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(a) NHST Statistical Report (b) Converted Report (c) Graphical Report

An independent Student’s t-test did not show that the overall 
effect of gesture compared to tap on WPM was significant 
(t(36) = 1.26, p = 0.21). It did show that the effect on CER 
and KSPC was significant (t(36) = 2.12, p = 0.04 and t(36) = 
15.77, p < 0.001).

Figure 1: Statslator takes existing statistical reports (a) using NHST or estimation; (b) calculates all possible statistical values

using accurate conversion equations; (c) shows the report using graphical and interactive figures configurable by readers.

ABSTRACT

Inferential statistics are typically reported using p-values (NHST) or

confidence intervals on effect sizes (estimation). This is done using

a range of styles, but some readers have preferences about how

statistics should be presented and others have limited familiarity

with alternatives. We propose a system to interactively translate

statistical reporting styles in existing documents, allowing readers

to switch between interval estimates, p-values, and standardized

effect sizes, all using textual and graphical reports that are dynamic

and user customizable. Forty years of CHI papers are examined.

Using only the information reported in scientific documents, equa-

tions are derived and validated on simulated datasets to show that

conversions between p-values and confidence intervals are accu-

rate. The system helps readers interpret statistics in a familiar style,

compare reports that use different styles, and even validate the

correctness of reports. Code and data: https://osf.io/x4ue7
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1 INTRODUCTION

When studying a population, a common approach is to collect data

from a random sample of that population (e.g., participants) and

use inferential statistics to generalize the findings. A detailed report

of this analysis in scientific documents enables readers to evaluate

the strength of the findings. However, the presentation of these

reports as imposed by authors might be hard to understand [20, 65],

incomplete [94], even misleading [7, 41, 68].

Within the HCI community and other empirical fields, statistical

reports commonly include p-values obtained from null hypothesis
significance testing (NHST). However, p-values and their associated
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reporting language might mislead even trained scientists [68, 74],

and reporting p-values alone is insufficient to draw meaningful and

nuanced conclusions, capture uncertainty of results, and answer

quantitative questions about the effect [21, 27, 41, 67]. For these

reasons, some recommend reporting additional information such

as effect sizes and interval estimates [5, 94], while others advocate

for avoiding p-values and NHST altogether [15, 20]. This debate is

particularly visible in HCI where all positions cohabit. P-values are

prevalent in publications [8, 97] and more robust NHST approaches

are being developed [35, 99]. Yet, workshops and articles are also

promoting estimation [15, 27, 43] and bayesian approaches [61, 81].

While much of the ongoing debate is about what to report, it

also extends to how inferential statistics should be reported. For

example, what symbols to use [5, sec 6.44], what words to commu-

nicate findings [9, 27], and what numeric precision to use [10]. How

authors report statistics continuously evolves as the field matures:

for example, the practise of reporting p-values using inequalities

has noticeably decreased since 2010 [8]. New reporting styles like

graphical presentations of effect sizes can effectively convey the

information [15, 43, 48], but such figures are seldom found in doc-

uments because they can be difficult to create [17, 60] and take

additional space [2, 43]. Even graphical representations can be mis-

understood, for example, error bars may depict standard deviations,

standard errors, and confidence intervals [22]. At best, the meaning

of error bars is clear and a reader can recover a quantity of interest

by “eyeballing it” [21, ch 5]. At worst, a reader can form the wrong

conclusion about the depicted results [65].

It is virtually impossible to please all readers with one style of

report for inferential analysis. For this reason, some recommend

including multiple reporting styles [5, sec 3.7], or even multiple

alternative analysis (“multiverse analysis”) [45, 92] which can be

made interactive to give readers control over the presentation [28].

However, they are difficult to create [44, 70, 88] and often incompat-

ible with publishing workflows that impose page limits and digital

formats with no support for interactivity [72]. Even in the unlikely

case that all authors adopt reporting styles akin to interactive mul-

tiverse analyses, it is unclear how previously published documents

could be supported, especially when their raw data is unavailable.

We argue for reader-centred statistics: readers should have the

final word on statistical inference presentation because what mat-

ters is correct interpretation, be it through estimation or NHST
1
,

textual or graphical content, or static or interactive documents.

Moreover, this should be possible with old and new documents

without substantial efforts. Our key insight is that most scientific

articles report enough information about at least one type of infer-

ential statistical analysis which can be translated into a different

reporting style. For example, a confidence interval (CI) can be calcu-

lated given a p-value and means. The difficulty lies in three aspects:

(1) obtaining the statistical information—we analyzed statistical

reports at CHI and propose a semi-automatic pipeline to extract

common statistical reports; (2) converting the information into a

target statistic—we demonstrate how to do these conversions and

thoroughly evaluate their accuracy given common reporting prac-

tices; and (3) presenting the converted information back to readers

1
Some argue p-values cannot be properly interpreted even when their pitfalls are

understood [15]. We believe readers should still decide if they wish to use p-values.

in their preferred style—we design a document reader that allows

readers to customize textual, graphical, and interactive statistical

reports. We implement our solutions to these aspects into Statslator,

a tool for readers to retro-actively encode best practises in terms

of statistical reporting with no author involvement. This supports

documents that were already disseminated and bypasses limitations

due to outdated publishing practises that discourage the use of fig-

ures because of page limits and prevent interactive documents due

to reliance on the PDF format or inflexible publishing workflows.

2 BACKGROUND AND RELATEDWORK

We first review the challenges associated with different ways of

reporting statistics and then detail recommendations made by the

community to tackle these challenges. We then detail how previ-

ous systems allowed readers to personalize documents without

involving authors.

2.1 Challenges with Statistical Reporting

Prevalent practices in scientific documents can make statistical

reports hard to understand.

First, there is much confusion about the meaning of statistical val-
ues. For example, the potential for misinterpretating p-values [21,

41]: a p-value might lead a reader to believe the result is more cer-

tain than it is (dichotomous thinking); that it conveys effect size

(ambiguous use of “significant”); and that there is no difference

when p>.05 or that p is the probability that the null hypothesis is

true (inverse probability fallacy). But misinterpretations are not

limited to p-values. Any statistical report not fully understood by

readers might be misinterpreted, including standard errors, confi-

dence intervals [7], and effect sizes [62]. Thus, it is important to

give readers access to statistics they are familiar with, or default to

ones that are easily understood.

Second, there are many equivalent ways to report the same sta-
tistical values, all requiring a different interpretation. Consider two
groups 𝑀1 = 5, 𝑆𝐷 = 1 and 𝑀2 = 7, 𝑆𝐷2 = 3. Now consider the

multitude of valid ways to convey the effect size (calculated value in

parenthesis): the mean difference (2), Cohen’s d (.89), Glass’ 𝛿 (.67),

the rank-biserial correlation (.41), odds ratio (5.1), 𝜂2 (.17), Cohen’s

f (.45), and the common language effect size (.74). Worse, there is

a lack of consensus on how to calculate some specific effect sizes

such as Cohen’s d and all variations are found in documents, with

no indication of what formula was used (like we just did) [66]. Sim-

ilarly, a confidence interval can be reported at various confidence

level, and for different estimates [21, p 118]. These inconsistencies

defeat most of the purpose of standardized effect sizes to convey

an effect size that is comparable across studies.

