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Abstract

We present a variational treatment of confinedmagnetic skyrmions in a minimal micromag-
netic model of ultrathin ferromagnetic films with interfacial Dzylashinksii-Moriya interaction
(DMI) in competition with the exchange energy, with a possible addition of perpendicular mag-
netic anisotropy. Under Dirichlet boundary conditions that are motivated by the asymptotic
treatment of the stray field energy in the thin film limit we prove existence of topologically
non-trivial energy minimizers that concentrate on points in the domain as the DMI strength
parameter tends to zero. Furthermore, we derive the leading order non-trivial term in the Γ-
expansion of the energy in the limit of vanishing DMI strength that allows us to completely
characterize the limiting magnetization profiles and interpret them as particle-like states whose
radius and position are determined byminimizing a renormalized energy functional. In particu-
lar, we show that in our setting the skyrmions are strongly repelled from the domain boundaries,
which imparts them with stability that is highly desirable for applications. We provide explicit
calculations of the renormalized energy for a number of basic domain geometries.
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1 Introduction

Magnetic skyrmions are particle-like non-collinear spin textures that were predicted to exist in non-
centrosymmetric ferromagnets some 30 years ago [10, 9, 8] and have been recently observed in
a number of magnetic systems [34, 46, 21, 39]. These coherent spin states are enabled by the
non-trivial topological characteristics of their magnetizations [35, 19] which endow them with a
considerable degree of thermal stability down to nanoscale and permit observation of magnetic
skyrmions at room temperature [33, 11, 45]. The latter property makes magnetic skyrmions attrac-
tive candidates as information carriers in a new generation of spintronic devices for information
technology [19, 47].

In ultrathin ferromagnetic films exhibiting skyrmions, the magnetization of the material may
be described as a map from a two-dimensional plane to a three-dimensional sphere at the level
of the continuum [26, 38]. As skyrmions are particle-like localized perturbations of the uniform
ferromagnetic state, they must belong to a homotopy class of the equivalent (after a stereographic
projection) continuous maps from S2 to itself. These classes are characterized by an integer topo-
logical degree, and the observed magnetic skyrmion configurations display the degree +1 of the
identity map from S2 to S2 [35].1 Mathematically, these configurations may be viewed as local
minimizers of a suitable micromagnetic energy functional among configurations within the above
homotopy class, and their existence was established for several models [32, 5, 3, 4].

1Note a sign error in the computation of the skyrmion number in this reference.

2



In aminimalmodel relevant to ultrathin ferromagnetic films cappedwith a layer of a heavymetal
[38], the energy consists of a sum of the exchange energy forcing the magnetization to be constant in
space, the interfacial Dzyaloshinskii-Moriya interaction (DMI) that promotes rotation of the mag-
netization vector, as well as the perpendicular magnetic anisotropy that forces the magnetization to
align normally to the film plane and/or the Zeeman energy associated with the perpendicular applied
magnetic field that has the same effect (for technical details, see section 2). Note that the problem of
existence above is closely related to the one studied by Lin and Yang in a two-dimensional Skyrme
model [29, 30]. Bernand-Mantel et al. established the asymptotic behavior of skyrmion solutions
in the case of vanishingly small DMI strength and demonstrated that in this limit the magnetization
profiles are close to the shrinking Belavin-Polyakov profiles, i.e., the degree +1 harmonic maps
from ℝ2 to S2 [2], which in the minimal model described above are of Néel type [5, 3].

In the physics literature, the inability to continuously deform a topologically non-trivial skyrmion
configuration into the topologically trivial uniform ferromagnetic state is often referred to as topo-
logical protection of magnetic skyrmions [35]. We note that this is somewhat of a misnomer, as a
topologically non-trivial skyrmion configuration may in fact be deformed discontinuously into the
uniform ferromagnetic state via core collapse by crossing a finite energy barrier [6]. In contrast, in
finite samples such as nanodots or nanostrips that are of particular interest to applications, there is
strictly speaking no topological obstruction that prohibits a homotopy between a skyrmion solution
and the trivial solution for example by moving the skyrmion “through” the boundary. Nevertheless,
these two solutions may still be separated by an energy barrier, and the question of existence of
skyrmion solutions becomes more subtle.

In the minimal micromagnetic model that includes the stray field effect only via an effec-
tive anisotropy term [44], Rohart and Thiaville numerically constructed the Néel type radially-
symmetric skyrmion solutions in a circular nano-dot [38]. It is unclear, however, whether these
solutions always represent local energy minimizers, as the exchange energy in such a solution may
be continuously lowered by moving the skyrmion towards the domain boundary, breaking the ra-
dial symmetry of the solution (see also section 2.5). Numerical studies of the minimal model in
confined geometries do indicate the presence of a finite energy barrier towards skyrmion disappear-
ance through the boundary under certain conditions [14, 13, 37]. The solutions in nanodisks were
further analyzed numerically within the full micromagnetic model that includes the non-local stray
field effects [41, 42, 1]. In particular, the obtained numerical profiles exhibit a strong perpendic-
ular alignment of the magnetization at the domain edges, which can be explained by an additional
contribution of the stray field enhancing the perpendicular magnetic anisotropy there (see also the
experimental observations in [23]). As was shown in [16], in suitable thin film limits for the con-
sidered class of materials the effect of the stray field may be asymptotically accounted for via an
effective penalty term forcing the magnetization to align with the normal to the film plane at the
domain boundary, similarly to what happens in other ferromagnetic thin film problems [24]. In our
problem, this should lead to the skyrmion being repelled from the sample edges.

In view of the above arguments, it is physically reasonable to consider the situation in which the
magnetization at the film edge is rigidly aligned with a normal to the film plane. This may either be
achieved via sending the penalization of the deviations at the boundary to infinity (corresponding
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to an appropriate choice of the material and geometric parameters [16]), or it could be the result of
patterning the substrate of an extended ferromagnetic film with a strongly magnetically anchoring
material (for a related approach, see [36]). Using these Dirichlet boundary conditions restores the
possibility of topological protection, as continuous maps from a bounded two-dimensional domain
to S2 with the boundary values pinned to a single direction can once again be classified by their
topological degree. However, it is still not a priori clear whether minimizers would be attained in
such a setting, as the possibility of a skyrmion shrinking to a point and collapsing is not excluded.

In this paper, we present a variational treatment of the minimal micromagnetic model of con-
fined magnetic skyrmions in ultrathin ferromagnetic films with interfacial DMI, in which the con-
finement is provided by the Dirichlet boundary condition that forces the magnetization to take one
direction normal to the film plane at the two-dimensional domain edge. We first prove existence of
degree +1 minimizers of the energy consisting of the sum of the exchange and the interfacial DMI
terms (with a possible addition of the perpendicular magnetic anisotropy term). We then focus on
the regime in which the DMI is a perturbation to the exchange energy and develop a Γ-expansion of
the energy in the limit of vanishing DMI strength. This leads to the appearance of a renormalized
energy which determines asymptotically both the location and the radius of the skyrmion, whose
shape is shown to be close to a Néel type degree +1 harmonic map from ℝ2 to S2. Lastly, we ex-
plicitly construct the minimizers of the renormalized energy in the case of disk and strip domains.
In particular, we show that the energy minimizing skyrmions are located in the disk center and
on the strip midline, respectively, due to the effective repulsive interaction provided by the excess
exchange energy from the tail of the magnetization profile. This confirms the physical expectation
based on the numerical simulations that skyrmions can be robust particle-like objects even in finite
samples of varying geometry.

1.1 Informal discussion of the results

From a mathematical standpoint, the confinement provided by the boundary data in fact simplifies
the proof of existence of skyrmions compared to the case of the whole plane, since the translational
symmetry of the problem is broken. In order to obtain the parameters describing the asymptotic
behavior, we apply the rigidity of degree ±1 harmonic maps from ℝ2 to S2 obtained by Bernand-
Mantel, Muratov and Simon [3] after extending the magnetizations by a constant outside the domain
using the Dirichlet boundary condition. This allows us to define the location, radius and rotation
angle of the skyrmion. As is common in Γ-convergence arguments, we first obtain qualitative in-
formation such as linear scaling of the radius in the DMI constant or the fact that skyrmions are
repelled from the boundary via non-optimal estimates, in order to obtain compactness properties of
the energies.

A finer analysis requires us to also keep track of the tail correction to the skyrmion profile nec-
essary to enforce the boundary condition. Here, the skyrmion position interacts with the boundary
through the solution of the linearization of the harmonic map problem at the constant state given by
the boundary condition, i.e., Laplace’s equation for the in-plane components. A correction to the
skyrmion core is not necessary to first order as the Belavin-Polyakov profiles are the exact degree
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one minimizers of the Dirichlet energy on the whole plane. The location of the optimal skyrmion
is set by minimizing the interaction with the boundary, and the Néel character of the profile arises
via minimizing the DMI term among all rotation angles. The radius then optimizes the balance of
the two contributions. In simple domains, such as balls and strips, the Laplace’s equation determin-
ing the tail correction can be explicitly solved by means of complex analysis, thus giving the full
solution of the limiting problem in these cases.

Finally, we additionally include the perpendicular anisotropy at an appropriate scaling in the
DMI constant. As the radius scales linearly in the DMI constant and the anisotropy energy of an
exact Belavin-Polyakov profile is well-known to have a logarithmic divergence in its tail [17, 3],
we consider effective anisotropies scaled down with the logarithm of the DMI strength. In this
regime the anisotropy is essentially a continuous perturbation of our original problem with respect
to the topology we determine the Γ-limit in. Furthermore, due to the fact that it is only the tail that
contributes to the anisotropy at leading order and that it is of logarithmic character, we obtain that
its contribution in the limit is in fact independent of the shape of the domain.

We note that the variational problem considered by us bears several similarities with the one for
the classical Ginzburg-Landau model (without the magnetic field), in which the boundary data with
a non-trivial topological degree force minimizers to form point-like vortices in the domain interior
as the small parameter of the model goes to zero [7]. Our results for the magnetic skyrmion behavior
in the limit of vanishing DMI strength thus provide a micromagnetic counterpart of the answer to
the celebrated questions of Matano for Ginzburg-Landau vortices. In particular, we show that the
skyrmion in a disk concentrates at the disk center in the limit and explicitly compute its asymptotic
magnetization profile. We point out, however, that the analysis of the limit micromagnetic problem
is considerably more delicate, as in contrast to the Ginzburg-Landau problem, the energy of a single
skyrmion remains finite in the limit, and, therefore the tail contribution of the Dirichlet energy does
not decouple from the problem for the skyrmion core. In particular, contrary to the Ginzburg-
Landau vortex problem, the radius of the skyrmion turns out to be affected by the shape of the
domain through the solution of the limit problem in the tail.

