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SYMMETRY PROPERTIES OF MINIMIZERS OF A PERTURBED DIRICHLET ENERGY WITH A BOUNDARY PENALIZATION

We consider S 2 -valued maps on a domain Ω ⊂ R N minimizing a perturbation of the Dirichlet energy with vertical penalization in Ω and horizontal penalization on ∂Ω. We first show the global minimality of universal constant configurations in a specific range of the physical parameters using a Poincaré-type inequality. Then, we prove that any energy minimizer takes its values into a fixed half-meridian of the sphere S 2 , and deduce uniqueness of minimizers up to the action of the appropriate symmetry group. We also prove a comparison principle for minimizers with different penalizations. Finally, we apply these results to a problem on a ball and show radial symmetry and monotonicity of minimizers. In dimension N = 2 our results can be applied to the Oseen-Frank energy for nematic liquid crystals and the micromagnetic energy in a thin-film regime.

.

Introduction

The motivation for this study comes from the field of thin structures -a branch of materials science that is currently experiencing rapid growth. The interest in thin structures relies on their applications in miniaturization and integration of electronic devices, but even more on their capability to support the emergence of new physics [ , , ]. Indeed, atomically thin materials can be employed to achieve physical properties that are hardly visible in bulk materials. Moreover, combining several atomically thin layers to create new heterostructures allows for the design of novel materials with prescribed properties [ ].

In the last twenty years, thin-structures in micromagnetics and nematic liquid crystals have been an area of active research in both applied mathematics and condensed matter physics (see, e.g., [ -, , , -, , , ]). Recent advances in manufacturing thin films and curved layers provide a possibility to design new materials composed of several magnetic monolayers of atomic thickness [ , ]. These new materials exhibit some unconventional properties, including perpendicular magnetocrystalline anisotropy [ ] and Dzyaloshinskii-Moriya interaction (DMI) (or antisymmetric exchange) [ , ] and require a new set of reduced theoretical models to predict the magnetization behavior in ferromagnetic samples. This new physics is often dominated by surface and edge effects, and leads to a surprising behavior near the material boundaries, giving rise to novel magnetization structures [ , , , ].

In this paper, we are interested in studying the ground states of a simplified model (cf. eq. ( )), concentrating on their symmetry properties. The model we investigate is closely related to a reduced model for ferromagnetic thin films with strong perpendicular anisotropy in the regime when magnetocrystalline and shape anisotropies have the magnitude of the same order, leading to the preference for in-plane magnetization inside the sample and out-of-plane magnetization behavior on the boundary [ , ].

Since the energy functionals governing micromagnetic interactions and defects in nematic liquid crystals are mathematically related, our analysis also applies to the analysis of ground states in the thin-film limit Oseen-Frank theory of nematic liquid crystals under weak anchoring conditions.

. . Our model. Even though our main motivation comes from the study of thin film structures, we formulate and prove our results for domains of arbitrary dimension and let Ω ⊂ R N , N 1, be a smooth bounded domain, and let S 2 ⊂ R 3 be the two-dimensional unit sphere. We consider the energy of a configuration m ∈ H 1 (Ω, S 2 ), defined by

E κ (m) = Ω |∇m| 2 + κ 2 Ω (m • e 3 ) 2 , ( )
where |∇m| 2 = N i=1 |∂ i m| 2 , e 3 =( , , ), and κ ∈ [0, +∞) is some fixed (material-dependent) parameter which takes into account in-plane anisotropic effects. Under natural boundary conditions (which is the typical case in micromagnetics), the only minimizers of E κ are the constant in-plane configurations. In this note, we are interested in the problem of minimizing the energy E κ under an additional penalization term on the boundary of Ω that makes the problem non-trivial: for every γ > 0 we consider the energy functional defined for every m ∈ H 1 (Ω, S 2 ) by

E κ,γ (m) = Ω |∇m| 2 + κ 2 Ω (m • e 3 ) 2 + 1 γ 2 ∂Ω |m × e 3 | 2 , ( )
where γ ∈ (0, +∞) fixes the intensity of the perpendicular anisotropy on ∂Ω. The energy in this form naturally appears in the Oseen-Frank model of liquid crystals [ ] and as a thin film limit of micromagnetic energy for ferromagnetic materials with strong perpendicular anisotropy [ ].

