additionally, we used the threshold of NDVI under 
0.7 to avoid dealing with very dense vegetation con-
text. In fact, the C-band radar signal has already 
shown its limitation in correcting the effect of very 
dense vegetation for soil moisture retrieval.

In (Baghdadi et al., 2017), the Sentinel-1 signal 
simulation using the WCM and the NDVI as vegeta-
tion descriptor revealed that the vegetation contribu-
tion dominates the attenuated bare soil backscattering 
when NDVI is equal to 07 and the soil moisture is 
about 5 vol.%. At an incidence angle higher than 40°, 
the NDVI threshold is about 0.6.

By comparing the potential of L and C-bands data, 
the authors of (El Hajj et al., 2019) demonstrated that 
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the penetration depth of the C-band signal is limited 
where the NDVI is equal to 0.7. Based on these conclu-
sions, the operational products of surface soil moisture 
based on the synergy of Sentinel-1 and Sentinel-2 were 
limited to NDVI values lower than 0.75 (El Hajj et al.,  
2017). The main aim is to better estimate the contribu-
tions of each vegetation descriptor within the optimum 
inversion context. The vegetation contribution σ0

veg The 
vegetation contribution and the attenuation term 
τ2were calculated as functions of the vegetation descrip-
tors (V1and V2) and the incidence angle θ.

In the present study, we tested three vegetation 
descriptors ðV1= V2 ¼ NDVI), ðV1= V2 ¼ polariza-
tion ratio in linear scale) and ðV1= V2 ¼IN). A and B 
are parameters that were calibrated and validated 
depending on the vegetation properties and the SAR 
sensor parameters. The A and B are two key parameters 
in the WCM simulations of the total backscattering over 
covered fields. As discussed in (Park et al., 2019), the 
accuracy of these parameters will improve the estima-
tion of the attenuation and the volume scattering and 
consequently the accuracy of the surface soil moisture

Seventy percent of the entire dataset was used for 
the calibration (163 points), and 30% was devoted to 
the validation step (70 points).

Results

Radar sensitivity to surface soil moisture

In Figure 2, we scatterplot the backscattering coeffi-
cients in VV and VH polarizations as a function of the 

in-situ measurements of the surface soil moisture. 
Using the copolarized data (σ0

VVÞ, we observe better 
sensitivity to soil moisture with a value of 0.12 dB/vol. 
% compared to 0.04 dB/vol.% using the VH polariza-
tion (σ0

VHÞ. The correlation coefficient values vary 
between 0.56 and 0.12 for VV and VH, respectively. 
According to Figure 2, some discrepancies were 
observed. These points are characterized by high 
NDVI values (NDVI >0.6), indicating the presence 
of dense vegetation combined with soil moisture 
values varying between 25 and 35 vol.%. The presence 
of vegetation introduces volume scattering in the 
backscattering process while the bare soil contribution 
decreases with the vegetation development. This effect 
is more clearly highlighted in the cross-polarization 
(VH) than in the copolarization (VV).

To examinate the vegetation impact on the soil 
moisture retrieval, in Figure 3 the backscattering coef-
ficients in dB were analyzed as function of the mea-
sured soil moisture according to three classes of 
NDVI: 0.25 < NDVI ≤ 0.4, 0.4 < NDVI ≤ 0.55 and 
0.55 < NDVI ≤ 0.7. The sensitivity of the VV- 
polarized data to the soil moisture (correlation coeffi-
cient) decreases from 0.18 dB/vol.% (r = 0.71) to 0.07  
dB/vol.% (r = 0.43) when the NDVI values increase 
from 0.25 to 0.7. Using the VH-polarized C-band 
data, the sensitivity of radar signal to the soil moisture 
varies between 0.06 and 0.03 dB/vol.%. The intercom-
parison between the two polarizations highlights that 
the co-polarized data is more sensitive to soil moisture 
than the cross-polarized one.