As in the problem of Ginzburg-Landau vortices, it is also natural to ask whether multiple
skyrmion configurations may be similarly described in the vanishing DMI strength limit. In fact,
the micromagnetic energy is known to exhibit a multitude of local energy minimizers other than
a single magnetic skyrmion [40, 25]. However, our present analysis does not easily extend to the
case of magnetization configurations of degree other than ±1. Even at the level of existence we
cannot rule out the collapse of minimizing sequences, failing to yield minimizers with a prescribed
degree in this case. For the limit behavior of vanishing DMI strength, we also no longer have the
quantitative rigidity estimate for the harmonic maps of arbitrary degree, which is the key tool in
our analysis of a single skyrmion [3]. In fact, such an estimate has been recently shown to be false
for degree 2 harmonic maps [15]. Similarly, we cannot give a positive answer to the existence of
anti-skyrmions, i.e., minimizers among configurations with degree −1, as we do not know whether
the basic energy bound in Lemma 3.2 holds in this class.
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1.2 Outline of the paper

This paper is organized as follows. In section 2, we give the precise definitions of the micromagnetic
energy, admissible classes, and the limit processes under consideration and then formulate our main
results. In section 3, we prove existence ofminimizers in the considered non-trivial topological class
of maps with degree +1. In section 4, we derive the first-order term in the Γ-expansion of the energy
in the DMI strength beyond the classical topological lower bound at zeroth order. Then, in section
5 we explicitly compute the renormalized energy for a number of geometries. Finally, in section 6
we show how to include the perpendicular magnetic anisotropy as a continuous perturbation to the
limit energy.

Acknowledgements. Thework of C.B.M.was supported, in part, byNSF via grant DMS-1908709.
A.M. and V.V.S. acknowledge support by Leverhulme grant RPG-2018-438. The work of T.M.S. is
funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy EXC 2044 –390685587, Mathematics Münster: Dynamics – Geometry
– Structure, and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) -
Project-ID 211504053 - SFB 1060.

2 Main results

2.1 Definition of the energy

On a bounded domainΩ ⊂ ℝ2 with Lipschitz boundary, we consider the set of admissible functions
 =

{

m ∈ H1(Ω;S2)∶ m = −e3 on )Ω,  (m) = 1
}

, (2.1)
where the degree of a function m ∈ H̊1(ℝ2;S2) is defined as

 (m) = 1
4� ∫Ω

m ⋅ ()1m × )2m) dx, (2.2)

and we extend m ∈  to the whole of ℝ2 by setting m = −e3 outside Ω. Here, as usual, we define

H̊1(ℝ2,S2) ∶=
{

m ∈ H1
loc(ℝ

2;ℝ3) ∶ ∫ℝ2
|∇m|2 dx <∞, |m| = 1 a.e. in ℝ2

}

. (2.3)

It is well known that  (m) ∈ ℤ for any m ∈ H̊1(ℝ2;S2), see Brezis and Coron [12]. For m ∈ 
we wish to minimize the energy

�(m) = ∫Ω

(

|∇m|2 − 2�m′ ⋅ ∇m3
)

dx, (2.4)

where � ∈ ℝ is the DMI constant and we use the convention m = (m′, m3), with m′ taking values
inℝ2. Passing from m to m̃ ∶= (−m′, m3) when minimizing � in the case of � < 0, throughout the
rest of the paper we may assume that � ≥ 0.
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2.2 Statement of the results

We first make sure that the energy indeed admits minimizers. Due to the Dirichlet boundary con-
ditions, minimizers exist for all � > 0 sufficiently small even in the absence of the anisotropy pe-
nalizing the out-of-plane component of the magnetization. Note that at the same time the infimum
of the energy is not attained for � = 0 (see below).
Theorem 2.1. There exists �0 > 0 depending only on Ω such that for all 0 < � < �0 there exists a
minimizer of � over .

More importantly, we are also able to give a precise description of the minimizers for � being
small, i.e., the parameter regime in which one does have skyrmions. In particular, we can express
their location and radius in terms of an optimization over the tail of the skyrmion.

To make this statement precise, we define the standard Belavin-Polyakov profile

Φ(x) ∶=
(

− 2x
1+|x|2 ,

1−|x|2

1+|x|2

)

(2.5)

for x ∈ ℝ2, which is the negative of the inverse stereographic projection, and we denote the set of
all Belavin-Polyakov profiles by

 ∶=
{

RΦ
(

�−1(⋅ − a)
)

∶ R ∈ SO(3), � > 0, a ∈ ℝ2
}

. (2.6)
They arise as configurations achieving equality in the sharp topological bound

∫ℝ2
|∇m|2 dx ≥ 8�| (m)| (2.7)

with degree  = 1. In particular, they are precisely the minimizing harmonic maps of degree
one, see Belavin and Polyakov [2] and [12, Lemma A.1]. It is therefore not surprising and indeed
well known [17, 3], that minimizers of micromagnetic-type energies augmented with DMI should
approach the set  when the Dirichlet energy dominates, i.e., when � ≪ 1. We can thus attempt
to express the location and the radius of the skyrmions as a ∈ ℝ2 and � > 0 of an approached
Belavin-Polyakov profile in this regime. Notice that for � = 0 an equality in (2.7) is achieved by
a sequence of truncated Belavin-Polyakov profiles with vanishing radius, which fails to converge
to an element in . This statement remains true also in the presence of an additional out-of-plane
anisotropy term (see section 2.4).

However, as we expect the radius of the minimizers to shrink compared to the size of the domain
as � → 0, we can only expect the close-by Belavin-Polyakov profiles to converge after a rescaling.
Consequently, we have to find a Belavin-Polyakov profile for each minimizer at positive � in a
controlled way. An appropriate set of tools for such a purpose has been identified by Bernand-
Mantel, Muratov, and Simon in the form of a quantitative rigidity result for degree one harmonic
maps:

7



Theorem 2.2 ([3, Theorem 2.4]). For m ∈ , let the Dirichlet excess be

Z(m) ∶= ∫Ω
|∇m|2 dx − 8� (2.8)

and the Dirichlet distance to the set of the Belavin-Polyakov profiles be

D(m;) ∶= inf
�∈

(

∫ℝ2
|∇(m − �)|2 dx

)
1
2
, (2.9)

where as usual m is extended outside of Ω by −e3. Then the infimum in the definition of D(m;) is
achieved, i.e., there exists a Belavin-Polyakov profile closest to each m ∈ . Moreover, there exists
a universal constant � > 0 such that for all m ∈  we have

�D2(m;) ≤ Z(m). (2.10)
Shorter, alternative proofs of this statement have later been provided by Hirsch and Zemas [22]

and Topping [43].
In order to identify the Belavin-Polyakov profiles corresponding to minimizers of � in the limit

� → 0, we turn to computing the Γ-limit in a suitable topology retaining the location, the radius,
the global rotation and the skyrmion tail. To this end, we have to identify the correct higher order
Γ-expansion of the energy. By roughly minimizing over the above quantities, we will find in Lemma
3.2 below that there exists a constant C > 0 depending only on Ω such that

inf


� ≤ 8� − C�2. (2.11)

This suggests to seek a Γ-limit of the functional �−8�
�2

.
However, in order to rule out some behaviors of finite energy sequences that minimizers will

not exhibit, such as skyrmions shrinking too fast or their centers approaching the boundary of Ω,
we will restrict our attention to magnetizations whose energy is sufficiently low, i.e. we restrict the
admissible set to

� =
{

m ∈  ∶ �(m) − 8� < 0
}

. (2.12)
Furthermore, in the Γ-limit we will only consider magnetizations m� ∈ � which satisfy

lim inf
�→0

�(m�) − 8�
�2

< 0 (2.13)

Note that this corresponds to a finite energy sequence for the functional �2

|�−8�|
defined on � .

To specify the topology for the Γ-limit, given m ∈ � we choose �m(x) ∶= RΦ(�−1(x − a))
for R ∈ SO(3), � > 0 and a ∈ ℝ2 to minimize the Dirichlet distance to m after extension to ℝ2 by
−e3. In addition, we will also consider the tail of the skyrmionwm ∶= m+e3−�m−Re3. Guessing
from the construction of Lemma 3.2, we expect � ∼ � and ‖∇wm‖L2(ℝ2) ∼ �. It turns out that the
information m = −e3 in ℝ2 ⧵ Ω will translate into an asymptotic expression for �−1wm outside Ω,
see Lemma 4.2. This motivates the following:
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Definition 2.3. Let

̃0 ∶=
{

R0 ∈ SO(3) ∶ R0e3 = e3
}

× (0,∞) × Ω. (2.14)

We then say that a sequence m�n ∈ �n BP-converges to (R0, r0, a0) ∈ ̃0 as �n → 0 if and only
if the following holds: There exist Rn ∈ SO(3), �n > 0, an ∈ Ω such that for �n ∶= RnΦ(�−1n (∙ −
an)) ∈  we have

lim sup
n→∞

�−2n ∫ℝ2
|∇(m�n − �n)|

2 dx <∞, (2.15)
R0 = lim

n→∞
Rn, (2.16)

r0 = lim
n→∞

�n
�n
, (2.17)

a0 = lim
n→∞

an. (2.18)

Remark 2.4. By the first condition and the triangle inequality in H̊1(ℝ2), one can see that BP-limits
are unique.

We are now in a position to give the Γ-limit of �−8�
�2

with respect to the above convergence.
Definition 2.5. For (R0, r0, a0) ∈ ̃0 let

0(R0, r0, a0) ∶= r20T (a0) − 2r0 ∫ℝ2
(R0Φ)′ ⋅ ∇Φ3 dx, (2.19)

where the Dirichlet contribution of the tail correction is

T (a0) ∶= inf
{

∫ℝ2
|∇u|2 dx ∶ u(x) = 2

x − a0
|x − a0|2

in ℝ2 ⧵Ω
}

. (2.20)

We furthermore define a restricted admissible set

0 ∶=
{

(R0, r0, a0) ∈ ̃0 ∶ 0(R0, r0, a0) < 0
}

. (2.21)
We can then state the Γ-convergence.

Theorem 2.6. The Γ-limit as � → 0 of the functionals �−8�
�2

restricted to � with respect to the
BP-convergence is given by 0 restricted to0 in the sense that we have the following:

(i) For every sequence of �n → 0 and m�n ∈ �n with lim infn→∞
�n (m�n )−8�

�2n
< 0 there exists a

subsequence (not relabeled) and (R0, r0, a0) ∈ 0 such that m�n BP-converges to (R0, r0, a0).
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(ii) Let �n → 0, let m�n ∈ �n BP-converge to (R0, r0, a0) ∈ 0 and let

lim inf
n→∞

�n(m�n) − 8�
�2n

< 0. (2.22)

Then we have

lim inf
n→∞

�n(m�n) − 8�
�2n

≥ 0(R0, r0, a0). (2.23)

(iii) For every (R0, r0, a0) ∈ 0 and every sequence of �n → 0 there exist m�n ∈ �n BP-
converging to (R0, r0, a0) such that

lim sup
n→∞

�n(m�n) − 8�
�2n

≤ 0(R0, r0, a0). (2.24)

Remark 2.7. The above version of Γ-convergence is equivalent to the usual notion for the function-
als �2

|�−8�|
and |0|−1 restricted to � and 0, respectively.