Third, there are many ways to report and represent statistical val-
ues. In textual reports, values are often introduced with letters and

Greek symbols [5, sec 6.44]. Besides being confusing, these symbols

are inconsistent across documents and sometimes collide. For exam-

ple, 𝑑 can refer to any of the four ways of calculating Cohen’s d [66].

Similarly, 𝑟 is the symbol for both the rank-biseral correlation and

the Pearson correlation coefficient (which are equivalent only in

specific situations). The reported values themselves can be rounded

with arbitrary precision, or they can be given as inequalities, often

the case for p-values [8, 10].
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Similar inconsistencies are in graphical reports of statistics. There

is a wide diversity of chart types, and much has been written about

how charts can deceive or confuse an inattentive reader [13, 79].

Additionally, standard graphical marks may not have consistent

meanings. For example, the visual style of an “error bar” is easily

recognizable, but whether they represent standard error, standard

deviation or a confidence interval may be misinterpreted or un-

known [7, 22, 51, 65]. Even the simple bars or points could be

representing separate means or mean differences [20]. With ade-

quate detail in a caption, these kinds of issues can be mitigated and

some recommend graphical reports instead of text [27, 38, 43, 48].

But, authors are reluctant to include many graphs since they can

be difficult and time consuming to create and take up additional

space [2, 17, 60], which is unwanted for publications that limit page

size or for peer review guidelines that equate contribution size to

paper length.

Statistical reports are already difficult to read and understand for

readers, and the diversity and inconsistency in how statistics are

reported only makes it more challenging. Our approach enables a

customizable presentation of statistical results controlled by readers,

with embedded context, consistent calculations, and connections

across reporting styles.

2.2 Recommendations to Report Statistics

The primary response to challenges with statistical reporting is to

encourage authors to present results using a consistent, detailed,

and clear style. For example, the American Psychological Associ-

ation (APA) states that “complete reporting of all tested hypotheses
and estimates of appropriate effect sizes and confidence intervals are
the minimum expectations for all APA journals” [5, sec 3.7]. To make

these reports consistent, APA also recommends specific phrasings

and symbols. Within the HCI community, similar recommendations

have been proposed [27, 43], and tools have been created to assist

authors in the process [57, 98]. But these guidelines have yet to be-

come standard practice [39, 40]: as of 2018, about 15% of CHI papers

included confidence interval whereas 50% reported p-values [8].

In parallel, these recommendations keep evolving. For example,

the APA started recommending the use of CIs in its fifth edition

following a push from the community [46, 64]. Alternative presen-

tations of statistics have been proposed and are often supported

by experimental evidence. For example, figures showing effect size

and confidence intervals can help readers [27, 43, 48]. Hypothetical

outcome plots [56] (HOPs) rely on animations and help convey

uncertainty [59]. Multiverse analysis reports [45, 92] that might be

explorable [28], can highlight how fragile or strong the results are.

Analogies and some more natural effect sizes such as the common

language effect size are often better understood [62].

While recommendations exist, the bottleneck seems to be in

their implementation, either because of slow adoption, difficulty of

creation, or publishing format limitations. And of course, even if

all these issues were to be solved, the problem would remain for

existing documents.

2.3 Personalized Reading Experience

When authors’ adoption of new guidelines is slow or unlikely to

happen, a possible solution is to offer tools for readers. Several

systems have been proposed that take as input a document and

augment it in various ways.

For example, reported measurements such as distances might be

difficult to interpret if readers cannot relate to them. Thus, systems

have been proposed to automatically generate analogies and relat-

able explanations and visualizations of the measurements reported

in a document [55, 63]. Similarly, there is a wealth of research on

how to generate visualizations to accompany documents, either to

give more contexts while reading by leveraging external databases

of relevant information [37, 54], to generate visualization in-context

for data that is already in the document but scattered in textual

tables [6], or simply to give readers a way to annotate documents

using charts so that they can make sense of numbers in-text [71].

These approaches have the advantage of being immediately ap-

plicable and to all documents, including those already disseminated.

In this work, we adapt this approach to the context of statistical

reports, and adjust the generated presentations to fit the numerous

recommendations made by the community.

3 WHAT IS REPORTED AT CHI?

We analyzed the proceedings of ACM CHI conferences to better

understand what inferential statistics are reported and how they

are presented. The goal is to gauge the feasibility of generating

different statistical representations from the data reported in text.

We examine CHI papers because HCI is a multidisciplinary field and

CHI is very large and diverse. Statistical practises likely vary among

CHI authors depending on their field, background, and exposure to

inferential statistics.

Our analysis focuses on text, not values included within figures

or tables, and our approach does not consider complex sentence

structures. Therefore, our results should be viewed as lower bounds

rather than absolute proportions. The code and data of our analysis

is accessible online: https://osf.io/x4ue7/

3.1 Corpus of Papers and Analysis

We scraped 9,611 PDFs from 1982 to 2022
2
. For each paper, text

was extracted using a Python port
3
of MuPDF

4
and a set of case-

insensitive regular expressions as identified statistical reports:

• One way to identify reported values is to look for numbers pre-

ceded by the relationship symbol ‘=’, ‘<’, ‘>’, ‘≤’, ‘≥’, ‘<<’, or
‘>>’. When found, the number and preceding word or symbol

were extracted.

• Another way to identify values reported in text without a rela-

tionship symbol is to look for names of common descriptive and

inferential statistics such as ‘mean’, ‘median’, ‘standard devia-

tion’ and variations such as ‘M’, ‘Mdn’, and ‘µ’. We only extracted

those followed by the verb ‘be’ in any form such as ‘is’, ‘was’,

and ‘were’, and then followed by a number.

• To count the mention of confidence intervals, we looked for the

terms ‘%CI’, ‘% CI’, and ‘confidence intervals’.

• To detect statistical tests, we checked for the name of a specific

test among a list of 15 popular ones, including ‘t-test’, ‘ANOVA’

and possible variations such as ‘ANCOVA’ and ‘MANOVA’.

2
Note CHI was not held in 1984

3
https://github.com/pymupdf/PyMuPDF

4
https://mupdf.com/

https://osf.io/x4ue7/
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Figure 2: Upset plot showing the number of papers that re-

port different sets of CIs, means, standard deviations, and

p-values. Lines connecting dots across rows indicate what

values are in the intersecting set.

The results were harmonized by reviewing the top candidates and

grouping the ones referring to identical values. For example, ‘mean’,

‘average’, ‘M’, and ‘µ’ were all grouped as ‘mean’. Statistical tests

known under different names were also grouped, such as ‘Wilcoxon

Rank Sum Test’ and ‘Mann-Whitney U Test’.

