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BEHAVIOUR OF LARGE EIGENVALUES FOR
THE ASYMMETRIC QUANTUM RABI MODEL

MIRNA CHARIF!, AHMAD FINO?, AND LECH ZIELINSKI?

Abstract. We prove that the spectrum of the asymmetric quantum Rabi model consists of
two eigenvalue sequences (E,5)%_q, (Em)5o_o, satisfying a two-term asymptotic formula with
error estimate of the form O(m~'/%), when m tends to infinity.

Keywords: quantum Rabi model, unbounded self-adjoint operators, discrete spectrum,
asymtotic distribution of eigenvalues

Mathematics Subject Classification: Primary 81Q10; Secondary 47A75, 47B02, 47B25,
47B36, 81Q15

1. GENERAL PRESENTATION OF THE PAPER

1.1. Introduction. The quantum Rabi model describes the simplest physical example
of interactions between radiation and matter. It has its origin in the semi-classical
model of interactions between a Two Level System (TLS) and light, due to I. I. Rabi
(see [19], [20]) and its fully quantized version was considered in the famous paper of
Jaynes and Cummings [14]. The Hamiltonian of the quantum Rabi model (QRM) is
given in Definition 1.2(d) and it depends on two real parameters: g and A (the coupling
constant and the level separation energy in the TLS). In this paper we consider the
asymmetric quantum Rabi model (AQRM) given in Definition 1.2(c). It is usually
referred to as the QRM with a bias and contains an additional parameter €, called the
bias of the model. The AQRM is a fundamental model in the quantum electrodynamics
of superconducting circuits (see [23], [16]). The additional term appears due to the
tunnelling between two current states (see [11]). We refer to [8] concerning the historical
aspects and to [23] for a list of recent research works and experimental realizations of
QRM and AQRM.

Let Hgapi denote the AQRM Hamiltonian from Definition 1.2(c). Its spectrum is
discrete and only in the case A = 0, the spectrum of the corresponding Hamiltonian
H rabi, is explicitly known (see Theorem 1.3). Our purpose is to investigate the large
n estimate

An(HRabi) — An(Ho,Rabi) = O(n™"), (1.1)
where p > 0 and (A, (Hgabi))o2, (respectively (A, (Ho rabi))5%) is the non-decreasing
sequence of eigenvalues of Hgap; (respectively Hg gabi), counting the multiplicities.
Since A, (Ho Rabi) is explicitly known, the estimate (1.1) gives the asymptotic behaviour
of Ay, (Hgabi) with error O(n=").

The main result of this paper is Theorem 1.4, which states that the estimate (1.1)
holds with p = i and this result is new in the case ¢ # 0. Indeed, the asymptotic
behaviour of A, (HRgapi) was investigated in the case € = 0 only (see Section 1.2 for a
presentation of known results). It appears that the exponent p = i is optimal in the
case € = 0.
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2 M. CHARIF, A. FINO, AND L. ZIELINSKI

1.2. Overview of earlier results. The problem of the asymptotic behaviour of large
eigenvalues of Rabi type models was mentioned e.g. in papers Feranchuk, Komarov,
Ulyanenkov [9] and Tur [21]. However, concerning the Hamiltonian Hgapi given by
(1.10), mathematical results have been obtained only in the case ¢ = 0. In this case,
HRapi is unitarily equivalent to the direct sum Ja /2(g) © J_a/2(g), where J,(g) is the
self-adjoint operator defined in ¢?(N) by the Jacobi matrix

s gv1 0 0 0
gVl 1—s gv2 0 0
Jg)=] 0 gv2 245 g¥/3 0 .- (1.2)
0 0 gv3 3-s gV4

The analysis of large eigenvalues of Jacobi matrices was initiated by J. Janas and
S. Naboko in the paper [13], which contains fundamental ideas of the method of
approximative diagonalizations and asymptotic estimates (see Theorem 5.7). These
ideas were developed by M. Malejki in papers [17], [18], but they do not work for the
matrix (1.2). In fact, the perturbation Jg(g) — Jo(g) = diag(s(—1)™)22, is not compact
and it is not clear whether large eigenvalues of Js(g) and Jy(g) are close. For this
reason, the results obtained by A. Boutet de Monvel, S. Naboko and L. O. Silva in [1],
[2], [3], concern a simpler class of operators, called "modified Jaynes-Cummings models".
For this class of operators, the oscillations s(—1)" do appear in the asymptotic formula
for large eigenvalues.

The first proof of the estimate (1.1) was obtained by E. A. Yanovich (Tur) with
p = 15 in [24] (see also [22]). The estimate (1.1) with p = % was proved in [5] (see also
[4]). The paper [5] gives the three-term asymptotic formula for large eigenvalues of the
matrix (1.2), which shows that the exponent p = % cannot be improved. Moreover, this
three-term asymptotic formula allows one to recover the values of parameters A, g, from
the spectrum of the QRM (see [6]) and it appears that the corresponding approximation
is the same as the famous GRWA (generalized rotating-wave approximation) introduced
by Irish in [12] (and considered earlier in [9]).

We also mention the paper [7], where the asymptotic behaviour of large eigenvalues
is investigated for the two-photon asymmetric quantum Rabi model. Our proof of
Theorem 1.4 uses several ideas from [7], e.g. a method to overcome the difficulty of the
case when Hy rap; has double eigenvalues. However, the paper [7] uses an approximation
of the two-photon Hamiltonian with A = 0 by an operator similar to a first order
operator on the circle so that its eigenvectors can be expressed explicitly. In the case of
H Rabi given by (1.12), a similar idea gives a pseudo-differential operator of order 1/2
and one needs to construct an approximation of its eigenvectors (see Section 3 and 4).

