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Introduction.

In this paper we study divisibility and primality properties of the most fundamental integer lattice random walks: the Bernoulli random walk and Rademacher random walk. This is continuing previous works in [START_REF] Weber | Sampling the integers with a complete random walk (27 p[END_REF], [START_REF] Weber | Sur la probabilité P{Sn est premier} (15 p[END_REF], [START_REF] Weber | Small divisors of Bernoulli sums[END_REF], [START_REF] Weber | Divisors of Bernoulli sums[END_REF], [START_REF] Weber | On the order of magnitude of the divisor function[END_REF], [START_REF] Weber | An arithmetical property of Rademacher sums[END_REF], where these questions have been thoroughly investigated, as well as other questions related to their asymptotic structural independence. We next extend the study to the Cramér random walk on which Cramér's model built. This is an important example of independent, non identically distributed random walk. A thorough probabilistic study of this model was recently made in [START_REF] Weber | Critical probabilistic characteristics of the Cramér model for primes and arithmetical properties[END_REF]. The case of a general square integrable lattice random walk was very recently investigated. We prove in [START_REF] Weber | On Rozanov's theorem and strenghtened asymptotic uniform distribution[END_REF], [START_REF] Weber | A uniform semi-local limit theorem along sets of multiples for sums of i.i.d. random variables[END_REF] sharp divisibility results valid for quite large classes of independent, identically distributed (iid) lattice random walks, and obtain also divisibility results in independent non identically distributed case. The used tools are new in this context, and built on a remarkable coupling method and a recent improvement of an important necessary condition of arithmetical type for the applicability of the local limit theorem. We refer to Part IV of our 2009's book [START_REF] Weber | Dynamical Systems and Processes[END_REF], the Chapters 11 and 13, which are devoted to divisors, and their applications in Analysis, especially Fourier analysis.

Throughout let ρ ∈]0, 1[ and B(ρ) = {B n (ρ), n ≥ 1} denotes the binomial random walk, B n (ρ) = n k=1 β k (ρ), for each n, where β(ρ) = {β i (ρ), i ≥ 1} is a sequence of iid binomial random variables (P{β i (ρ) = 0} = 1 -P{β i (ρ) = 1} = ρ). When ρ = 1/2 we use the simplified notation B = {B n , n ≥ 1}, B n = n k=1 β k , for each n, β = {β i , i ≥ 1} being iid Bernoulli random variables. Let also {R n , n ≥ 1}, R n = n k=1 ε k , where ε = {ε i , i ≥ 1} is a sequence of iid Rademacher random variables (P{ε i = ±1} = 1/2). Further let S = {S n , n ≥ 3}, S n = n i=3 ξ i , be the random walk associated to the Cramér model, ξ i , i ≥ 3, being independent random variables defined by P{ξ i = 1} = 1 -P{ξ i = 0} = 1 log i . The basic probability space on which these random variables are defined is noted (Ω, A, P), and the corresponding expectation symbol E .

Notation and convention. -Throughout the paper, the letter C denotes a universal constant whose value may change at each occurence, and C α,β,... denotes a constant depending only on the parameters α, β, . . .. -We agree that ∅ = 0, sup ∅ = 0.

Preamble on summation methods.

In background of the study of the divisibility/primality questions related to these models are often are summation methods, which may be of particular efficiency, as they are linked between them through Tauberian results. We first begin with some important facts. The uniform model (the uniform distribution on {0, 1, 2 . . . , n}, for each n), also called the Kubilius model, is related to Cesàro's summation method, whereas the binomial model is to Euler summation method, and there exist Tauberian theorems comparing summation methods, in particular these two methods. Therefore fine arithmetical results can be directly used, for one summation method (one random model), depending on the rate of convergence in this one, to answer a question concerning another random model. Often, the most readily available information about a set of integers is that it has C 1 -Cesàro density with a given rate of convergence. Definition 2.2. A subset A of N is said to have Euler density λ with parameter (in short E density λ) if lim n→∞ j∈A n j j (1 -) n-j = λ.

Diaconis and Stein proved in [START_REF] Diaconis | Some tauberian theorems related to coin tossing[END_REF] (Theorem 1) the following fundamental result:

Theorem 2.3. For any A ⊂ N, and ∈]0, 1[ the following assertions are equivalent:

(i)

A has E density λ, (ii) lim t→∞ e -t j∈A t j j! = λ, (iii) for all ε > 0, lim

n→∞ #{j ∈ A : n ≤ j < n + ε √ n} ε √ n = λ.
Remark 2.4. The implication (ii)⇒(iii) was in fact first established by Jurkat [START_REF] Jurkat | Ein funktionentheoretischer Beweis für O-Taubersätze bei den Verfahren non Borel und Euler-Knopp[END_REF], and a proof using an extension of Wiener Tauberian theorem was given by Moh in [START_REF] Moh | On a general Tauberian theorem[END_REF], not quoted in the paper.

An important consequence presented by the authors as the principal result of the paper, is that:

(2.1)

The existence and value of E density does not depend on the value of .

A study of limit results in the present setting, for binomial random walks, therefore reduces to the case of the Bernoulli random walk. As a consequence of Theorem 3 in Diaconis and Stein [START_REF] Diaconis | Some tauberian theorems related to coin tossing[END_REF], we have Theorem 2.5. If A ⊂ N has E density λ, then A has C 1 density λ. Conversely the following implication in which g is assumed to be regularly varying at infinity with exponent α, -1 < α ≤ -1/2, holds true

(2.2) #{j ≤ n : j ∈ A} n -λ ≤ g(n) =⇒ P{B n ( ) ∈ A} -λ ≤ Kg(n)n 1/2 .
See also Hardy [13], Theorem 149. Let {α k , k ≥ 0} be a sequence of reals, λ real and ε(n) be positive reals. More generally, it follows from Lemma 6.3 that

1 n n-1 j=0 α j -λ ≤ ε(n) n 1/2 =⇒ n h=0 2 -n n h α h -λ ≤ C √ n max 1≤ ≤n (ε( ) √ ).
Let us illustrate this by giving an application to k-free numbers in B(ρ), which is implicitly included in [START_REF] Diaconis | Some tauberian theorems related to coin tossing[END_REF], (Corollary 4). Definition 2.6. An integer s is said k-free if and only if it is not divisible be the k-th power of any prime.

Leahey and Nymann proved in [START_REF] Leahey | On the probability that an integer chosen according to the binomial distribution be k-free[END_REF] among other papers, by using a formula analogous to 1 -P{B n ( ) is prime} = - 

P B n ( ) k-free - 1 ζ(k) ≤ E(n), (2.4) 
where

E(n) ≤ C n 1 k -1 • e -Ak -8/5 (log n 3/5 (log log n) 1/5 . Proof. Let Q k , Q k (x)
respectively denote the set of k-free integers, and the number of k-free integers ≤ x (k ≥ 2, integer). By a result of Walfisz [START_REF] Walfisz | Weylsche Exponentialsummen in der neueren Zahlentherie[END_REF],

(2.5)

Q k (x) = x ζ(k) + O x 1 k .e
-Ak -8/5 .

(log x 3/5 (log log x) 1/5 .

Take A = Q k and note that #{j ≤ n : j ∈ A} n - 1 ζ(k) ≤ g(n) with g(n) = n 1 k -1 • e -Ak -8/5 .
(log n 3/5

(log log n) 1/5 , Clearly g(n) is regularly varying at infinity with exponent α, -1 < α ≤ -1/2. Thus (2.4) follows.

For 0-density sequences, we have the following complementary result, which does not appear in the literature. Proposition 2.8. Let A be a set of integers of (natural) density 0. Then for every p > 1, (2.6) lim

N →∞ 1 N N n=1 P{B n ( ) ∈ A} p = 0.
This follows from Hardy [14, ineq. 3]

: Let p > 1. Then for 0 < < 1, a n ≥ 0, (2.7) ∞ n=1 n m=0 n m m (1 -) n-m a m p ≤ -1 ∞ n=1 a p n .
We refer to Apostol [START_REF] Apostol | Introduction to analytic number theory[END_REF], McCarthy [START_REF] Mccarthy | Introduction to Arithmetical Functions[END_REF], Montgomery and Vaughan [START_REF] Montgomery | Multiplicative Number Theory I. Classical Theory[END_REF], Tenenbaum [START_REF] Tenenbaum | Introduction à la théorie analytique et probabiliste des nombres[END_REF] as bibliographical sources on arithmetical functions, and for results on arithmetical properties of r-uples of integers, co-primality, pairwise co-primality, least common multiple, and associated arithmetical functions. We cite Tóth's elaborated survey [START_REF] Tóth | A survey on Gcd-Sums functions[END_REF] for sharp limit results of this kind with estimates of the remainder, Fernandez and Fernandez [START_REF] Fernandez | Divisibilities properties of random samples of integers[END_REF], for limiting moments and distribution, for instance of gcd(X n 1 , . . . , X n n ), lcm(X n 1 , . . . , X n n ) of arrays of independent uniformly distributed random variables. These specialized arithmetical functions are not considered here. In each case, however, what is investigated is often the behavior for n large of E f (T n ) r , r ≥ 1, where f (n) is one of these arithmetical functions, f may be varying with n (for arrays of random variables),

T n = Y 1 + . . . + Y ν(n) (
the expectation symbol E corresponding to the underlying probability space on which these random variables Y j are defined). Recall that any arithmetical function f (n) can be represented in the form

f (n) = d|n Φ(d).
The function Φ(d) is defined by the Möbius inversion formula

Φ(n) = d|n µ n d f (d).
For instance for the Bernoulli model,

E f (n) = d|n P{d|B n } Φ(d).
See also sub-section 3. 

N →∞ 1 N N n=1 f (n) = ∞ d=1 Φ(d) d .
See Postnikov [START_REF] Postnikov | Introduction to analytic number theory[END_REF] p. 138. For many arithmetical functions Φ(d) is simple. Here are some examples of mostly studied functions. Let P be the set of prime numbers and let the letter p always denote a prime number. 

σ s (n) = d|n d s the sum of s-powers of divisors of n, s ∈ R; J s (n) =
θ(n) = 2 ω(n)
counting the number of prime divisors of n.

The classical Euler totient function ϕ(n) counting the number of integers k less than n and such that (k, n) = 1 is J 1 (n), and σ 0 (n) is the divisor function d(n) counting the number of divisors of n.

To the best of our knowledge, all divisibility results for a random walk existing in the literature are in-probability results, except for [START_REF] Weber | An arithmetical property of Rademacher sums[END_REF]. It is a pending question to know whether it is possible to derive almost sure counterparts, from existing in-probability results using almost sure convergence criteria, which is a far more complicated task. These criteria are not familiar to number theorists. A random walk often has natural structural independence properties. Therefore a study of almost sure divisibility/primality in a random walk is possible, at the price of many additional technicalities. That's make the research in this domain attractive. In the case of the Bernoulli random walk, it is not complicated to show that the system 

χ{d|B n }, 2 ≤ d ≤ n, n
P d|B n , δ|B m -P{d|B n }P{δ|B m } = 0.
The estimation of this correlation was made in [START_REF] Weber | Divisors of Bernoulli sums[END_REF], and is substancially improved in [START_REF] Weber | Correlation Properties of Divisors in the Bernoulli random walk[END_REF].

The paper is organized as follows. In Sections 2-6 we study the divisors in the Bernoulli random walk. We also study examples. Hitherto, the divisibility or primality properties of general i.i.d. or independent non i.i.d. lattice random walks, were not much explored and the results we present are mostly the first. In Section 7, we describe the value distribution of divisors in the Rademacher random walk and present some applications; we essentially study primality properties. In Section 8, we study the value distribution of divisors in the Cramér random walk, and record some primality results obtained by the author.

Divisibility in the Bernoulli random walk.