A straightforward application of direct methods of the calculus of variations assures that for every κ ∈ [0, +∞) and γ ∈ (0, +∞), there exists a global minimizer of the energy E κ,γ . The minimizers satisfy the following Euler-Lagrange equations in the weak sense, i.e., for every

ϕ ∈ H 1 (Ω, R 3 ) Ω ∇m : ∇ϕ + κ 2 (m • e 3 ) (ϕ • e 3 ) = Ω (|∇m| 2 + κ 2 (m • e 3 ) 2 )m • ϕ + 1 γ 2 ∂Ω (m • e 3 ) e 3 -(m • e 3 ) 2 m • ϕ. ( ) If a global minimizer m is C 1 (Ω, S 2 ) ∩ C 2 (Ω, S 2
), this means that m classically solves

-∆m + κ 2 (m • e 3 ) e 3 = (|∇m| 2 + κ 2 (m • e 3 ) 2 )m in Ω ( )
together with the nonlinear Robin boundary condition:

∂ n m = 1 γ 2 (m • e 3 ) e 3 -(m • e 3 ) 2 m on ∂Ω. ( )
In the limiting case γ → 0, E κ,γ converges to a non-trivial Dirichlet boundary value problem. For example (cf. Remark . ), it is simple to show that E κ,γ Γ-converges in the weak H 1 topology to the energy E κ,0 defined for every m ∈ H 1 (Ω, S 2 ) by

E κ,0 (m) :=    E κ (m) if m × e 3 ∈ H 1 0 (Ω), +∞ otherwise . ( ) If ∂Ω is connected, for every m ∈ H 1 (Ω, S 2 ), the condition m × e 3 ∈ H 1 0 (Ω) is equivalent to the boundary condition m = e 3 on ∂Ω, or m = -e 3 on ∂Ω.
Note that, we shall write E κ,γ for both the boundary penalization problem, corresponding to ( ) when γ > 0, and the boundary value problem (with boundary value ±e 3 ), corresponding to ( ) when γ = 0. This is more convenient since many of our results apply to both problems. As in the case γ > 0, the existence of global minimizers for E κ,0 follows from direct methods in the calculus of variations.

Remark . . Here and after, the word domain will always refer to a connected open set, not necessarily with a connected boundary. Indeed, all the proofs concerning E κ,γ , γ > 0, work for bounded and smooth connected open sets. Note that, the possible presence of different connected components in the boundary of Ω allows for the leading order Γ-limit ( ) to be defined on H 1 functions with trace equal to +e 3 on some connected component of ∂Ω and to -e 3 on a different one. However, as we deal with minimizers, we do not expect that for γ → 0 the minimizers of E κ,γ will take values close to -e 3 on some connected component of the boundary and +e 3 on some other connected components of the boundary. Nevertheless, it is certainly possible to construct stable solutions having this behavior for some particular values of κ, γ when ∂Ω has, e.g., two connected components.

. . Contributions of the present work. The aim of the paper is to show the symmetry and uniqueness properties of minimizers of E κ,γ . In particular, we prove that any minimizer of E κ,γ takes values in some half-meridian of the sphere and is unique up to the symmetries in the group of isometries preserving the e 3 -axis. As a consequence, restricting the domain Ω to a ball we also show that any minimizer is radially symmetric and monotone.

Remark . (Notation). By meridian, we mean one of the minimizing geodesics between the south pole and the north pole of S 2 , which consist in the half of a great circle. By half-meridian we mean a minimizing geodesic between a point on the equator and the south pole or north pole, which consist in the upper or lower half of some meridian.

In what follows, we describe the results in more detail. Our first result concerns the minimality of universal configurations, i.e., vector fields m ∈ H 1 (Ω, S 2 ) which solve the Euler-Lagrange equations ( ) regardless of the value of the boundary penalization constant γ > 0. Given the dependence of the boundary term in ( ) on γ, such configurations must satisfy (m • e 3 )(e 3 -(m • e 3 )m) = 0 a.e on ∂Ω.

( )

It is easy to check that the constant vector fields ±e 3 , as well as any constant in-plane vector field e ⊥ ∈ S 2 , e ⊥ • e 3 = 0, are universal configurations. Concerning these configurations, we prove the following result, which clarifies how to tune the parameters κ and γ so that these configurations emerge as ground states.