1.3. Basic definitions.
Notation 1.1. (a) We denote by Z the set of integers and N:= {j € Z: j > 0}.

(b) If J C Z, then ¢?>(J) denotes the complex Hilbert space of square-summable
sequences z : J — C equipped with the scalar product

(@ y)ew =Y () (1.3)

Jj€T
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2 .
and the norm ||z||p2 (7 := (x,x)%w). We write (-, )ezqvy = (-,-) and || - [[2ey = || - |
in the case J = N.
(¢) By = {en}nen denotes the canonical basis of £2(N) (i.e. e,(m) = dp.m)-

(d) The annihilation and creation operators, & and a', are defined as closed linear
operators in £2(N) satisfying

ate,=vn+1 ént+1 formn e N (1.4)
aep=0 and de, =+ne, 1 forne N\ {0}. (1.5)

(e) Using (1,0) € C? and (0,1) € C? as the canonical basis of the Euclidean space C?,
we denote by oy, 0,, I, the linear operators in C? defined by the matrices

S R R

Definition 1.2. (a) The Hamiltonian of the single-mode radiation, Hy,q, is the self-
adjoint operator in £2(N) defined on

P N) o= {z € (N): Y (1+57)|a()]* < oo} (1.7)
JEN
by the formula
H,ogen = atae, =ne,. (1.8)

(b) The Two Level System (TLS) Hamiltonian is the linear operator in C? defined by
the matrix

A
Hus=1 (7 %) = dan e (19)

where A and € are real parameters.

(c) We define the AQRM Hamiltonian as the linear map Hgap; : C2®¢%1(N) — C2®/¢?(N)
given by

Hgabi = I2 ® Haq + Hrus © Ipp + gox @ (a+a'), (1.10)
where g is a real parameter. We can also write
HRabi = Ho Rabi + 380, @ Ip2 (1.11)
with
Ho Rabi = 1o ® Hraa + 0x @ (g(a+a') + § elp2). (1.12)

(d) The QRM Hamiltonian is given by (1.11)-(1.12) with € = 0.

1.4. Statement of the result. We first state the following, well known result (see
[11])

Theorem 1.3. Let Hy rabi be as in Definition 1.2. Then there is an orthonormal basis
in C? @ (*(N) of the form {ug,, }men U{ug,, tmen, such that

Ho rabitly,, = (m — ¢ + te)ug,, (1.13)
holds for every m € N.
Proof. See Section 2.2. O

The main result of this paper is the following
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Theorem 1.4. Let Hgap;i be as in Definition 1.2. Then there is an orthonormal basis
in C? ® (2(N) of the form {u,, }nen U {u} }nen such that

Hp.piul = EXful (1.14)

holds for every m € N and the eigenvalue sequences (E,,)%°_o, (EY)S°_, satisfy the

m=0’ m=0>
large m asymptotic formula
Ef=m—g*+ e+ 0m™". (1.15)

The paper is organized as follows. In Section 2 we give the proof of Theorem 1.3
and the outline of the proof of Theorem 1.4. Our analysis is based on Proposition 2.6,
which gives an approximation for the eigenvectors of Hy rabi. In Section 3 we introduce
useful notations and prove auxiliary results. In Section 4 we prove Proposition 2.6 and
in Section 5 we complete the proof of Theorem 1.4. In Section 6 we describe useful
estimates of oscillatory integrals.

1.5. General notations and conventions. If V is a Banach space, then B(V) denotes
the algebra of bounded operators V — V and || - |[g(1) denotes its norm.

If L: Dy — H is a linear map defined on a dense subspace of the complex Hilbert
space H, then o(L) denotes the spectrum of L. If L has compact resolvent (i.e. there
exists \g € C\ o(L) such that (L — X\g)~! is compact) and A\ € o(L), then X is an
isolated eigenvalue and has finite algebraic multiplicity mult()) := rank Py (L), where
P, (L) denotes the associated Riesz projector (see Section IIL.5 in [15]).

We write T := R/27Z and define L?(T) as the Hilbert space of Lebesgue square
integrable functions | — w, 7] — C equipped with the scalar product

@0 . (110

The Fourier transform Fp : L2(T) — ¢%(Z) is defined by the formula

(f,9)r2(m =

Tl
(FeH)G) = | f(O)e o (1.17)
For s € R we write (s) := (14 s%)'/2 and for u > 0 we define
(7)== {x € P(Z): ||z||2n(z) < 00} (1.18)
with
o2 Y2
lelleny = (3 G1e() (1.19)

J€Z
We denote by S(Z) the set of fast decaying sequences Z — C. By definition
S(z):= () **(z). (1.20)

©>0
For z € ?(Z) we denote suppz := {j € Z: z(j) # 0} and we define
02 (7)) := {x € £*(Z) : suppz is finite}. (1.21)
If J C Z then we identify
(J) = {x € 1*(Z) : suppx C J}. (1.22)
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In the sequel {e; };cz denotes the canonical basis of £%(Z) (i.e. e;(j) = d;; for i,j € Z).
We remark that {e;}ien is a basis of {z € ¢*(Z) : suppz C N} = ¢*(N), i.e. we can
identify {e;};en with B, the canonical basis of £2(N) introduced in Notation 1.1(c).
If ¢21(N) is defined by (1.7), then ¢%(N) = ¢%1(Z) N £*(N) is a Banach space with
the norm induced by the norm of || - ||¢2.1(z).
We also define S(N) := S(Z) N £?(N), the set of fast decaying sequences z : N — C.

2. PRELIMINARIES

2.1. Operators Hy and H. Our starting point consists in defining operators Hy and
H, which are unitarily similar to Ho rabi and Hgrapi respectively.

Notation 2.1. We define the linear maps C? ® ¢*!(N) —C? ® /2(N) by

Hy:=Leala—0o,® (9(a+a') + Lelpw), (2.1)
V.= %AO‘X ® Igz(N) (2.2)

and
H:=H,+V. (2.3)

Lemma 2.2. Hy and H are unitarily similar to Ho rani and Hrani respectively.