We study the probability P{d|B n } when both d and n vary. We first prove a basic but handy estimate. Next we state a sharper and nearly optimal estimate using Theta function, earlier established by the author in [START_REF] Weber | Small divisors of Bernoulli sums[END_REF]. Applications are given to:

E σ -1 (B n ), E d(B n ), P B n , B m co-prime ,
P{B n z-quasi-prime}, P{B n prime}. We will also estimate the probability P{D|B n B m } for n < m. The study of the divisors of B n B m is one piece of the estimation of the correlation appearing in (2.8) when n and m are relatively near, details are given in Section 6. P{d|B n } -

1 d ≤ 2 d 1≤j<d/2 e -2nj 2 /d 2 .
Proof. From the formula

(3.2) d χ(d|B n ) = d-1 j=0 e 2iπ j d Bn ,
we get by integration, (3.3)

P d|B n = 1 d d-1 j=0 e iπn j d cos πj d n .
As e in(π-x) cos n (π-x) = (-1) n e -inx (-1) n cos n x = e -inx cos n x, we have in fact by distinguishing the case d even from the case d odd, the simplified form (3.4)

P d|B n = 1 d + 2 d 1≤j<d/2 (cos πn j d ) cos πj d n .
Thus

P d|B n - 1 d ≤ 2 d 1≤j<d/2
e n log(1-2 sin 2 πj 2d ) .

As sin x ≥ (2/π)x, 0 ≤ x ≤ π/2, it follows that log(1 -2 sin 2 πj 2d ) ≤ -2 sin 2 πj 2d ≤ -2( j d ) 2 . Thus

P d|B n - 1 d ≤ 2 d 1≤j<d/2 e -2nj 2 /d 2 .
This implies Example 2 in [START_REF] Diaconis | Some tauberian theorems related to coin tossing[END_REF] without using Taylor's expansion or Ramus' formula.

Since j≥1 e -2nj 

1 d ≤ C √ n .
where C is an absolute constant. 

P d|B n - 1 d ≤ 2 d< √ n 1 d 1≤j<d/2 e -2nj 2 /d 2 ≤ 2H ≤ C, as claimed.
Some applications:

(1) An estimate of E d(B n ). Proposition 3.3 implies the following estimate.

Proposition 3.4 (Weber [START_REF] Weber | On infinite Möbius inversion[END_REF], Prop. 6). For some universal constant C, we have

sup n≥2 E d(B n ) -log n ≤ C.
We refer to the cited article for the proof.

This estimate is certainly improvable. The same question arises with E d 2 (B n ). We remark that

E d 2 (B n ) = d≤n δ≤n P{[d, δ]|B n } = [d,δ]≤n P{[d, δ]|B n }. (3.5)
A relevant result is the following Theorem 3.5 (Shi-Weber [START_REF] Shi | On Jordan double sums and related summatory functions[END_REF], Th. 2.1). (i

) If 0 < σ < 1, then [d,δ]≤N 1 [d, δ] σ = 3 π 2 • 1 1 -σ N 1-σ (log N ) 2 + O N 1-σ (log N ) . (ii) Further, if σ = 1, [d,δ]≤N 1 [d, δ] = 1 π 2 (log N ) 3 + O (log N ) 2 .
(2) Estimates of E σ -1 (B n ) and P B n and B m coprime . Recall that σ s (k) (section 2) is a multiplicative function and that σ -s (n) = n -s σ s (n).

Corollary 3.6.

E σ -1 (B n ) -ζ(2) ≤ C log n √ n . Proof. Writing that σ -1 (B n ) = d≤n 1 d χ{d|B n } since B n ≤ n, we have E σ -1 (B n ) = d≤n 1 d P{d|B n }. Now E σ -1 (B n ) - d≤n 1 d 2 = d≤n 1 d P d|B n - 1 d .
Whence,

E σ -1 (B n ) - d≤n 1 d 2 ≤ C √ n d≤n 1 d ≤ C log n √ n .
Consequently,

E σ -1 (B n ) -ζ(2) ≤ C log n √ n .
Corollary 3.7. We have for n > m ≥ 2,

P B n and B m coprime = d≤m∧(n-m) µ(d) d 2 +O log m m ∧ (n -m) + m ∧ (n -m) m ∨ (n -m) 1/2 .
Moreover,

lim m→∞ n/m→∞ P (B n , B m ) = 1 = 1 ζ(2)
.

Proof. By using Möbius inversion formula,

P (B n , B m ) = 1 = d≤m∧(n-m) µ(d)P{d|S m } P{d|S n-m } = d≤m∧(n-m) µ(d) P d|S m - 1 d + 1 d P d|S n-m - 1 d + 1 d = d≤m∧(n-m) µ(d) P d|S m - 1 d + 1 d P d|S n-m - 1 d + 1 d = d≤m∧(n-m) µ(d) 1 d + O 1 √ m 1 d + O 1 √ n -m = d≤m∧(n-m) µ(d) d 2 + O d≤m 1 d 1 √ m + 1 √ n -m + m ∧ (n -m) m(n -m) = d≤m∧(n-m) µ(d) d 2 + O log m( √ m + √ n -m) m(n -m) + m ∧ (n -m) m ∨ (n -m) 1/2
.

For instance: -If (log m) 2 < n -m ≤ m, P B n and B m coprime - d≤n-m µ(d) d 2 = O log m √ n -m + n -m m 1/2 . -If n ≥ 2m, P B n and B m coprime - d≤m µ(d) d 2 = O log m √ m + m n -m 1/2
. This implies the second claim.

This suggests to study the following problem: Let n 1 < n 2 < . . . < n k be positive integers such that min{n j /n i , 1 ≤ i < j ≤ k} is large. To estimate the probability that B n1 , B n2 , . . . , B n k are mutually coprime, namely

P (B ni , B nj ) = 1, ∀1 ≤ i < j ≤ k .
That problem is related to a nice notion: for a subset of an integer lattice, to be visible from the origin, in this case the set of random points (x, y) in N 2 , x = y, with coordinates in {B n1 , B n2 , . . . , B n k }. Referring to section 3.8 in Apostol [START_REF] Apostol | Introduction to analytic number theory[END_REF], we say that two lattice points P and Q are mutually visible if the segment which join them contains no lattice points other than the endpoints P and Q. We also recall that two lattice points (a, b) and (m, n) are mutually visible if and only if (a -m, b -n) = 1, or equivalently if and only if (a -m, b -n) is visible from the origin. The standard case presented in [START_REF] Apostol | Introduction to analytic number theory[END_REF] has clear link with Farey series, and Dirichlet's easy estimate on the number of corresponding visible points is a particular case of a much more general result having a direct link with Riemann Hypothesis (RH). See [START_REF] Weber | On Farey sequence and quadratic Farey sums[END_REF] for more. The following Theorem proved in Weber [START_REF] Weber | Small divisors of Bernoulli sums[END_REF], provides a uniform estimate on the whole range of divisors.

Theorem 3.8 ([51], Theorem II). (1)

We have the following uniform estimate:

(3.7) sup 2≤d≤n P d|B n - Θ(d, n) d = O (log n) 5/2 n 3/2 .
(2) Further, for any α > 0,

(3.8) sup d<π √ n 2α log n P d|B n - 1 d = O ε n -α+ε , (∀ε > 0)
and for any 0 < ρ < 1,

(3.9) sup d<(π/ √ 2)n (1-ρ)/2 P d|B n - 1 d = O ε e -(1-ε)n ρ , (∀0 < ε < 1).
This covers the critical region of divisors d ∼ √ n.

Remark 3.9. Poisson summation formula:

for x ∈ R, 0 ≤ δ ≤ 1, (3.10) ∈Z e -( +δ) 2 πx -1 = x 1/2 ∈Z e 2iπ δ-2 πx , implies that (3.11) Θ(d, n) d = 2 πn z≡0 (d) e -(2z-n) 2 2n
.

Remark 3.10. Formulas (3.7), (3.11) show that the general problem of estimating P d|B n reduces to the one of estimating the d series

(3.12) j e -(jd-ρ) 2 2n
, the summation being either over even rational numbers j, or over odd rational numbers j, ρ denoting the residue class modulo d of n.

Remark 3.11. A study of the special case of square-free divisors is made in Shi-Weber [START_REF] Shi | Value distribution of squarefree divisors of Bernoulli sums[END_REF].

In the same 2004's paper [START_REF] Weber | Small divisors of Bernoulli sums[END_REF], the distribution of the smallest prime divisor of B n was further studied. Let (a, b) denote the greatest common divisor of the integers a and b. Let P -(m) denotes the smallest prime divisor of the integer m > 1 (by convention P -(1) = +∞). More precisely, we derived from Theorem 3.8 and elementary Erathostène's sieve, sharp estimates of the probability P{P -(B n ) > ζ}, providing the right central comparison term together with an already satisfactory and exploitable error term. Theorem 3.12 ([51], Th. I). There exist a positive real c > 0 and constants C 0 , ζ 0 such that for n large enough, we have the following estimate

P P -(B n ) > ζ - e -γ log ζ ≤ C 0 log 2 ζ ( ζ 0 ≤ ζ ≤ n c/ log log n )
where γ is Euler's constant.

Remark 3.13. Sharpenings of Theorem 3.12 are the object of a separate work.

We illustrate this on some examples.

(1) Estimate of P{B n prime}. We begin with clarifying the link between this probability and the Prime Number Theorem (PNT). We first remark that

P B n - n 2 > 1 2 3n log n 1 n .
Next by the local limit theorem there exists a numerical constant C 0 such that for all positive n

sup k P B n = k} - 2 πn e -(2k-n) 2 2n ≤ C 0 n 3/2 .
Accordingly,

P{B n prime} = 2 πn p∈P∩[ n 2 -1 2 √ 3n log n, n 2 + 1 2 √ 3n log n] e -(2p-n) 2 2n + O 1 n .
The summation index is of type P ∩ [x, x + y], y √ x log x; thus its cardinality relies upon extensions of the PNT and cannot in turn be estimated. The best unconditional estimate (slightly improved by Heath-Brown) is due to Huxley who showed in [START_REF] Hardy | An inequality for Hausdorff means[END_REF] that the PNT extends to intervals of the type [x, x + x ϑ ], x

7 12 ≤ ϑ ≤ x (log x) 4 , namely #{[x, x + x ϑ ] ∩ P} ∼ x ϑ /log x.
Assuming RH, the best result known to us states as follows,

(3.13) π(x) -π(x -y) = x x-y dt log t + O x 1 2 log y x 1 2 log x for y in the range 2x 1 2 log x ≤ y ≤ x. Hence for M ≥ 2 fixed, (3.14) π(x) -π(x -M x 1 2 log x) ∼ x 1 2 M + O log M .
See Heath-Brown [START_REF] Heath-Brown | The number of primes in a short interval[END_REF]. The interested reader will fruitfully refer to Montgomery and Soundararajan [START_REF] Montgomery | Primes in Short Intervals[END_REF], p. 595. Accordingly any result based on an assumption on the size's order of P{B n prime} like for instance ≥ (log n) -α , α > 0 -which has an easy interpretation on the gap between consecutive primes-is of no peculiar interest.

On the other hand, it follows from Remark 8.6 that for some constant C > 0,

(3.15) (log n) P{B n prime} ≥ C,
for all integers n in a set of density 1.

By using Theorem 3.12, we get another formulation.

Theorem 3.14.

P{B n prime} = 2 πn

k∈Z d≤n P + (d)≤ √ n µ(d) e -(2kd-n) 2 2n + O log 5/2 n n .
We first prove Proposition 3.15. For any positive integer n and any positive real y, we have

P{P -(B n ) > y} = d≤n , P + (d)≤y µ(d) Θ(d, n) d + O log 5/2 n n 3/2 d≤n , P + (d)≤y |µ(d)| .
We need a Lemma.

Lemma 3.16. For any positive integer n and any positive real y, we have

(3.16) P{P -(B n ) > y} = P + (d)≤y µ(d)P{d|B n }.
Proof. Recall that the characteristic function of the set of integers n such that

P -(n) > y, η(n; y) = 1 if P -(n) > y 0 if P -(n) ≤ y.
is multiplicative. Thus by the Möbius inversion formula (3.17) η(n; y)

= d|n P + (d)≤y µ(d) (n ≥ 1).
Therefore by integration the Lemma follows.

Proof of Proposition 3.15. This is a direct consequence of Estimate (3.7) in Theorem 3.8.