3.2 Results

As a sanity check, we compared our results to Besançon and Drag-

icevic [8] who also used regular expressions to examine CHI pro-

ceedings although their analysis was limited to p-values and CIs

from 2010 and 2018. We found 5.9% to 14.2% of CI for 2010-2018,

they report “from 6% to 15%”. We found 48.4% of p-values, they

report “around 50%”.

3.2.1 Reported Values. 6,266 papers (65%) mentioned at least one

value. P-values (66%) were most common, followed by standard

deviations (39%), means (35%) , F-values (28%), t-scores (19%), and

confidence intervals (13%). Standard errors were found in only 2%

of papers. Standardized effect sizes were also seldom found, such

as Pearson’s correlation coefficient (11%) and Cohen’s d (5%).

Figure 2 shows the number of times a CI, mean, standard devi-

ation, or p-value, or combination of these values, are reported in

a paper. Of particular interest are papers reporting both p-values

and means; means and standard deviations; and CI and means.

For most of these 2,012 papers reporting p-values and means, we

will show translating to a different reporting style is possible (sec-

tion 4). Although papers reporting only p-values (1,612) cannot be

translated to CIs, standardized effect sizes can still be calculated

to complete the report (see section 4.3.1). For the remaining 2,642

papers, additional values will be needed. Overall, a large propor-

tion of CHI papers have useful statistical reports, and recall that

our conservative analysis likely underestimate actual occurrences

and it is possible that values like means can be estimated from

figures [58, 73]

3.2.2 Number of Decimals. Consistent with APA recommenda-

tions [5, sec 6.36], standard deviations, means, F-values, t-scores,

and CIs were reported with a median of two decimals. The ex-

ception was for p-values, which were reported with a median of

three decimals. However, 17% of these p-values were reported as

inequalities with values ‘0.05’ or ‘0.01’.

3.2.3 Statistical Tests. 4,800 papers (50%) mentioned at least one

statistical test. Among these papers, t-tests were mentioned in most

(61%), followed by ANOVA (49%), Wilcoxon signed-rank test (10%),

Mann-Whitney U test (9%), and Chi-squared test (9%). Other tests,

such as Friedman, were found in less than 5% of these papers.

4 CONVERTING STATISTICAL REPORTS

Based on the information reported in papers, we present a set of

equations to perform bidirectional conversions between NHST-

based reports and estimation-based reports. To our knowledge,

these derivations were not or superficially covered, especially in

the context of practices common in HCI studies. For example, some

readers might have been taught the “conversion rule” that 95% CI

is about twice as large as the standard error; the “overlap rule” that

if two independent 95% CIs on the separate mean just touch, p

is about 0.01, and no overlap means p<0.01; and the “difference

rule” that if p>.05 then the 95% CI on the effect size will extend

slightly past 0 [21, p 183]. What is sometimes omitted, however, is

how these methods were derived, how precise conversions can be

obtained, and when they do not work. For example, the overlap rule

for a CI fails when the study follows a within-subject design [21,

p 200], and the other two assume large sample sizes. Similarly, a

widely cited article in the medical science community described

how to convert p-values into CIs [3], but it assumes more than 60

participants: if applied to smaller studies typical in HCI [12], the

converted estimations would be overoptimistic.

For all conversions, we presume the size of the groups 𝑁1 and

𝑁2 and the study design are known (i.e., within or between-subject)
since this information would be reported in any rigorous scientific

report. By extension, the degrees of freedom 𝑑 𝑓 for a t-test can be

calculated if not already reported. For within designs 𝑑 𝑓 = 𝑁 − 1,

otherwise 𝑑 𝑓 = 𝑁1 + 𝑁2 − 2. Unless specified otherwise, equations

are valid for all variations of t-test, within and between subject,

groups of various sizes, and with equal or unequal variances.

4.1 Converting to Confidence Intervals

When comparing two groups, the CI of interest is the CI for the

effect size, where the effect size is usually the difference between

the two group means. This CI can replace a p-value as it conveys

the estimate of effect size and the uncertainty around it.

The CI is calculated as [Δ𝑀 − 𝑀𝑜𝐸,Δ𝑀 + 𝑀𝑜𝐸] where Δ𝑀 =

𝑀2 −𝑀1 is the difference of the group means, or “unstandardized”

effect size, and𝑀𝑜𝐸 is the margin of error (corresponding to half

the CI). Below, we show different ways to calculate𝑀𝑜𝐸 needed to

obtain the CI.

4.1.1 From means and t-score. Cumming [21, p 163] explains that

the calculation of the𝑀𝑜𝐸 depends on the t component𝐶𝑡 = 𝑡𝛼 (𝑑 𝑓 ),
the variability component 𝐶𝑣 , and the sample size component 𝐶𝑠 .

Adopting this terminology, the calculation of a t-score can be ex-

pressed as follows.

𝑡𝑠𝑐𝑜𝑟𝑒 =
𝑀2 −𝑀1

𝐶𝑣 ×𝐶𝑠
(1)
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Note this formulation is an abstraction since the calculation of

𝐶𝑣 and 𝐶𝑠 depends on the choice of t-test and the study design.

But by referring to these three components, our equations are

compatible with all standard t-tests. As such, the equation above

can be rearranged to recover𝐶𝑣 ×𝐶𝑠 given𝑀1 and𝑀2 and a t-score.

The remaining 𝐶𝑡 term is calculated using the t-distribution for a

given degree of freedom (noted 𝑡 (𝑑 𝑓 )). As a result, given a t-score

𝑡𝑠𝑐𝑜𝑟𝑒 , the means of both groups𝑀1 and𝑀2, the𝑀𝑜𝐸 at confidence

level 𝛼 is calculated as follows

𝑀𝑜𝐸𝛼 = 𝑡𝛼 (𝑑 𝑓 ) ×
𝑀2 −𝑀1

𝑡𝑠𝑐𝑜𝑟𝑒
(2)

A simplification that is often made is to use the normal distribution

instead of the t-distribution; a large sample size results in large

degrees of freedom, in which case the t-distribution approximates

a normal distribution, so knowing 𝑑 𝑓 can be relaxed. For exam-

ple, for a large 𝑑 𝑓 and a 95% confidence level, 𝑡.95 ≈ 𝑧.95 = 1.96

which simplifies to the equation presented by Altman and Bland [3].

However, in many HCI studies, the sample size is small, frequently

around 12 participants [12]. In these cases, this assumption leads

to narrower “overoptimistic” CIs and should be avoided.

4.1.2 From means and p-value. The p-value of a t-test is measured

by the area under the curve of the t-distribution corresponding to

the t-score. It refers to the probability of obtaining the t-score or a

more extreme one when assuming the null hypothesis is true. Thus,

to recover the t-score from a two-tailed p-value, we can use the

inverse cumulative distribution function to recover the t-score that

gives an area under the curve matching the p-value. As such, only

the p-value and a degree of freedom are needed.