Notice that the last term in the definition of 0 is clearly minimized by R0 = id among all
R0 satisfying R0e3 = e3, since this achieves an absolute maximum of the integrand by pointwise
Cauchy-Schwarz inequality in view of the fact that Φ′ is collinear to ∇Φ3. Thus from the fact that
∫ℝ2 Φ

′ ⋅ ∇Φ3 dx = 4�, see [3, Lemma A.5], we have

0(R0, r0, a0) ≥ 0(id, r0, a0) = T (a0)
(

r0 −
4�
T (a0)

)2

− 16�2
T (a0)

. (2.25)

Upon minimizing 0 over ̃0, we can saturate the lower bound in (2.25) and obtain the following
characterization of the minimizers of � .
Theorem 2.8. Let �n → 0 as n → ∞ and let m�n be minimizers of �n over . Then there exists a
subsequence (not relabeled) and a0 ∈ argmina∈Ω T (a) such that with

r0 ∶=
4�
T (a0)

, (2.26)
R0 ∶= id (2.27)

we get for �n ∶= Φ
(

∙ − a0
r0�n

)

∈  and all n ∈ ℕ that

∫ℝ2
|∇(m�n − �n)|

2 dx ≤ C�2n (2.28)
and

lim
n→∞

�n(m�n) − 8�
�2n

= − 16�
2

T (a0)
. (2.29)
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In particular, this theorem says that as �n → 0 the appropriately translated and dilated minimizer
m�n(r0�n(∙) + a0) converges to the canonical Belavin-Polyakov profile Φ in Dirichlet distance, up
to a subsequence. In the original variables, the energy minimizing profile is, therefore, close to the
Belavin-Polyakov profile of Néel type centered at a0 and with the small radius �n = r0�n.

2.3 Explicit minimizers for specific domains

We next give several examples of geometries, in which an explicit minimizer of the limit problem
may be obtained by using the tools of complex analysis. We use the standard identification of the
complex plane with ℝ2 and write z ∈ ℂ to denote a vector in the plane. The symbol z̄ denotes
the complex conjugate of z. We also introduce the Wirtinger derivatives )z = 1

2 ()x − i)y) and
)z̄ =

1
2
()x + i)y), acting on u ∶ ℂ → ℂ.

Clearly, the infimum in (2.20) is attained by the unique harmonic extension of u from )Ω into
Ω. With uz0 ∶ ℂ → ℂ solving

Δuz0 = 0 in Ω, uz0(z) =
2

z̄ − z̄0
in ℂ ⧵Ω, (2.30)

one can then write the limit energy associated with a skyrmion centered at z0 ∈ ℂ as

T (z0) = ∫ℝ2
∇ūz0 ⋅ ∇uz0 dx. (2.31)

The following proposition allows us to reduce the computation of T (z0) to evaluating a derivative
of uz0(z) at z = z0 for the considered geometries.
Proposition 2.9. LetΩ ⊂ ℂ be a simply connected bounded domain with a boundary of class C1,�,
for some � ∈ (0, 1). Then we have

T (z0) = 8�)zuz0(z0). (2.32)
We note that due to the continuous dependence of the boundary values of u on z0, the function

T (z0) is continuous for all z0 ∈ Ω. Moreover, since |∇u(x)| behaves like |x−z0|−2 for all x ∈ ℝ2⧵Ω
and all competitors u from equation (2.20), which is not L2-integrable on ℝ2 ⧵Ω if a0 = z0 ∈ )Ω,
we have T (z0)→ +∞ as z0 approaches )Ω. Therefore, T (z0) always attains its minimum for some
z0 ∈ Ω.

2.3.1 Disks

For the special choice Ω = Bl(0) with l > 0 we can fully solve the above minimization problem,
obtaining that the skyrmion will be located in the disk’s center.
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Proposition 2.10. For Ω = Bl(0) and z0 ∈ Ω, the map achieving T (z0) is given by

uz0(z) =

⎧

⎪

⎨

⎪

⎩

2z
l2−z̄0z

if z ∈ Bl(0),
2

z̄−z̄0
if z ∈ ℂ ⧵ Bl(0).

(2.33)

Its energy is given by

T (z0) =
16�l2

(l2 − |z0|2)2
, (2.34)

which is minimized by z0 = 0 with T (0) =
16�
l2

. The rescaled skyrmion radius is r0 =
l2

4
and the

corresponding limiting energy is 0
(

id, l
2

4 , 0
)

= −�l2.

Note that the minimizer achieving T (a0) has the special property of being a holomorphic func-
tion in Ω. In the next example of strips we will see that this does not necessarily have to be the
case.

2.3.2 Strips

We can also consider the energy (2.4) on strips Ωl = ℝ × (−l∕2,l∕2) for l > 0. Technically, the
previous statements do not apply as Ωl is not bounded. However, the arguments can be adjusted
straightforwardly as strips support Poincaré inequalities. We will give the modifications in section
5.2 below.

The only change in the resulting statement is that in the BP-convergencewewill, due to the trans-
lational invariance of Ωl in the first component, only track the second component of the skyrmion
center, so that the limiting set is

̃0 ∶=
{

R0 ∈ SO(3) ∶ R0e3 = e3
}

× (0,∞) ×
(

−l
2
, l
2

)

. (2.35)

Furthermore, the limiting energy is given by

0(R0, r0, y0) ∶= r20T (iy0) − 2r0 ∫ℝ2
(R0Φ)′ ⋅ ∇Φ3 dx, (2.36)

where

T (iy0) ∶= inf
{

∫ℝ2
|∇u|2 dx ∶ u(z) = 2

z̄ + iy0
in ℂ ⧵Ωl

}

. (2.37)

Also this problem can be solved explicitly.
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Proposition 2.11. For l > 0, Ωl = ℝ × (−l∕2,l∕2), and y0 ∈ (−l∕2,l∕2), the map achieving
T (iy0) is given by

uy0(z) =

⎧

⎪

⎨

⎪

⎩

�
l
tanh

(

�
2l
(z + iy0)

)

− �
l
coth

(

�
2l
(z̄ + iy0)

)

+ 2
z̄+iy0

if z ∈ Ωl,
2

z̄+iy0
if z ∈ ℂ ⧵Ωl.

(2.38)

Its energy is given by

T (iy0) =
4�3

l2 cos2
(

�y0
l

) , (2.39)

which is minimized by y0 = 0 with T (0) =
4�3

l2
. The rescaled skyrmion radius is r0 =

l2

�2
and the

corresponding limiting energy is 0
(

id, l
2

�2
, 0
)

= −4l
2

�
.

The formula for uy0 above was obtained by computing the harmonic extension of the boundary
data in Fourier space, but to verify its validity we only need to check that it satisfies the conditions
defining uy0 .

2.3.3 Half-plane

For the half-space Ω = ℝ × (−∞, 0) our rigorous arguments cannot be salvaged, and indeed in this
case the energy can be easily seen to be unbounded from below. However, we may still consider
the problem as arising from a limiting procedure where the distance of the skyrmion center to the
boundary of growing, smooth domains is fixed. Then we obtain the problem

0(R0, r0, y0) ∶= r20T (iy0) − 2r0 ∫ℝ2
(R0Φ)′ ⋅ ∇Φ3 dx, (2.40)

defined on
̃0 ∶=

{

R0 ∈ SO(3) ∶ R0e3 = e3
}

× (0,∞) × (−∞, 0) (2.41)
and where

T (iy0) ∶= inf
{

∫ℝ2
|∇u|2 dx ∶ u(z) = 2

z̄ + iy0
in ℂ ⧵Ω

}

, (2.42)

where the skyrmion is located at z0 = iy0 with y0 < 0 in the limit.
The straightforward solution then gives information about how the energy of the skyrmion be-

haves as it approaches the boundary. Of course, the repelling effect of the boundary can also be
seen from our rigorous analysis. However, in this situation, the estimate is especially transparent.
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Proposition 2.12. For Ω = ℝ × (−∞, 0), and y0 ∈ (−∞, 0), the map achieving T (iy0) is given by

uy0(z) =

⎧

⎪

⎨

⎪

⎩

2
z+iy0

if z ∈ Ω,
2

z̄+iy0
if z ∈ ℂ ⧵Ω.

(2.43)

Its energy is given by T (iy0) =
4�
y20
, the corresponding rescaled skyrmion radius is r0 = y20 and the

limiting energy is 0
(

id, y20, y0
)

= −4�y20.

2.4 Adding anisotropy

We may also consider the case where we augment our energy by an anisotropy term. In order not
to significantly change the behavior of the Γ-limit, we choose the quality factor Q in dependence
of � such that, after the renormalization in the thin film limit by the local contribution of the stray
field term, the resulting term is essentially a compact perturbation of our above results. As it is well
known that the anisotropy contribution of a skyrmion with radius � > 0 behaves like �2| log �|, see
for example [17, 3], and as in our case � ∼ �, the appropriate scaling is Q − 1 = �| log �|−1 for
some � > 0. Consequently, we obtain the modified energy

�,�(m) ∶= ∫Ω

(

|∇m|2 − 2�m′ ⋅ ∇m3 +
�

| log �|
|m′|2

)

dx. (2.44)

Notice that the statement of Theorem 2.1 remains valid for minimizers of �,�.
The following proposition then implies that the Γ-limit with respect to the BP-convergence at

order �2 is given by

0(R0, r0, a0) ∶= r20(T (a0) + 8��) − 2r0 ∫ℝ2
(R0Φ)′ ⋅ ∇Φ3 dx (2.45)

for (R0, r0, a0) ∈ ̃0.
Proposition 2.13. For �n → 0 as n → ∞, let m�n ∈  BP-converge to (R0, r0, a0) ∈ ̃0. Then we
have

lim
n→∞

1
�2n | log �n| ∫Ω

|m′�n|
2 dx = 8�r20. (2.46)

In particular, the above result shows that the addition of anisotropy does not affect the center of
the skyrmion in the limit � → 0 in the considered regime. As before, the limit of 0 is achieved by
the Néel profile, R0 = id, the center a0 = argmina0∈ΩT (a0) and

r0 =
4�

mina0∈Ω T (a0) + 8��
. (2.47)
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The corresponding minimal energy is

min
0

0 = −
16�2

mina0∈Ω T (a0) + 8��
. (2.48)

2.5 A note on free boundary conditions

We wish to also mention the difference between the behavior of the energy for BP-converging se-
quences for the Dirichlet problem associated with the admissible class and that of the analogous
free problem in which the Dirichlet boundary condition at )Ω is absent. We point out that in this
case the BP-limit does not give rise to a well-behaved energy whose minimization would yield the
position of the skyrmion in Ω as � → 0. Indeed, in the latter case the restriction to Ω of the Néel-
type Belavin-Polyakov profile �n = RnΦ(�−1n (∙ − an)) with Rn = id, �n∕�n → r0 and an → a0 ∈ Ω
in Definition 2.3 is an example of a BP-convergent sequence, and, therefore, we have an upper bound
on the Dirichlet energy excess for a sequence of m�n BP-converging to (id, r0, a0) by

Z(�n) = −∫ℝ2⧵Ω
|∇�n|2 dx. (2.49)

A straightforward computation shows that as �n → 0 we have

lim
n→∞

�−2n Z(�n) = − lim
n→∞

�−2n ∫ℝ2⧵Ω
|∇�′n|

2 dx

= −8r20 ∫ℝ2⧵Ω

1
|x − a0|4

dx = −4r20 ∫)Ω
(x − a0) ⋅ �(x)
|x − a0|4

d1(x),
(2.50)

where � is the outward unit normal to )Ω, and in the last line we carried out an integration by parts.
This is a negative contribution that goes to negative infinity as a0 approaches )Ω.