Theorem . Let N 1 and Ω ⊆ R N be a smooth bounded domain. The following assertions hold: i) For any γ ∈ [0, +∞), there exists κ γ > 0, depending only on γ and Ω, such that for any κ ∈ [0, κ γ ) the constant out-of-plane vector fields ±e 3 are the unique global minimizers of E κ,γ . In particular, ±e 3 are the unique solutions of the Dirichlet boundary value problem min E κ,0 if κ ∈ [0, κ 0 ). ii) For any κ ∈ (0, +∞), there exists γ κ > 0, depending only on κ and Ω, such that for any γ ∈ (γ κ , +∞) the constant in-plane vector fields e ⊥ ∈ S 2 , e ⊥ • e 3 = 0, are the only global minimizers of E κ,γ .

The statements in Theorem characterize the energy landscape under restrictions on the control parameters κ and γ. Our second result retrieves information on the properties of minimizers under no additional assumptions on the system parameters κ and γ. Exploiting the symmetries of the system, we prove that minimizers of E κ,γ are smooth up to the boundary of Ω and takes values in a half-meridian in S Moreover, when γ > 0, we have

ϕ ∈ argmin ψ∈H 1 (Ω) Ω |∇ψ| 2 + κ 2 Ω cos 2 ψ + 1 γ 2 ∂Ω sin 2 ψ , ( ) 
and either ϕ ≡ 0 in Ω so that m ≡ ±e 3 , or ϕ ≡ π 2 in Ω so that m is constant in-plane (i.e., m • e 3 ≡ 0), or 0 < ϕ < π 2 in Ω. In the case γ = 0 we have ϕ ∈ argmin ψ∈H 1 0 (Ω) Ω |∇ψ| 2 + κ 2 Ω cos 2 ψ , ( )
and either ϕ ≡ 0 in Ω so that m ≡ ±e 3 or 0 < ϕ < π 2 in Ω.

When γ = 0, the minimization problem ( ) has a unique solution such that Im(ϕ) ⊂ (0, π 2 ]. This follows by classical results about sublinear elliptic equations which immediately apply to the Dirichlet problem ( ) because the map t → (sin t)/t is decreasing in (0, π] (see Appendix II in [ ]). Note, however, that the argument does not assure uniqueness of solutions because, in principle, there is the possibility of having coexistence of a solution ϕ such that Im(ϕ) ⊂ (0, π 2 ] with the constant solution ϕ ≡ 0 (corresponding to m ≡ ±e 3 ). More importantly, these classical results do not to fit with the case γ > 0, i.e., they do not apply to minimizers of ( ). Our next result resolves these issues as it assures uniqueness of minimizers of ( ) and ( ). We also have a comparison principle for minimizers with different values of κ, γ:

Theorem . Let N 1, let Ω ⊂ R N be
Theorem . Let N 1, Ω ⊂ R N be a smooth bounded domain, and κ 1 , κ 2 , γ 1 , γ 2 ∈ [0, +∞) with κ 1 κ 2 , γ 1 γ 2 and (κ 1 , γ 1 ) = (κ 2 , γ 2 ). If for i = 1, 2, ϕ i is a solution of ( ) taking values into [0, π 2 ], with (κ, γ) = (κ i , γ i ), then we have either ϕ 1 = ϕ 2 ≡ 0, or ϕ 1 = ϕ 2 ≡ π 2 , or ϕ 1 < ϕ 2 in Ω.
If in addition we assume γ 2 > 0, then in the latter case we actually have ϕ 1 < ϕ 2 on Ω.

The statements in Theorems to hold without any assumption on the geometry of the domain Ω. Our last result focuses on the case where Ω is a ball, and shows that any global minimizer of E κ,γ is radially symmetric in this case, i.e., m = m(|x|), and by Theorem takes values in a half-meridian (an example of a minimizer of ( ) on the two-dimensional ball is illustrated in Figure ).

Theorem . Let κ, γ ∈ [0, +∞). Let Ω = B R be a ball of radius R > 0 centered at the origin in R N , then any global minimizer m of E κ,γ is radially symmetric. More precisely, there exists σ ∈ O(3, e 3 ) such that σ • m(x) = sin u(|x|) 2 , 0, cos u(|x|) 2 in Ω for some non-increasing C ∞ function u : [0, R] → [0, π] which solves the nonlinear ODE u (r) + N -1 r u + κ 2 sin u = 0 in (0, R), ( ) 
u (0) = 0, ( )
with either a Dirichlet condition or a nonlinear Robin boundary condition at r = R, namely

u(R) = 0 if γ = 0, u (R) + 1 γ 2 sin u(R) = 0 if γ > 0. ( )
We remark that even if Theorem is stated in the case of a ball, it also holds when Ω is an anulus B R \ B r (0 r < R) with the boundary condition ( ) adjusted accordingly.