Once the t-score is recovered, Equation 2 is used to calculate the

CI. One caveat of this approach is when p-values are reported using

inequalities, although this practise is declining [8]. In these cases,

the CI will be larger and more likely to cause type 2 errors. Thus, it

is often preferable to use the t-score when reported (section 4.1.1).

4.1.3 From independent means and standard deviations. Depending
on whether the study design is within or between subject, the group

means (and t-test) will be dependent or independent. Given the

means and standard deviations of two between subject groups, an

independent t-test can be calculated to obtain a t-score. Equation 2

can then be used to obtain the CI. Note that the same does not

apply to a dependent t-test for a within subject condition because

the required standard deviation of the paired differences cannot be

estimated from means and standard deviations alone. In this case,

one of the solutions above should be used.

4.1.4 From a CI at a different confidence level. Given a confidence

interval at confidence level 𝛼0, we can adapt equation 2 to calculate

the CI at 𝛼1:

𝑀𝑜𝐸𝛼1 =
𝑀𝑜𝐸𝛼0

𝑡𝛼0 (𝑑 𝑓 )
× 𝑡𝛼1 (𝑑 𝑓 ) (3)

4.1.5 From CIs on separate means. Given two CIs on means of two

independent groups, the CI of the difference can be recovered by

first calculating the mean and standard deviation of each group,

and then using the method from section 4.1.3. Assuming the t or

normal distribution were used, the CI is symmetrical such that its

centre is the mean of the sample. For the standard deviation 𝑠𝑑 , it

can be recovered by rearranging the equation that calculates the

𝑀𝑜𝐸 (half of the CI),

𝑠𝑑 =
𝑀𝑜𝐸𝛼

𝑡𝛼 (𝑁 − 1) ×
√
𝑁 (4)

In case another method such as bootstrapping was used to calculate

the CI, the recovered 𝑠𝑑 will be approximate, although it is reason-

able to calculate the CI on the difference of means (section 5.5).

Note also that, for two dependent groups, the separate CIs are

not enough and the t-score or p-value will be needed to recover the

standard deviation of the paired differences.

4.2 Converting to p-values

Given a CI on the mean difference of two groups, and the means of

both groups 𝑀1 and 𝑀2, equation 2 can be rearranged to recover

the t-score,

𝑡𝑠𝑐𝑜𝑟𝑒 =
𝑡𝛼 (𝑑 𝑓 )
𝑀𝑜𝐸𝛼

× (𝑀2 −𝑀1) (5)

Then, the t-score is converted into a two-tailed p-value using the

the cumulative distribution function of the t-distribution.

Note that this assumes the t distribution was used to calculate

the CI. The validity of this conversion with bootstrapped CIs is

evaluated in section 5.5.

4.3 Converting to Standardized Effect Sizes

Whereas section 4.1 used themean difference as an “unstandardized”

effect size, standardized effect sizes such as Cohen’s d might be of

interest to readers when comparing results that are on different

scales and from different experiments [20]. Many effect sizes have

been proposed, but most can be converted from one to another.

Thus, below we show how to obtain Cohen’s d, and how to convert

it to a different effect size. These equations can be trivially extended

to the case where only CIs are available by first converting the CI

to a p-value (section 4.2).

4.3.1 From standard deviations. Cohen’s d is calculated by dividing
the mean difference by a ‘standardizer’ which differs depending on

the study design. For a between-subject study, the recommended

standardizer is the pooled standard deviation [21, 66]. Given the

standard deviations of two groups 𝑆𝐷1 and 𝑆𝐷2,

𝑑
between

=
𝑀2 −𝑀1√︂

(𝑁1−1)𝑆𝐷2

1
+(𝑁2−1)𝑆𝐷2

2

𝑑𝑓

(6)

For a within subject design, the standardizer is usually a pooled

average of the standard deviations [21, p 204],

𝑑
within

=
𝑀2 −𝑀1√︃
𝑆𝐷2

1
+𝑆𝐷2

2

2

(7)

4.3.2 From a t-score (or p-value). Cohen’s d can be obtained from

just a t-score (and, by extension, a p-value). We report the equations

obtained from Daniël Lakens [66]:

𝑑
between

= 𝑡𝑠𝑐𝑜𝑟𝑒

√︂
1

𝑁1

+ 1

𝑁2

(8)

𝑑
within

=
𝑡𝑠𝑐𝑜𝑟𝑒
√
𝑁

(9)
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4.3.3 Converting between effect sizes. The conversions between
effect sizes have been well covered by previous work, especially

in the context of meta-analyses. From Cohen’s d, it is possible to

calculate the point-biserial correlation and Hedges’ g [19]; odds

ratios [11]; and the “common language effect size”, also referred to

as the “probability of superiority” [29].

4.4 Other Considerations

4.4.1 Multiple comparisons and corrected p-values. If p-values are
corrected, then a converted CI will also be adjusted which may not

reflect the expected confidence level. Corrected p-values often ap-

pear in reports using exploratory contrasts to account for multiple

comparisons (e.g., post-hoc analysis after an ANOVA). Methods for

estimation-based statistics traditionally avoid this issue by planning

the analysis a priori to only focus on a few comparisons (typically

no more than the degrees of freedom) [21, p 414], or to adjust CIs

using different corrections [30]. When the original “uncorrected”

CI is desired, it can be obtained either by not relying on the p-value

(e.g., using the t-score or standard deviation), or by “unadjusting”

the p-value, assuming the original correction method is known.

The goal is to recover the uncorrected p-value 𝑝 given the cor-

rected p-value 𝑝∗. For a Bonferroni correction [75], 𝑝 = 𝑝∗/𝑛 where

𝑛 is the number of pairwise comparisons done. For a Šidák correc-

tion [90], 𝑝 = 1−(1−𝑝∗)1/𝑛 . For a Holm-Bonferroni correction [52],

𝑝 = 𝑝∗/(𝑛 − 𝑖) where 𝑖 is the position of the p-value in the list of

sorted p-values of all pairwise comparisons. In some cases, the

recovered uncorrected p-values might be inexact: first, a correction

for multiplicity typically increases p-values and might make them

exceed 1 in which case the p-value is often rounded to 1 and some

precision is lost. Second, for Holm-Bonferroni, the rank cannot be

recovered when the correction changed the ordering of the p-values.

These issues are investigated in detail in section 5.4.

4.4.2 t-test Variations. The equations above apply to common vari-

ations of t-tests including those for unequal variances, and unequal

sample sizes. For example, for Yuen and Welch’s t-test, the degrees

of freedom will be different, but the equation to convert the p-value

to CI will remain the same, given the correct 𝑑 𝑓 is used. Addition-

ally, in some situations, different tests are equivalent to t-tests. For

example, the result of an ANOVA on a condition with two-levels

will be identical to a t-test, and the t-score is the square root of the

F-score [49, 50].