For example, if, as in section 2.3.3, we take Ω = ℝ × (−∞, 0) and a0 = (0, y0) with some
y0 ∈ (−∞, 0), then by (2.50) we have explicitly for the renormalized energy:

0(id, r0, y0) ∶= infm�n
lim inf
n→∞

E�n(m�n) − 8�

�2n
≤ lim
n→∞

E�n(�n) − 8�

�2n
= −

2�r20
y20

− 8�r0, (2.51)

where the infimum is over sequences of m�n that BP-converge to (id, r0, a0). This energy clearly
does not have a minimum in r0, suggesting that the skyrmion is not able to stabilize its radius at
a fixed distance towards the boundary. Similarly, at fixed radius the skyrmion is attracted towards
the boundary. Dynamically this would give rise to the disappearance of a skyrmion from Ω via
escape towards the boundary, with zero energy barrier. This is in contrast with the case of the
Dirichlet boundary conditions considered in section 2.3.3, in which the exchange contribution has
the opposite sign.
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Finally, notice that an addition of a sufficiently strong anisotropy as in section 2.4 may restore
existence of local minimizers. To get some sense for this, consider again a skyrmion in the half-
plane as in the previous paragraph. With the addition of anisotropy we would then get

0(id, r0, y0) ≤ r20

(

8�� − 2�
y20

)

− 8�r0, (2.52)

and it is clear that the skyrmion should experience a repulsive interaction and have a well-defined
optimal radius far enough from )Ω, while it would still be attracted towards the boundary close
enough to )Ω.

Notation and presentation

Throughout the rest of the paper, we extend m ∈  to ℝ2 by −e3. Furthermore, unless explicitly
stated otherwise, the lettersC,C ′ denote generic, positive constants only depending onΩ and which
may change from line to line. Each subsection first lists its statements and provides a description
for their proof and use throughout the rest of the paper. The actual proofs are collected at the end
of the respective subsections.

3 Existence of minimizers

Wefirst provide a simple lower bound for the energy that controls theL2-norm of∇m for sufficiently
small �.
Lemma 3.1. For all � > 0 and m ∈ H1(Ω;S2) satisfying m = −e3 on )Ω we have

�(m) ≥ (1 − C�)∫Ω
|∇m|2 dx, (3.1)

for some C > 0 depending only on Ω. Furthermore, if also m ∈ � and � < 1∕(2C) we have

Z(m) ≤ 16�C�. (3.2)
Next, we show by a construction that the infimum energy is strictly below the topological lower

bound for the case of the pure Dirichlet energy.
Lemma 3.2. For all � > 0 we have

inf


� < 8�. (3.3)
In particular, the restricted admissible sets� , see definition (2.12), are non-empty. Furthermore,
there exist constants C > 0 and �0 > 0 depending only on Ω such that for all � ∈ (0, �0), we have

inf


� ≤ 8� − C�2. (3.4)
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Proof of Lemma 3.1. For m ∈ H1(Ω;S2) satisfying m = −e3 on )Ω we have by Cauchy-Schwarz
and Poincaré inequalities

�(m) ≥ ∫Ω
|∇m|2 dx − 2�

(

∫Ω
|m′|2 dx∫Ω

|∇m3|2 dx
)

1
2

≥ ∫Ω
|∇m|2 dx − C�

(

∫Ω
|∇m′|2 dx∫Ω

|∇m3|2 dx
)

1
2
,

(3.5)

from which (3.1) follows. Furthermore, under the assumption m ∈ � we have �(m) < 8�, so
combining this with (3.1) and a bound on � we obtain ∫Ω |∇m|2 dx < 16�. Using this fact togetherwith (3.1), we obtain (3.2).
Proof of Lemma 3.2. Step 1: Truncation of the Belavin-Polyakov profile

We truncate the standard Belavin-Polyakov profile by choosing L > 1 and setting

fL(r) ∶=

⎧

⎪

⎨

⎪

⎩

2r
1+r2 if r < L,
2

1+L2
(2L − r) if L ≤ r < 2L,

0 if 2L ≤ r,
(3.6)

for r > 0 and
ΦL(x) ∶=

(

−fL(|x|)
x
|x|
, sign(1 − |x|)(1 − f 2L(|x|))

1
2

)

(3.7)

for x ∈ ℝ2.
One may then compute, see [3, equation (A.66)], that

|∇ΦL|2(x) =
|f ′L|

2(|x|)

1 − f 2L(|x|)
+
f 2L(|x|)
|x|2

, (3.8)

so that

∫BL(0)
|∇ΦL|2(x) dx =

8�L2

1 + L2
(3.9)

and
|∇ΦL|2(x) ≤ CL−4 (3.10)

for all x ∈ B2L(0) ⧵ BL(0). Consequently, we have

∫B2L(0)
|∇ΦL|2 dx ≤ 8� + CL−2. (3.11)
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Furthermore, as can be seen by a direct computation we have
−2∫B2L(0)

Φ′L ⋅ ∇ΦL,3 dx ≤ −8� + CL−2. (3.12)
Step 2: Construction of competitors
Let r > 0 be the in-radius. Without loss of generality, we may assume that the corresponding

in-circle Br(0) ⊂ Ω is centered at the origin. Let now � > 0 and L > 1 be such that 2L� ≤ r. Then
the function ��,L(x) ∶= ΦL(�−1x) satisfies ��,L ∈ . For � < 1 we compute

�(��,L) ≤ 8� − 8��� + CL−2. (3.13)
To minimize the preceding expression, we need to choose � as big as possible, i.e., � = r

2L
. This

yields
�(��,L) ≤ 8� − 4��rL−1 + CL−2. (3.14)

In particular, choosing L big enough, we obtain that
�(��,L) < 8�, (3.15)

which yields (3.3). Furthermore, optimizing in L gives L = c∕(r�) for some suitably chosen c > 0
depending only on Ω, so that L > 1 for � < c∕r and

�(��,L) ≤ 8� − Cr2�2, (3.16)
which completes the proof.
Proof of Theorem 2.1. Let (mn) ∈  be a minimizing sequence. By Lemma 3.1, assuming that �
is small enough, we get that (mn) is uniformly bounded in H1(Ω;S2). Consequently, there exists
a subsequence (not relabeled) and m∞ ∈ H1(Ω;S2) such that mn → m∞ in L2 and ∇mn ⇀ ∇m∞
in L2 as n → ∞. Furthermore, by a weak-times-strong argument, we get ∫ℝ2 m′n ⋅ ∇mn,3 dx →
∫ℝ2 m

′
∞ ⋅ ∇m∞,3 dx and, therefore, we have

�(m∞) ≤ lim infn→∞
�(mn) = inf � . (3.17)

Thus, it remains to prove that m∞ ∈ , i.e., that (m∞) = 1.
Arguing as in [12, 32], we complete the squares to get for all m ∈ H1(Ω;S2) that

∫Ω
|∇m|2 dx ± 8� (m) = ∫Ω

|)1m ∓ m × )2m|2 dx. (3.18)
As a result, by the lower semicontinuity of the right-hand side in (3.18) and the continuity of the
DMI term we have

�(m∞) ± 8� (m∞) ≤ lim infn→∞

(

�(mn) ± 8� (mn)
)

= lim inf
n→∞

�(mn) ± 8�. (3.19)
Therefore, for small enough � we get with the help of Lemmas 3.1 and 3.2:

±8� (m∞) ≤ �(m∞) ± 8� (m∞) ≤ lim infn→∞
�(mn) ± 8� < 8� ± 8�, (3.20)

from which  (m∞) = 1 immediately follows.
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4 The next-order Γ-limit

4.1 Preliminaries

Before we turn to the actual proof of Theorem 2.6, we establish a number of preliminary statements
designed to provide compactness in BP-convergence. First, we prove that in fact the skyrmion center
a� for 0 < � ≪ 1 satisfies a� ∈ Ω, as well as a lower bound for the Dirichlet excess of a minimizer
in terms of its radius � and dist(a� ,ℝ2 ⧵Ω). The idea is that for � achieving the Dirichlet distance
from m to  we have ∇(m − �)(x) = −∇�(x) for all x ∈ ℝ2 ⧵ Ω, so that the control of Theorem
2.2 can be translated into a control over the radius and the center.
Lemma 4.1. There exist �0 > 0 and C,C ′ > 0 depending only on Ω such that for all 0 < � < �0
the following statement holds:

Let m ∈ � and let �(x) = RΦ(�−1(x − a)) with R ∈ SO(3), � > 0, a ∈ ℝ2 achieve the
Dirichlet distance from  to m. Then we have a ∈ Ω and

�2

dist2(a,ℝ2 ⧵Ω)
≤ CZ(m) ≤ C ′�. (4.1)

We now record some basic estimates for the skyrmion tail. As we wish to apply this result also
in the construction of a recovery sequence, we take care to only assume m ∈ , not m ∈ � .
Lemma 4.2. There exists a constant C > 0 only depending on Ω such that we have the following
statement:

Let � = RΦ(�−1(∙−a)) withR ∈ SO(3), � ∈
(

0, 1
2

)

, a ∈ Ω. Then, for all x ∈ ℝ2 ⧵Ω we have

|

|

|

|

|

1
�
(�(x) − Re3) − 2R

(

x − a
|x − a|2

, 0
)

|

|

|

|

|

≤ C
�

|x − a|2
, (4.2)

|

|

|

|

|

1
�
∇�(x) − 2∇

(

R
(

x − a
|x − a|2

, 0
))

|

|

|

|

|

≤ �
|x − a|3

(4.3)

Let furthermore m ∈ . For w ∶= m + e3 − � − Re3 we have

∫Ω
|w|2 dx ≤ C

(

�2 + ∫ℝ2
|∇(m − �)|2 dx

)

. (4.4)

With these bounds we can give an estimate for the DMI term. Again, we only assume m ∈ 
to keep the statement applicable for the construction of the recovery sequence.
Lemma 4.3. Let � ∈ (0, 1), m ∈  and � = RΦ(�−1(∙ − a)) with R ∈ SO(3), � ∈

(

0, 12
)

, a ∈ Ω.
Then there exist C1 > 0 universal and C2 = C2 (Ω, a) > 0 such that the following holds:

|

|

|

|

∫ℝ2
(R(Φ + e3))′ ⋅ ∇(RΦ)3 dx

|

|

|

|

≤ C1. (4.5)
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and

|

|

|

|

−2� ∫Ω
m′ ⋅ ∇m3 dx + 2��∫ℝ2

(R(Φ + e3))′ ⋅ ∇(RΦ)3 dx
|

|

|

|

≤ C2

(

∫ℝ2
|∇(m − �)|2 dx + �

6
5

)

� (4.6)

If additionally m ∈ � and � achieves the Dirichlet distance of m to , then there exists �0 > 0
and C3 > 0 depending only on Ω such that for all � ∈ (0, �0) the estimate takes the form

|

|

|

|

−2� ∫Ω
m′ ⋅ ∇m3 dx + 2��∫ℝ2

(R(Φ + e3))′ ⋅ ∇(RΦ)3 dx
|

|

|

|

≤ C3
(

Z(m) + �
6
5

)