By Theorem , the function u in Theorem is unique when γ ∈ [0, +∞). It is either the steady state u ∈ {0, π} or a non-increasing function into (0, π).

. . Outline. The paper is organized as follows. In Section , we prove the minimality of universal configurations in a specific range of the parameters κ, γ (Theorem ). For that, we need a Poincaré-type inequality with a boundary term, which is proved in Lemma . Section is devoted to the analysis of symmetries of the minimizers and their range, there we prove Theorem . In Section , we show the uniqueness of minimizers of E κ,γ for γ ∈ [0, +∞) up to isometries in O(3, e 3 ), see Theorem . In Section we prove our comparison result (Theorem ) which states that solutions of ( ) are order preserving in κ and γ. Finally, in Section , we focus on the case when the domain is a ball, and we prove radial symmetry and monotonicity of solutions of ( ) (Theorem ).

.

Minimality of universal configurations: Proof of Theorem

To investigate the minimality of the constant out-of-plane configurations ±e 3 we need the following Poincaré-type inequality, which can be of some interest on its own.

Lemma (Poincaré-type inequality).

Let Ω ⊆ R N be a bounded smooth domain. Then, there exists c Ω > 0 such that for every u ∈ H 1 (Ω) and every δ > 0, we have

δ (c Ω -δ) Ω u 2 Ω |∇u| 2 + δ ∂Ω u 2 . ( ) 
Moreover, in the previous relation, the constant c Ω can be taken c Ω = N diam(Ω) .
Proof. We argue along the lines in [ ]. Without loss of generality, we can assume that 0 ∈ Ω. Also, by density, it is sufficient to prove ( ) for every u ∈ C ∞ Ω . With x standing for the identity map, by the divergence theorem we get

Ω 2u∇u • x + N u 2 = Ω div(u 2 x) = ∂Ω u 2 n • x ,
where n is the outward-pointing unit normal vector field associated with ∂Ω. By Young's inequality, it follows that for every δ > 0 one has

N Ω u 2 sup x∈∂Ω |x| ∂Ω u 2 + sup x∈Ω |x| Ω 1 δ |∇u| 2 + δu 2 .
Since sup x∈∂Ω |x| diam (Ω) and sup x∈Ω |x| diam (Ω), we have

(N -δ diam (Ω)) Ω u 2 diam (Ω) δ Ω |∇u| 2 + diam (Ω) ∂Ω u 2 .
From the previous estimate, we get that for every δ > 0 there holds

δ (c Ω -δ) Ω u 2 Ω |∇u| 2 + δ ∂Ω u 2 , with c Ω := N diam(Ω)
. This concludes the proof.

Proof of Theorem , item i. We first consider the case where γ > 0. Without loss of generality, we can focus on the configuration m = +e 3 . We observe that for any

v ∈ H 1 (Ω, R 3 ) such that |v + e 3 | = 1 or, equivalently, such that |v| 2 = -2 (v • e 3 ), we have E κ,γ (e 3 + v) -E κ,γ (e 3 ) = Ω |∇v| 2 + κ 2 Ω (v • e 3 ) 2 + 2 (v • e 3 ) + 1 γ 2 ∂Ω |v × e 3 | 2 = Ω |∇v| 2 -κ 2 Ω |v ⊥ | 2 + 1 γ 2 ∂Ω |v ⊥ | 2 , ( ) 
with v ⊥ = v -(v • e 3 ) e 3 .
Estimating the energy increment E κ,γ (e 3 + v) -E κ,γ (e 3 ) through the Poincaré inequality ( ) we get for every δ > 0,

E κ,γ (e 3 + v) -E κ,γ (e 3 ) δ (c Ω -δ) Ω |v ⊥ | 2 -δ ∂Ω |v ⊥ | 2 -κ 2 Ω |v ⊥ | 2 + 1 γ 2 ∂Ω |v ⊥ | 2 δ (c Ω -δ) -κ 2 Ω |v ⊥ | 2 + 1 γ 2 -δ ∂Ω |v ⊥ | 2 . ( ) If we set δ γ := min{ c Ω 2 , 1 γ 2 } and κ γ := (δ γ (c Ω -δ γ )) 1/2 > 0, then for every κ ∈ [0, κ γ ) there exists δ ∈ (0, δ γ ) such that δ (c Ω -δ) > κ 2 and 1 γ 2 > δ.
Hence, by ( ), e 3 (and so -e 3 ) is a minimum point of E κ,γ , and any other minimum point m can only be obtained by perturbations in the e 3 direction. This means that the constant out-of-plane vector fields ±e 3 are the only minimizers of E κ,γ .