Figure 2. Scatterplots of the backscattering coefficients in VV and VH polarizations as a function of the in-situ measurements of soil 
moisture over the wheat reference fields in the Kairouan plain.
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In Figure 4, the sensitivity of the backscattering coeffi-
cients is illustrated as function of the soil moisture 
according to the vegetation development phases: vegeta-
tive phase and productive phase. For the first phase which 
occurred from December to the mid of March, the vege-
tation is developed and marked finally by the heading 
event (the NDVI values increase to a maximum value). 
The second phase, which started after the heading event is 
marked by the presence of the vegetation volume and the 
grain filling until the harvest starting from the end of May 
(the NDVI values decrease to a maximum value).

During the first phase, we observe that the 
Sentinel-1 is more sensitive to the soil moisture in 
VV polarization (0.12 dB/vol.%) more than VH 
polarization (0.08 dB/vol.%). This may be induced 
from the sensitivity of VV polarization to the bare 
soil contribution in this first phase of wheat devel-
opment. Regarding the second phase, when the 
vegetation covers the soil and its volume governs 
the scattering process, the sensitivity of the VV- 
polarized signal decreases to be in the same range 
of the VH-polarized data. Owing to this lower 
sensitivity of cross-polarized data to soil moisture, 
we selected only the copolarized data to estimate 
the soil moisture.

Empirical relationships between vegetation 
descriptors

In Figure 5, we analyzed the NDVI as a function of the 
calculated radar variables such as the polarization ratio 
in dB σ0

VH=σ0
VV

� �
and its normalization (IN). Positive 

correlations characterize the linear relationships 
between the polarization ratio and the NDVI. The cor-
relation coefficients vary from 0.67 to 0.58 using the 
data during 2015/2016 and 2016/2017, respectively.

The lowest correlation coefficient, equal to 0.17, is 
observed in the scatterplot of the NDVI as a function 
of the polarization ratio during the spring of 2022, 
where the polarization ratio values are between − 6 
and −4 dB with low NDVI value dynamics. The high 
values of the ratio indicate high VH backscattering in 
addition to a lower contribution of VV backscattering. 
Otherwise, well-developed vegetation, contributes by 
volume scattering within the total backscattering, 
regarding a decreased contribution from bare soil. 
This situation could be observed especially in the 
senescence phase of the wheat where the vegetation 
is present and mature with a yellow color and the 
maximum developed biomass. Therefore, the NDVI 
values are low regarding high ratio values, as identified 
by the red circles in Figure 5, during 2016/2017. The 

Figure 3. Scatterplots of the Sentinel-1 backscattering coefficients as a function of the in-situ measurements of soil moisture over 
the wheat reference fields according to three classes of NDVI (0.25 < NDVI ≤ 0.4, 0.4 < NDVI ≤ 0.55 and 0.55 < NDVI ≤ 0.7).
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same trends were observed for winter wheat using the 
polarization ratio (Ouaadi et al., 2020; Veloso et al.,  
2017). The same discrepancies were observed for the 
data between April and May 2022, which used the IN 
with an correlation coefficient equal to 0.2. These dis-
crepancies confirmed the limited potential of radar 
data in case of dense vegetation especially after wheat 
maturation.

Radar signal modeling over wheat fields

The use of WCM requires the calibration and valida-
tion of A and B parameters for each tested vegetation 
descriptor, namely, NDVI, polarization ratio and IN.

The A values vary between 0.05 and 0.125, and the 
B values range from 0.55 to 1.18. The highest values of 
A and B, 0.1 and 1.18, respectively, are found using the 
polarization ratio. Over the same validation site, using 
the NDVI as a vegetation descriptor and the WCM 
coupled with the empirical model, the calibrated 
A and B parameters are equal to 0.06 and 0.42, respec-
tively (Bousbih et al., 2017, 2018)

For the WCM coupled to IEM-B was tested in 
(Baghdadi et al., 2017) over the same study site of 
Kairouan plain, using the C-band data, the 
A parameter is equal to 0.095, and the B parameter is 
approximately 0.55. In Figure 6, we scatterplot the 
modeled and S-1 observed backscattering coefficients 
with the respective calibrated coefficients A and B and 
the statistical parameters root mean square error 

(RMSE), bias and correlation coefficients (r). The 
RMSE and the bias values vary from 1.2 to 1.32 dB 
and from − 0.1 to −0.05 dB, respectively. The r values 
fluctuate between 0.59 and 0.69 using the three satel-
lite-derived variables.