�. (4.7)

Proof of Lemma 4.1. Step 1 : a ∈ conv(Ω), the convex envelope of Ω.
Towards a contradiction, we assume that a ∉ conv(Ω). Then there exists n ∈ S1 such that

a ⋅ n ≥ x ⋅ n for all x ∈ Ω ⊂ conv(Ω). Consequently, {x ∈ ℝ2 ∶ (x − a) ⋅ n > 0} ⊂ ℝ2 ⧵Ω and by
the estimates (2.10) and (3.2), recalling that m(x) = −e3 for all x ∈ ℝ2 ⧵Ω, we have

4� = ∫{(x−a)⋅n>0}
|∇�|2 dx ≤ ∫ℝ2⧵Ω

|∇�|2 dx ≤ ∫ℝ2
|∇(� − m)|2 dx ≤ C�. (4.8)

For small enough � we have a contradiction.
Step 2: There exist C,C ′ > 0 such that

�2 ≤ CZ(m) ≤ C ′�. (4.9)
We have diam(Ω) = diam(conv(Ω)). Since from Step 1 we know that a ∈ conv(Ω), it follows that
Ω ⊂ Bdiam(Ω)(a). By a direct computation (as in [3, Equation (A.67)]) and (2.10), we have

8�
1 + �−2 diam2(Ω)

= ∫ℝ2⧵B�−1 diam(Ω)(0)
|∇Φ|2 dx = ∫ℝ2⧵Bdiam(Ω)(a)

|∇�|2 dx

≤ ∫ℝ2⧵Ω
|∇�|2 dx ≤ ∫ℝ2

|∇(� − m)|2 dx ≤ CZ(m).
(4.10)

Therefore, together with (3.2) and taking � small enough, we have �2 ≤ CZ(m) ≤ C ′�.
Step 3: a ∈ Ω, provided � is small enough.
Towards a contradiction, let us assume that a ∉ Ω. We claim that sinceΩ is a Lipschitz domain,

there exist � > 0 and r̃ > 0 depending only on Ω such that �(a) ∩ Br̃(a) ⊂ ℝ2 ⧵ Ω, where �(a)
is a cone with vertex at a and the opening angle �. Indeed, we may assume that a is sufficiently
close to Ω, and near a the set Ω is locally a subgraph of a Lipschitz function. Translating the point
a vertically down towards )Ω, we obtain a cone �(ã) pointing up with ã ∈ )Ω that lies above Ω in
Br(ã) for some � > 0 and r > 0 depending only on Ω. Hence the claim follows by translating the
cone �(ã) vertically upward until its vertex coincides with a.
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x̂

�(x̂)

a

̂�(a)

c|x̂ − a|

r̃
2

)Ω

Ω

Figure 1: Sketch of Ω and the cones �(x̂) and ̂�(a).

We now compute (again, as in [3, Equation (A.67)], and using (2.10) and (3.2))
�−2r̃2

1 + �−2r̃2
≤ C ∫(�(a)−a)∩B�−1� r̃(0)

|∇Φ|2 dx = C ∫�(a)∩Br̃(a)
|∇�|2 dx

≤ C ∫ℝ2⧵Ω
|∇�|2 dx ≤ C�.

(4.11)

By step 2, the left-hand side is uniformly bounded from below, giving a contradiction for � small
enough.

Step 4: We have estimate (4.1).
Once again, since Ω is a Lipschitz domain there exist � > 0 and r̃ > 0 depending only on

Ω such that for any x̂ ∈ )Ω we have �(x̂) ∩ Br̃(x̂) ⊂ ℝ2 ⧵ Ω. As a ∈ Ω, there is x̂ ∈ )Ω
such that |x̂ − a| = dist(a,ℝ2 ⧵ Ω). We next fix � > 0 small enough (depending only on �). If
dist(a,ℝ2 ⧵ Ω) ≥ �r̃ then by the estimate (4.9) shown in Step 2 we have �2

dist2(a,ℝ2⧵Ω)
≤ C�

�2 r̃2
≤ C ′�

with C ′ depending only on Ω. If, on the other hand, dist(a,ℝ2 ⧵ Ω) < �r̃ (meaning |x̂ − a| is very
small comparing to r̃) then using basic geometry arguments we deduce that there exist a cone ̂�(a)
with the opening angle � > 0, and a constant c > 0 (both depending only on � and �) such that
(̂�(a) ∩ B r̃

2
(a)) ⧵ Bc|x̂−a|(a) ⊂ �(x̂) ∩ Br̃(x̂) ⊂ ℝ2 ⧵Ω, see Figure 1.

Similarly to the previous calculations (see (4.11)), we obtain
�−2 r̃

2

4

1 + �−2 r̃
2

4

−
�−2c2|x̂ − a|2

1 + �−2c2|x̂ − a|2
≤ C ∫(̂� (a)∩B r̃

2
(a))⧵Bc|x̂−a|(a)

|∇�|2 dx ≤ CZ(m). (4.12)
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We further calculate
�−2 r̃

2

4

1 + �−2 r̃
2

4

−
�−2c2|x̂ − a|2

1 + �−2c2|x̂ − a|2
= 1 − 1

1 + �−2 r̃
2

4

−
�−2c2|x̂ − a|2

1 + �−2c2|x̂ − a|2

= 1
1 + �−2c2|x̂ − a|2

− 1
1 + �−2 r̃

2

4

≥ 1
1 + �−2c2|x̂ − a|2

−
4�2

r̃2
.

(4.13)

By step 2, we know that �2 ≤ CZ(m) and, therefore, we have
1

1 + �−2c2|x̂ − a|2
≤ CZ(m). (4.14)

Taking � small enough and recalling Z(m) ≤ C�, we deduce that
�2

dist2(a,ℝ2 ⧵Ω)
≤ CZ(m) ≤ C ′�, (4.15)

as claimed.
Proof of Lemma 4.2. If x ∈ ℝ2 ⧵ Ω, then w(x) = −R (

Φ(�−1(x − a)) + e3
). It is straightforward

to compute
1
�
(

Φ(�−1(x − a)) + e3
)

=
(

−
2(x − a)

�2 + |x − a|2
,

2�
�2 + |x − a|2

)

. (4.16)
Therefore, we have

1
�
w(x) − 2R

(

x − a
|x − a|2

, 0
)

= −R
(

2�2(x − a)
(�2 + |x − a|2)|x − a|2

,
2�

�2 + |x − a|2

)

. (4.17)

Using the fact that �2 + |x − a|2 ≥ 2�|x − a| and the fact that R ∈ SO(3), we obtain (4.2). Taking
the gradient of both parts of (4.17) we arrive at (4.3) in a similar way.

For x ∈ ℝ2 ⧵ Bdiam(Ω)(a), from estimate (4.2) we get
|w(x)| ≤ C�, (4.18)

Therefore, with the help of Friedrichs’ inequality [31, Corollary 6.11.2] we obtain

∫Ω
|w|2 dx ≤ ∫Bdiam(Ω)(a)

|w|2 dx ≤ C

(

∫Bdiam(Ω)(a)
|∇w|2 dx + ∫)Bdiam(Ω)(a)

|w|2 d1(x)

)

≤ C
(

�2 + ∫ℝ2
|∇(m − �)|2 dx

)

.

(4.19)

which is the estimate (4.4).
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Proof of Lemma 4.3. Letting w ∶= m + e3 − � − Re3, we compute

∫Ω
m′ ⋅ ∇m3 dx = ∫Ω

(m + e3)′ ⋅ ∇(m + e3)3 dx

= ∫Ω
(� + Re3)′ ⋅ ∇(�3 + Re3) dx + ∫Ω

(� + Re3)′ ⋅ ∇w3 dx

+ ∫Ω
w′ ⋅ ∇(� + Re3) dx + ∫Ω

w′ ⋅ ∇w3 dx.

(4.20)

The first term gives

∫Ω
(� + Re3)′ ⋅ ∇(�3 + Re3) dx = �∫�−1(Ω−a)

(R(Φ + e3))′ ⋅ ∇(RΦ)3 dx. (4.21)

As |(R(Φ + e3))′ ⋅ ∇(RΦ)3| ≤ C∕(1 + |x|3) uniformly in R, we get
|

|

|

|

|

|

�∫ℝ2⧵B�−1 dist(a,ℝ2⧵Ω)(0)
(R(Φ + e3))′ ⋅ ∇(RΦ)3 dx

|

|

|

|

|

|

≤ C�∫

∞

�−1 dist(a,ℝ2⧵Ω)

r
1 + r3

dr

≤ C
�2

dist(a,ℝ2 ⧵Ω)
.

(4.22)

Similarly, we get the estimate (4.5). In total, we obtain
|

|

|

|

∫Ω
(� + Re3)′ ⋅ ∇(� + Re3) dx − �∫ℝ2

(R(Φ + e3))′ ⋅ ∇(RΦ)3 dx
|

|

|

|

≤ C
�2

dist(a,ℝ2 ⧵Ω)
. (4.23)

We treat the second term by using Young’s inequality to get
|

|

|

|

∫Ω
(� + Re3)′ ⋅ ∇w3 dx

|

|

|

|

≤ 1
2

(

�2 ∫�−1(Ω−a)
|Φ + e3|2 dx + ∫Ω

|∇w|2 dx
)

. (4.24)

As |Φ + e3| ≤ C∕(1 + |x|), we have

∫�−1(Ω−a)
|Φ + e3|2 dx ≤ C ∫

�−1 diam(Ω)

0

r
(1 + r)2

dr ≤ C ′| log �|. (4.25)

Therefore, we get
|

|

|

|

∫Ω
(� + Re3)′ ⋅ ∇w3 dx

|

|

|

|

≤ C
(

�2| log �| + ∫ℝ2
|∇(m − �)|2 dx

)

. (4.26)

For the third term, we find by Hölder’s inequality that for p > 2 and p′ = p
p−1

∈ (1, 2) we have
|

|

|

|

∫Ω
w′ ⋅ ∇(� + Re3) dx

|

|

|

|

≤ ‖w′‖Lp(Ω)‖∇�‖Lp′ (Ω). (4.27)
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Noticing that |∇Φ|p′ decays sufficiently fast to be integrable, we furthermore compute

∫Ω
|∇�|p′ dx ≤ �2−p

′

∫ℝ2
|∇Φ|p′ dx ≤ C�2−p

′
. (4.28)

By the Sobolev embedding, for some Cp > 0 depending only on Ω and p we have
‖w′‖Lp(Ω) ≤ Cp

(

‖∇w′‖L2(Ω) + ‖w′‖L2(Ω)
)

. (4.29)
Therefore, together with the estimates (4.4) and (4.27) we see that

|

|

|

|

∫Ω
w′ ⋅ ∇(� + Re3) dx

|

|

|

|

≤ Cp�
2
p′ −1

(

� +
(

∫ℝ2
|∇(m − �)|2 dx

)
1
2
)

. (4.30)

Applying Young’s inequality to � 2
p′ −1

(

∫ℝ2 |∇(m − �)|
2 dx

)
1
2 and choosing p = 5, we obtain

|

|

|

|

∫Ω
w′ ⋅ ∇(� + Re3) dx

|

|

|

|

≤ Cp

(

�
2
p′ + �

4
p′ −2 + ∫ℝ2

|∇(m − �)|2 dx
)

≤ C
(

�
6
5 + ∫ℝ2

|∇(m − �)|2 dx
)

.
(4.31)

For the last term, we have by Young’s inequality and estimate (4.4) that
|

|

|

|

∫Ω
w′ ⋅ ∇w3 dx

|

|

|

|

≤ C
(

�2 + ∫ℝ2
|∇(m − �)|2 dx

)

. (4.32)
Combining the estimates (4.23), (4.26), (4.31), and (4.32) in (4.20), we get the desired estimate
(4.6). Furthermore, the only dependence of the constant C on a in (4.6) is through estimate (4.23),
and for � achieving the Dirichlet distance we can uniformly absorb this term into Z(m) using
Lemma 4.1. This gives us estimate (4.7).