A simpler argument gives a similar result for E κ,0 . Indeed, in this case, v ∈ H 1 0 (Ω, R 3 ) and ( ) reads as

E κ,0 (e 3 + v) -E κ,0 (e 3 ) = Ω |∇v| 2 -κ 2 Ω |v ⊥ | 2 .
But then the result follows from classical Poincaré inequality in H 1 0 (Ω, R 3 ), by taking κ 0 := c Ω where c Ω is the Poincaré constant.

Proof of Theorem , item ii. The range of parameters under which the minimality of the constant in-plane configurations holds depends essentially on γ, and can be easily investigated through the classical trace inequality:

c ∂Ω u L 2 (∂Ω) u H 1 (Ω) , ( )
for some c ∂Ω > 0 and every u ∈ H 1 (Ω). Indeed, let e ⊥ ∈ S 2 such that e ⊥ • e 3 = 0 and let v ∈ H 1 (Ω, R 3 ) such that |v + e ⊥ | = 1. A simple computation gives that

|(v + e ⊥ ) × e 3 | 2 -|e ⊥ × e 3 | 2 = |v × e 3 | 2 + 2(v × e 3 ) • (e ⊥ × e 3 ) = |v × e 3 | 2 + 2v • e ⊥ = |v × e 3 | 2 -|v| 2 = -(v • e 3 ) 2 .
Hence, we have

E κ,γ (e ⊥ + v) -E κ,γ (e ⊥ ) = Ω |∇v| 2 + κ 2 Ω (v • e 3 ) 2 - 1 γ 2 ∂Ω (v • e 3 ) 2 Ω |∇v ⊥ | 2 + c 2 ∂Ω • min{1, κ 2 } - 1 γ 2 ∂Ω (v • e 3 ) 2 ,
where v ⊥ = v -(v • e 3 ) e 3 . Therefore, as soon as

γ γ κ := 1 c ∂Ω • min{1, κ} ,
we obtain that e ⊥ is a global minimizer of E κ,γ . Moreover, if γ > γ κ , we have that the constant in-plane vector fields e ⊥ ∈ S 2 , with e ⊥ • e 3 = 0, are the only minimizers of E κ,γ . Indeed, if

E κ,γ (e ⊥ + v) -E κ,γ (e ⊥ ) = 0 then v ⊥ is constant a.e.
in Ω and, therefore, so is (v • e 3 ) due to constraint |e ⊥ + v| = 1 imposed on v. Since v • e 3 = 0 a.e. on ∂Ω, we conclude that v is constant and in-plane. This concludes the proof.

. Symmetries in the target space and range of minimizers

In this section we show that due to symmetry of the problem the range of any minimizer is contained in a meridian of S 2 .

. . Symmetries of the energy functional in the target space. First, it is clear that the energy is invariant under the group of isometries that preserve the vertical coordinate axis Re 3 , i.e., O(3, e 3 ) := {σ ∈ O(3) : σ (e 3 ) = e 3 or σ (e 3 ) = -e 3 } . This group is generated by the isotropy group {σ ∈ O(3) : σ(e 3 ) = e 3 } and the reflection σ e3 through the plane orthogonal to e 3 .

Proposition . For every

κ, γ ∈ [0, +∞), σ ∈ O(3, e 3 ) and m ∈ H 1 (Ω, S 2 ) we have E κ,γ (m) = E κ,γ (σ • m).
Proposition applies in particular to the reflection σ = σ v , defined by σ v (w) = w -2(v • w)v, through the plane orthogonal to a vector v ∈ S 2 which is either equal to e 3 or orthogonal to e 3 . Using the fact that the H 1 seminorm is preserved by taking the positive or negative parts, we also have the following result.

