

Inhibitory neurons control the consolidation of neural assemblies via adaptation to selective stimuli

Raphaël Bergoin, Alessandro Torcini, Gustavo Deco, Mathias Quoy, Gorka Zamora-López

Contents

- Methods ………………………………………………………………………………………………… 7
- Results ……………………………………………………………………………………….…….…… 16
- Discussion ………………………………….………………………………………………………… 40

Contents

- Introduction ……………………………………………………………………………………..…… 3
- Methods ………………………………………………………………………………………………… 7
- Results ……………………………………………………………………………………….…….…… 16
- Discussion ………………………………….………………………………………………………… 40

Introduction: Context and problems

Context :

- **Inhibition** plays a key role in the **learning** and the **dynamics** of the brain

- These aspects are also found in **neural network models**

Oscillator models are well suited for highlighting the **synchronization** degree of a network according to inhibition and excitation

Introduction: Context and problems

Problems :

In coupled oscillator models

- Too few experiments associate **inhibition** w an **adaptation** mechanism

E I

Coupling weight matrix of Kuramoto-like oscillators (Berner 2021)

- No **distinction** made in general between excitatory and inhibitory neurons, **Dale's principle** no respected

Introduction: Objectives

What is the role of inhibitory neurons in the emergence and consolidation of neural assemblies due to stimulus-driven plasticity?

Contents

- Introduction ……………………………………………………………………………………..…… 3
- Methods ………………………………………………………………………………………………… 7
- Results ……………………………………………………………………………………….…….…… 16
- Discussion ………………………………….………………………………………………………… 40

Methods: Model - Neurons dynamics

Network of *N* **θ-neurons** (Ermentrout & Kopell 1986) all-to-all connected described by:

Methods: Model - Plasticity function

The **symmetric phase difference-dependent plasticity** rule (Lücken et al. 2016, Shamsi et al. 2020) is described by:

The Hebbian plasticity function

With the phase difference: $\Delta \theta = |\theta_j - \theta_i|$

The dynamic of the **coupling weight** κ_{ij} from presynaptic neuron *j* to postsynaptic neuron *i* is given by the following equations, with *H(x)* the Heaviside function, $\varepsilon_1 \ll \varepsilon_2 \ll 1$ the learning rates for the slow and the fast adaptation respectively.

 θ^{\cdot}

- If the neurons *i* and *j* are **excitatory** the dynamic of the coupling weights is given by :

$$
\begin{aligned}\n\mathbf{E} \quad \mathbf{E} \quad \frac{d\kappa_{ij}}{dt} = [\epsilon_1 + \epsilon_2 H(I_j(t))] \kappa_{ij} (1 - \kappa_{ij}) \Lambda(\Delta \theta)\n\end{aligned}
$$

- If only the neuron *j* is **excitatory** the dynamic of the coupling weights is given by :

$$
\begin{array}{ccc}\n\bullet & \xrightarrow{dk_{ij}} & \epsilon_1 \kappa_{ij} (1 - \kappa_{ij}) \Lambda(\Delta \theta) \\
\end{array}
$$

- If the neuron *j* is **inhibitory** the dynamic of the coupling weights is given by :

$$
\underbrace{\mathrm{d} \kappa_{ij}}_{\text{traphael.bergoin (out)}} = \epsilon_1 (\kappa_{ij} + 1)(-\kappa_{ij}) \Lambda(\Delta \theta)
$$
\n
$$
\text{CHAOS 2023 - June 15, 2023}
$$

The dynamic of the **coupling weight** κ_{ij} from presynaptic neuron *j* to postsynaptic neuron *i* is given by the following equations, with *H(x)* the Heaviside function, $\varepsilon_1 \ll \varepsilon_2 \ll 1$ the learning rates for the slow and the fast adaptation respectively.

- If the neurons *i* and *j* are **excitatory** the dynamic of the coupling weights is given by :

EXECUTE:

\n
$$
\frac{d\kappa_{ij}}{dt} = [\epsilon_1 + \epsilon_2 H(I_j(t))] \kappa_{ij} (1 - \kappa_{ij}) \Lambda(\Delta \theta)
$$
\nIf the neuron *j* is **excitatory** the dynamic of the coupling weights is given by:

\n**EXECUTE:**

\n**EXECUTE:**

\n
$$
\frac{d\kappa_{ij}}{dt} = \epsilon_1 \kappa_{ij} (1 - \kappa_{ij}) \Lambda(\Delta \theta)
$$
\nPlasticity function

\n**Flasticity function**

\n**Flasticity function**

\n**Flasticity function**

\n**Equation (a)**

\n**Equation (a)**

\n**Plasticity function**

\n**Equation (b)**

\n**Relax's 2023 - June 15, 2023**

The dynamic of the **coupling weight** κ_{ij} from presynaptic neuron *j* to postsynaptic neuron *i* is given by the following equations, with *H(x)* the Heaviside function, $\varepsilon_1 \ll \varepsilon_2 \ll 1$ the learning rates for the slow and the fast adaptation respectively.