Proof of Theorem 3.12. It follows from Proposition 3.15, since B n is prime if and only if

P -(B n ) > √ n, that (3.18) P{B n prime} = d≤n P + (d)≤ √ n µ(d) d Θ(d, n) + O log 5/2 n n 3/2 d≤n P + (d)≤ √ n |µ(d)| .
Consider the error term. Let Ψ(x, y) = #{m ≤ x : P + (m) ≤ y}. By Theorem 1 p. 359 in [START_REF] Tenenbaum | Introduction à la théorie analytique et probabiliste des nombres[END_REF], we have

d≤n , P + (d)≤y |µ(d)| ≤ Ψ(n, y) y e -( log n log y )/2 (n ≥ y ≥ 2).
Thus,

(3.19) P{P -(B n ) > y} = d≤n , P + (d)≤y µ(d) d Θ(d, n) + O y log 5/2 n n 3/2 e -log n log y /2 .
The proof is completed by taking y = √ n and applying (3.11).

Let a be real and σ a (n) = d|k d a . In a similar way we get for a = -1, Theorem 3.17.

E σ -1 (B n ) = 2 πn d≤n 1 d z≡0 (d) e -(2z-n) 2 2n + O log 3 n n 3/2 .
(2) Estimates related to Erdös and Zaremba function.

Let Φ(n) = d|n log d d .
This function appears in the study of good lattice points in numerical integration. Erdös and Zaremba [START_REF] Erdös | The arithmetical function d|n log d d[END_REF] showed that

lim sup n→∞ Φ(n) (log log n) 2 = e γ ,
γ being Euler's constant. The proof is based on the identity

Φ(n) = r i=1 αi νi=1 log p νi i p νi i δ|np -α i i 1 δ , (n = p α1 1 . . . p αr r ), (3.20) Consider the function Ψ(n) = d|n (log d)(log log d) d .
In this case a formula similar to (3.20) no longer holds, the "log-linearity" being lost due to the extra factor log log d. We showed in the recent work [START_REF] Weber | On infinite Möbius inversion[END_REF] that

lim sup n→∞ Ψ(n) (log log n) 2 (log log log n) = e γ .
This required a new approach, and the proof is considerably more complicated.

Corollary 3.18.

E Ψ(B n ) = d≤n (log d)(log log d)Θ(d, n) d 2 + O (log n) 7/2 (log log n) n 3/2
Proof. Writing d|Bn = d≤n , d|Bn we get,

E Ψ(B n ) = d≤n (log d)(log log d) d P d|B n - Θ(d, n) d + Θ(d, n) d .
Whence by Theorem 3.8,

E Ψ(B n ) = d≤n (log d)(log log d)Θ(d, n) d 2 + O (log n) 7/2 (log log n) n 3/2 .

3.3.

A way back along Pascal's matrices. Let f (j) be an arithmetical function. Consider the column vector ν = f (1), f (2), . . . , f (n) . Let P n be the n-size lower triangular Pascal matrix:

P n =          1 1 1 1 2 1 1 3 3 1 . . . . . . . . . . . . . . . n 1 n 2 n 3 n 4 • • • n n          Then P n ν = w where w = E f (B 1 ), 2E f (B 2 ), . . . , 2 n E f (B n ) .
Call and Velleman ( [START_REF] Call | Pascal's matrices[END_REF], Th. 1) identified P -1 n , which is DP n D -1 with D as indicated:

P -1 n =          1 -1 1 1 -2 1 -1 3 -3 1 . . . . . . . . . . . . . . . n 1 n 2 n 3 n 4 • • • n n          D =          1 -1 1 -1 . . . (-1) n+1         
So that knowing w we have -at least theoretically-a way back to know ν. In condensed form

P -1 n = Q n , where Q n is the n × n matrix defined by (3.21) Q n (i, j) = (-1) i-j i-1 j-1 if i ≥ j, 0 otherwise.
Proposition 3.19. Let f (j) be an arithmetical function. Then

(3.22) f (i) = i j=1 (-1) i-j 2 j i -1 j -1 E f (B j ), i ≥ 2.
3.4. Extension to all residue classes mod (d). Theorem 3.8 was recently extended to all residue classes mod (d) in Weber [START_REF] Weber | A uniform semi-local limit theorem along sets of multiples for sums of i.i.d. random variables[END_REF] with application to divisors in iid square integrable random walks. The estimate obtained is uniform over all residue classes. 

1 d 0≤|j|<d e iπ(2un) j d e -n π 2 j 2 2d 2 ≤ C (log n) 5/2 n -3/2 . Put (3.23) Θ u (d, n) = ∈Z e iπ(2u+n) j d e -n π 2 j 2 2d 2 . Note that Θ 0 (d, n) = Θ(d, n).
As a corollary we get, Corollary 3.21. For some absolute constant C, we have

sup u≥0 sup d≥2 P d|B n + u - Θ u (d, n) d ≤ C (log n) 5/2 n -3/2 , for all n ≥ n 0 .
The proof is based on the lemma below.

Lemma 3.22. For any integers d ≥ 2, n ≥ 2 and u ≥ 0,

P d|B n + u = 1 d + 2 d 1≤j<d/2 cos π(2u + n) j d cos πj d n .
4. Divisibility properties in i.i.d. random walks.

Theorem 3.8 extends to i.i.d. square integrable random walks.

Theorem 4.1 (Weber [START_REF] Weber | A uniform semi-local limit theorem along sets of multiples for sums of i.i.d. random variables[END_REF], Th. 2.1). Let X be a square integrable random variable taking values in the lattice

L(v 0 , 1) = v k = v 0 + k, k ∈ Z , and let f (k) = P{X = v k }, for each k. Assume that (4.1) ϑ X := k∈Z min(f (k), f (k + 1)) > 0.
Let X i , i ≥ 1 be independent, identically distributed random variables having same law than X,

and let S n = n j=1 X j , for each n. Let μ = {µ k , k ∈ Z} be a sequence of non-negative reals such that 0 < µ k < f (k), if f (k) > 0, µ k = 0 if f (k) = 0, let µ = k∈Z µ k ,
and assume that 1 -µ < ϑ X . Let also non-negative reals τ = {τ k , k ∈ Z} be solutions of the (solvable) equation:

τ k-1 +τ k 2 = f (k) -µ k , for all k ∈ Z. Let ϑ = k∈Z τ k = 1 -µ. Further let s(t) = k∈Z µ k e 2iπv k t and ρ be such that 1 -ϑ < ρ < 1.
Let X be the random variable associated to X and μ, and defined by the relation P{ X = v k } = τ k /ϑ, for all k ∈ Z. Then the following results hold:

(i) There exists θ = θ(ρ, ϑ) with 0 < θ < ϑ, C and N such that for n ≥ N ,

sup u≥0 sup d≥2 P{d|S n + u} - 1 d - 1 d 0<| |<d e (iπ d -π 2 2 2d 2 ) ϑ E e 2iπ d X + s d n ≤ C θ 3/2 (log n) 5/2 n 3/2 + 2ρ n .
(ii) Let D be a test set of divisors ≥ 2, D ϕ be the section of D at height ϕ and |D ϕ | denote its cardinality. Then,

∞ n=N sup u≥0 sup ϕ≥2 1 |D ϕ | d∈Dϕ P{d|S n + u} - 1 d ≤ C 1 ϑ + C 2 θ 3/2 + 2ρ 2 1 -ρ ,
where

C 1 = 2e π 2 /4 (1-e -π 2 /16 ) , C 2 = C ∞ n=N (log n) 5/2 (n) 3/2 .
Condition (4.1) defines an already very large class of random variables, characterized by the property of having a Bernoulli part. That notion is due to McDonald [START_REF] Macdonald | A local limit theorem for large deviations of sums of independent, non-identically distributed random variables[END_REF], who introduced an ingenious coupling method in the study of a famous limit theorem: the local limit theorem which has interface with Number Theory. This method is particularly relevant in our proof. Concretely, let {τ k , k ∈ Z} of non-negative reals such that (4.2)

τ k-1 + τ k ≤ 2f (k), k∈Z τ k = ϑ. For instance τ k = ϑ ν X min(f (k), f (k + 1)
) is suitable. Define a pair of random variables (V, ε) as follows:

P{(V, ε) = (v k , 1)} = τ k , P{(V, ε) = (v k , 0)} = f (k) -τ k-1 +τ k 2 .
(∀k ∈ Z) (4.3) Then we have the following decomposition which iterates well to iid sums S n . Lemma 4.2. Let L be a Bernoulli random variable which is independent of (V, ε), and put Z =

V + εL. We have Z D = X.
5. Divisibility properties of non i.i.d. square integrable random walks.

Let X = {X i , i ≥ 1} be a sequence of independent variables taking values in Z, and let S n = n k=1 X k , for each n. To our knowledge there is no study of divisors, in particular of their value distribution, in general independent random walks. However divisibility is present in the study the local limit theorem. The sequence X is asymptotically uniformly distributed, in short a.u.d., if for any d ≥ 2 and m = 0, 1, . . . , d -1, we have Let us assume that the random variables X i take values in a common integer lattice L(v 0 , D), namely defined by the sequence v k = v 0 + Dk, k ∈ Z, D > 0, and are square integrable, and let (5.2)

M n = E S n , B 2 n = Var(S n ) → ∞.
We say that the local limit theorem (in the usual form) is applicable to X if (5.3) sup

N =v0n+Dk B n P{S n = N } - D √ 2π e - (N -Mn ) 2 2B 2 n = o(1), n → ∞.
By well-known Rozanov's result [START_REF] Rozanov | On a local limit theorem for lattice distributions[END_REF], the local limit theorem is applicable to X only if X satisfies the a.u.d. property.

In a recent work based on Poisson summation formula, the stronger result is proved, establishing an explicit link between the local limit theorem and the a.u.d. property, through a quantitative estimate of the difference P{S n ≡ m (mod h)} -1/h. Theorem 5.1 (Weber [START_REF] Weber | On Rozanov's theorem and strenghtened asymptotic uniform distribution[END_REF], Th. 1.4). Let X = {X i , i ≥ 1} be a sequence of independent variables taking values in Z, and let S n = n k=1 X k , for each n. Assume that, (A) For some function 1 ≤ φ(t) ↑ ∞ as t → ∞, and some constant C, we have for all n (5.4) sup m∈Z

B n P S n = m - 1 √ 2π e - (m-Mn) 2 2B 2 n ≤ C φ(B n ) .
Then there exists a numerical constant C 1 , such that for all 0 < ε ≤ 1, all n such that B n ≥ 6, and all h ≥ 2, sup µ=0,1,...,h-1

P S n ≡ µ (mod h) - 1 h ≤ 1 √ 2π B n + 2C h √ ε φ(B n ) + P |S n -M n | B n > 1 √ ε + C 1 e -1/(16ε) .
It follows from the proof that C 1 = 2e √ π is suitable. Choosing ε = φ(B n ) -2/3 and using Tchebycheff's inequality, we get the following Corollary 5.2. For all n such that B n ≥ 6, and all h ≥ 2, we have

sup µ=0,1,...,h-1 P S n ≡ µ (mod h) - 1 h ≤ H n , (5.5) with H n = 1 √ 2π B n + 1 + 2C/h φ(B n ) 2/3 + C 1 e -(1/16
)φ(Bn) 2/3 . (5.6) Theorem 5.1 implies Rozanov's result, since by definition such a function φ exists if the local limit theorem is applicable to X.

Instead of assumption (A), consider now the following assumption

(B) ϑ Xj = k∈Z P{X j = k} ∧ P{X j = k + 1} > 0, for each j, and ν n = n j=1 ϑ j ↑ ∞.
We have the following sharp results.

Theorem 5.3 ([44], Th. 4.3). Let D = 1. Suppose that assumption (B) is fulfilled. Let α > α > 0, 0 < ε < 1. Then for each n such that |x| ≤ 1 2 2α log(1 -)ν n (1 -)ν n ⇒ sin x x ≥ (α /α) 1/2 ,
we have

sup u≥0 sup d<π (1-)νn 2α log(1-)νn P{d|S n + u} - 1 d ≤ 2 e -2 2 νn + (1 -)ν n -α . Theorem 5.4 ([44], Th. 4.6). Let D = 1. Suppose that assumption (B) is fulfilled. Let 0 < ρ < 1 and 0 < ε < 1. Then for each n such that |x| ≤ 1 2 2 ((1 -)ν n ) 1-ρ ⇒ sin x x ≥ √ 1 -ε we have sup u≥0 sup d<(π/ √ 2)((1-ε)νn) (1-ρ)/2
P{d|S n + u} -

1 d ≤ 2e -2 2 νn + e -((1-)νn) ρ .
We refer the reader to [START_REF] Weber | On Rozanov's theorem and strenghtened asymptotic uniform distribution[END_REF] for the proofs of these results. We also refer to our recent monograph with Szewczak [START_REF] Szewczak | Classical and Almost Sure Local Limit Theorems[END_REF] for more.