Proof. Let Uy /s = % (% _11) be the matrix of rotation by the angle /4. Then

Uﬁ/4axU;/14 = —0y,, U,T/40'ZU7:/14 = 0.

We observe that the right hand side of (1.12) becomes the right hand side of (2.1) if oy
is replaced by —o,. If moreover o, is replaced by oy, then the right hand side of (1.11)
becomes the right hand side of (2.3). O

We remark that {(1,0) ® e; : j € N}U{(0,1) ® ¢ : j € N} is the canonical basis of
C? ® £?(N) and we can identify C? ® ¢2(N) with ¢2(N) x £?(N) writing

(1,0) ® e; = (e;,0) € £2(N)x £2(N), (0,1) ®e; = (0,¢;) € £2(N)x £2(N).
This identification allows us to consider H as the linear map ¢*1(N)x ¢%(N)— ¢?(N) x
(2(N) of the form

H_ . 2Ipny )
(?Iew) H 24
where H, : (*1(N) — ¢*(N) is defined for v = 1 by
H,:=ala+vg(a+a")+ Lve (2.5)
We can also write
Op2  Ip2
_1 2 Ay
voa(le ). -
where 02 denotes the null map in ¢2(N) and

HO = H_1 D Hl.
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2.2. Proof of Theorem 1.3.

Lemma 2.3. Let {e, }nen be the canonical basis of (2(N) and let Q. denote the closure
of the symmetric operator i(a' — a)|say). Then

(a) the operator Q is self-adjoint in (*(N)
(b) if v = %1 and {vyn}nen is the orthonormal basis given by
Uy = eI e, (2.7)
then H,v,,, = (n— g%+ %Ve)vym holds for every n € N.
Proof. The result is well known, but we indicate the details of its proof below.

(a) See Lemma 3.4 in [10].

(b) Due to Corollary 3.7 in [10], S(N) is an invariant subspace of e!*@+ for every t € R
and t — €@+ is a smooth function R — ¢>(N) if 2 € S(N).
We claim that for every ¢t € R one has

e 1@+ (a+1) @+ = g, e QR+ (&T +t) eltQ+ = 4t (2.8)
Indeed, if G(t) := e™ @+ (¢t + @) e*@+ and 2 € S(N), then
d . )
aG(t)x = (] — [iIQy,a]) "%z =0 (2.9)
follows from [iQ,,a] = —[af,a] = I. It is clear that (2.9) implies G(¢) = G(0) = & and
the second equality (2.8) follows similarly. Using (2.8) with ¢t = vg, we get
ata = e’i”gQJr(&T +vg)(a+vg) eVI9+ = ¢~ 9Q+ (H, + g* — %1/5) eV9Q+

hence (H, + g% — %1/5) Vyn = eV99+gtg e, = Y99+ e, = Ny . O

Proof of Theorem 1.3. Denote v ,,, := (v_1,,0) and vS:m = (0,v1,m). Then
(H.1 & Hl)vafm =(m-g°+ %e)vofm (2.10)

holds for every m € N and it is clear that the assertion of Theorem 1.3 follows from the
fact that H_; @ H; is unitarily similar to Ho rabi.

2.3. Explicit expression of the n-th eigenvalue of Hy. Let (A, (Hp))32, denote
the non-decreasing sequence of eigenvalues of Hy, counting the multiplicities. The
explicit expression for A, (Hp) is given in

Lemma 2.4. Assume that € > 0. Denote ly := max{i € N: i < e} and define

V) = (v_1,,0) forn=0,...,lo, (2.11)
Vi 1o = (v_1,1944,0) fori €N, (2.12)
Vi 4142i = (0,01) fori € N. (2.13)
Then {v%}.en is an orthonormal basis such that Hov® = d,,vY holds with
dn:n—gQ—%efornzO,...,lo, (2.14)
digp2i = lo+i—g° — ke fori €N, (2.15)
digr142i =1 — g° + 3¢ fori € N. (2.16)

Moreover (d,)5% is non-decreasing, i.e. one has d, = A,(Hp) for all n € N.
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Proof. We observe that {v0 : n € N} = {vg, : n € N} U{v{, : n € N} holds with
Vi, as in (2.10) and (2.10) ensures Hov9 = d,,v9 with (d,)2, given by (2.14)-(2.16).
It remains to check that the sequence (d,,)32, is non-decreasing. It is obvious that
(dn)o<n<iys (dig+2i)ien and (diy4+1+2:)icn are non-decreasing. Moreover,

digy142i — digy2i = € — lo > 0,

dig+142i — digoy2i =€ — (lo+1) <0
hold by the choice of Ij. O

2.4. Outline of the proof of Theorem 1.4. Using the assertion of Theorem 1.3 and
the fact that Hrabi — Ho Rabi is bounded, we can conclude (see [15]) that Hyap is a
self-adjoint, bounded from below operator with compact resolvent. Due to the spectral
theorem, there is an orthonormal basis {u, },en such that Hrapity, = A\ (Hgabi)un
and it remains to prove that (1.1) holds with p = 1.

In the sequel we assume that € > 0. Then, due to Lemma 2.2 and 2.4, it remains to
prove the large n estimate

A(H) = d,, + O(n~ 4, (2.17)

where (dy,)nen is given by (2.14)-(2.16). The case of € < 0 can be treated similarly by
exchanging the roles of H_; and H;.