4.4.3 Non-parametric statistics. Tests such as Wilcoxon signed

rank and Mann-Whitney are typically reported when data does not

follow the assumptions of a t-test. The equations above cannot be

used with these tests and it is unclear how CIs could be recovered

without the underlying data to find its distribution, and without

the test giving an indication of what that distribution might be.

4.4.4 Conversions With Incorrect Reports. One might also wonder

what the conversion would do in cases where a t-test was applied on

data that clearly breaks t-test assumptions. First, it is important to

recognize that a t-test might still be a reasonable choice: for example,

the central limit theorem states that, for some data distribution,

the mean of the data will be normally distributed given a large

enough number of samples, and thus, a t-test could be used. This

might explain why t-tests are so prevalent in CHI papers (61% of

papers that mentioned a statistical test). But more importantly, the

equations are meant to convert the results, not to fix them. Little

can be done if a statistical report uses the wrong test and obtains

potentially erroneous results.

4.4.5 Chaining Equations. Most equations can be rearranged to

calculate the measurements they involve. For the sake of brevity, we

presented each equation only once. However, we provide an open

source JavaScript library with more than 50 equations and possible

rearrangements
5
. Given a set of measurements, the library will

iteratively calculate all possible values. For a given value of interest,

the library can also describe the possible ways to calculate it, and

what values would be needed. It can also identify inconsistencies

when there are multiple ways of calculating a value, but they yield

different results (using a relative error threshold, currently 0.1).

5 CONVERSION ACCURACY

While the equations in section 4 are exact, written reports often

round numbers, may use small samples, and calculate values using

methods that could impact the conversion accuracy. Consistent

with validation approaches used in the statistics literature [35, 100],

we conduct Monte-Carlo simulations of common statistical reports.

Our three experiments use the conversion equations above to test

the accuracy of: (1) converting reports of t-tests to CI; (2) converting

reports of post-hoc pairwise comparisons with corrections to CI;

and (3) converting reports of confidence intervals calculated via

t-distribution and bootstrap methods to p-values.

The simulations are in python using numpy [47] and pingouin [95]

for statistical tests and distributions. The bootstrapped confidence

intervals are calculated using arch [89]. Code: https://osf.io/x4ue7.

5.1 Data Generation

As is standard with statistical simulations [35, 100], the datasets

used in our fictional reports are automatically generated to test

a wide range of study designs. All three experiments use gener-

ated designs that are prevalent in HCI with the following shared

conditions:

• design: Either between-subject or within-subject.

• size: The size of each group. We choose to use 8, 12, 24, or 40

because they are the most frequent sample sizes found in HCI

studies [12]. However, this does not mean we endorse these small

sample sizes since they might result in underpowered studies.

• decimals: The number of decimals used to round all values (mean,

standard deviation, t-score, and bounds of CI). For p-values, the

rounding is done using the number of significant digits to more

closely match what would be reported in a paper. For example,

with 1 decimal, a p=0.048 is rounded to 0.05.

Although some experiments might add conditions, they are all

performed on at least 4 sizes × 2 designs × 10,000 repetitions.

We use 10,000 repetitions as it has been shown to provide precise

approximations with designs typical of HCI studies [86]. The same

datasets are re-used when varying decimals. We note cases where

experiments add other conditions as appropriate.

5
http://ns.inria.fr/loki/statslator

https://osf.io/x4ue7
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5.1.1 Generation Process. The data generation process follows

standard practices [35, 100]. For two groups 𝐴 and 𝐵, their samples

are randomly drawn from two normal distributions NA (𝜇𝐴, 2)
and NB (𝜇𝐵, 2). When simulating populations with equal means,

then 𝜇𝐴 = 𝜇𝐵 = 0. Otherwise, when simulating populations with

different means, 𝜇𝐴 ≠ 𝜇𝐵 and they are randomly drawn from a

standard normal distribution N(0, 1).
When simulating within-subject designs, a random intercept

unique to each subject is added. For example, for a subject 𝑋 , an

intercept𝛼𝑋 is calculated and then added to the values of𝑋 in group

A and B. To calculate the intercept, we follow the procedure from

Elkin et al. [35]. The intercept is randomly drawn from N(0, 𝜎2)
where𝜎2 is randomly chosen to be either 0.1, 0.5 or 0.9 to represent a

“reasonable ratio between within-subject variance and between-subject
variance” [35].

To calculate the ground truth statistical power, we calculate t-

tests using the data generated with full numerical precision. We

then measure the proportion of obtained p-values that are inferior

to 0.05 when the simulated populations are truly different. Similarly,

to calculate the ground truth coverage, we obtain CIs using the

t-distribution of the data will full numerical precision. We then

measure the proportion of these CIs that include the true difference

in population means.

5.2 Metrics

We report standard metrics used in statistics literature to validate

CIs (coverage probability [91]) and p-values (type 1 error rate and

power [35]). Recall that our goal is to validate the equations pre-

sented in section 4. Thus, we consider a conversion as “correct” if

it recovers a p-value or CI that yields a similar score with these

metrics as the corresponding p-value or CI calculated from the raw

data. Below, we clarify the meaning of each metric.

5.2.1 Coverage of CI. The coverage corresponds to the proportion

of calculated CIs that contain the true population mean. For a confi-

dence level of 95%, this proportion should be as close as possible to

95%. This means that over a large number of repetitions, we expect

95% of the 95% CIs to contain the true population mean.

5.2.2 Type I error rate. Given a significance level 𝛼 , the type 1

error rate is the proportion of false positives where a true null

hypothesis is rejected (𝑝 < 𝛼). We use a significance level of 0.05

that is common in HCI, so this proportion should be as close as

possible to 5%. Over a large number of repetitions, we expect 5% of

p-values to be below 0.05 (even though they are type 1 errors).

5.2.3 Power. Statistical power is the proportion of true positives

where a false null hypothesis is correctly rejected (𝑝 < 𝛼). The

closer the power is to 100%, the more statistically powerful the test.

In practice, power can be much lower, especially when the sample

size is small.

5.3 Experiment 1: t-test reports to CIs

This first experiment simulates conversions to obtain 95% CIs from

reports comparing two groups with a t-test. In total, 240,000 reports

are simulated (4 sizes × 2 designs × decimals × 10,000 repetitions).

For each report, the 95% CI is calculated using either t-score and

means (section 4.1.1); p-value and means (section 4.1.2); or means

Table 1: Mean coverage (and standard deviations) of the 95%

CIs calculated from different conversion equations and for

different designs, and decimals. The closest the values are

to the one obtained from raw data, the better.