Distribution of divisors of B

n B m .
This task is more complicated. A key function is the (multiplicative) function

k (D) := # 1 ≤ y ≤ D : D|y 2 + ky , k = 0, 1, . . . (6.1)
which it is not so surprising in view of the elementary decomposition

B n B m = B 2 n + B n (B m -B n ).
As mentioned in section 3, that study is used in [START_REF] Weber | Correlation Properties of Divisors in the Bernoulli random walk[END_REF] in the control of the correlation function (2.8), more precisely in the case n < m ≤ n + n c , c > 0, c being small, where the following intermediate bound appears (hence also k (.)),

P{d|B n , δ|B m } = P{d|B n , δ|B m , B m -B n = 0} + P{d|B n , δ|B m , B m -B n > 0} = 2 -(m-n) P{d|B n , δ|B n } + P{d|B n , δ|B m , B m -B n > 0} ≤ 2 -(m-n) P{[d, δ]|B n } + P{dδ|B n B m , B m -B n > 0}. Note that P{d|B n , δ|B m } > 0, only if m -n ≥ (d, δ).
By using independence, the characteristic function of B n B m expresses as follows

E e iυBnBm = 1 2 n 2 m-n m-n k=0 m -n k n h=0 n h e iυ(h 2 +kh) .
And so, we begin with

P{D|B n B m } = E 1 D D-1 j=0 e 2iπ j D BnBm = 1 2 m-n m-n k=0 m -n k 1 D D-1 j=0 1 2 n n h=0
n h e 2iπ j D (h 2 +kh) . (6.2) Theorem 6.1. For any ε > 0, there exists a constant C ε depending on ε only, such that for any positive integers n, m, D with m > n

(6.3) P{D|B n B m } - 1 D2 m-n m-n k=0 m -n k k (D) ≤ C ε D 1+ε n 1/2
.

The function k (D) will be made explicit in Theorem 6.6. A combination of both results will lead to a useful bound of P{D|B n B m } stated in Theorem 6.8.

We first prove Theorem 6.1. The main idea of the proof consists with controlling the difference

∆ = 1 2 n n h=0 n h e 2iπ j D (h 2 +kh) - 1 n n-1 h=0 e 2iπ j D (h 2 +kh) ,
in which the first average is the last Euler sum in (6.2), and the second one, its Cesàro means counterpart. Let 0 ≤ ≤ n be some integer, = LD + µ, 0 ≤ µ < D. Obviously, We rewrite this for later use under the following form.

S := 1 -1 h=0 e 2iπ j D (h 2 +kh) = 1 D D-1 h=0 e 2iπ j D (h 2 +kh) + 1 µ h=0 e 2iπ j D (h 2 +kh) +L 1 - 1 LD D-
Lemma 6.2. Let ≥ 1, ≡ µ mod(D) and 0 ≤ µ < D. For j = 1, . . . , D,

-1 h=0 e 2iπ j D (h 2 +kh) - D D-1 h=0 e 2iπ j D (h 2 +kh) ≤ D-1 h=0 e 2iπ j D (h 2 +kh) + µ h=0 e 2iπ j D (h 2 +kh) .
Thus the study of ∆ reduces to the one of the difference

∆ = 1 2 n n h=0 n h e 2iπ j D (h 2 +kh) - 1 D D-1 h=0 e 2iπ j D (h 2 +kh) .
By linearity of Euler summation, it suffices to have at disposal a bound for Euler sums, and we have a classical tool from the theory of divergent series. Lemma 6.3. Let {a k , k ≥ 0} be a sequence of reals. Put A = k=0 a k , ≥ 0. There exists an absolute constant C such that for every positive integer n (6.5)

n h=0 2 -n n h a h ≤ C √ n n max =0 A .
This is easily seen by using Abel summation and well-known property of the binomial distribution (Feller [ The Lemma below is just a slight reformulation of Sarkösy's estimate [START_REF] Sárkőzy | On difference sets of sequence of integers[END_REF]. Lemma 6.5. Let α be a real number and a, q be positive integers such that (a, q) = 1 and |α-a/q| < 1/q 2 . Then, for any positive integer M ,

sup k≥0 M x=1 e 2iπα(x 2 +kx) 2 ≤ M -1 u=1-M min(M,M -u) y=max(1-u,1) e 4iπαuy ≤ 49
M 2 q + (M log q) + q log q . (6.8)

Proof. The last inequality in (6.8) is precisely what is established in the proof of Lemma 4 p. 128 in [START_REF] Sárkőzy | On difference sets of sequence of integers[END_REF]. Let T = M x=1 e 2iπα(x 2 +kx) . On expanding |T | 2 , we get

|T | 2 = M y=1 M -y u=1-y e 2iπαu(u+2y+k) = M -1 u=1-M min(M,M -u) y=max(1-u,1) e 2iπαu(u+2y+k) ≤ M -1 u=1-M min(M,M -u) y=max(1-u,1) e 4iπαuy . So that, sup k≥0 M x=1 M y=1 e 2iπα(x 2 -y 2 +k(x-y)) 2 ≤ 49 M 2 q + (M log q) + q log q , or sup k≥0 M x=1
e 2iπα(x 2 +kx) ≤ 7 M √ q + M log q + q log q .

We can now pass to the proof of Theorem 6.3.

Proof of Theorem 6. 

≤ 7 µ √ D + µ log D + D log D (µ ≤ D ) ≤ 7 √ D + 2 D log D ≤ C ε (D ) 1/2+ε ≤ C ε (D) 1/2+ε
, where j = j/(j, D), D = D/(j, D). Thus

n h=0 2 -n n h e 2iπ j D (h 2 +kh) - 1 D D-1 h=0 e 2iπ j D (h 2 +kh) ≤ C √ n 2 + D -1 max µ=1 µ h=1 e 2iπ j D (h 2 +kh) ≤ C ε (D) 1/2+ε √ n . (6.9)
Whence, (6.10) sup

0≤j<D sup 0≤k≤m-n n h=0 2 -n n h e 2iπ j D (h 2 +kh) - 1 D D-1 h=0 e iπ 2j D (h 2 +kh) ≤ C ε D 1+ε n 1/2 . As (6.11) 1 D 2 D-1 j=0 D-1 h=0 e iπ 2j D (h 2 +kh) = # 1 ≤ y ≤ D : D|y 2 + ky D = k (D) D ,
it follows (6.12) sup

0≤k≤m-n 1 D D-1 j=0 n h=0 2 -n n h e 2iπ j D (h 2 +kh) - k (D) D ≤ C ε D 1+ε n 1/2
.

By combining now (6.12) with (6.2), we obtain

P{D|B n B m } - m-n k=0 m-n k 2 (m-n) k (D) D ≤ C ε D 1+ε n 1/2
. . (6.13) Theorem 6.6. We have

It remains to compute

k (D) = D 1/2 if k = 0, 2 #{p : 1≤vp(k)<vp(D)/2} (k, D 1/2 ) if k ≥ 1.
The proof is given in Appendix. We deduce Corollary 6.7. For any positive integers D, k,

k (D) ≤ 2 ω((k,D 1/2 )) (k, D 1/2 ) and 0 (D) ≤ √ D.
Proof. Immediate. Theorem 6.8. We have for any positive integers n, m, D,

P{D|B n B m } ≤ 1 D d|D 1/2 2 ω(d) d u|(D 1/2 /d) µ(u) P{ud|B m-n } + 1 2 m-n √ D + C ε D 1+ε n 1/2 .
Proof. By Theorem 6.1, for any ε > 0, there exists a constant C ε depending on ε only, such that for any positive integers n, m, D with m > n

(6.14) P{D|B n B m } - 1 D2 m-n m-n k=0 m -n k k (D) ≤ C ε D 1+ε n 1/2
. By Corollary 6.7,

1 D2 m-n m-n k=0 m -n k k (D) = 0 (D) 2 m-n D + 1 D2 m-n m-n k=1 m -n k k (D) ≤ 1 2 m-n √ D + 1 D2 m-n m-n k=1 m -n k 2 ω((k,D 1/2 )) (k, D 1/2 ) = 1 2 m-n √ D + 1 D2 m-n d|D 1/2 2 ω(d) d m-n k=1 (k,D 1/2 )=d m -n k . (6.15)
Let δ be the arithmetical function defined by

δ(n) = 1 if n = 1, 0 if n = 1. (6.16) Recall that d|n µ(d) = δ(n). (6.17)
Consider first the sub-sum corresponding to d = 1. We have

1 2 m-n m-n k=1 (k,D 1/2 )=1 m -n k = 1 2 m-n m-n k=1 m -n k δ (k, D 1/2 ) = 1 D2 m-n m-n k=1 m -n k u|(k,D 1/2 ) µ(u) = u|D 1/2 µ(u) 1 2 m-n m-n k=1 u|k m -n k = u|D 1/2 µ(u) P{u|B m-n } - 1 2 m-n Now let (k, D 1/2 ) = d > 1. Let k = κd. Then (k, D 1/2 /d) = 1, and so 1 2 m-n m-n k=1 (k,D 1/2 )=d m -n k = 1 2 m-n 1≤κ≤(m-n)/d (κ,D 1/2 /d)=1 m -n κd = 1 2 m-n 1≤κ≤(m-n)/d m -n κd δ (κ, D 1/2 /d) = 1 2 m-n 1≤κ≤(m-n)/d m -n κd u|(κ,D 1/2 /d) µ(u) = u|D 1/2 /d µ(u) 1 2 m-n 1≤κ≤(m-n)/d u|κ m -n κd (κ=uτ ) = u|D 1/2 /d µ(u) 1 2 m-n 1≤udτ ≤m-n m -n udτ = u|(D 1/2 /d) µ(u) 1 2 m-n 1≤x≤m-n ud|x m -n x = u|(D 1/2 /d) µ(u) P{ud|B m-n } - 1 2 m-n = u|(D 1/2 /d) µ(u)P{ud|B m-n } - δ(D 1/2 /d) 2 m-n .
Consequently,

1 2 m-n d|D 1/2 2 ω(d) d m-n k=1 (k,D 1/2 )=d m -n k = d|D 1/2 2 ω(d) d u|(D 1/2 /d) µ(u) P{ud|B m-n } - δ(D 1/2 /d) 2 m-n = d|D 1/2 2 ω(d) d u|(D 1/2 /d) µ(u) P{ud|B m-n } - 1 2 m-n .
We observe that δ(D 1/2 /d) = 0 as long as d < D 1/2 , and if d = D 1/2 , then the corresponding summand produces the contribution 2 ω(D 1/2 ) D 1/2 P{D 1/2 |B m-n } -1 2 m-n (recalling that µ(1) = 1), whence the last line.

By reporting this in (6.15) we get

1 D2 m-n m-n k=0 m -n k k (D) = 1 D2 m-n d|D 1/2 2 ω(d) d m-n k=1 (k,D 1/2 )=d m -n k + 1 2 m-n √ D = 1 D d|D 1/2 2 ω(d) d u|(D 1/2 /d) µ(u) P{ud|B m-n } + 1 2 m-n √ D - 1 D2 m-n . (6.18)
By inserting now this into (6.14), we finally get

P{D|B n B m } ≤ 1 D d|D 1/2 2 ω(d) d u|(D 1/2 /d) µ(u) P{ud|B m-n } + 1 2 m-n √ D - 1 D2 m-n + C ε D 1+ε n 1/2 ≤ 1 D d|D 1/2 2 ω(d) d u|(D 1/2 /d) µ(u) P{ud|B m-n } + 1 2 m-n √ D + C ε D 1+ε n 1/2 . (6.19)
This achieves the proof of Theorem 6.8.