Notation 2.5. We define the self-adjoint operators in £2(N) by
H=UHU', (2.18)

where U : £2(N) x £?(N) — ¢2(N) is the isometric isomorphism satisfying Uv? = e,, for
every n € Z. Then we can write

H=D+YV, (2.19)
where V := UVU~! and D is the diagonal operator satisfying
De,, = d,e, for n € N. (2.20)

Using this notation we rewrite (2.17) in the form
M(D+V) =d, +0(n"1% (2.21)

and in Section 6 we give the proof of (2.21) by showing that H is similar to a certain
operator H = D + R, where R is compact and satisfies

||[R*e,|| = O(n~4). (2.22)
We deduce (2.21) using (2.22) and A\, (H) = A\, (H') in Theorem 5.7.
The key estimate (2.22) follows from the analysis of the matrix
(<ej7 V€k>)j7k€N = (<V?7VV2>22(N)><£2(N))j7k€N (2.23)
based on the approximation of v+, given in

Proposition 2.6. Fort,0 € R, k € Z, we define

—92tkY/2sin @ + t2sinf cos 0 ifk>1

. Sh<0 (2.24)

o(t; 0,k) = {

Then the following large n estimate

||U:|:1,n —un(Eg; -)|| = O(”71/2) (2.25)
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holds with u,(t; -) € (2(N) given by the formula

T ol i(n_ie 40
un (65 ) ;:/ elv(t; 0,n)+i(n—7)0 e (2.26)

Proof. See Section 4. O

3. AUXILIARY OPERATORS ACTING IN (?(Z)

3.1. Matrices of Fourier type operators. The proof of Proposition 2.6 is based
on the Fourier transform. For this reason, before starting the proof of Proposition
2.6, we move from ¢2(N) to ¢2(Z). At the beginning we introduce a class of matrices
(op(p) (4, k))j,keZ’ which define Fourier type operators acting in ¢?(Z). We recall the

notation (s) := (1 + s2)/2.
Notation 3.1. (a) We write T := R/27Z and define C*(T) as the set of all smooth

2m-periodic functions R—C. We say that {f;},e7 is bounded in C>*(T) if f, € C>°(T)
for every 7 € T and for every o € N one has
dQ
sup sup —fT(G)’ < o0
reT oer 1O
(b) If p(j, -, k) € C>(T) for every (j, k) €Z?, then we define the matrix (op(p)(j, k))
by the formula

3 kEZ

op(p)i ) = [ " (3,0, ket 49 (3.1)

o 27

3.2. Non-stationary phase estimates.

Lemma 3.2. Assume that {b(j,-,k)}jrez and {¢(-,k)}rez are bounded in C(T).
Assume moreover that ¢ is real valued and denote

Cy:= sup [0p9(0,K)l, (32)
(6,k)ERXZ
Zy = {(G,k) € 22 : [k — j| > 2C, ()12}, (3.3)
If
p(j. 0, k) = b(j, 6, kel 0 (3.4)
then for every N € N there is Cy > 0 such that the estimate
lop(p) (4, k)| < C ()~ ()~ (3.5)
holds for (3, k) € Zy.
Proof. For (j,k) € Zy we can write
L de
op(p)(j ) = [ DO g, 1) (36)
- 7r
where
) . <k>1/2
V7,0, k) := 67,0, k) — (3.7)

However, {1 (j,,k)}(jr)ez, is bounded in C>*(T) and
(G, k) € Zg = |099(4,0, k)| < 5 = 99 (V(4,0,k) +6) > 3.
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Thus the non-stationary phase estimates (see Lemma 6.1(b)) yield existence of Cy > 0
such that

lop(p) (4, k)| < Cn(k — )N (3.8)
holds for (j,k) € Zy. Using (k — j) = < 2V ()N (k)" and

(.ja k) €Zy = <k _ '>*4N < 274N0;4N</€>72N,
we can estimate the right hand side of (3.8) by ON2’3NC;4N<j>*N<k>’N. O

Corollary 3.3. If p satisfies the assumptions of Lemma 3.2, then one can define a
linear operator op(p) : €3, (Z) — S(Z) by the formula

(op(p)er)(d) = (ej,0p(p)ex) = op(p)(J, k), (3.9)
where op(p)(4, k) is given by (3.1).

Proof. Tt suffices to observe that op(p)(+, k) € S(Z) holds for every k € Z. Indeed, if
k € 7Z is fixed, then (3.5) holds for j > k + 2C,(k)!/? and for j < k — 2C4(k)¥/2. O

3.3. Localisation of w,(t).
Notation 3.4. (a) For ¢, § € R and j, k € Z we denote
Bt 1,0,k) == p(t; 0,k), (3.10)
where (t; 0, k) is given by (2.24).
(b) We define u,,(t) € S(Z) by the formula
un (t) := op(e?M)e,,. (3.11)
It is clear that (3.11) defines an extension of u,(¢; -) introduced in (2.26).
Corollary 3.5. Let tg > 0 be fized.
(a) Assume that 5,50 > 0 is large enough and for n € N* denote
Zn:={je€Z:|j—n|<Cyn)/?}. (3.12)

Let Iz, be the orthogonal projection on span{eg}rez,. Then for every N € N we can
find Cn o > 0 such that

sup ||(1 =TIz, Jun(t)le2v (z) < Ot () ™7 (3.13)

—to<t<to

(b) For every N, n € N, the function t — u,(t) is differentiable [—to,to] — (>N (Z),

Lu,(t) = op(i0:@(t)e'?M)e,, (3.14)
and we can find C’N,to such that
sup ||(I =Tz, ) gun(®)|lenz) < Cni(n) N, (3.15)
—to<t<to

Proof. (a) We fix ¢y > 0. Reasoning as in the proof of Lemma 3.2, for every N € N we
can find the constant C'y ¢, such that

JELNZy =  sup |G (op(e?M)e,) ()| < Ot () N (5) 72 (3.16)

—togt_t()
(b) We fix to > 0, n € N and denote
W (t,8) == (up(t+5) — un(t))/s, Wy (t) := op(i0:@(t)e'?)e,,.
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We claim that the dominated convergence theorem implies
a8, ) = wa () B2y = S0l 51 ) —walts HP —>0.  (317)
JEL

Indeed, lirr%) wi(t, 85 j) = Su,(t; §) = w,(t; j) for every j € N and
s—

JELNZy = sup  |wa(t,s; §) < sup  |wa(t; §)| < Croae ()N Hn) Y,
—to<s,t<to —2to<t<2to

where we get the last estimate similarly as in the proof of Lemma 3.2. [
3.4. An auxiliary result.