Values Used design

decimals

1 2 3

t-score + means within .918 (.27) .947 (.22) .950 (.22)

p-value + means within .927 (.26) .948 (.22) .950 (.22)

raw data within .950 (.22) .950 (.22) .950 (.22)

t-score + means between .917 (.28) .947 (.22) .950 (.22)

p-value + means between .927 (.26) .948 (.22) .950 (.22)

means + stds between .904 (.29) .938 (.24) .942 (.23)

raw data between .950 (.22) .950 (.22) .950 (.22)

and standard deviations (section 4.1.3). As baseline, we report the

coverage of the 95% CI calculated using the t-distribution of the

sample raw data.

5.3.1 Results. On average, three decimals is enough, two decimals

give reasonable estimates, but one decimal yields narrower and

overoptimistic CIs that do not capture 95% coverage. Table 1 shows

coverage of CIs depending on conversion method, the study design,

and the numeric precision of the values used. Perhaps because

rounding errors propagated, “means + stds” produced the least

accurate results with a coverage of 93.8% at two decimals and 90.4%

at one decimal.

5.4 Experiment 2: Corrected p-values to CIs

This experiment simulates reports of multiple pairwise t-test com-

parisons as would be done post-hoc after an omnibus test, such as

ANOVA. It differs from experiment 1 in that one report may contain

3, 6, or 10 comparisons (corresponding to an independent variable

with either 3, 4, or 5 levels) and the p-values are adjusted to coun-

teract the multiple comparisons problem. The goal is to evaluate

the impact of these corrections on the calculated CI, and test the

approximations to “unadjust” them. In total, 2,160,000 reports are

simulated (3 comparisons × 3 corrections × 4 sizes × 2 designs

× 3 decimals × 10,000 repetitions). The correction applied to

the p-values is either Bonferroni [75], Holm-Bonferroni [52] (that

we refer to as Holm to avoid confusion), or Šidák [90]. As baseline

comparison, we report coverage for 95% CI calculated using the

t-distribution of the sample raw data.

5.4.1 Results. On average, corrected p-values tend to increase the

confidence level of the CI to match a 99% CI. For reasons mentioned

in section 4.4.1, reversing a correction is approximate and works

best for Šidák. For Holm, the reversed correction results in recover-

ing lower CIs (down to 92% confidence) and recovering the CI from

the t-score should be preferred. Table 2 reports the breakdown of

coverage for the different corrections and uncorrected p-values.

5.5 Experiment 3: CIs to p-values

This experiment simulates reports that include 95% CI and for which

we would like to recover p-values. In total, 720,000 reports are

simulated (3 CI Method × 4 size × 2 design × 3 decimals × 10,000
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Table 2: Mean coverage (and standard deviations) of the 95%

CIs calculated from p-values adjusted using a different cor-

rection. For uncorrected values, the closest the values to

the the one obtained from raw data, the better.

correction

decimals

1 2 3

Bonferroni .968 (.18) .988 (.11) .990 (.10)

Šidák .968 (.18) .988 (.11) .990 (.10)

Holm .964 (.19) .984 (.12) .986 (.12)

Bonferroni uncorrected .938 (.24) .957 (.20) .959 (.20)

Šidák uncorrected .931 (.25) .951 (.22) .952 (.21)

Holm uncorrected .916 (.28) .925 (.26) .925 (.26)

raw data .950 (.22) .950 (.22) .950 (.22)

Table 3: Mean type 1 error rate (and standard deviations)

of the p-values calculated from the 95% CI obtained using

different CI Methods and varying decimals precision. The

closest the values to the the one obtained from raw data, the

better. Coverage of the 95% CI provided for reference.

ci-method Coverage

decimals

1 2 3

t-CI .948 (.22) .047 (.21) .051 (.22) .051 (.22)

percentile-CI .935 (.25) .078 (.27) .083 (.28) .083 (.28)

studentized-CI .944 (.23) .049 (.22) .055 (.23) .055 (.23)

bCA-CI .935 (.25) .075 (.26) .08 (.27) .081 (.27)

raw data - .051 (.22) .051 (.22) .051 (.22)

Table 4:Mean power (and standard deviations) of the p-values

calculated from the 95% CI obtained using differentCIMeth-

ods and varying decimals precision. The closest the values

to the the one obtained from raw data, the better. Coverage

of the 95% CI provided for reference.

ci-method Coverage

decimals

1 2 3

t-CI .948 (.22) .300 (.46) .307 (.46) .307 (.46)

percentile-CI .935 (.25) .353 (.48) .36 (.48) .361 (.48)

studentized-CI .944 (.23) .295 (.46) .306 (.46) .307 (.46)

bCA-CI .935 (.25) .349 (.48) .356 (.48) .357 (.48)

raw data - .307 (.46) .307 (.46) .307 (.46)

repetitions). The CI Method to calculate the 95% CI is either the t-

distribution (referred to as t-CI), or popular bootstrapping methods

such as percentile CI [32] (percentile-CI), the studentized CI [26]

(studentized-CI), or the bias-corrected and accelerated CI [33] (BCa-

CI). Bootstrapping methods use 2,000 resamples. As baseline, the

results for the p-value obtained from appropriate Student’s t-tests

are reported.

5.5.1 Results. Overall, p-values recovered from BCa and percentile

bootstrapped CIs tend to inflate the type 1 error rate, but are statisti-

cally more powerful. This increased number of type 1 errors might

be explained by these methods generating CIs with a coverage that

does not match 95%. This finding is consistent with previous work

that found the percentile and BCa method to perform poorly given

small samples (N<50), whereas at this size the t-distrubtion or the

studentized bootstrap is usually best [34, 100]. For comparison, our

experiments use sample sizes between 8 and 40.

P-values recovered from CI calculated from a t-distribution and

studentized bootstrap tend to match the p-values that would have

been obtained had a t-test been run, even at low one-decimal nu-

meric precision. Table 3 shows the breakdown of type 1 error rate

given the different CI methods and number of decimals. Table 4

shows the same breakdown for statistical power. Note that power

may appear low, but this is consistent with what is expected, and

has been shown before for such small sample sizes [25].

6 STATSLATOR PDF VIEWER

We developed the Statslator PDF viewer for readers to interac-

tively translate between statistical reporting presentation styles in

existing documents and generate statistical complementary pre-

sentations like effect sizes and graphical charts. The tool can help

readers interpret statistical reports. The user interface was designed

to make the capabilities of the conversion equations in our library

transparent to the reader, so they are aware of the provenance of

the data, what calculations are done, and the quality of conversions.

Readers use Statslator to open and view a PDF document, then

select content with statistical reporting they wish to translate into

a new presentation style or complementary presentation. The new

presentations appear in a sidebar, are highly configurable, and

present related statistical values to explore and validate, or values

that are easier to interpret correctly such as the common language

effect size [62] and S-values [84]. The reader can also choose from

different representations, such as animated hypothetical outcome

plots [56] and interactive plots, which, despite being powerful repre-

sentations, are unlikely to be found in existing documents because

of publishing formats and workflows. We describe the tool and its

features in more detail using three use case scenarios.