4.2 Γ-convergence

With the preliminary statements above, we can now argue for all the relevant compactness proper-
ties. Essentially, the centers a� cannot approach the boundary since otherwise the Dirichlet excess
will be too large by Lemma 4.1. Estimates for the radii �� and the Dirichlet excessZ(m�) easily fol-
low. To control pinning of the rotation, we refer to the Moser-Trudinger-type inequality [3, Lemma
2.5] to side-step the fact that in two dimensions H1 does not embed into L∞. Recall that 0 and
̃0 are defined in (2.21) and (2.14), respectively.
Lemma 4.4. For every sequence of �n → 0 and m�n ∈ �n with

lim sup
n→∞

�n(m�n) − 8�
�2n

< 0 (4.33)

there exists a subsequence (not relabeled) and (R0, r0, a0) ∈ ̃0 such that m�n BP-converges to
(R0, r0, a0).
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Note that the above lemma does not yet yield a limit in0.
We now proceed to formulate theΓ-convergence result by first giving the lower bound statement.

The convergence of the DMI term will follow from Lemma 4.3, and therefore we only need to deal
with the Dirichlet excess. In particular, we have to prove that deviations from the Belavin-Polyakov
profile are only energetically favorable in the tail of the skyrmion. To this end, we split the Dirichlet
excess into a part localized in the core and a tail contribution. The localized part turns out to be
given by the Hessian of the Dirichlet energy after using a new parametrization by mapping ℝ2 to
the sphere, with the Belavin-Polyakov profile closest to m. Since Belavin-Polyakov profiles are
minimizers of the Dirichlet energy, the Hessian is non-negative and thus the contribution of any
possible core correction is non-negative.
Proposition 4.5. Let �n → 0 and let m�n ∈ �n BP-converge to (R0, r0, a0) ∈ ̃0 with

lim sup
n→∞

�n(m�n) − 8�
�2n

< 0. (4.34)

Then we have

lim inf
n→∞

�n(m�n) − 8�
�2n

≥ 0(R0, r0, a0) (4.35)

and, in particular, (R0, r0, a0) ∈ 0.

We next turn to the construction of a recovery sequence. Essentially, we take the Belavin-
Polyakov profile determined by the limit problem and modify the tail according to the harmonic
function u arising as the minimizer of T (a0), see (2.20). The DMI term has again been treated in
Lemma 4.3, so that after an appropriate construction only the Dirichlet term remains to be analyzed.
To ensure that the tail correction does not affect the skyrmion core, we modify u to satisfy u = 0 in
a small neighborhood of a0, which is possible since points have zero capacity inH1(ℝ2).
Proposition 4.6. For every (R0, r0, a0) ∈ 0 and all sequences of �n → 0 there exists a sequence
m�n ∈ �n BP-converging to (R0, r0, a0) such that

lim sup
n→∞

�n(m�n) − 8�
�2n

≤ 0(R0, r0, a0). (4.36)

Throughout the proofs of these statements, we will omit the index n from the notation by abuse
of notation.
Proof of Lemma 4.4. Let m� ∈ � be a sequence satisfying condition (4.33). We take ��(x) =
R�Φ(�−1� (x − a�)) with R� ∈ SO(3), �� > 0 and a� ∈ ℝ2 to be a Belyavin-Polyakov profile
achieving the Dirichlet distance of m� to . We would like to show existence of a subsequence m�
(not relabelled) BP-converging to (R0, r0, a0) ∈ ̃0 (see Definition 2.3). Due to compactness of
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SO(3) it is clear that there exists R0 ∈ SO(3) such that R� → R0, however, we need to show that
R0e3 = e3. Using Lemma 4.1, we also know that a� ∈ Ω and hence a� → a0 ∈ Ω, so we only need
to show that a0 ∈ Ω. We begin by estimating �� and the Dirichlet distance through the Dirichlet
excess.

Step 1: Estimate dist(a� ,ℝ2 ⧵Ω) and Z(m�), and prove

0 < lim inf
�→0

��
�

≤ lim sup
�→0

��
�
<∞. (4.37)

By our assumption (4.33), for � > 0 small enough there exists a subsequence (not relabeled)
and C1 > 0, such that we have

Z(m�) − 2� ∫Ω
m′� ⋅ ∇m�,3 dx = �(m�) − 8� ≤ −C1�2. (4.38)

Due to estimate (4.7) from Lemma 4.3, there exists C2 > 0 with

Z(m�) − C2�
(

�� +Z(m�) + �
6
5
�

)

≤ −C1�2. (4.39)

Noting that �� ≤ C�
1
2 by Lemma 4.1, if � is small enough we can absorb Z(m�) and �

6
5
� in the

second term on the left-hand side into the other terms, giving
1
2
Z(m�) − 2C2��� ≤ −C1�2. (4.40)

We may thus use Lemma 4.1 again to obtain
�2�

dist2(a� ,ℝ2 ⧵Ω)
− 2C2C��� ≤ −C1C�2. (4.41)

Completing the square on the left-hand side, we get
(

��
dist(a� ,ℝ2 ⧵Ω)

− C2C� dist(a� ,ℝ2 ⧵Ω)
)2

≤
(

C22C
2 dist2(a� ,ℝ2 ⧵Ω) − C1C

)

�2 (4.42)

Since the left-handmust be non-negative and constantsC,C1, C2 are positive, we obtain the estimate
lim inf
�→0

dist(a� ,ℝ2 ⧵Ω) > 0, (4.43)
so that after passing to a further subsequence we have a� → a0 with a0 ∈ Ω.

Continuing from (4.42), we also have
|

|

|

|

|

��
� dist(a� ,ℝ2 ⧵Ω)

− C2C dist(a� ,ℝ2 ⧵Ω)
|

|

|

|

|

≤
(

C22C
2 dist2(a� ,ℝ2 ⧵Ω) − C1C

)

1
2 . (4.44)
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Consequently, we obtain lim sup�→0 ��� <∞. Since

C2C dist(a� ,ℝ2 ⧵Ω) >
(

C22C
2 dist2(a� ,ℝ2 ⧵Ω) − C1C

)

1
2 , (4.45)

we also obtain lim inf�→0 ��� > 0. Extracting a further subsequence, if necessary, we find r ∈ (0,∞)
such that ��

�
→ r.

By the estimate (4.40), Theorem 2.2 and taking into account lim sup�→0 ��� <∞, we also get

lim sup
�→∞

�−2 ∫ℝ2
|∇(m� − ��)|2 dx <∞. (4.46)

Step 2: Prove R0e3 = e3.
As was already mentioned, the existence of R0 ∈ SO(3) such that R� → R0 along a subse-

quence simply follows from compactness of SO(3). Therefore, we are left with showingR0e3 = e3.
By [3, Lemma 2.5 and Lemma A.2], there is a constant C > 0 such that

∫ℝ2
exp

⎛

⎜

⎜

⎝

2�
3

|m� − ��|2

‖∇(m� − ��)‖2L2(ℝ2)

⎞

⎟

⎟

⎠

|∇��|2 dx ≤ C. (4.47)

Additionally, for � small enough, on ℝ2 ⧵ Bdiam(Ω)(a�) ⊂ ℝ2 ⧵ Ω we have m� = −e3, as well as
|�� + R�e3| ≤ C� by Lemma 4.2 and estimate (4.37). As a result, also using estimate (4.46), for
some constant c > 0 we have

exp
(

c
|R�e3 − e3|2

�2

)

∫ℝ2⧵Bdiam(Ω)(a� )
|∇��|2 dx ≤ C. (4.48)

The usual integration in polar coordinates therefore gives

exp
(

c
|R�e3 − e3|2

�2

)

�2� ≤ C, (4.49)

which together with estimate (4.37) implies lim�→0R�e3 = e3.
Proof of Proposition 4.5. Let m� ∈ � BP-converge to (R0, r0, a0) ∈ ̃0. We first choose a sub-
sequence in � (not relabeled) such that

lim inf
�→0

�(m�) − 8�
�2

= lim
�→0

�(m�) − 8�
�2

, (4.50)
so that we may pass to further subsequences if necessary. Then by Lemma 4.4, and using the fact
that BP-limits are unique, see Remark 2.4, we may further suppose that R� ∈ SO(3), �� and a�
determine a Belavin-Polyakov profile �� ∶= R�Φ(�−1� (∙ − a�)) achieving the Dirichlet distance of
m� to . In particular, we can apply Lemmas 4.1–4.3.
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The fact that the DMI term converges to the corresponding expression in the Γ-limit follows
immediately from Lemma 4.3 and the assumptions (2.15) and (2.17) of BP-convergence, with an
error of order �−1Z(m�) + �

1
5 as � → 0. We therefore only have to deal with the limit behavior of

the Dirichlet energy excess, which satisfies Z(m�) ≤ C�2 by (4.34) for � small enough.
To this end, we note that �� ∶ ℝ2 → S2⧵{−R�e3} is a bijective, conformal mapping. Therefore

we may introduce the function v� ∶ S2 → ℝ3 defined as v� ∶= �−1� (m�◦�
−1
� − idS2). From

assumptions (2.15) and (2.17), and the change of variables formula [3, Lemma A.2] for conformal
mappings we get

lim sup
�→0 ∫S2

|∇v�|2 d2(z) <∞. (4.51)

Thus, applying the Poincaré-type estimate [3, Lemma 2.5] to ��v� we get

lim sup
�→0 ∫S2

(

|v�|
2 + |∇v�|2

)

d2(z) <∞. (4.52)

Consequently, up to a subsequence there exists v0 ∈ H1(S2;ℝ3) such that v� ⇀ v0 weakly in
H1(S2;ℝ3).

For z ∈ S2, we compute

v�(z) ⋅ z = �−1� (m�◦�
−1
� (z) − z) ⋅ z = �

−1
� (m�◦�

−1
� (z) ⋅ z − 1) = −

1
2��

|m�◦�
−1
� (z) − z|

2.