Notation 3.6. For ;1 € R we define S'(T x R) as the set of smooth functions ¢ : R? — C
satisfying q(0 + 27, k) = q(0, k) for all (0, k) € R? and such that for every ay,as € N,

105702240, k)| < Coyna (B (3.18)

holds with a certain constant C,, o, independent of (0,k) € R2. We will use the
following elementary properties of symbols:

g€ ST xR) = 95922q € SY (T x R)
@1 €S (TXR), g €S (TxR) = qg € ST (T x R).

In Section 4.5 we will use the following

Lemma 3.7. Assume that q € S}/Q(T x R) and define

o(t; 0,k) :=1tq(0,k) + %t28kq(0, k)0pq(0, k) (3.19)
fort, 0, keR. If
ro(t; 0,k) = q(0,k + Ogp(t; 0,k)) — Orp(t; 0,k), (3.20)
then there is C' > 0 such that for all 0, k € R and t € [—to,to] one has
Iro(t; 0,k)] < C(k)~1/2. (3.21)
Proof. Step 1. Let us write 07 052¢(0, k) := 0, 0,q(0, k) and denote
ri(t; 0,k) = q(0,k + dpp(t; 0,k)) — q(0, k) — 02q(0, k)dgp(t; 0, k). (3.22)
We claim that there is a constant C7 > 0 such that the estimate
Iy (t; 0,k)] < Cy(k)~'/? (3.23)

holds for all 8, k € R and t € [—tg, to]. Indeed, since the Taylor expansion of order 2,
gives

ri(t: 0,k) = (Bup(t; 0,)) / CBa0.k b sope( 0.0) (- s)ds,  (3.24)

we deduce (3.23) from (3.24) due to (9pp(t))? € SHT x R) and 93q € Sl_s/2('IF x R).
Step 2. Using (3.19) in (3.20), we get the expression

ro(t; 0,k) = q(0,k + 9gp(t; 0,k)) — q(0,k) — t02q(6, k)14(0, k), (3.25)
and combining (3.25) with (3.22), we get
ro(t) —ri(t) = 92q 0p(p(t) — tq). (3.26)
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Since dxq € SII/Q(T x R) and dy(p(t) — tq) = 8.9(%t282q81q) is bounded due to
D2q 01q € SY(T x R), we can find Cy > 0 such that for all §, k € R, t € [—tg, t], one has
Iro(t) — 1 (t)] < Co (k)12 (3.27)

Combining (3.23) and (3.27), we complete the proof of (3.21). O

4. PROOF OF PROPOSITION 2.6
4.1. Step 1. We move to (?(Z) = (*(Z \ N) & ¢*(N) by introducing the operator
Q= 0p@z\wN) © Q) (4.1)
where 0y2(z\y) is the null map on ¢2(Z\ N). Then Q is self-adjoint in ¢*(Z) and
" = Iy @ €19

If II>¢ € B({*(Z)) denotes the orthogonal projection on ¢2(N) and u,(t) is given by
Notation 3.4(b), then the assertion of Proposition 2.6 says that the large n estimate

[T (un (t) — eithn) ||é2(z) = O(n™'%) (4.2)

holds for ¢ = £¢. In this section we will prove that for every ty > 0 one can find Cy, > 0
such that

L AitQ < ~1/2 '
7t§;1tp§to ||un(t, )—e enHeQ(Z) < Cyn (4.3)

holds for all n € N*.

Notation 4.1. (a) In the sequel A : (>1(Z) — (%(Z) is the self-adjoint operator in
(2(Z) satistying Ae; = je; for j € Z. Moreover, we denote (A) := (1 + A2)1/2,

(b) If h : Z — C then h(A) = diag(h(j)),ez is defined by the functional calculus, i.e.
h(A) is the closed linear operator satisfying

h(A)e; = h(j)e; for j € Z. (4.4)
(c) We define S € B(¢?(Z)) as the shift satisfying Se; := e; 41 for j € Z.

Using these notations we can express the operator @) in the form
Q =i(AY?s - s71AY?), (4.5)
where Ai/z = h(A) with h(j) = ji/Q.

4.2. Step 2. We fix t; > 0 and consider all estimates uniformly with respect to
t € [—to,t0]. If p € R, then we write

wp(t) = O(n™#) for t € [—to, to]
if and only if there is 6}0 > 0 such that for all n € N* one has

sup  [lwn (t)[l2(z) < Crgn ™" (4.6)
—to<t<tg

At the beginning we observe that Corollary 3.5 allows us to write

‘ bd iy d
Un(t) - ethen = A &(el(tis)Qun(s)) ds = —l/ el(tis)Q (Q + 1@)1/471(3) dSv

0
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hence it suffices to prove the estimate

d
(@+ ia>un(t) — O(n=Y2) for t € [~to, to]. (4.7)
We claim that (4.7) follows from the estimate
~ . d
(@+ i&)un(t) = O(n~Y2) for t € [~to, to] (4.8)
where B
Q :=iN/? (5 — 57 (4.9)
To prove this claim, it suffices to show the estimate
(Q — Q)un(t) = O(n~Y?) for t € [~to, to). (4.10)

We first observe that (Q — Q)(A)/2 € B(f%(Z)). Indeed, using h(j) := ji/z and

hi(j) :=h(j—1) we get STLh(A)—h(A)S™! = STL(R(A)—h(SAS™)) = S (h—h1)(A)
and (h — hl)(A)<~A>1/2 € B(#3(7)) follows from (h — h1)(j) = O((j)~1/?).
Due to (Q — Q)(A)Y/? € B(¢%(Z)), (4.10) holds if we know the estimate

(A)‘l/Qun(t) _ O(n—1/2) for t € [—to, to]. (4.11)

However, if I1z, is as in Corollary 3.5, then (I — Iz, )u,(t) = O(n=) for every N € N
and (4.11) follows from (A)~/2T, = O(n~'/?).