6.1 Changing the Style of Statistical Report

Sam got a new smartwatch and decides to review the literature to

find the best text entry method for this device. Sam first stumbles

across “WatchWriter” [42], an article describing a keyboard for

smartwatches. The article reports a user study that compares two

ways of operating the keyboard either through taps or gestures.

At first glance, it appears that the gesture version is preferable.

The article reports “A one-way between-subjects ANOVA did not
show that the overall effect of gesture compared to tap on WPM was
significant (F(1, 36) = 1.59, p = 0.21). It did show that the effect on
CER and KSPC was significant (F(1, 36) = 4.49, p = 0.04 and F(1, 36) =
248.60, p < 0.001).”6. However, Sam is not very familiar with NHST,

and the article does not report effect sizes making it difficult to

know if it is worth investing time to learn the gesture technique.

Thus, Sam selects the text mentioning the statistical results and the

table that reports the means for each condition.

Automatic Extraction & Verification. After the selection, the panel
on the right is updated to display two tables filled with statistical

6
The article mentions a one-way ANOVA with two levels which is strictly equivalent

to a t-test and thus is supported by our tool.
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Measures per comparisons
Such as effect sizes and p-values

Measures per conditions
Such as means, standard deviations

Green indicates values from the document
Blue indicates calculated values

Graphical Report
Configurable by clicking the text in blue

Figure 3: Statslator user interface after selecting a paragraph with statistical information from WatchWriter [42]. The panel on

the right shows the statistical measures extracted and calculated, as well as a configurable graphical report.

values from the selection or calculated, as well as a figure of the

comparison (figure 3). The background of the cells are coloured

based on the provenance of the information: green indicates that

the value was obtained from the text or entered manually; and blue

indicates that the value was converted. Sam decides to verify that

the extracted data is correct by hovering over each value to obtain

detailed information. When hovering over a value obtained from

the text, a tooltip shows the sentence where the value was extracted

from and the corresponding value in the PDF is underlined.

When hovering over a value that was converted by our equations, a

tooltip shows details of the calculation. The most accurate conver-

sions are prioritized. For example, for the CI the t-score and means

are used even though the standard deviations, p-values are also

available.

Switching between Dependent Variables. By default, the generated

report shows the results for words per minute (WPM). Sam clicks

the blue underlined text in the caption of the first table in the

panel to change the dependent variable and show the KSPC. Sam

realizes that Cohen’s d for the comparison of KSPC is quite large

(=5.5) compared to the other dependent variables compared. Sam

cannot recall the interpretation of Cohen’s d, but the tool shows

the common language effect size (=.99) that Sam knows to interpret

as “when gesture was compared to tap, in 99 of 100 pairs gesture

had a lower KSPC than tap.”

Configuration of the Graphical Statistical Report. Similarly, the fig-

ure generated by the system is interactive and shows the 95% confi-

dence interval on the mean difference.

Sam knows about the overlapping rule for the 95% CIs of indepen-

dent means and decides to change the figure by clicking the blue

underlined text in the caption from “mean difference” to “means”.

However, after some tinkering, Sam is not sure anymore of the

correct interpretation of a 95% confidence interval. Instead, Sam

switches the chart to an animated hypothetical outcome plot [56]

which, after a few seconds, helps Sam gain intuition for the distri-

bution of the data.

6.2 Comparing Two Reports

After further inspection, Sam realizes that WatchWriter relies on

a statistical decoder which makes it difficult to enter words that

are out-of-vocabulary. Instead, Sam investigates two alternative

techniques that support OOV: SplitBoard [53] and Swipeboard [16].

While both articles present user studies, the two techniques are not

compared with each other. Worse, the two studies use different pro-

tocols and different study durations, and Sam decides that judgment

solely based on the reported means might be misleading. However,

both studies include a comparison to ZoomBoard [78], a third text

entry technique. Thus, while keeping in mind that the two studies

differ in many ways, Sam decides to calculate the standardized ef-

fect sizes for the two techniques compared to ZoomBoard. Sam had

already opened the papers in Statslator, so Sam begins by selecting

the paragraphs containing the statistical results in both papers.

Helping the System with Missing Values. When extracting data from

SplitBoard, Sam notices that links for some values are red indicating

that they are not available.
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Sam hovers over the missing values in the table to get an indication

of what information would be needed for that value to be calculated.

When hovering over Cohen’s d, the system indicates that the means

and standard deviation are needed to perform the conversion. How-

ever, the SplitBoard paper does not report aggregated means with

standard deviations. Sam decides to retrieve these values from the

line chart of the WPM using an accurate chart data extraction

tool [58, 73]. For SplitBoard, the t-score was directly obtained en-

abling the calculation of Cohen’s d. Once the missing values are

added in the table, the other values are calculated and Sam can re-

view the effect sizes: Cohen’s 𝑑 = 0.64 for SwipeBoard, and 𝑑 = 7.27

for SplitBoard.

6.3 Checking Correctness

While browsing recent preprints, Sam finds a brand new text entry

method that looks promising. As always, Sam starts by selecting the

statistical report to display the results in a different style. This time,

the p-value and t-score have a red background: the system detected

an inconsistency after cross-checking different ways values can be

obtained.

It appears that the t-score does not match with the reported p-

values. Sam knows how these mistakes can easily occur when

writing papers [69, 77] and decides to send an email to the authors

to warn them.

6.4 Implementation

Statslator is implemented using TypeScript using React [85] with

PrimeReact [82] for the interface; PDF.js [80] for the PDF viewer;

and ECharts [31] to generate dynamic visualizations. The source

code is available
7
. Below, we detail the implementation of the text

extraction to recover statistical values.

6.4.1 Extracting Statistical Information. Upon selecting a text in

a document, the text is extracted and sent to OpenAI’s GPT-3.5

through the official Chat API
8
. GPT-3.5 takes care of extracting

the statistical information contained in the selection, even if the

text contains tables and complex sentence structures. GPT-3.5 is

a large language model based on a transformer architecture [96]

and powers ChatGPT. The GPT models are state-of-the-art in many

natural language processing tasks, especially for complex sentence

structures [83]. The task of extracting statistical information is

no exception: in our tests, GPT-3.5 outperformed all alternatives.

GPT-3.5 requires a hand-crafted prompt that explains the task. We

engineered the following prompt through repeated experiments:

7
http://ns.inria.fr/loki/statslator

8
https://platform.openai.com/docs/api-reference

<excerpt from the paper>

Answer with this JSON structure:

{"conditions": [/∗ reported numbers that refer to a condition following this JSON

format: [<number>, <type> /∗ example: mean, sd, upper CI ∗/, <condition

>]∗/],

"comparisons": [/∗ reported numbers that refer to a t−test comparison following this

JSON format: [<number>, <type> /∗ example: p−value, t−score ∗/, <

condition1>, <condition2>∗/]]}

We use “gpt-3.5-turbo” which has an input limit of about 3,000

words, forbidding long text selections
9

For privacy reasons or because it is a paid service, we also support

alternatives to GPT-3.5. First, readers can always input the numbers

manually. Second, we also provide an extraction algorithm that

relies on regular expressions. The algorithm searches for APA sym-

bols such as “M=” to extract statistical values (similar to section 3).