(4.53)
Therefore, another application of [3, Lemma 2.5] and assumptions (2.15) and (2.17) gives

lim sup
�→0

�−2 ∫S2
|v�(z) ⋅ z|2 d2(z) = lim sup

�→0 ∫S2

1
4�2��2

|m�◦�
−1
� (z) − z|

4 d2(z) <∞. (4.54)

As a result, in the limit � → 0, we get that
v0(z) ⋅ z = 0 for 2-a.e. z ∈ S2. (4.55)

In particular, v0 is anH1-regular, tangent vector field on the sphere.
We define a set U� ∶= ��(B√

�� (a�)) ⊂ S2 and a function w� ∶= m� + e3 −�� −R�e3. By [3,
Lemma A.4], see also [27, Lemma 9], the excess can be rewritten as

�−2Z(m�) = �−2
(

∫ℝ2
|∇(m� − ��)|2 dx − ∫ℝ2

|m� − ��|2|∇��|2 dx
)

=
�2�
�2 ∫ℝ2⧵B√

�� (a� )

|

|

|

∇
(

�−1� w�
)

|

|

|

2
dx +

�2�
�2

(

∫U�
|∇v�|2 d2(z) − 2∫S2

|v�|
2 d2(z)

)

,

(4.56)
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where the transformation of the expressions onto the sphere is again via [3, Lemma A.2].
Due to assumptions (2.15) and Lemma 4.2, there exists u ∈ H1

loc(ℝ
2;ℝ2) such that

�−1� w
′
� ⇀ u (4.57)

in H1
loc(ℝ

2;ℝ2) as � → 0. Let R′0 ∈ SO(2) be such that R0v = (R′0v
′, v3) for all v ∈ ℝ3. Note

that, again by Lemma 4.2 and assumption (2.17), the limit for x ∈ ℝ2 ⧵Ω satisfies
u(x) = 2R′0

x − a0
|x − a0|2

. (4.58)

Let � ∈ (0, 12 ). For � > 0 small enough we have by BP-convergence that B√

�� (a�) ⊂ B�(a0).
Similarly, due to (2.15) and the definition ofΦ (see (2.5)), for the set V� ∶= {z ∈ S2 ∶ |z+e3| > �}
we obtain V� ⊂ (R�Φ)(B�−1∕2�

(0)) = U� . Therefore, for any fixed r̃ > � and � small enough, we
obtain
�−2Z(m�) ≥

�2�
�2 ∫Br̃(a0)⧵B�(a0)

|

|

|

∇
(

�−1� w
′
�
)

|

|

|

2
dx +

�2�
�2

(

∫V�
|∇v�|2 d2(z) − 2∫S2

|v�|
2 d2(z)

)

.

(4.59)
Together with the compact Sobolev embedding H1(S2) ↪ L2(S2), we therefore have in the limit
� → 0 that
lim inf
�→0

�−2Z(m�) ≥ r2 ∫Br̃(a0)⧵B�(a0)
|∇u|2 dx + r2

(

∫V�
|∇v0|2 d2(z) − 2∫S2

|v0|
2 d2(z)

)

.

(4.60)
Letting � → 0 and r̃ →∞, we consequently get
lim inf
�→0

�−2Z(m�) ≥ r2 ∫ℝ2
|∇u|2 dx + r2

(

∫S2
|∇v0|2 d2(z) − 2∫S2

|v0|
2 d2(z)

)

. (4.61)
The non-negativity of the second variation of the Dirichlet energy at minimizers for tangent vector
fields on the sphere [3, (4.5)] finally implies

lim inf
�→0

�−2Z(m�) ≥ r2 ∫ℝ2
|∇u|2 dx = r2 ∫ℝ2

|∇ũ|2 dx ≥ r2T (a0), (4.62)

where we noted that ũ ∶= (R′0)−1u satisfies the boundary data required in the definition of T , see
identity (4.58).
Proof of Proposition 4.6. In contrast to the rest of the paper, in this proof the constantC may depend
on r0 and a0. We fix (R0, r0, a0) ∈ 0 and take u ∈ H̊1(ℝ2;ℝ2)∩L2loc(ℝ

2;ℝ2)with u(x) = 2 x−a0
|x−a0|2for x ∈ ℝ2 ⧵Ω and achieving

∫ℝ2
|∇u|2 dx = T (a0). (4.63)
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In particular, u is harmonic in Ω, unique, and by the maximum principle satisfies u ∈ L∞(ℝ2;ℝ2).
We start by constructing two auxiliary functions which will be useful in the construction of the

recovery sequence.
Step 1: Truncating u at a0.
For � ∈

(

0, 12 ∧
1
2 dist

2(a0,ℝ2 ⧵Ω)
)

and x ∈ ℝ2, we define

��(x) ∶=

⎧

⎪

⎨

⎪

⎩

1 if |x − a0| ≤ �,
2 log |x−a0|

log � − 1 if � < |x − a0| ≤ �
1
2 ,

0 else.
(4.64)

This function satisfies �� ∈ H1(ℝ2), supp �� ⊂ B√

�(a0) ⊂ Ω and

∫ℝ2
|∇��|2 dx ≤ C

| log �|
. (4.65)

We now set u� ∶= (1 − ��)u in order to enforce u� = 0 in B�(a0). Then we still have u� ∈
H̊1(ℝ2;ℝ2) ∩ L∞(ℝ2;ℝ2), u�(x) = 2 x−a0

|x−a0|2
for x ∈ ℝ2 ⧵Ω and

∫ℝ2
|∇u�|2 dx − ∫ℝ2

|∇u|2 dx = ∫B√

�(a0)

(

| − u ⊗ ∇�� + (1 − ��)∇u|2 − |∇u|2
)

dx

≤ C ∫B√

�(a0)

(

|∇��|2 + |∇u|2
)

dx

= o�(1)

(4.66)

by the estimate (4.65) and |∇u| ∈ L2(ℝ2).
Step 2: Construct the boundary data corrector v� ∶ ℝ2 → ℝ2 with v�(x) = 0 for all x ∈

Bdist(a0,)Ω)∕2(a0) and

‖v�‖L∞(ℝ2) + ‖∇v�‖L2(ℝ2) ≤ C�2. (4.67)

Let �� ∶= R0Φ((r0�)−1(∙ − a0)) and again let R′0 ∈ SO(2) be such that R0v = (R′0v′, v3) forall v ∈ ℝ3. In order to achieve the correct boundary data, we define v�(x) ∶= −�′�(x)− r0�R′0u for
x ∈ ℝ2 ⧵Ω and v� = 0 in Bdist(a0,)Ω)∕2(a0). Exploiting the estimates (4.2) and (4.3), we can extend
v�(x) using [18, Theorem 3.1] to a Lipschitz function on ℝ2 such that

‖v�‖W 1,∞(ℝ2) ≤ C�2. (4.68)
The L2 estimate for the gradient on the whole space follows.

Step 3: Definition of the recovery sequence.
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Having introduced the boundary corrector v� , wemay now define the test magnetizationsm�,� ∈
H̊1(ℝ2;S2) as follows:

m�,�(x) ∶=

{

��(x) if x ∈ B�(a0),
p
(

�′� + r0�R
′
0u� + v�

) if x ∈ ℝ2 ⧵ B�(a0),
(4.69)

where the map p ∶ ℝ2 → S2 lifts v ∈ B1(0) ⊂ ℝ2 to S2 via p(v) ∶=
(

v,−
√

1 − v2
)

. It is clear
that since u and u� coincide outside B√

�(a0), using the definition of v� , we have m�,�(x) = −e3 for
all x ∈ ℝ2 ⧵ Ω. Furthermore, for small enough � > 0 we have u� = 0 and v� = 0 in B�(a0) and
therefore the test configuration m�,� is well defined for all � sufficiently small depending on �. We
also have

‖�′� + r0�R
′
0u� + v�‖L∞(ℝ2⧵B�(a0)) ≤ C��, (4.70)

by the definition of Φ′, boundedness of u�, and estimate (4.67). Here and in the following, the
symbol C� > 0 denotes a generic positive constant depending only on Ω, r0, a0, and �.

Let q�,�(x) ∶= m�,�(x) − ��(x) − r0�R0(u�(x), 0). For x ∈ B�(a0) we of course have q�,� = 0.
For x ∈ ℝ2 ⧵ B�(a0) we compute

q�,�(x) =
(

v� , p3
(

�′� + r0�R
′
0u� + v�

)

− p3
(

�′�
))

. (4.71)
Using estimates (4.67) and (4.70), as well as Lipschitz continuity of the square root near 1, we get

‖q�,�‖L∞(ℝ2) ≤ C
(

�2 + ‖�′� + r0�R
′
0u� + v�‖

2
L∞(ℝ2⧵B�(a0))

+ ‖�′�‖
2
L∞(ℝ2⧵B�(a0)

)

≤ C��
2. (4.72)

To estimate the H1-norm of q�,�, note that for any v ∈ H1(ℝ2) with ‖v‖L∞(ℝ2) < 1 we have
∇p3(v) =

v
√

1−v2
∇v a.e. in ℝ2 by the weak chain rule. Therefore, arguing as in [3, (A.67)] and

using (4.66), (4.67) and (4.70), for all � small enough we get
‖

‖

‖

∇
(

p3(�′�)
)

‖

‖

‖L2(ℝ2⧵B�(a0))
≤ C��

2, (4.73)
‖

‖

‖

∇
(

p3
(

�′� + r0�R
′
0u� + v�

))

‖

‖

‖L2(ℝ2⧵B�(a0))
≤ C��

2, (4.74)

so that again with (4.67) we have
‖∇q�,�‖L2(ℝ2) ≤ C��

2. (4.75)
In particular, by the definition of q�,� and (4.66) we have the estimate

∫ℝ2
|∇(m�,� − ��)|2 dx ≤ C��

2, (4.76)
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for all � sufficiently small depending on �. In particular, by the definition of  (m�,�) in (2.2) and
the fact that (m�,�) ∈ ℤ we have  (m�,�) = 1 and, therefore, m�,� ∈  for small enough �.

Step 4: Computation of the energy.
By Lemma 4.3 and estimate (4.76), we have

|

|

|

|

−2� ∫Ω
m′�,� ⋅ ∇m�,�,3 dx + 2��∫ℝ2

(R0(Φ + e3))′ ⋅ ∇Φ3 dx
|

|

|

|

≤ C��
11
5 .

(4.77)

For the Dirichlet energy, we again use [3, Lemma A.4] to get

∫ℝ2
|∇m�,�|2 dx − 8� = ∫ℝ2

|∇(m�,� − ��)|2 dx − ∫ℝ2
|m�,� − ��|2|∇��|2 dx

≤ ∫ℝ2
|∇(m�,� − ��)|2 dx.

(4.78)

By the estimates (4.75) and (4.66), we get

∫ℝ2
|∇m�,�|2 dx − 8� ≤ r20�

2
∫ℝ2

|∇u�|2 dx + C��3

≤ r20�
2
∫ℝ2

|∇u|2 dx + C��3 + �2o�(1).
(4.79)

Therefore, we have

lim sup
�→0

�(m�,�) − 8�
�2

≤ 0(R0, r0, a0) + o�(1). (4.80)

By a diagonal argument, the statement then follows.
Proof of Theorem 2.6. After we established the compactness of sequences obeying (4.33) with re-
spect to the BP-convergence in Lemma 4.4, the statement of Theorem 2.6 follows by combining
Propositions 4.5 and 4.6, and noting that by Proposition 4.5 the limit of the sequence in Lemma 4.4
belongs to0.