4.3. Step 3. We claim that instead of (4.8), it suffices to prove the estimate
~ .d
I, (Q + i&)un(t) = O(n~Y2) for t € [~to, to] (4.12)
where Il is as in Corollary 3.5 and @ is given by (4.9).
Indeed, due to (3.15), it suffices to show that
(I —TIz,)Qun(t) = O(n~Y?) for t € [—to, to] (4.13)
By definition ((S — S™Hz)(j) = 2(j — 1) — z(j + 1) and
2(j) =7 = (i(S = §7H2)(j) = i(e” — ™)z (j) = (~2sin ) z(j),
hence
(S — S™Muy,(t) = op(p(t))e, with p(t; 4,0, k) := (—2sin6) ot 3,0k) (4.14)
Therefore @un(t) = Ai/ 2op (p(t))en and it remains to observe that reasoning as in the
proof of Corollary 3.5, we find that for every N € N one has
(A)V2(I =TIz, )op(p(t))en = O(n~ ") for t € [—to, to] (4.15)

4.4. Step 4.

Notation 4.2. (a) We define ¢ € Si/z(’]l‘ x R) by the formula
q(0,k) = —2x0(k)|k|'/? sin®, (4.16)

where xo € C*(R) is a fixed function such that xo(k) =0if £ <0, xo(k) =1if k> 1
and 0 < xo(k) <1 for k € [0,1].
(b) We define ¢ : R x R? — R by

p(t; 0,k) = tq(6, k) + 5 1 9q(6, k)dpq(6, k) (4.17)
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with ¢ given by (4.16). By direct calculation we check that for & > 1 one has
o(t; 0, k) = —2tk'/?sin 0 + > sin 6 cos 0 (4.18)
and ¢(t; 6,k) =0if £ <0, ie. p satisfies (2.24) for k € Z.
(c) We define ¢ : R x R® — R by
@(t; 4,0,k) == p(t; 0,k) (4.19)
with ¢ given by (4.17). Obviously u,(t) = op(e'?®)e,, still holds.

Assume that rg is given by (3.20) with ¢ as in (4.17). Let
fn(t; ) :=1o(t; 9,n)ew(t; 0,n)+ind
Then Frf,(t) = op(7o(t)e'?")e,, holds with
fo(t; 4,0, k) :=ro(t; 0,k) (4.20)
and
llop(Fo(£)e'* D enlli2(z) = |1 Frfu()lle2(z) = 1 fa(O)|L2(r) = O(n~'3), (4.21)

where the last estimates results from (3.21).
We observe that using (3.14) and (4.14), we obtain the expression

(62 + 1%)%(@ = op(b(t)e?M)e,, (4.22)
with R
b(t; j:0,k) = q(0,7) = Oup(t; 0, F), (4.23)
hence the estimate (4.12) can be written in the form
Iz, op(b(t)e?)e, = O(n=/?) for t € [—to, to]. (4.24)
We introduce b(t) := b(t) — 7o(t) and observe that due to (4.21), the estimate
Tz, op(b(t)e'?e, = O(n~/?) for t € [—to, to] (4.25)
is equivalent to (4.12). Moreover, using (4.23) and (3.20), we find
b(t; 4,0,k) = (b—7o)(t; 4,0,k) = q(0,5) — a(0,p(t; 0,k) + k). (4.26)

4.5. End of the proof of Proposition 2.6. In remains to prove (4.25) with b given
by (4.26). Using the Taylor’s expansion of order 2, we can express

—b="b1 + by (4.27)
with
bi(t; 4,0, k) == 02q(0,7)(Dpp(t; 0, k) +k — j) (4.28)
ba(t; 4,0, k) = q2(t; 7,0, k) (Bep(t; 0, k) + K — j)*, (4.29)
where )
a(t: j,0,k) == / 93q(0,7 + s(Bep(t; k,0) +k —j)) (1 — s)ds. (4.30)
0
In order to prove
op (b1 (1)e'?M)e,, = O(n=12) for t € [~to, to] (4.31)

we denote
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U(t; §,0,k) == o(t; 0,k) + (k- j)6. (4.33)
Using (4.32)-(4.33), we can write (4.28) in the form by = ¢10p%, hence
g dé

op(b1(t)e' M) (j, k) = / (0100 €™) (t; 7,0,k) (4.34)

—T

%.
Writing Og1) eV = —idy (e“") in the right hand side of (4.34), we can integrate by parts
and express (4.34) in the form

i / (00 )05 3,0.8) S = (Fafu(0)() (4.35)

. o
with fi(t; ) := 10102q(8, k)e'#(t O:F)+ik0 and
llop (b1(t)e'? ) enlle2(z) = [|[Frfa®)llezz) = | fa(®)llL2(my = O(n~/?), (4.36)

where the last estimate follows from 9;92q € 81_1/2(11‘ x R).
It remains to prove

Hznop(bg(t)ew(”)en =0(n1?). (4.37)
For this purpose we first observe that by = g2(9p1)? and

/ g2 (Bo)? € = —i / 020010 0 () =1 [ Dp(q2dp) ™, (4.38)

—T —T

where the last equality follows from the integration by parts. However, (4.38) ensures

op (b2 (t)ei¢(t)) = op (19p(q200%)(t) ew(t)). (4.39)
Using ¢(t;-) € 81/2 (T x R) and 02q € 8;3/2('11‘ x R) in the expression of ¢o, we obtain
sup (00 (0:000) (6 5,0,1)| = (™). (4.40)

J1€2Zn

To complete the proof we observe that (4.37) follows from (4.39) and
Tz, 00 (95(q206%)(£)e'? ey |22y < Z (89 (q200)(t; 4,0,n)] = O(n~/?),

JE€Zn

where the last estimate is due to (4.40) and card Z,, = O(n'/2).