Proposition . Let κ ∈ [0, +∞), v ∈ S 2 and m ∈ H 1 (Ω, S 2 ). If either v = e 3 or v • e 3 = 0, then E κ,γ (m) = E κ,γ (σ + v • m), where σ + v (w) :=    w if w • v 0, w -2(v • w)v if w • v < 0. ( )
This applies for instance to σ

+ e1 • m = (|m 1 |, m 2 , m 3 ), σ + e2 • m = (m 1 , |m 2 |, m 3 ) and σ + e3 • m = (m 1 , m 2 , |m 3 |).
. . Regularity of minimizers. For a smooth bounded domain Ω ⊂ R 2 , the regularity of minimizers follows from the classical regularity theory of Schoen-Uhlenbeck [ ]. However the regularity in dimension N 3 is not trivially guaranteed in our problem, as there may exist singular minimizing homogeneous harmonic maps into S 2 such as x → x |x| in R 3 . Here, we can prove regularity by using the symmetries. We start with an easy lemma.

Lemma . Let u ∈ W 1,p (Ω) be a Sobolev function defined on an open set Ω ⊂ R N , p 1. If |u| is continuous, then u has a continuous representative.

Proof. If u(x) = 0, then u is continuous at x. If u(x) = 0, then, as |u| is continuous, there exists a non empty ball B r (x) ⊂ Ω where |u| α > 0. Let v ∈ W 1,p (B r (x)) be defined by v(x) := max{min{ 1 α u(x), 1}, -1}. We have that v(x) ∈ {-1, 1} everywhere in B r (x), which for a Sobolev function means that v is equal to a constant a.e. in B r (x). This means that the sign of u does not change on B r (x), i.e. that u = |u| a.e. in B r (x) or u = -|u| a.e. in B r (x). Thus, u is continuous.

Proposition . Let κ, γ ∈ [0, +∞) and let m ∈ H 1 (Ω, S 2 ) be a global minimizer of E κ,γ . Then m ∈ C ∞ (Ω, S 2 ).
Remark . . Below, in the proof of Theorem , we show that actually global minimizers of E κ,γ are in C ∞ (Ω, S 2 ), i.e., smooth up to the boundary.

Proof. By Proposition , m := (|m 1 |, |m 2 |, |m 3 |) is still a global minimizer of E κ,γ .
In particular, m is a global minimizer of E κ under its own boundary condition. Since m takes values into a strictly convex subset of the sphere S 2 and since E κ is nothing but a perturbation of the Dirichlet energy by a lower order term (namely, the zero-order term of energy density κ 2 (m • e 3 ) 2 ), we deduce from [ , Theorem IV and its corollary] that m is continuous in Ω . Hence m is continuous by Lemma . But it is then standard to prove that m is smooth (we refer to [ , § . and § . ], for instance).

. . Range of minimizers. We start with the following consequence of the maximum principle.

Lemma . Let κ, γ ∈ [0, +∞) and v ∈ S 2 such that either v • e 3 = 0 or v ∈ {-e 3 , e 3 }. If m is a global minimizer of E κ,γ , then either m • v ≡ 0 in Ω or m • v never vanishes in Ω. Proof. By Proposition , σ + v • m is still a minimizer of E κ,γ . By Proposition , σ + v • m is smooth. In particular, σ + v • m (
and not only m) solves the Euler-Lagrange equation ( ); projecting this equation on v, we obtain that (σ

+ v • m) • v = |m • v| solves the elliptic equation ∆ |m • v| + c(x) |m • v| = 0 in Ω, with c(x) =    |∇ (σ + v • m)| 2 + κ 2 m 2 3 if v • e 3 = 0, |∇ (σ + v • m)| 2 + κ 2 (m 2 3 -1) if v = e 3 .
We then apply the maximum principle [ , Theorem . ] to find that either m • v ≡ 0 or m • v does not vanish in Ω.

Note that the Schoen-Uhlenbeck regularity theory gives smoothness of m with no restriction on the image of m in dimension N = 2; in dimension N 3, the presence of singularities is ruled out thanks to the condition that m takes values into a strictly convex subset of S 2 .

Proof of Theorem . By Proposition , m is smooth. For the rest of the proof, we proceed in four steps.