After the WCM calibration using 70% of the data-
set, we used the A and B parameters to simulate the 
signal over the wheat fields. Figure 7 shows the rela-
tionships between the modeled backscattering coeffi-
cients and the Sentinel-1 coefficients. Using the NDVI 
as the vegetation variable (V1=V2=NDVI), the RMSE 
and the bias values are equal to 1.26 dB and 0.02 dB, 
respectively. Based on the S-1 data, we notice almost 
the same RMSE values equal to 1.15 dB using the IN 
and 1.13 dB using the polarization ratio. According to 
the bias calculations, we observe low bias values 
between −0.06 dB and 0.02 dB. High correlation values 
characterize the linear relationships between the simu-
lated radar signal and the Sentinel-1 signal for VV 
polarization varying between 0.61 and 0.7.

Soil moisture estimation

To retrieve the soil moisture, we performed an inver-
sion of the WCM using the lookup table algorithm. In 
Figure 8, we represent the estimated soil moisture as 
a function of the in-situ measurements and the statis-
tical parameters (r, RMSE and bias). The inversion of 
soil moisture using the WCM model and the optical 

Figure 4. Scatterplots of the Sentinel-1 backscattering coefficients as a function of the in-situ measurements of soil moisture over 
the wheat reference fields according to two wheat growth phases (vegetative and productive).
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index as a vegetation descriptor is characterized by the 
lowest RMSE value of 5.58 vol.%.

A relatively close performance was obtained using 
IN and the polarization ratio with RMSE values equal 
to 6.7 and 7.45 vol.%, respectively. However, the cor-
relation decreases significantly from 0.68 to 0.53 and 
0.4 when using IN and the polarization ratio, 

respectively. Considering the polarization ratio, we 
observe a satisfactory level of accuracy, where the 
RMSE and bias values are approximately 7.45 vol.% 
and − 1.47 vol.%, respectively. A relatively close per-
formance characterizes the use of the IN as a wheat 
descriptor in the soil moisture estimation with a mean 
underestimation of 2 vol.%.

Figure 5. Scatterplots of the NDVI as a function of the polarization ratio and the normalized index (IN) during 2015/2016, 2016/ 
2017 and the spring of 2022. The red circles represent the saturation problems identified during the senescence period, especially 
in 2016/2017 (see text).

Figure 6. Scatterplots of calibrated backscattering coefficients and the VV-polarized S-1 data using the remote sensing data as 
vegetation descriptors (NDVI, IN and the polarization ratio in linear scale) with the corresponding statistical parameters (RMSE, bias 
and r).
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Discussion

The incorporation of the SAR-derived variables as 
vegetation descriptor results produced a relatively 
close accuracy to the soil moisture estimations 
attained by the optical index. In terms of RMSE values, 
a difference of 10% between the IN and the polariza-
tion ratio characterizes the performance of the soil 
water content. This result may be due to the normal-
ization of the polarization ratio, which is an index with 
a range of values between 0 and 1. Consequently, this 
normalization decreases the differences between the 
fields in terms of roughness effects and vegetation- 
induced backscattering.

The aforementioned results were in the same range 
of accuracy in previous works. Over the same study 
area, the authors of (Bousbih et al., 2018) estimated the 
soil moisture using Sentinel-1 in VV polarization and 

the NDVI as a wheat descriptor. The RMSE and cor-
relation coefficient of the soil moisture content esti-
mates were 6.4 vol.% and 0.63, respectively. Wang 
et al. (2019) selected the NDVI as the optimum 
descriptor of vegetation compared with other normal-
ized vegetation parameters, such as the enhanced 
vegetation index (EVI) and fraction of photosyntheti-
cally active radiation (FPAR). Based on the statistical 
metrics by Wang et al. (2019), the inversion of WCM 
using the NDVI induced an RMSE value equal to 8.8 
vol.% and a bias of − 0.2 vol.%. Bhogapurapu et al. 
(2022) investigated the potential of the NDVI and 
the Sentinel-1 copolarized purity parameter 
(DpRVIC) as crop descriptors to estimate the surface 
soil moisture. The use of DpRVIC to estimate the soil 
moisture was characterized by RMSE value equal to 
5.5 vol.% despite a value of 7.6 vol.% using the NDVI 
over croplands. In semi-arid region, Ouaadi et al. 