5. PROOF OF THEOREM 1.4
5.1. Asymptotic orthogonality between eigenvectors of H_; and H;.
Lemma 5.1. Let {vi1,}jen be as in Lemma 2.5. If ¢ > 0 is fized small enough, then
|k — 4] < (G + k%) = (o1 p,015)] < Cols)~H* (5.1)
holds with a certain constant Cy, independent of k,j € N.
Proof. Due to Proposition 2.6,
(01, v1,5) = (€799, €9%;) 22y = oy + O(K™/2 4+ 571/%) (5.2)
holds with vy ; := (ur(—9g),u;(9))ez). Let

f;,t (9) = e:|:2ignl/2 sin +ig? sin 6 cos 0+in0' (53)
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Then u,(£g) = Frff and

_ _ g (Y2412
Vg = (Frfy Frf ) e@ = (f e =/ e 1R

holds with

j0.0) 40
2

: o (k—j)0
\II(],G,IC) = 2951119 =+ m
Denote Zy := [—57/6, —7/6] U [7/6,57/6]. Then

0€Ty= |059(5,0,k)| =|2gsinf] >g >0

and van der Corput Lemma (see Section 6) ensures

N VERE RV e (7
/ e~ 1 124it/ )\P(],O,k)? _ O((jl/Z +k1/2)71/2)'
o ™

Denote 7; 1, := (k — j)/(5*/? + k'/2) and assume that |7; x| < g/2. Then
0 € —mm\ZIy = |0s¥(4,0,k)| > |29 cosb| — |1 k| > g/2>0

and the non-stationary phase estimate (see Lemma 6.1(a)) ensures

/ efi(j1/2+k1/2)‘l’(j,0,k)d76‘ _ O((j1/2 + k1/2)’1).
[~m,7\To 2m

O

Corollary 5.2. For j, k € N we denote V(j,k) := (ej, Vex). If ¢ > 0 is small enough,
then there exists C' > 0 such that

Im —n| < en'/? = [V(m,n)| < C(n)~/* (5.4)

Proof. By definition of V, if 4, j € N then
V(o + 2i,lp + 29) = %<('U_17l0+i70), (0,v_1,1945)) 2y xe2(y) = 0 (5.5)
V(lo+2i+ 1,10+ 2 +1) = 2((0,014), (v1,5,0)) 2y ez () = 0 (5.6)

V(o4 2i, 0o+ 25 + 1) = S((v_1,19+1,0), (v1,7, 0)) ez vy xe2 ) = 5 (V—1,19445 v1,5)- (5.7)
To complete the proof we fix jo € N large enough and consider k = Iy + i, m = ly + 24,
n =1Iyp+ 25+ 1 with j > jo. Then one has

Im —n| < cen'? = |5 — k| < c(jV? + kV/?),
hence |V (m,n)| = ‘%’yjﬂ <Co|5]G) V< Oy Y4 ifn > 1+ 240 + 1. O
5.2. The auxiliary operator K.
Notation 5.3. In the sequel K € B(¢*(N)) is the operator defined by
V. k)

(ej, Ker)pz = K(j, k) = dj — dy
0 ifd; =dy

if d; # dy, 538)

where V(j,k) := (e;, Vey) for j, k € N.

Lemma 5.4. The operator K is compact and anti-Hermitian in (*(N). Moreover, there
is C' > 0 such that
|Ken|| < C(n)~Y* for alln € N. (5.9)
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Proof. Step 1. We first observe that K (k,j) = —K(j, k), i.e. the matrix (K (j,k));rez
is anti-Hermitian and (5.1) ensures

n>c kP? = |Vin+kn) <Cn V4 (5.10)
Let ¢g > 0 be fixed small enough. Then d; # di, = |d; — di| > co(j — k) and

1|V, R

We also observe that the Parseval’s equality ensures
Z 1462 k)|2 = Z |<V(;a\""'2>é2(1\1)x€2(1\1)|2 = HVVgH%?(N)xP(N) < Co. (5.12)
JEN jEN

Step 2. For N € N we define Ky € B(¢?(N)) by

K(j,k) if|j— k|l <N

5.13
0 iflj—kl>N (5.13)

Kn(j,k) = (ej, Kner)z(v) = {

Since K is a finite band matrix and each diagonal Ky (k + n,n) — 0 when n — oo
due to (5.10), the operator Ky is compact. If Ky (m,n) := K(m,n) — Kn(m,n), then

YoIENG R <t Y VG0l (5.14)

jEN {GEN: |j—k|>N} 7=k

and using the Cauchy-Schwarz inequality, we can estimate the right hand side of (5.14)
by 06103/2511\,/2, where we have denoted oy :=23 (m)~% and Cj is as in (5.12).
Thus the Schur boundedness test ensures K — Ky € B(¢%(Z)) and

IK — Ky|| < cgtCy/?6)? ——0. (5.15)
— 0
Since K = K — K € B(/*(N)) and Ky are compact, (5.15) implies that K is compact.

Step 3. We can estimate

[ Kenll® =D 1K (,n)|* < cg* (M, + M),

jEN
where
V(j,n)? - , -
Mui= 3 R StV < Gt
|j—n|>cnl/2 jJEN
due to (5.12) and
V(i 2
M = Z |< (i’ Z§|2 < 212 Z<m _ n>_2 < C{n_l/Q
|[j—n|<cnl/2 J meN

due to (5.4). O
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5.3. Similarity transformation.
Notation 5.5. In the sequel W denotes the operator defined in B(¢?(N)) by

(ej, Wer) = W(j, k) = (dj — di) K (5, k) =V (j, k). (5.16)
Lemma 5.6. (a) If e ¢ N then W = 0. If e € N then W is compact, self-adjoint and
there is C' > 0 such that

[[Wen|| < Cn=Y* for n e N*, (5.17)

(b) The operator I + K is invertible and (> (N) is an invariant subspace of I + K.
(¢c) The operator R := (KV — W)(I + K)~! is compact and one has

H=(I+K) " D+R)(I+K). (5.18)
Proof. (a) We first observe that V(j,j) = 0 implies W (3, j) = 0 and
dj #di = W(j, k) =0. (5.19)

If € ¢ N then j # k implies d; # di and W (j, k) = 0 follows. If € € N then W (j,k) # 0
implies d; = dy, and |j — k| = 1, hence all non zero entries of the matrix (W (4, %)), kez
have the form W(j,j7+1) =W (j+1,5) = =V(j + 1,7j) and W is compact because
V(j+1,7) = 0 when j — oo.