- If the neurons *i* and *j* are **excitatory** the dynamic of the coupling weights is given by :

The dynamic of the **coupling weight** κ_{ij} from presynaptic neuron *j* to postsynaptic neuron *i* is given by the following equations, with *H(x)* the Heaviside function, $\varepsilon_1 \ll \varepsilon_2 \ll 1$ the learning rates for the slow and the fast adaptation respectively.

- If the neurons *i* and *j* are **excitatory** the dynamic of the coupling weights is given by :

 $\begin{aligned} \begin{aligned} \mathbf{E} \end{aligned} \end{aligned} \quad \frac{d\kappa_{ij}}{dt} = [\epsilon_1 + \epsilon_2 H(I_j(t))] \kappa_{ij}(1-\kappa_{ij}) \Lambda(\Delta\theta)$

 ϵ $\frac{d\kappa_{ij}}{dt} = \epsilon_1 \kappa_{ij} (1 - \kappa_{ij}) \Lambda(\Delta \theta)$

- If only the neuron *j* is **excitatory** the dynamic of the coupling weights is given by :

- If the neuron *j* is **inhibitory** the dynamic of the coupling weights is given by :

 $\frac{d\kappa_{ij}}{dt} = \epsilon_1(\kappa_{ij}+1)(-\kappa_{ij})\Lambda$

$$
\begin{array}{|c|c|}\n\hline\n\text{F} \\
\hline\n\text{F} \\
\text{F} \\
\text
$$

CHAOS 2023 - June 15, 2023

Slow adaptation

The dynamic of the **coupling weight** κ_{ij} from presynaptic neuron *j* to postsynaptic neuron *i* is given by the following equations, with *H(x)* the Heaviside function, $\varepsilon_1 \ll \varepsilon_2 \ll 1$ the learning rates for the slow and the fast adaptation respectively.

- If the neurons *i* and *j* are **excitatory** the dynamic of the coupling weights is given by :

- If only the neuron *j* is **excitatory** the dynamic of the coupling weights is given by : $\begin{aligned} \begin{aligned} \textbf{-E} \end{aligned} \quad \begin{aligned} \frac{d\kappa_{ij}}{dt} = [\epsilon_1 + \underbrace{\epsilon_2 H(I_j(t))}]\kappa_{ij}(1-\kappa_{ij})\Lambda(\Delta\theta) \end{aligned} \end{aligned}$ ϵ $\epsilon_1 \kappa_{ij} = \epsilon_1 \kappa_{ij} (1 - \kappa_{ij}) \Lambda(\Delta \theta)$ **Fast adaptation**

- If the neuron *j* is **inhibitory** the dynamic of the coupling weights is given by :

$$
\begin{array}{|c|c|}\n\hline\n\text{1} & \text{E} \\
\hline\n\text{1} & \text{1} \\
\hline\n\text{1} & \text{1} \\
\hline\n\text{2} & \text{1} \\
\hline\n\text{3} & \text{1} \\
\hline\n\text{4} & \text{1} \\
\hline\n\text{5} & \text{1} \\
\hline\n\text{6} & \text{1} \\
\hline\n\text{7} & \text{1} \\
\hline\n\text{8} & \text{1} \\
\hline\n\text{9} & \text{1} \\
\hline\n\text{1} & \text{1} \\
\hline\n\text{1} & \text{1} \\
\hline\n\text{1} & \text{1} \\
\hline\n\text{2} & \text{1} \\
\hline\n\text{1} & \text{1} \\
\hline\n\text{2} & \text{1} \\
\hline\n\text{3} & \text{1} \\
\hline\n\text{4} & \text{1} \\
\hline\n\text{5} & \text{1} \\
\hline\n\text{6} & \text{1} \\
\hline\n\text{7} & \text{1} \\
\hline\n\text{8} & \text{1} \\
\hline\n\text{9} & \text{1} \\
\hline\n\text{1} & \text{1} \\
\hline\n\text{1} & \text{1} \\
\hline\n\text{1} & \text{1} \\
\hline\n\text{2} & \text{1} \\
\hline\n\text{3} & \text{1} \\
\hline\n\text{4} & \text{1} \\
\hline\n\text{5} & \text{1} \\
\hline\n\text{6} & \text{1} \\
\hline\n\text{7} & \text{1} \\
\hline\n\text{8} & \text{1} \\
\hline\n\text{9} & \text{1} \\
\hline\n\text{1} & \text{1} \\
\hline\n\text{1} & \text{1} \\
\hline\n\text{1} & \text{1} \\
\hline\n\text{2} & \text{1} \\
\hline\n\text{3} & \text{1} \\
\hline\n\text{4} & \text{1} \\
\hline\n\text{5} & \text{1} \\
\hline\n\text{6} & \text{1} \\
\hline\n\text{7} & \text{1} \\
\hline\n\text{8} & \text{1} \\
\hline\n\text{9} & \text{1} \\
\hline\n\text{1} & \text
$$

$$
\frac{d\kappa_{ij}}{dt} = \epsilon_1(\kappa_{ij} + 1)(-\kappa_{ij})\Lambda(\Delta\theta)
$$