Figure 7. Scatterplots of validation backscattering coefficients and the VV-polarized S-1 data using the remote sensing data as 
vegetation descriptors (NDVI, in and the polarization ratio in linear scale) with the corresponding statistical parameters (RMSE, bias 
and r).

Figure 8. Scatterplots of the estimated soil moisture as a function of the in-situ measurements using the inversion of WCM as 
a function of the vegetation descriptor (NDVI, in and the polarization ratio in linear scale (σ0

VH=σ
0
VV )) with the statistical parameters 

(RMSE, bias and r).

EUROPEAN JOURNAL OF REMOTE SENSING 9



(2020) estimated the aboveground biomass (AGB) and 
vegetation water content (VWC) using the empirical 
relationships between in situ measurements and the 
Sentinel-1 polarization ratio and coherence. The 
retrieved variables were used as vegetation descriptors 
in the WCM to estimate the surface soil moisture. By 
comparing the potential of the NDVI and the derived 
AGB and VWC from the polarization ratio over the 
Kairouan site, a similar accuracy of the soil water 
content estimation was observed. The RMSE and 
bias values were lower than 8 vol.% and 2 vol.%, 
respectively.

Despite the potential of the normalized index to 
detect sowing events in Rolle et al. (2022), the integra-
tion of IN in soil moisture retrieval is characterized by 
a moderate RMSE value of 6.7 vol.% and a correlation 
coefficient of 0.53. This performance may be due to 
a characteristic of the normalized ratio, which reduced 
spatial vegetation variations between fields. Based on 
the aforementioned results, the relationships between 
the optical and SAR-derived information must be 
further investigated according to the wheat growth 
phases. This investigation focuses on the effect of 
vegetation volume scattering on the process of soil 
moisture estimation. In further steps, we aim to test 
the potential of other SAR-vegetation descriptors such 
as the interferometric coherence and the polarimetric 
parameters which can correct the vegetation canopy 
effects in the surface soil moisture retrieval using radar 
data. Additionally, one of the limitations of the devel-
oped approach is the consideration of constant rough-
ness parameters to estimate the soil moisture. This 
assumption is derived from ground measurements 
and previous studies over wheat fields in semi-arid 
context (Bousbih et al., 2017; Ouaadi et al., 2020,  
2021) which highlighted that the small variations in 
the range of Hrms during wheat growth seasons. 
Therefore, the developed method of surface soil moist-
ure retrieval can be transposable in the southern 
Mediterranean regions over wheat fields.

Conclusions

In this work, we retrieved the surface soil moisture at 
a depth of five cm over wheat fields in the Kairouan 
Plain. We used the Sentinel-1 data to calculate the back-
scattering coefficients, the polarization ratio and its nor-
malization and the Sentinel-2 data to calculate the 
NDVI. To estimate the soil moisture, the WCM coupled 
with the modified integral equation model was cali-
brated using 70% of the dataset and validated by 30% 
of the dataset. We estimate the soil moisture using the 
look-up table. The results highlighted the importance of 
the derived SAR ratio in linear scale (σ0

VH=σ0
VV ) and the 

normalized index IN as alternatives for the NDVI to 
retrieve the soil moisture at the field scale. The RMSE of 
soil moisture retrieval ranged between 5.58 and 7.45 vol. 

% using the different variables (NDVI, σ0
VH=σ0

VV and 
IN). In the case of the Kairouan Plain, σ0

VH=σ0
VV and 

IN can be considered a reliable tool to retrieve the soil 
moisture when the NDVI values are lower than 0.7 and 
higher than 0.25. These Sentinel-1-derived data may be 
a solution for vegetation description with full gap-free 
time series during cloud presence, especially in tempe-
rate and tropical climate regions. In the context of future 
missions such as NISAR and ROSE-L, SAR acquisitions 
in the L-band will be available. Hence, the description of 
vegetation volume scattering using L-band data will be 
further investigated. Consequently, the correction of the 
vegetation effect will be more precise and reliable using 
the L-band data than the C-band case.
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