Divisibility and primality in the Rademacher random walk

The primality properties in that case are more studied than divisibility. The necessary value distribution results of divisors are taken from [START_REF] Weber | Divisors, spin sums and the functional equation of the Zeta-Riemann function[END_REF], which contains an application to the functional equation of the Zeta-Riemann function. An extremal divisor case is thoroughly investigated in [START_REF] Weber | An arithmetical property of Rademacher sums[END_REF]. The proof deeply relies on mixing properties of the system χ{d|R n }, 2 ≤ d ≤ n, n ≥ 1 .

7.1. Divisibility. Put, Θ 1 (δ, M ) = 2 ∈Z e -2M π 2 2 δ 2 , Θ 2 (δ, M ) = 2 ∞ =0 e -M π 2 (2 ) 2 /2δ 2 -e -M π 2 (2 +1) 2 /2δ 2 -1. (7.1)
We note that

(7.2) Θ 1 (δ, M ) = 2 δ/ √ 2M π + O(1)
when δ → ∞, uniformly in any interval of M .

The Theorem below provides precise estimates of P δ|R M .

Theorem 7.1 ([53], Th. 2.1). Let α > α > 3/2. There exist constants C, δ 0 and M 0 , depending on α, α only, such that for any M ≥ M 0 , M ≥ δ ≥ δ 0 :

-if δ and M are even,

P δ|R M - 2 + 4 cos M 2π δ δ ≤ M -α , if δ < 2π M 2α log M , P δ|R M - 1 δ Θ 1 (δ, M ) ≤ C log 5/2 M M 3/2 , if δ ≥ 2π M 2α log M . (7.3)
-if δ and M are odd,

P{δ|R M } - 1 + 2(cos 2π δ ) M -2(cos π δ ) M δ ≤ M -α , if δ < 2π M 2α log M , P{δ|R M } - Θ 2 (δ, M ) δ ≤ C log 5/2 M M 3/2 , if δ ≥ 2π M 2α log M . (7.4) 7.
2. An extremal divisor case. Put successively,

N 1 = 1, N k = inf{ N > N k-1 : N even and N |R N 2 }, (k > 1).
The fact that this random sequence is well defined, can be deduced from our result below.

The following fine asymptotic result exhibits an exponential growth of the sequence (N k ) k .

Theorem 7.2 (Weber [START_REF] Weber | An arithmetical property of Rademacher sums[END_REF]). Put s = 2 j∈Z e -2π 2 j 2 . For any τ > 7/8,

log N k = k s + O k τ almost surely.
The result extends to Bernoulli sequences

β = {β i , i ≥ 1}. Write B N = β 1 + . . . + β N , N = 1, 2, . . . Since ε i D = 2β i -1, Theorem 7.
2 gives the same estimate for the sequence

M 1 = 1, M k = inf{ M > M k-1 : M even and M | 2B M 2 }, (k > 1)
The proof is intricate and long. We only give a sketch of the main steps. First for N even, one has the asymptotic estimate (7.5)

N P N |R N 2 = s + O log 5/2 N N 2 .
Next it is necessary to have at disposal asymptotic estimates of the correlation

P{N |R N 2 , M |R M 2 } -P{N |R N 2 }P{M |R M 2 }.
This is a considerably more delicate task. The next statement is the crucial step towards the proof of Theorem 7.2.

Lemma 7.3 ([55]

). There exists an absolute constant C, and for every ε > 0, a constant C ε depending on ε only, such that for any even positive integers N ≥ M large enough,

a) if M ≤ N ≤ M + N/(log N ) 1/2 P N |R N 2 , M |R M 2 -P N |R N 2 P M |R M 2 ≤ C (log N ) 1/2 N (log M ) 1/2 M . b) if N > M + N/(log N ) 1/2 P N |R N 2 , M |R M 2 -P N |R N 2 P M |R M 2 ≤ C ε (log M ) 5/2 (log N ) 1/2 M 2 N + 1 N 2 (log N ) 3/4 +ε
. The next tool is Lemma 10 p. 45 in Sprindžuk [START_REF] Sprindžuk | Metric theory of Diophantine approximations[END_REF], a typical criterion of almost sure convergence, providing in addition an estimate of the remainder term.

Lemma 7.4. Let {f l , l ≥ 1} be a sequence of non negative random variables, and let ϕ = {ϕ l , l ≥ 1}, m = {m l , l ≥ 1} be two sequences of non negative reals such that

(7.6) 0 ≤ ϕ l ≤ m l ≤ 1 (l ≥ 1). Write M n = 1≤l≤n m l .
Assume that M n ↑ ∞ and that the following condition is satisfied

(7.7) E i≤l≤j (f l -ϕ l ) 2 ≤ C i≤l≤j m l , 0 ≤ i ≤ j < ∞.
Then, for every a > 3/2,

(7.8) 1≤l≤n f l a.s. = 1≤l≤n ϕ l + O M 1/2 n log a M n .
7.3. Primality.

Theorem 7.5 ([50]

). There exist two absolute constants C 1 and C 2 such that for any integer n ≥ 3,

C 1 log n ≤ P{R n is prime} ≤ C 2 log n .
In fact, for every ε > 0,

4 √ 2eπ log n - C ε n 1/2-ε ≤ P{R n is prime} ≤ 2 π ∞ k=1 2 k e -2 2k-1 1 log n + C ε n 1/2-ε ,
where the constants C ε , C ε depend on ε only.

The constants obtained are certainly not the best, and the limit lim n→∞ (log n) P{R n prime} may exists.

Proof. Put I k (n) = [-2 k √ n, 2 k √ n], k = 0, 1, . . . next (7.9) J k (n) = P ∩ I 0 (n) if k = 0, P ∩ I k (n)\I k-1 (n) if k ≥ 1,
and let k n = max{k : 2 k-1 ≤ a √ 2 log log n}, where a > 0 will be chosen later on. Then

P{R n prime} = ∞ k=0 P{R n ∈ J k (n)} = kn k=0 P{R n ∈ J k (n)} + ρ n .
There exists a numerical constant c

(c = 4 √ 3π is suitable) such that if a > c √ 2, P{|R n | > a 2n log log n} = P{| R n √ n | > a 2 log log n} ≤ e -(2a 2 /c 2 ) log log n E e |Rn| 2 /(c 2 n) ≤ 2 (log n) 2a 2 /c 2 . Thus ρ n ≤ P{|R n | ≥ a 2n log log n} 1 log n .
Besides,

P{R n ∈ J k (n)} = P{R n ∈ J k (n)} - 1 √ 2πn p∈J k (n) e -p 2 2n + 1 √ 2πn p∈J k (n) e -p 2 2n
.

By means of Theorem 7.1,

kn k=0 P{R n ∈ J k (n)} - 1 √ 2πn p∈J k (n) e -p 2 2n ≤ C ε n 3/2-ε kn k=0 #(J k (n)) ≤ C ε n -1/2+ε .
The following estimates are classical: ( [START_REF] Rosser | Approximate formulas for some functions of prime numbers[END_REF], Th. 2 and Cor. 1, p. 69, and [START_REF] Daboussi | Explicit upper bounds for exponential sums over primes[END_REF], Lemma 5, p. 439)

x/ log x ≤ π(x) ≤ x/(log x -3/2), for any x ≥ 67, π(2x) -π(x) ≤ x log x , for any x > 1. Then 4 √ 2eπ log n ≤ 2π( √ n) √ 2eπn ≤ 1 √ 2πn p∈J0(n) e -p 2 2n ≤ 2π( √ n) √ 2πn ≤ 4 (log n -3) √ 2π . And 1 √ 2πn kn k=1 e -p 2 2n ≤ 2 √ 2πn kn k=1 2 k √ n log(2 k √ n) e -2 2k-1 ≤ 2 π ∞ k=1 2 k e -2 2k-1 1 log n . We deduce 4 √ 2eπ log n ≤ 1 √ 2πn kn k=0 e -p 2 2n ≤ 2 π ∞ k=1 2 k e -2 2k-1 1 log n .
From there, it follows immediately that

4 √ 2eπ log n - C ε n 1/2-ε ≤ P{R n prime} ≤ 2 π ∞ k=1 2 k e -2 2k-1 1 log n + C ε n 1/2-ε .
Whence the claimed result.

The following Theorem is complementing the above.

Theorem 7.6 ([50]

). Let m > n be two odd positive integers. Then for some absolute constant C, and every ε > 0,

P{R n and R m are prime} ≤ C √ m -n log n + C ε n -1/2+ε + C log log + (m -n) (log n) 2 .
Proof. Let m > n be two odd positive integers. We have

P{R n and R m prime} = P{R n and R n + (R m -R n ) prime} = |p|≤n P{R n = p} |v|≤m-n p+v∈P P{R m-n = v} = |v|≤m-n |p|≤n p+v∈P P{R n = p} P{R m-n = v}. (7.10)
The summation term corresponding to v = 0 equals to

|p|≤n p∈P P{R n = p}P{R m-n = 0} = P{R n prime}P{R m-n = 0} ≤ C √ m -n P{R n prime} ≤ C √ m -n log n (7.11) since P{R m-n = 0} = 2 -(m-n) m-n m-n 2 ∼ 2 √ 2π(m-n)
.

We next write for |v| ≤ m -n,

|p|≤n p+v∈P P{R n = p} - 1 √ 2πn e -p 2 2n ≤ C ε n 1-3/2+ε = C ε n -1/2+ε . Further, 1 √ 2πn |p|≤n p+v∈P e -p 2 2n = 1 √ 2πn ∞ k=0 p∈J k (n) p+v∈P e -p 2 2n ,
where J k (n) are defined in (7.9). Recall Siebert's estimate [START_REF] Siebert | Montgomery's weighted sieve for dimension two[END_REF]: let a = 0, b = 0 be integers with (a, b) = 1, 2|ab. Then for x > 1, (7.12)

p≤x ap+b∈P ≤ 16ω x (log x) 2 p|ab p>2 p -1 p -2 , ω = p>2 1 - 1 (p -1) 2 .
Daboussi and Rivat's observation [START_REF] Daboussi | Explicit upper bounds for exponential sums over primes[END_REF], p. 440, that

p -1 p -2 = 1 - 1 p -1 1 - 1 (p -1) 2 -1
and when h is even

p|h p≥3 1 - 1 p = 2 ϕ(h) h ,
imply that for x > 1 and any positive even number h,

p≤x p+h∈P 1 ≤ 8 p (p,h)=1 1 - 1 (p -1) 2 x (log x) 2 h ϕ(h) ≤ 8 x (log x) 2 h ϕ(h) . (7.13) 
In (7.10), the sums are indexed over pairs (p, p + v) with |p| ≤ n, |v| ≤ m -n. By symmetry, it suffices to restrict to the case p > 0, v < 0, namely (p, p -|v|). Consider three sub-cases: (a) (7.11).) Thus the pairs (p -|v|, p) are pairs (α, α + h) of positive integers all satisfying α ≤ n, h ≤ m -n. So that estimate (7.13) remains applicable to this case, up to a multiplicative factor 4.

|v| < p, (b) |v| ≥ 2p, (c) p ≤ |v| < 2p. (a) (p -|v|, p) with 1 ≤ p -|v| ≤ n, |v| ≤ m -n. (b) (p, |v| -p) = (p, p + |v| -2p) with 1 ≤ p ≤ n, 0 ≤ |v| -2p ≤ m -n. ( * ) (c) (|v| -p, p) = (|v| -p, |v| -p + 2p -|v|) with 1 ≤ |v| -p ≤ 2p -p = p ≤ n, 1 ≤ 2p -|v| ≤ 2|v| -|v| = |v| ≤ m -n. * (The case 2p -|v| = 0 in (b) is treated in
It follows that

#{p ∈ J k (n) : p + v ∈ P} ≤ #{|p| ≤ 2 k √ n : p + v ∈ P} ≤ C 2 k √ n (log 2 k √ n) 2 |v| ϕ(|v|) . Hence, 1 √ 2πn ∞ k=0 p∈J k (n) p+v∈P e -p 2 2n ≤ C (log n) 2 |v| ϕ(|v|) ∞ k=0 2 k e -2 2k-3 ≤ C (log n) 2 |v| ϕ(|v|)
.

Consequently

|p|≤n p+v∈P P{R n = p} ≤ C ε n -1/2+ε + C (log n) 2 |v| ϕ(|v|)
.