We group values based on their order of appearance. For example,

the first mentioned mean and standard deviation are grouped as a

single condition. Similarly, the first p-value is associated with the

first comparison of the two conditions mentioned.

7 DISCUSSION

Our work highlights three aspects: (1) even though most papers

report statistics in a specific way, they usually contain enough

information to convert them into a different statistical reporting

style; (2) most reporting practices are compatible with accurate

conversions; and (3) a PDF viewer that embeds these conversions

can enable readers to control the presentation of statistics in existing

documents to better understand the results, compare documents,

and verify correctness. Before outlining the limitations and future

work, it is important to clarify what this work is not.

In no circumstances does this work replace the proper practice

of statistics by authors, nor does it weaken arguments for statistical

reforms such as using CIs instead of p-values [20]. The differences

between an NHST and estimation approach are more than just the

presentation of the results. For example, estimation-based thinking

also implies a different way of formulating research questions and

drawing conclusions which can hardly be an afterthought [14].

And best practices involve planning studies and following open

science procedures [18, 21, 27]. Instead, our work helps readers
desiring a different presentation of statistical results, perhaps to

draw their own conclusions. If anything, our hope is that showing

that conversions are possible will motivate authors to choose the

method most appropriate to them and their research questions [67]

without worrying about possible push-back. As expressed by Andy

Cockburn in response to an alt.chi article encouraging authors to

use estimation and avoid dichotomous reports: “Sometimes, however,
the author would prefer to NOT report dichotomous outcomes (for
good reasons), but is compelled to do so by their fear/knowledge that
if not included, reviewers will expect it and criticise its absence” [8].

7.1 Limitations

7.1.1 The analyses might have missed some papers and study designs.
With large-scale experiments, it is difficult to consider all cases. In

section 3, when quantifying the proportions of each report at CHI,

some papers might have fallen through the cracks, either because

9
The limit has been increased with newer versions of the GPT models. Full papers

could now be parsed directly.

http://ns.inria.fr/loki/statslator
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they use complex sentence structures, or because the reports are

done in figures and tables. Our analysis was meant to motivate the

feasibility of conversions and have reference proportions to decide

the most appropriate input values for the equations.

Similarly, there are an infinite number of parameters and study

designs that could be tested in the experiment section 5, but we

chose to focus on those most prevalent in HCI. This had the side-

effect of steering our experiments and equations towards the use of

small samples which have been covered relatively poorly in the past.

However, as the sample size increases, some of these considerations

are no more relevant considering the central limit theorem [36].

7.1.2 The conversions might fail in some situations. As a corollary
of the infinite space of study designs, we cannot guarantee that

the conversion will be correct in all cases. Most statistical tests

have underlying assumptions that might in fact be violated by the

data and yield unexpected results. Generally, our conversion equa-

tions are based on the assumption that the authors respected the

assumptions of the methods they used. However, it is not uncom-

mon for scientists to use an inappropriate test [69, 99] or make

mistakes [76, 77], especially considering the challenges associated

with statistics in HCI [61]. In these cases, the results will most likely

be as incorrect as their original presentation.

7.1.3 The text extraction of statistical values might fail. We extract

statistical values using a large language model (GPT-3.5). While

we found it to work well in our limited tests, we did not formally

assess its accuracy. Instead, we focused on making sure readers

could verify the extraction was successful through provenance

verification features such as highlighting the value in the document

and showing the sentence that contained the value on hover.

7.2 Future Work

7.2.1 Support for more papers through access to more data. The
main hurdle in converting a statistical report is the lack of data.

We focused on t-tests and papers reporting means and p-values or

t-scores because we found these to be the most common at CHI.

Conversion between any statistical report is theoretically possible

given access to the raw data. Thus, one extension of our work

could be to leverage that data when available. For example, the

system could automatically pull data from a repository such as

https://osf.io/. However, “Open Data” has still a long way to go in

communities such as CHI where less than 1% of papers make data

available [1, 73]. Other times, the data is in the document but buried

inside data visualizations. In these cases, tools to “reverse-engineer”

data visualizations (e.g. [58, 73]) could make the system work with

a broader set of scientific articles.

7.2.2 Support for other conversions. Future work could support

more tests and conversions towards a broader set of reporting styles.

Tests such as Wilcoxon signed-rank and Mann-Whitney U would

be a natural extension given their prevalence. The challenge is

to infer the underlying distribution of the data. When the data is

available, this could be done through visual inspection or by finding

the best-fitting distribution. Otherwise, the distribution could be

inferred from the type of measure. Additionally, effect sizes could

be further supported for different tests, including 𝜂2 for ANOVAs.

And a CI on these effect sizes could be calculated given limited data

using approaches such as the noncentrality parameter [23, 93].

In terms of statistical reports, we focused on NHST and estima-

tion because they are fuelling many debates within the scientific

community [15, 27]. However, other approaches such as Bayesian

statistics could be supported. For example, a Bayesian t-test has

been proposed and can be calculated given a t-score and a prior [87].

The prior could be controlled by readers to reflect their optimism

and knowledge, similar to what Dragicevic et al. proposed [28].

7.2.3 Statistical linting, meta-analyses, and statistical education.
There are many use cases that could be derived from our system.

First, our focus was on readers, but the mechanisms leveraged to

detect inconsistencies could power a statistical linter for authors.

Similar to statscheck [76] that detects inconsistencies between the

reported p-value and reported test statistic, a statistical linter could

leverage our system to cross-check the different ways of obtaining

a value. This would allow the detection of serious problems such

as using a t-test that does not match the study design.

Similarly, many of our equations could be useful inmeta-analyses,

especially within fields like HCI that deal with small samples for

which typical meta-analyses practices are overoptimistic [3, 4]. Our

system could help scientists recover accurate data into a customiz-

able and standardized statistical measure.

Finally, we assumed readers have some experience and prefer-

ences regarding statistics, but our PDF viewer could also be used

as an educational tool. Transitioning between statistical represen-

tations is particularly useful to develop an intuition [21, 24]. Akin

to explorable multiverse analyses reports, some options could be

educational to give readers a better grasp of certain concepts [28].

8 CONCLUSION

While much of the debate around statistics has been focused on how

authors should practise and report them, little has been done to

support readers and the thousands of documents already published.

Through theoretical and empirical evidence, we showed that a

majority of CHI papers report enough information to be converted

to different statistical reporting styles and that the conversions

remain mostly accurate under common reporting practices. We

also describe the design and implementation of a PDF viewer to

turn existing papers into the statistical reporting style readers prefer.

Our hope is to provide an immediate solution to reconciliate readers

with statistical reports, all while unburdening authors to let them

focus on proper statistical practices.
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