5 Analyzing the limit problem

Proof of Theorem 2.8. By the properties of Γ-convergence, minimizers m� of � BP-converge to
minimizers (R0, r0, a0) ∈ 0 of 0 as � → 0 with the rate

∫ℝ2
|∇(m� − ��)|2 dx ≤ C�2, (5.1)

32



where �� ∶= R0Φ
(

∙ − a0
�r0

)

. Note that Theorem 2.6 does apply to minimizers of � over in view
of Lemma 3.2.

Recall that

0(R0, r0, a0) = r20T (a0) − 2r0 ∫ℝ2
(R0Φ)′ ⋅ ∇Φ3 dx. (5.2)

Since by the Cauchy-Schwarz inequality the integrand of the DMI term is minimized at each point
when R′Φ′ and ∇Φ3 are parallel and since Φ′ is parallel to ∇Φ3, the DMI term as a whole is
minimized for R0 = id. Direct calculation or [3, Lemma A.5] gives

2∫ℝ2
Φ′ ⋅ ∇Φ3 dx = 8�. (5.3)

For a0 ∈ argmina∈Ω T (a) minimizing in r0 therefore gives

r0 =
4�
T (a0)

, (5.4)

0(R0, r0, a0) = −
16�2
T (a0)

. (5.5)

which completes the proof.
Proof of Proposition 2.9. First of all, observe that under our assumptions, (2.30) is uniquely solv-
able in C∞(Ω;ℂ) ∩ C1,�(Ω;ℂ), see [20, Theorem 8.34]. The expression in (2.31) may be conve-
niently rewritten as an integral over )Ω. Integrating by parts and using that uz0 is harmonic both
inside and outside Ω (it is anti-holomorphic in Ωc), we obtain

T (z0) = ∫Ω
∇ ⋅ (ūz0∇uz0) dx + ∫Ωc

∇ ⋅ (ūz0∇uz0) dx

= ∫)Ω
ūz0

(

)�uz0
|

|

|Ω
− )�uz0

|

|

|Ωc

)

d1(z),
(5.6)

where )� denotes the derivative in the direction of the outward unit normal to )Ω.
SinceΩ is simply connected, both the real and the imaginary parts of the harmonic function uz0

possess the unique, up to constants, harmonic conjugates in Ω that belong to C1,�(Ω). Therefore
uz0 admits a decomposition

uz0(z) = f (z) + g(z) z ∈ Ω, (5.7)

for two functions f (z) and g(z) that are holomorphic in Ω.
Recall that if � ∶ )Ω → ℂ represents the outward unit normal to )Ω and f is holomorphic

in Ω, we have )�f = �f ′ on )Ω, where the prime denotes the usual derivative of a holomorphic
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function. Similarly, if � ∶= i� represents the unit tangent to )Ω in the counter-clockwise direction,
the tangential derivative )�f = �f ′ on )Ω. Therefore, using (5.7) we can write

)�uz0
|

|

|Ω
= �f ′ + �g′, )�uz0

|

|

|Ωc
= − 2�̄

(z̄ − z̄0)2
(5.8)

on )Ω. At the same time, by continuity of uz0 across )Ω we have

�f ′ + �g′ = − 2�̄
(z̄ − z̄0)2

(5.9)

on )Ω. Thus we have
)�uz0

|

|

|Ω
− )�uz0

|

|

|Ωc
= −2i�f ′ (5.10)

on )Ω, and the integral in (5.6) can be rewritten as a Cauchy type contour integral

T (z0) = −4i∮)Ω
f ′(z)
z − z0

dz. (5.11)

Finally, applying the residue theorem, we obtain T (z0) = 8�f ′(z0), which is precisely (2.32).

5.1 Disks

Proof of Proposition 2.10. Without loss of generality, we may assume l = 1. Let uz0 be definedby (2.33). We recall that for z ∈ ℂ∖B1(0) we have

uz0(z) =
2

z̄ − z̄0
. (5.12)

In particular, up to complex conjugation, uz0 is invariant under the Kelvin transform, i.e., for all
z ∈ B1(0) we have

uz0
(

z̄−1
)

= 2z
1 − z̄0z

= uz0(z), (5.13)

which is holomorphic and, therefore, harmonic in B1(0). Furthermore, the function uz0 is contin-uous across )B1(0). By the uniqueness of boundary value problems for harmonic functions and
continuity at the boundary, uz0 is indeed the function achieving T (z0). By Proposition 2.9, we
obtain

T (z0) =
16�

(1 − |z0|2)2
. (5.14)

Clearly, this expression is minimized for z0 = 0. The rest of the statement is obtained by a direct
substitution.
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5.2 Strips

Instead of giving a full proof for the Γ-convergence in the case of a strip Ωl ∶= ℝ × (−l∕2,l∕2)
for l > 0, we point out the places in which the proof for bounded sets needs to be adjusted.

The first adjustment concerns Lemma 3.1, where a Poincaré estimate still holds for all admis-
sible m. Furthermore, the proof of existence of a minimizer follows the lines of the proof in the
whole space [3] to deal with the non-compact invariance under horizontal shifts.

Step 1 of Lemma 4.1 applies verbatim. Lemma 4.2 also works similarly, one just needs to use
the decay behavior of the leading order contribution ofwm when applying a Poincaré type estimate
on slices {x1} × (−l,l) in order to achieve finite L2 norm of wm on Ωl. In Lemma 4.3, additional
care needs to be taken in the integration (4.25), i.e.,

∫�−1(Ωl−a)
|Φ + e3|2 dx ≤ C| log �|, (5.15)

although the result is unchanged. Furthermore, the Sobolev embedding H1(Ωl) ↪ L5(Ωl) still
works by virtue of Ωl being an extension domain and [28, Theorem 8.5(ii)].

The remaining arguments work the same, up to the adjustment that due to translation invariance
the component (a�)1 cannot be controlled.
Proof of Proposition 2.11. Again, without loss of generality we may assume l = �∕2. Let Ω ∶=
ℝ × (−�

4 ,
�
4 ), and let uy0 be the map defined in equation (2.38) for l = �∕2 and y0 ∈ (−�

4 ,
�
4 ). Thefact that uy0 satisfies the boundary conditions follows from the two elementary identities:

tanh
(

z ± i�
4

)

= coth
(

z ∓ i�
4

)

for all z ∈ ℂ. (5.16)
Furthermore, as uy0 is a sum of a holomorphic and an anti-holomorphic functions inΩ, it is harmonic
in all the points where it is finite. As is well-known, the only singularities of both tanh z and coth z
are simple poles on the imaginary axis. Since | Im(z+ iy0)| < �

2
for all z ∈ Ω, the tanh contribution

is smooth in Ω. For the same reason, the coth contribution only has a singularity at z = iy0, which,
however, is precisely counterbalanced by 2

z̄+iy0
, as can be seen from the Laurent series of coth at

the origin. Therefore uy0 is indeed the map achieving T (iy0). As uy0 decays sufficiently quickly
at infinity, the arguments leading to Proposition 2.9 may also be adapted to the setting of strips,
whereby we have

T (iy0) =
16�

cos2(2y0)
. (5.17)

This function is clearly minimized by y0 = 0, giving the statement.

5.3 Half-plane

Proof of Proposition 2.12. Checking that uy0 is indeed the minimizer realizing T (iy0) is trivial, and
the rest of the statement is obtained via Proposition 2.9, again, adapted to the half-plane setting.
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6 Anisotropy as a continuous perturbation

Proof of Proposition 2.13. Due to the properties of the BP-convergence, there exist sequencesRn ∈
SO(3), �n > 0 and an ∈ Ω such that with �n(x) ∶= RnΦ(�−1n (x − an)) for x ∈ ℝ2 the estimates of
Definition 2.3 hold. Again, by Friedrichs’ inequality [31, Corollary 6.11.2] we have

∫Ω
|

|

|

m�n + e3 − �n − Rne3
|

|

|

2
dx

≤ C

(

∫Ω
|

|

|

∇(m�n − �n)
|

|

|

2
dx + ∫)Bdiam(Ω)(a0)

|

|

�n + Rne3||
2 d1(x)

)

,
(6.1)

which allows to control the L2–distance between m�n and the Belavin-Polyakov profile �n that ap-
proximates it. In particular, by Lemma 4.2 and the properties of the BP-convergence, the two error
terms in the right-hand side of (6.1) are of order �2n for all n large enough. Therefore, addition-
ally reparametrizing the integral by the factor �−1n in the second step and using the assumption
limn→∞

�n
�n
= r0, we have that

lim
n→∞

1
�2n | log �n| ∫Ω

|m′�n|
2 dx = lim

n→∞
1

�2n | log �n| ∫Ω
|

|

|

(

(Rn(Φ(�−1n (x − an)) + e3)
)′
|

|

|

2
dx

= lim
n→∞

r20
| log �n| ∫�−1n (Ω−an)

|

|

|

(

(Rn(Φ(x) + e3)
)′
|

|

|

2
dx.

(6.2)

Since Φ3 + 1 ∈ L2(ℝ2), the contribution of Rn(0,Φ3 + 1) in the last integral is negligible, so
that by expanding the square we get

lim
n→∞

r20
| log �n| ∫�−1n (Ω−an)

|

|

|

(

(Rn(Φ(x) + e3)
)′
|

|

|

2
dx

= lim
n→∞

r20
| log �n| ∫�−1n (Ω−an)

|

|

|

|

|

(

Rn

(

2x
1 + |x|2

, 0
))′

|

|

|

|

|

2

dx.

(6.3)

Therefore, together with the fact that |(Rnv)′| ≤ |v| for all v ∈ ℝ3 we have

lim
n→∞

r20
| log �n| ∫�−1n (Ω−an)

|

|

|

|

|

(

Rn

(

2x
1 + |x|2

, 0
))′

|

|

|

|

|

2

dx

≤ lim inf
n→∞

8�r20
| log �n|

(

∫

1

0
s3 ds + ∫

�−1n diam(Ω)

1

ds
s

)

= 8�r20,

(6.4)

where we recalled that �n∕�n → r0 as n→∞ by the BP-convergence.
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At the same time, as limn→∞ an = a0 ∈ Ω, there exists an s̃ > 0 such that Bs̃(an) ⊂ Ω for all
n ∈ ℕ. By the estimate (6.4) the expression on the right-hand side of estimate (6.3) is bounded, so
that we can pass to the limit in the rotation limn→∞Rn = R0 and exploit R0e3 = e3, to get

lim
n→∞

r20
| log �n| ∫�−1n (Ω−an)

|

|

|

|

|

(

Rn

(

2x
1 + |x|2

, 0
))′

|

|

|

|

|

2

dx

≥ lim sup
n→∞

r20
| log �n| ∫B�−1n s̃(0)

4|x|2

(1 + |x|2)2
dx

= lim sup
n→∞

8�r20
| log �n| ∫

�−1n s̃

1

ds
s

= 8�r20.

(6.5)

The statement then follows from combining the estimates (6.4) and (6.5).
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