By reporting,

P{R n and R m prime} = |v|≤m-n |p|≤n p+v∈P P{R n = p} P{R m-n = v} ≤ C √ m -n log n + C ε n -1/2+ε + C (log n) 2 0<|v|≤m-n |v| ϕ(|v|) P{R m-n = v}. ≤ C √ m -n log n + C ε n -1/2+ε + C (log n) 2 E |R m-n | ϕ(|R m-n |) 1 {|Rm-n|≥1} .
We have obtained

P{R n and R m prime} ≤ C √ m -n log n + C ε n -1/2+ε + C (log n) 2 E |R m-n | ϕ(|R m-n |) 1 {|Rm-n|≥1} .
We have the following estimates concerning ϕ (Rosser and Schoenberg [START_REF] Rosser | Approximate formulas for some functions of prime numbers[END_REF], inequality 3.40 and 3.41), for h ≥ 3

n k=1 k ϕ(k) = O(n), |v| ϕ(|v|) ≤ e γ log log |v| + 2, 50637 log log |v| ≤ C log log |v|.
We deduce

P{R n and R m prime} ≤ C √ m -n log n + C ε n -1/2+ε + C log log + (m -n) (log n) 2 .
7.4. Primality mod(k). Theorem 7.5 can be extended to a larger class of random variables under moderate integrability assumption (only the upper bound part is concerned). Indeed, by using the Brun-Titchmarsh theorem and the local limit theorem, a similar result is valid under a stronger form, the constraint made on k below, is weak but the bound obtained, although sharp, should admit improvments (maybe the log log term can be dropped).

Theorem 7.7 ([50]

). Let X be a symmetric random variable such that E X = 0 = E X 3 , E X 2 = 1 and E |X| 3+ε < ∞ for some ε > 0. Let X i , i ≥ 1 be independent copies of X and for each positive integer n, S n = X 1 + . . . + X n . Let k be some positive integer and be an odd integer such that ( , k) = 1 and √ n log log n/k → ∞. Then for every B > 1,

P S n is prime, S n ≡ (mod k) = O B √ log log n ϕ(k) log n + 1 (log n) B .
The proof uses the following local limit theorem due to Ibragimov, which characterizes the speed of convergence in the i.i.d. case. Proposition 7.8 ([24], p. 216). Let {X k , k ≥ 1} be a sequence of centered i.i.d. Z-valued random variables, with common distribution function F , and unit variance. Put

r n = sup k √ nP{S n = k} - 1 √ 2π e -k 2 2n
Then r n = O n -(m+δ)/2 for some integer m ≥ 0 and a real δ, δ ∈]0, 1[, if and only if

sup h > 0; ∃a ∈ Z : P{X 1 ∈ a + hZ} = 1 = 1,
and the two following conditions are realized: (i) All moments of X 1 up to the order m + 2 included exist and coincide with those of the standard normal law.

(ii)

|x|≥v |x| m+2 F (dx) = O v -δ v → ∞.
Proof of Theorem 7.7. As there exists ε > 0 such that E |X| 3+ε < ∞, X satisfies the requirements of Proposition 7.8 with m = 1 and 0

< δ < 1, δ = δ(ε). Then sup k √ nP{S n = k} - 1 √ 2π e -k 2 2n = O n -(1+δ)/2 ,
and k∈J P{S n = k} - 1 √ 2πn k∈J e -k 2 2n ≤ C #{J} n 1+(δ/2) . (7.14)
Besides, by means of a result of Robbins and Siegmund ( [START_REF] Petrov | Sums of Independent Random Variables[END_REF], p. 314), if α > 1, b > 1 are two arbitrary but fixed reals, there exists a constant C depending on α, b and X, an integer n(α) depending on α only, such that for any n ≥ n(α),

P ∃m ≥ n : S m > 2α(1 + b)m log log m ≤ C(log n) -b (log log n) -1/2 . (7.15)
As X is symmetric, P{|S n | > u} ≤ 2P{S n > u}; and thus it follows from (7.15) that By combining (7.19) with (7.18), we deduce that for all n large enough, if

P |S n | > 2α(1 + b)n log log n ≤ 2C(log n) -b (log log n) -1/2 . (7.
√ n log log n/k → ∞ P S n prime, S n ≡ (mod k) ≤ C √ log log n ϕ(k) log n + C 1 (log n) b (log log n) 1/2 .
Consequently, for any B > 1, there exists a constant C(B), such that, as n is large and

√ n log log n/k → ∞ P S n prime, S n ≡ (mod k) ≤ C(B) √ log log n ϕ(k) log n + 1 (log n) B .

Divisibility and primality in the Cramér random walk

Cramér's probabilistic model basically consists with a sequence of independent random variables ξ i , defined for i ≥ 3 by (8.1)

P{ξ i = 1} = 1 log i , P{ξ i = 0} = 1 - 1 log i . Let m n = E S n = n j=3 1 log j , B n = VarS n = n j=3
1 log j (1 -1 log j ). Cramér's well-known twin prime conjecture, which seems largely accepted, does not however assert that there are any primes in the 'primes' of the model, which are the instants of jump of the random walk {S n , n ≥ 1}, recursively defined by (8.2)

P 1 = inf{n ≥ 3 : ξ n = 1}, P ν+1 = inf{n > P ν : ξ n = 1} ν ≥ 1.
We refer to Granville [START_REF] Granville | Harald Cramér and the Distribution of Prime Numbers[END_REF], Pintz [START_REF] Petrov | Sums of Independent Random Variables[END_REF] and Montgomery and Soundararajan [START_REF] Montgomery | Primes in Short Intervals[END_REF]. Our recent paper Weber [START_REF] Weber | Critical probabilistic characteristics of the Cramér model for primes and arithmetical properties[END_REF] offers a probabilistic complementary study, in particular of the 'primes' P ν and of the primality properties of {S n , n ≥ 1}. Recall that the standard limit theorems are fulfilled, and the invariance principle holds, derived from Sakhanenko's. The law of the iterated logarithm implies that

(8.3) # ν ∈ C : ν ≤ x = x 2 dt log t + O x log log x ,
with probability one. Cramér's easier prediction on the order of magnitude of the remainder in the 'prime number theorem', cannot be separated from the fact that this one should also be sensitive to the subsequence on which it is observed, as shown in [START_REF] Weber | Critical probabilistic characteristics of the Cramér model for primes and arithmetical properties[END_REF]. Such a property is hardly conceivable and was nowhere emphasized. In a work in progress, that study is transposed to other random models for prime numbers.

8.1. Divisibility. The distribution of divisors of S n turns up to share similarities with the one of Bernoulli sums. We prove the following result, which was only stated in [START_REF] Weber | Critical probabilistic characteristics of the Cramér model for primes and arithmetical properties[END_REF].

Theorem 8.1. The proof crucially uses the Lemma below.

P{d|S n } = 1 d + 1 d 1≤j≤ d π (log n)( α 2n ) 1/2
Lemma 8.3. Let m be a positive real and p be a real such that 0 < p < 1. Let β be a random variable defined by P{β = 0} = p, P{β = m} = 1 -p = q. Let ϕ(t) = E e 2iπtβ . Then we have the following estimates, (i) For all real t, |ϕ(t)| ≤ exp -2pq sin 2 πtm (ii) If q| sin πtm| ≤ 1/3, then ϕ(t) = e q2iπmt-2qp(πmt) 2 +E , with |E| ≤ 12q(πm|t|) 3 .

For sake of completeness we include the proof.

Proof. (i) One verifies that |ϕ(t)| 2 = 1 -4pq sin 2 πmt. As moreover 1 -ϑ ≤ e -ϑ if ϑ ≥ 0, we obtain |ϕ(t)| 2 ≤ e -4pq sin 2 πmt .

(ii) Let |u| ≤ u 0 < 1. From the series expansion of log(1 + u), it follows that

log(1 + u) = u - u 2 2 + R, |R| ≤ |u| 3 ∞ j=0 |θ| j 3 + j ≤ |u| 3 3(1 -u 0 )
.

Then 1 + u = exp{u -u 2 2 + B}, with |B| ≤ C 0 |u| 3 and C 0 = 1 3(1-u0) .
Writing that ϕ(t) = 1 + q e 2iπmt -1 = 1 + u, where |u| = 2q| sin πmt| ≤ 2q 1 ∧ πm|t| , we obtain (8.4) ϕ(t) = 1 + u = e q(e 2iπmt -1) e -u 2 2 +B , |B| ≤ 8C 0 q 3 | sin πmt| 3 .

In order to estimate u 2 , we let

A(t) = e 2iπmt -1 -2iπmt + (2πmt) 2 2
, and write (e 2iπmt -1) 2 under the form

A(2t) -2A(t) --1 -4iπmt + 8(πmt) 2 + 2 -1 -2iπmt + (2πmt) 2 2 + 1 = A(2t) -2A(t) -(2πmt) 2 .
Then (e 2iπmt -1) 2 + (2πmt) 2 = A(2t) -2A(t), and so u 2 2 = -2q 2 (πmt) 2 + q 2 2 (A(2t) -2A(t)). Let u 0 = 2 3 so that C 0 = 1. We assumed q| sin πtm| ≤ 1/3, thus |u| ≤ 2/3. We consequently get with (8.4), ϕ(t) = e q(e 2iπmt -1)-u 2 2 +B = e q(e 2iπmt -1)+2q 2 (πmt) 2 -q 2 2 (A(2t)-2A(t))+B = e q2iπmt-2qp(πmt) 2 +H+B , (8.5) with H = qA(t) -q 2 2 (A(2t) -2A(t)). By using the estimate (Lemma 4.14 in Kallenberg [START_REF] Kallenberg | Foundations of modern probability theory[END_REF]) 

(
|H| + |B| ≤ 2q|A(t)| + q 2 2 |A(2t)| + |B| ≤ 8 3 q + 4 3 q 2 + 8q 3 (πm|t|) 3 ≤ 12q(πm|t|) 3 .
We conclude by inserting estimate (8.8) into (8.5).

Proof of Proposition 8.2. We apply Lemma 8.3. Here we have m

= 1, q = 1 log k . As |ϕ k (t)| ≤ exp -2(1 -1 log k )( 1 log k ) sin 2 πt , we get |Φ n (t)| ≤ exp -2 n k=3 (1 - 1 log k )( 1 log k ) sin 2 πt .
Further condition q| sin πtm| ≤ 1/3 in Lemma 8.3 reduces for ϕ k (t) to 1 log k | sin πt| ≤ 1/3. Thus (8.9) . This achieves the proof.