(b) Since the operator 1K is self-adjoint, the operator i+ 1K = i(f + K) is invertible and
dj(Ker)(j) = (dj — di)(Kex)(j) + (K Dey)(j) = (W +V + KD)e)(5)  (5.20)

implies that d;(Kz)(j) = (W +V + KD)z)(j) holds when x € ¢*!(N). Since d; ~ 3j
as j — 0o, we can conclude that z € /2}(N) = DKz € (?(N) = Kz € (*1(N) and

DK =W +V + KD on ¢*'(N). (5.21)
(c) Due to (5.21) we can write V + KD = DK — W on ¢**(N) and
(I+K)H=D+V+KD+KV=D+DK-W+KV =
=DI+K)-W+KV=(D+R)(I+K).

Applying (I + K)~! from the left, we obtain (5.18). Moreover R is compact because K
and W are compact. ([l

5.4. End of the proof of (1.15). Let K and R be as in Lemma 5.6. We denote
H :=D+R. (5.22)

We claim that o(H') = o(H) and the corresponding eigenvalues have the same multi-
plicity. Indeed, (5.18) ensures

H—z=I+K)""(H - 2)(I+K)forzeC (5.23)
and taking zg € C\ (¢(H) Uo(H')) we find that
(I + K)|eagy = (H —20) (I + K)(H — 2)

is invertible in B(¢?1(N)). Thus H — z is invertible 21 (N) — ¢?(N) if and only if H' — 2
is invertible 21(N) — (*(N), i.e. o(H') = o(H) and

(H—2)t'=T+K) " H —2)"'(I+K) for € C\ o(H). (5.24)
Finally, the equality rank Py(H) = rank P\ (H’) follows from the fact that (5.24) implies
Py(H) = (I + K)"'P\(H")(I + K).
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Let (An(H))nen = (An(H'))nen be the non-decreasing sequence of eigenvalues of H
(and of H'), counting the multiplicities. We need to prove the large n estimate

M(H) = Mo (H') = dy, + O(n~ %), (5.25)

For this purpose we first observe that there exist constants C, C’ such that
R enl| < CIK enl| + |[Wen[) < C'n~ 1/ (5.26)

holds for all n € N*. It is easy to see that we obtain (5.25) using (5.26) and

Theorem 5.7. Let (dy,)nen be given by (2.14)-(2.16) and let I, denote the orthogonal
projection on the linear subspace generated by {e,, : dpy, = d,,}. If R is as in Lemma
5.6 and H = D + R, then one has the large n estimate

M(H') = dy + O(||R*IL, | 5(e2 vy )- (5.27)

Proof. 1f € ¢ N then ||R*IL,|| = ||R*en|| and the estimate (5.27) was proved in Lemma
2.1 of the paper Janas and Naboko [13]. If € € N then the eigenvalues are double for
n > lp and the estimate (5.27) can be easily deduced from the result of Malejki [18]
similarly as in Appendix of [7]. O

6. ESTIMATES OF OSCILLATORY INTEGRALS

Lemma 6.1. We us fix cg > 0 and 6y, 01 € R satisfying 0y < 01. Let T be an arbitrary
set of parameters. For every 7 € T we consider smooth functions h, : [6p,61] — C,
U, :[6p,01] — R and for A € R we denote

01

Mo(\) := / A On_(0)de. (6.1)
0o

We assume that the derivative satisfies |W/.(0)] > co for every 0 € [0p,601] and 7 € T.

(a) If {h;}reT is bounded in C1([0p,01]) and {V,} e is bounded in C?([0y,6:1]), then
there is a constant Cy such that the estimate

M (M| < ColAI™ (6.2)

holds for all T € T and A € R\ {0}.

(b) If [600,61] = [—7, 7], {h:}reT is bounded in C°(T), {V.};eT is bounded in C>°(T)
and U, (w) — V. (—7) € 27Z holds for every T € T, then for every N € N one can find
a constant C'y > 0 such that

|M-(m)| < Cym™N (6.3)
holds for all T € T and m € N*.

Proof. (a) The integration by parts gives

N b oo he 17
j)\MT()\) :/ (elkllh) 77/' :/ el’\\I'ﬂCT(hT) + [el)\\I/T ‘,r:| (6.4)
6o \IIT 6o \I/T 0o
where L, is the differential operator defined by L£,(f) := —(f/¥.). To complete

the proof of (6.2), it suffices to observe that the right hand side of (6.4) is bounded
uniformly with respect to 7 € 7 and A € R*.
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(b) If [fp,61] = [-7, 7] and A = m € N, then the last term in the right hand side of
(6.4) disappears due to the assumptions of 27-periodicity and we obtain
(im)N M. (A) = / oMY LN (g ) (6.5)

after NV integrations by parts. To complete the proof of (6.3), we observe that the right
hand side of (6.5) is bounded uniformly with respect to 7 € T and m € N*. O

Lemma 6.2. (J. van der Corput) Assume that co > 0. If U: [0y, 01] — R is smooth
and its second derivative satisfies |U"| > co, then there is a constant Cy depending only
on ¢y, such that for all A € R* one has

61 X
]/ O d@‘ < ColAI7Y2, (6.6)
0o
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