CHAOS 2023 - June 15, 2023

Methods: Experimental protocol

- A first phase of spontaneous activity
- Stimulate **2 different areas** (i.e., groups of excitatory neurons) alternatively and randomly with binary values (constant input)
- Create particular (modular) **structures**
- Observe the **dynamics** obtained during the rest state and the action of **inhibition** on it over the **short and long term**

Contents

- Introduction ……………………………………………………………………………………..…… 3
- Methods ………………………………………………………………………………………………… 7
- Results ……………………………………………………………………………………….…….…… 16
- Discussion ………………………………….………………………………………………………… 40

raphael.bergoin@upf.edu CHAOS 2023 - June 15, 2023

raphael.bergoin@upf.edu CHAOS 2023 - June 15, 2023

(Bergoin, et al. 2023)

raphael.bergoin@upf.edu CHAOS 2023 - June 15, 2023

(Bergoin, et al. 2023)

How much inhibition is needed?

1) Learning multiple clusters

(Bergoin, et al. 2023)

1) Learning multiple clusters

(Bergoin, et al. 2023)

1) Learning multiple clusters

2) Overlapping clusters

(Bergoin, et al. 2023)

2) Overlapping clusters

(Bergoin, et al. 2023)

2) Overlapping clusters

Contents

- Introduction ……………………………………………………………………………………..…… 3
- Methods ………………………………………………………………………………………………… 7
- Results ……………………………………………………………………………………….…….…… 16
- Discussion ………………………………….………………………………………………………… 40

Discussion

Modulation of synchronization:

- **Learning** allows correlated neurons to maintain some degree of **synchrony** with each other
- Each group **repulses** each other thanks to the **inhibitory** neurons constituting them
- It's necessary to have a **balance** between the **inhibitory** and **excitatory** forces working on the different (sub)clusters with a small advantage for inhibition

Creation and maintenance of modular structures:

- The **creation** of clusters is induced by the **spatio-temporal correlations** of the stimuli applied to the network and therefore by the resulting **adaptation** mechanism
- **Inhibitory neurons** make it possible to **maintain** the learned structure and thus to **reinforce** it for the **long term** \rightarrow memory consolidation (recall in rest to consolidate)
- The **amount of inhibitory** neurons is related to:
	- Quantity of clusters/**informations** possible to retain
	- Number of overlapping/**hub** neurons for transmission/integration

Memory capacity of the network

Discussion

Modulation of synchronization:

- **Learning** allows correlated neurons to maintain some degree of **synchrony** with each other
- Each group **repulses** each other thanks to the **inhibitory** neurons constituting them
- It's necessary to have a **balance** between the **inhibitory** and **excitatory** forces working on the different (sub)clusters with a small advantage for inhibition

Creation and maintenance of modular structures:

- The **creation** of clusters is induced by the **spatio-temporal correlations** of the stimuli applied to the network and therefore by the resulting **adaptation** mechanism
- **Inhibitory neurons** make it possible to **maintain** the learned structure and thus to **reinforce** it for the **long term** \rightarrow memory consolidation (recall in rest to consolidate)
- The **amount of inhibitory** neurons is related to:
	- Quantity of clusters/**informations** possible to retain
	- Number of overlapping/**hub** neurons for transmission/integration

Memory capacity of the network

Discussion

Modulation of synchronization:

- Learning allows correlated new some degree of a synchrony with each other
-
- different (sub) clusters with a small and

Each group **repulses** ead \rightarrow **Proportion of inhibitory neurons:** constituting them It's necessary to have a \sharp **compromise between the number of index** forces working on the **→ Proportion of inhibitory neurons: compromise between the number of information possible to retain and their complexity (cluster size)**

Creation and maintenance of modular structures:

- The **creation** of clusters is induced by the **spatio-temporal correlations** of the stimuli applied to the network and therefore by the resulting **adaptation** mechanism
- **Inhibitory neurons** make it possible to **maintain** the learned structure and thus to **reinforce** it for the **long term** \rightarrow memory consolidation (recall in rest to consolidate)
- The **amount of inhibitory** neurons is related to:
	- Quantity of clusters/**informations** possible to retain
	- Number of overlapping/**hub** neurons for transmission/integration

Memory capacity of the network

Thank you for your attention

Supplementary results: pattern recall

(Bergoin, et al. 2023)

Supplementary results: splay state

(Bergoin, et al. 2023)

Supplementary results: 2 clusters and one area not stimulated *(Bergoin, et al. 2023)*

Supplementary results: 2 clusters randomly stimulated *(Bergoin, et al. 2023)*

raphael.bergoin@upf.edu CHAOS 2023 - June 15, 2023