ϕ k (t) = e 2iπ( 1 log k )t-2π 2 (1-1 log k )( 1 log k ) t 2 +C k (t) , where |C k (t)| ≤ 12(π|t|) 3 log k . Recalling that m n = n j=3 1 log j , B n = n j=3 1 log j (1 -1 log j ), it follows that (8.10) E e 2iπtSn = Φ n (t) = e 2iπtmn-2π
Proof of Theorem 8.1. We note that 

P{d|S n } = E 1 d d-1 j=0 e 2iπSn j d = 1 d + 1 d d-1 j=1 Φ n j d = 1 d + 1 d d-1 j=1 e 2iπmn( j d )-2π 2 Bn ( j d ) 2 +O(mn( j d ) 3 ) . ( 8 
n ∼ B n ∼ n log n . Let α > α > 3/2. Let ϕ n = (log n) α 2n 1/2 , τ n = sin ϕ n /2 ϕ n /2 .
We assume n sufficiently large, say n ≥ n 0 , for τ n to be greater than (α /α) 1/2 . Consider two sectors Concerning the second sub-sum, the inequality

A n =]0, ϕ n [, A n = [ϕ n , π 2 
ϕ n ≤ πj d < π 2 implies that j≥1 : πj d ∈A n e -2π 2 Bn ( j d ) 2 ≤ j≥1 : πj d ∈A n e -2c n log n ( πj d ) 2 ≤ j≥1 : πj d ∈A n e -cα log n ≤ dn -α . Therefore j≥1: πj d ∈A n e 2iπmn( j d )-2π 2 Bn ( j d ) 2 +O(mn( j d ) 3 ) ≤ j≥1: πj d ∈A n e -2π 2 Bn ( j d ) 2 1 + O(m n d) ≤ Cm n d j≥1: πj d ∈A n e -2c n log n ( πj d ) 2 ≤ Cm n d j≥1: πj d ∈A n e -cα log n ≤ C n log n d 2 n -α ≤ Cd 2 n 1-α .
Now, concerning the first sub-sum,

j≥1 : πj d ∈An e 2iπmn( j d )-2π 2 Bn ( j d ) 2 +O(mn( j d ) 3 ) = 1≤j≤ d π (log n)( α 2n ) 1/2 e 2iπmn( j d )-2π 2 Bn ( j d ) 2 +O(mn( j d ) 3 ) = 1≤j≤ d π (log n)( α 2n ) 1/2 e 2iπmn( j d )-2π 2 Bn ( j d ) 2 1 + O(m n ( j d ) 3 ) .
We have

m n 1≤j≤ d π (log n)( α 2n ) 1/2 ( j d ) 3 ≤ C d 2 α 2 (log n) 3 n . Thus 1≤j≤ d π (log n)( α 2n ) 1/2 e 2iπmn( j d )-2π 2 Bn ( j d ) 2 1 + O(m n ( j d ) 3 ) = 1≤j≤ d π (log n)( α 2n ) 1/2 e 2iπmn( j d )-2π 2 Bn ( j d ) 2 +O 1≤j≤ d π (log n)( α 2n ) 1/2 e -2π 2 Bn ( j d ) 2 m n 1≤j≤ d π (log n)( α 2n ) 1/2 ( j d ) 3 = 1≤j≤ d π (log n)( α 2n ) 1/2 e 2iπmn( j d )-2π 2 Bn ( j d ) 2 +O d 2 α 2 (log n) 3 n 1≤j≤ d π (log n)( α 2n ) 1/2 e -2π 2 Bn ( j d ) 2
Whence,

j≥1 : πj d ∈An e 2iπmn( j d )-2π 2 Bn ( j d ) 2 +O(mn( j d ) 3 ) = 1≤j≤ d π (log n)( α 2n ) 1/2 e 2iπmn( j d )-2π 2 Bn ( j d ) 2 + O d 3 α 3 (log n) 4 n 3/2 .
Combining both estimates gives

P{d|S n } = 1 d + 1 d 1≤j≤ d π (log n)( α 2n ) 1/2 e 2iπmn( j d )-2π 2 Bn ( j d ) 2 + O(d 2 n -α ) + O d 3 α 3 (log n) 4 n 3/2 = 1 d + 1 d 1≤j≤ d π (log n)( α 2n ) 1/2 e 2iπmn( j d )-2π 2 Bn ( j d ) 2 + O d 3 α 3 (log n) 4 n 3/2 .
This achieves the proof. Now as j≥d/2 e -A j 2 2d 2 ≤ e -cA , c an absolute constant, for all d ≥ 2 and A ≥ 2, we have

j> d π (log n)( α 2n ) 1/2 e -2π 2 Bn ( j d ) 2 ≤ j> d π (log n)( α 2n ) 1/2 e -A( n log n )( j d ) 2 ≤ e -A ( n log n )( 1 d ) 2 (d(log n)) 2 ( α 2n )) ≤ e -A α log n = n -A α .
We therefore also have Corollary 8.4.

P{d|S n } - Θ(d, m n , B n ) d ≤ C d 3 α 3 (log n) 4 n 3/2 .
We end the paper with recent results related to primality in the Cramér model. 

(log n)P{S n prime} ≥ 1 √ 2πe .
The proof allows one (Remark 8.6) to treat other cases, so we included it.

Proof of Theorem 8.5. (i) By Lemma 7.1 p. 240 in [START_REF] Petrov | Sums of Independent Random Variables[END_REF], for 0

≤ x ≤ B n P{|S n -m n | ≥ x} = P{S n -m n ≥ x} + P{-(S n -m n ) ≥ x} ≤ 2 exp - x 2 2B n 1 - x 2B n , noticing that {-ξ j } j also satisfies the conditions of Kolmogorov's Theorem. Let b > b > 1/2.
Then for all sufficiently large n, since log B n ∼ log n,

(8.16) P{|S n -m n | ≥ 2bB n log n} ≤ 2 n -b .
We have

P{S n ∈ P} -P{S n ∈ P ∩ [m n -2bB n log n, m n + 2bB n log n]} ≤ P{|S n -m n | ≥ 2bB n log n} ≤ n -b .
Further,

P{S n ∈ P ∩ [m n -2bB n log n, m n + 2bB n log n]} - κ∈P∩[mn- √ 2bBn log n,mn+ √ 2bBn log n]
e We use Theorem 4 in Selberg [START_REF] Selberg | On the normal density of primes in small intervals, and the difference between consecutive primes[END_REF]. Let Φ(x) be positive and increasing and such that Φ(x)

x decreasing for x > 0. Further assume that Let ν = ν(x) be the unique integer such that m ν-1 < x ≤ m ν . As m ν -m ν-1 = o(1), ν → ∞, it follows that m ν ∈ [x -C, x + C] provided that x is large enough, in which case we have by (8.23), (8.24) π(m ν + Φ(m ν )) -π(m ν ) Φ(m ν ) ≥ 1 -2δ log m ν .

Let X ≥ 1 be a large positive integer and ε a small positive real. The number N (X) of intervals ]µ -1, µ], µ ≤ X such that S δ ∩]µ -1, µ] = ∅ verifies N (X)/X ∼ 1, X → ∞, since S δ has density 1.

Given such an µ ≤ X, pick x ∈ S δ ∩]µ -1, µ]. We know (recalling that m ν -m ν-1 = o(1), ν → ∞) that some m ν , ν = ν(x) belongs to ]µ -1 -ε, µ + ε], and that (8.24) is satisfied. The union of these intervals [µ -1 -ε, µ + ε] is contained in [1 -ε, X + ε]. It follows that the number of ν such that (8.24) is satisfied, forms a set of density 1.

We now use an induction argument in order to replace 2δ in (8.24) by a quantity ε(ν) which tends to 0 as ν tends to infinity along some other set of density 1, which we shall build explicitly. Let T n be the set of ν's of density 1, corresponding to δ = 1 n , n ≥ 3. Let X 3 be large enough so that #{T 3 ∩ [1, X]} ≥ X(1 -1/3) for all X ≥ X 3 . Next let X 4 > X 3 be sufficiently large so that #{T 4 ∩ [X 3 , X]} ≥ X(1 -1/4) for all X ≥ X 4 . Like this we manufacture an increasing sequence X j , verifying for all j ≥ 3, #{T j ∩ [X j-1 , X]} ≥ X(1 -1/j), for all X ≥ X j .

The resulting set

T = ∞ j=3 T j ∩ [X j-1 , X j ]
has density 1 and further we have the inclusions

T ∩ [X l-1 , ∞) = ∞ j=l T j ∩ [X j-1 , X j ] ⊂ T l ∩ ∞ j=l [X j-1 , ∞) = T l ∩ [X l-1 , ∞), l ≥ 4,
as the sets T j are decreasing with j by definition.

We finally have by (8.19), Let Π z = p≤z p. According to Pintz [START_REF] Pintz | On Cramér's probabilistic model for primes[END_REF], an integer m is z-quasiprime, if (m, Π z ) = 1. Let S n = n j=8 ξ j , n ≥ 8. Note that the introduction of S n in place of S n is not affecting Cramér's conjecture. The probability that S n be z-quasiprime is for all n large enough is studied in [START_REF] Weber | Critical probabilistic characteristics of the Cramér model for primes and arithmetical properties[END_REF], Theorem 2.6. The proof is based on a randomization argument. The proof is now complete.

Definition 2 . 1 .

 21 A set A ⊂ N has Cesàro density λ of order 1 (C 1 -density λ), if lim n→∞ #{j ≤ n : j ∈ A} n = λ.

Corollary 2 . 7 .

 27 2≤d≤n µ(d)P{d|B n ( )}, µ being Möbius function, that (2.3) lim n→∞ P B n ( ) k-free = 1 ζ(k) , where ζ is the Riemann zeta function. A much more precise result holds: For k ≥ 2 integer,

d|n d s µ n d the

  generalized Euler totient function, s > 0;

3. 1 .

 1 Basic estimates. Proposition 3.1. For any integers d ≤ n, (3.1)

3. 2 .

 2 Sharper uniform estimate and Theta function. One might believe in view of Proposition 3.3 that the central comparison term is 1 d . But this is not so. The right comparison term -with a sharper remainder term -turns up to be more complicated, and is equal to Θ(d,n) d where Θ(d, n) is the Theta function, (3.6) Θ(d, n) = ∈Z e inπ d -nπ 2 2 2d 2 , d ≥ 1, n ≥ 1 being integers.

Theorem 3 .

 3 20 ([45], Th. 3.1). There exist two absolute constants C and n 0 such that for all n ≥ n 0 , sup u≥0 sup d≥2 P d|B n + u -

  (5.1) lim n→∞ P{S n ≡ m (mod) d} = 1 d .

1 h=0 e 2iπ j D (h 2

 12 +kh) . (6.4) It follows from (6.4), that for j = 1, . . . , D,

Corollary 6 . 4 .

 64 10], p. 151). (A consequence is Theorem 149 in Hardy[START_REF] Hardy | An inequality for Hausdorff means[END_REF].)Applying it with the choice a h = e 2iπ j D (h 2 +kh) -For some absolute constant C, where j = j/(j, D), D = D/(j, D).

3 .

 3 Returning to (6.7), we get sup k≥0 µ y=1 e 2iπ j D (y 2 +ky)

1

 1 k (D). Introduce some notation. Let v p (d) denote the p-adic valuation of d, p being a prime number, namely p vp(d) ||d, also D

16 )

 16 Let k, be coprime integers. PutJ = 2 ≤ |p| ≤ 2α(1 + b)n log log n : p ≡ (mod k) .Using(7.14) and (7.16) we haveP S n prime, S n ≡ (mod k)n) b (log log n) 1/2 . (7.17) Whence P S n prime, S n ≡ (mod k) ≤ #(J) √ πn + C (log n) -b (log log n) -1/2 . (7.18)Using the notation π(x; , k) := # p ≤ x : p ≡ (mod k) , we have# 2 ≤ p ≤ 2α(1 + b)n log log n : p ≡ (mod k) = π( 2α(1 + b)n log log n; , k).By means of the Brun-Titchmarsh theorem (see for instance[37, p. 83]), π(x + y; , k) -π(x; , k) ≤ (2 + o(1)) y ϕ(k) log(y/k) , as y/k tends to infinity, where ϕ is Euler's totient function. Letting x = 2 and y = 2α(1 + b)n log log n -2, we have in particular, as √ n log log n/k → ∞, π( 2α(1 + b)n log log n; , k) b)n log log n ϕ(k) log( 2α(1 + b)n log log n/k)

. 12 )

 12 The elliptic Theta functionΘ(d, m n , B) = ∈Z e imπ d -Bπ2 2 2d 2 , appears in the above estimate of P{d|S n }. Here m = m n , B = B n and we have m

2

 2 Bn ( j d ) 2 +O(mn( j d )3 ) .

  Then there exists a set S of positive reals of density one such that(8.21) limS x→∞ π(x + Φ(x)) -π(x) (Φ(x)/log x) = 1. Let Φ(x) = √ 2bx.Then the requirements in (8.20) are fulfilled, and so (8.21) holds true. Now let C be some possibly large but fixed positive number, as well as some positive real δ < 1/2. By (8.21), the set of x > 0, call it S δ , such that(8.22) π(x + Φ(x)) -π(x) ≥ (1 -δ) Φ(x) log x .has density 1. Note that S δ ⊆ S δ if δ ≤ δ . Pick x ∈ S δ and let ∆(x) = π(x + Φ(x)) -π(x). Note that if |y -x| ≤ C, Φ(y) -Φ(x) = o(1) for x large. Thus for every y ∈ [x -C, x + C], ∆(y) -∆(x) ≤ C , and so ∆(y) ≥ (1 -δ) Φ(x) log x -C . the constant C depending on C only. As Φ(x) log x -Φ(y) log y ≤ C 2 √ x log x , we have ∆(y) ≥ (1 -δ) Φ(y) log y -C -C 2 √ x log x . Thus every y ∈ [x -C, x + C] also satisfies (8.23) ∆(y) ≥ (1 -2δ) Φ(y) log y , if x is large enough.

( 8 . 5 . 8 . 6 .

 8586 [START_REF] Pintz | On Cramér's probabilistic model for primes[END_REF])π(m ν + Φ(m ν )) -π(m ν ) Φ(m ν ) ≥ 1 -ε(ν) log m ν ,along T, for some sequence of reals ε(ν) ↓ 0 as ν → ∞. all ν ∈ T, recalling that L = e -b ν ∈ T. This completes the proof of Theorem 8.RemarkThe interested reader will have observed that the property m ν -m ν-1 = o(1) is not fully used, in fact it suffices that m ν -m ν-1 = O(1), selecting at the beginning of the proof C sufficiently large. Thus the proof of Theorem 8.5 also adapt to the Bernoulli case. In particular there exists a set of integers U of density 1 such that (8.29) lim inf U ν→∞ (log ν)P{B ν prime} > 0.

Theorem 8 . 7 . 2 . 2 =

 8722 We have for any 0 < η < 1, and all n large enough andζ 0 ≤ ζ ≤ exp c log n log log n , P S n ζ-quasiprime ≥ (1 -η) e -γ log ζ .where γ is Euler's constant and c is a positive constant. s = r, there is the trivial unique solution y = p r . If 1 ≤ s < r, p r |y 2 ⇒ 2s ≥ r, in which case, the number of solutions is# Y ≤ p r-s : (Y, p) = 1 = φ(p r-s ) = p r-s (1 -1 p ). Consequently 0 (p r ) = 1 + r/2≤s<r p r-s (1 -1 p ) . If r is even, r = 2r 0 (p r ) = 1 + r , whereas if r is odd, r = 2r + 1, 0 (p r ) = 1 + r σ=1 p σ (1 -1 p ) = p r . Thus 0 (p r ) = p r D 1/2 .

  ≥ 1 is a mixing system, namely the correlation function satisfies for each d and δ greater than 2,

	(2.8)	lim m-n→∞

  Proposition 3.1 is already sharp enough to imply the useful bound below.

	Proposition 3.3.											
								sup n≥1 d< √	n	P d|B n -	1 d	< ∞.
	Proof. Let A and m be positive reals. Then for d ≥ 1,
	m d m d+1	e -At 2 dt t	≥ e -A( m d ) 2	m d m d+1	dt t	= e -A( m d ) 2	log(1 +	1 d	) ≥	1 2d	e -A( m d ) 2	,
	since log 1 + x ≥ x 2 , if 0 ≤ x ≤ 1. Writing n = ν 2 and letting m = νj, A = 2 gives
							1 d	d j=1	e -2( νj d ) 2	≤ 2	d j=1	νj d νj d+1	e -2t 2 dt t	.
	Let H = 1≤d<ν	1 d	1≤j≤d e -2( νj d ) 2 . By permuting the order of summation, we get
	H ≤ 2	1≤d<ν 1≤j≤d	νj d νj d+1	e -2t 2 dt t	= 2	1≤j<ν j≤d<ν	νj d νj d+1	e -2t 2 dt t
		≤ 2	1≤j<ν	ν νj ν+1	e -2t 2 dt t	= 2	ν ν+1 ν	min(ν, ν+1 ν t) j=1	1 e -2t 2 dt t
		≤ 4	∞	e -2t 2	dt = C.
				1								
				2								
	Consequently, by using (3.1),							
	d< √	n									

  Let ϕ k (t) be the characteristic function ofξ k , ϕ k (t) = E e 2iπξ k t . Let also Φ n (t) = E e 2iπtSn = We have |Φ n (t)| ≤ exp -2B n sin 2 πt . Further Φ n (t) = e 2iπtmn-2Bn(πt) 2 +En(t) , with |E n (t)| ≤ 12 m n (π|t|) 3 .

				e 2iπmn( j d )-2π 2 Bn ( j d ) 2	+ O	d 3 α 3 (log n) 4 n 3/2	.
				n				
					ϕ k (t),			
				k=1				
	be the characteristic function of S n . We prove the following estimate with explicit constants.
	Proposition 8.2. In particular, E e	iy Sn -mn √ Bn	= e -y 2 2 +En(y) ,	and	|E n (y)| ≤ 2	√	log n |y| 3 √ n	.

  and |D n (t)| ≤ 12 m n (π|t|)3 . In particular,

	(8.11)	E e	iy Sn-mn √ Bn	= e -y 2 2 +En(y) ,
	with |E n (y)| ≤ 3mn 2 ( y √ Bn ) 3 ≤ 2	√ log n|y| 3 √ n	

2 

Bnt 2 +Dn(t) ,

  8.2. Quasiprime and prime property. We obtained in[START_REF] Weber | Critical probabilistic characteristics of the Cramér model for primes and arithmetical properties[END_REF] -without assuming RH-a sharp estimate of P{S n prime }, for almost all n, namely for all n, n → ∞ through a set S of natural density 1.

	Theorem 8.5. (i) For any constant b > 1/2,			
	(8.13)	P{S n prime } =	√	1 2πB n	mn+ √ mn-√ 2bBn log n 2bBn log n	e -(t-mn ) 2 2Bn	dπ(t) + O	(log n) 3/2 √ n	,
	as n → ∞, where π(.) is the prime counting function.		
	(ii) There exists a set of integers S of density 1, such that	
	(8.14)	P{S n prime } =	(1 + o(1)) √ 2πB n	mn+ √ mn-2bBn log n 2bBn log n √	e -(t-mn ) 2 2Bn	dπ(t),
	as n → ∞, n ∈ S. Further,							
	(8.15)		lim inf S n→∞				

  ≤ C # P ∩ [m n -2bB n log n, m n + 2bB n log n] • (log n) 3/2 n

							mn+ √ mn-√ 2bBn log n 2bBn log n	e -(t-mn ) 2 2Bn √ 2πB n	dπ(t) + O	(log n) 3/2 √ n	.
	(ii) We note that											
	(8.19)	mn+ √ 2bBn mn-√ 2bBn	e -(t-mn) 2 2Bn √ 2πB n	dπ(t) ≥ L	π(m n +	√	2bB n ) -π(m n -√ B n	√	2bB n )	,
	with L = e -b √ 2π .											
														-(κ-mn) 2 2Bn
														√	2πB n
		≤	κ∈P∩[mn-	√	2bBn log n,mn+ √ 2bBn log n]	P{S n = κ} -	2Bn e -(κ-mn ) 2 √ 2πB n
		≤ C	√	b	(log n) 3/2 √ n	.			
	Therefore												
	(8.17)	P{S n ∈ P} -	κ∈P∩[mn-	√	2bBn log n,mn+	√	2bBn log n]	e -(κ-mn ) 2 2Bn √ 2πB n	≤ C	√	b	(log n) 3/2 √ n	.

By expressing the inner sum as a Riemann-Stieltjes integral [1, p. 77], we get

(8.18) 

P{S n ∈ P} =
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8.3. Primality of P n . We also showed in [START_REF] Weber | Critical probabilistic characteristics of the Cramér model for primes and arithmetical properties[END_REF] that when the 'primes' P ν are observed along moderately growing subsequences, then with probability 1, they ultimately avoid any given infinite set of primes satisfying a reasonable tail's condition. We also test which infinite sequences of primes are ultimately avoided by the 'primes' P ν , with probability 1.

Theorem 8.8. Let K be an increasing sequence of naturals such that the series k∈K k -β converges for some β ∈]0, 1 2 [. Let P be an increasing sequence of primes such that for some b > 1,

Let also {∆ k , k ≥ 1} be the instants of jump of the Bernoulli sequence {B k , k ≥ 1}. Then

Further,

Moreover (case β = 1/2), let P be such that p∈P, p>y p -1/2 = O y -1/2 , and K be such that

Appendix A. Proof of Theorem 6.6.

The following lemma is classical.

The proof is long and technical because of many sub-cases entering into consideration, which is natural when studying this kind of question. First consider the case k > 0, which is the main case. Recall that

The function k (D) being multiplicative, it suffices to compute k (p r ). Observe to begin that

Indeed, if (y, p) = 1, then p r |y + k and there is only one solution given by y = k or y = p rk

where k is the residue class of k modulo p r . If y = p s Y , (Y, p) = 1, 1 ≤ s < r, then p r |y(y + k) ⇔ p r-s |(p s Y + k). And so p|k, which was excluded. There is thus no solution of this kind. Finally, it remains one extra solution y = p r . Thus k (p r ) = 2.

We now assume that p|k. We can range the solutions y of the equation p r |y(y + k) in disjoint classes of type y = p s Y , with (Y, p) = 1. When r = 1, 2 or 3, there is a direct simple computation.

Case r = 1. We have k (p) = # 1 ≤ y ≤ p : p|y(y + k) . Since p|k, it follows that p|y(y + k) ⇔ p|y 2 . As y ≤ p, the prime divisors of y are less or equal to p and so are the prime divisors of y 2 . There is thus only one solution:

Case r = 3. We have k (p 3 ) = # 1 ≤ y ≤ p 3 : p 3 |y(y + k) . If (y, p) = 1, then p 3 |y(y + k) ⇔ p 3 |y + k and so p|y, which is impossible. There is no solution of this type. If y = pY , with (Y, p) = 1, then

this implies that p|Y , which is impossible, and so there is no solution of this type in that case.

An additional sub-case thus appears. Summarizing

Case r ≥ 4. Put r = r 2 . Then r ≥ 2. We have k (p r ) = # 1 ≤ y ≤ p r : p r |y(y + k) . If (y, p) = 1, then p r |y(y + k) ⇔ p r |y + k and so p|y, which is excluded and there is no solution.

Apart from the trivial solution y = p r , the other possible solutions are of type y = p s Y , (Y, p) = 1, 1 ≤ s < r; and we shall distinguish three cases:

(i) Since r < s < r, then r/2 ≤ s, and so 1 ≤ r -s ≤ s. Further p r |y(y +k) means p r-s |Y (p s Y +k) or p r-s |p s Y + k, which is possible if and only if p r-s |k, namely r -s ≤ v p (k). Thus

We have Y ≤ p r-s , (Y, p r-s ) = 1. Their number is φ(p r-s ) where φ is Euler's function, and since φ(p r-s ) = p r-s (1 -1 p ), the corresponding number of solutions is

∧vp(k) -1.

(ii) We consider solutions of type y = p r Y , (Y, p) = 1.

-If r is odd, r = 2r + 1, then p 2r +1 |p r Y (p r Y + k) means p r +1 |(p r Y + k). So p r |k and thereby v p (k) ≥ r . If v p (k) < r , there is no solution. If v p (k) > r , it implies that p|Y which is impossible and there is again no solution. The remainding case v p (k) = r is the only one providing solutions. Write k = p r K, (K, p) = 1, then p|Y + K. Since (K, p) = 1, the solutions are the numbers Y such that 1 ≤ Y ≤ p r +1 and Y ≡ -K mod(p). Let 1 ≤ κ < p be such that K ≡ κ mod(p). The number of solutions is

, this is always realized and the number of solutions is

(iii) We consider the last type of solutions: y = p s Y , (Y, p) = 1, 1 ≤ s < r . Notice first, since s < r that s < r/2, and so r -s > r/2 > s. As p r |y(y + k) means p r-s |Y p s + k, we deduce that p s |k,

And if r is even, r = 2r

This remains true if r = 1, 2, 3. Observe that (v p (k) < r , r even) or (v p (k) ≤ r , r odd) are equivalent to v p (k) < r 2 . Therefore, for all r ≥ 2

.

Recall that

.

We consider again several cases:

-If p is such that v p (D) = 1, then it produces in the writing of k (D) only a factor 1, since v p (k) < 1/2, so v p (k) = 0 and vp(D) 2 = 0.

-Now let p be such that v p (D) ≥ 2, and compare v p (D)/2 with

Therefore the contribution of a prime p such that v p (D) ≥ 2, is either 2p vp((k,D 1/2 )) if p is part of the first product, or p vp((k,D 1/2 )) if p is part of the second.

A prime number p is part of the first product, if and only if the inequation 1 ≤ v p (k) < v p (D)/2 is fulfilled. We therefore get the condensed form,