Step . m takes values into a meridian. For v ∈ S 2 such that v • e 3 = 0, we denote by S 2 + (v) the closed hemisphere directed by v, i.e., S 2 + (v

) := S 2 ∩ {z ∈ R 3 : z • v 0}. If m ≡ ±e 3
in Ω there is nothing to prove. If not, there exists x 0 ∈ Ω such that the projection m ⊥ (x 0 ) of m(x 0 ) onto the plane orthogonal to e 3 is different from zero. We set v 0 := m ⊥ (x 0 )/|m ⊥ (x 0 )| and we claim that the target space of m is contained in the meridian passing through v 0 . By construction, we have

m(x 0 ) • v > 0 for every v ∈ V := {v ∈ S 2 : v • e 3 = 0, v • v 0 > 0}.
Therefore, by Lemma and the continuity of m, we get that for every x ∈ Ω there holds m(x) ∈ v∈V S 2 + (v). As the intersection on the right-hand side is the meridian passing through v 0 we conclude.

Step . The image of m is contained in a quarter of vertical circle (or half of meridian). Indeed, applying again Lemma to v = e 3 , we obtain that either m • e 3 0 in Ω, or m • e 3 0 in Ω.

Since O(3, e 3 ) acts transitively on the half-meridians, we can express m in terms of a particular solution that takes values into a half-meridian {m 2 = 0} ∩ {m 1 , m 3 0}. Namely, there exists

σ ∈ O(3, e 3 ) such that m = σ • u, where u ∈ C ∞ (Ω, S 2 ) is of the form u = (u 1 , 0, u 2 ) with u 1 , u 2 ∈ C ∞ (Ω, R) such that u 2 1 + u 2 2 = 1 and u 1 , u 2 0 in Ω.
We then lift the map u to R by writing u = (sin ϕ, 0, cos ϕ) with ϕ ∈ C ∞ (Ω) and 0 ϕ π 2 in Ω. We conclude by noticing that Lemma also tells us that either ϕ ≡ 0, or ϕ ≡ π 2 , or 0 < ϕ < π 2 in Ω.

Step . Regularity up to the boundary. In the proof of Proposition we used a symmetry argument in order to apply the regularity theory of Schoen-Uhlenbeck [ ] and infer that minimizers are in C ∞ (Ω, S 2 ); we now claim that m ∈ C ∞ (Ω, S 2 ), using the previous steps. Indeed, when γ > 0 it is clear that the lifting ϕ of m satisfies

-∆ϕ = κ 2 2 sin(2ϕ) in Ω, ( ) 
∂ϕ ∂n = - 1 2γ 2 sin(2ϕ) on ∂Ω, ( )
where ( ) can be understood in the strong sense due to the already acquired interior regularity, while ( ) has to be interpreted in the weak sense. Since 1 γ 2 sin(2ϕ) ∈ H 1/2 (∂Ω), there exists φ ∈ H 2 (Ω) such that ∂ n φ = -1 2γ 2 sin(2ϕ) (see, e.g., [ , Ch. , Theorem . ]). For the difference ϕ -φ we have ∆(ϕφ) ∈ L 2 (Ω) and ∂ n (ϕφ) = 0 on ∂Ω. Hence, by classical elliptic regularity, we have ϕ -φ ∈ H 2 (Ω). It follows that ϕ ∈ H 2 (Ω) and therefore sin(2ϕ) ∈ H 2 (Ω) (see e.g. [ , Proposition . ]) and -1 γ 2 sin(2ϕ) ∈ H 3/2 (∂Ω). A bootstrap argument and Sobolev embedding theorems conclude the proof. Indeed, one can iterate the construction to infer the existence for every k 2 of φ ∈ H k (Ω) such that ∆(ϕφ) ∈ H k-2 (Ω) and ∂ n (ϕφ) = 0 on ∂Ω. In the case γ = 0 regularity up to the boundary follows from standard elliptic regularity.

Step . Range of tr ∂Ω ϕ. We now show that when γ > 0, if 0 < ϕ < π 2 in Ω, then 0 < ϕ < π 2 on ∂Ω. Let us assume that at some point x 0 ∈ ∂Ω we have ϕ(x 0 ) = 0. Then we know that ∆(-ϕ) 0 and -ϕ(x 0 ) > -ϕ in Ω. Using Hopf Lemma (see [ , Lemma . ]), we deduce that ∂ n (-ϕ)(x 0 ) > 0, which contradicts the boundary condition ∂ n ϕ(x 0 ) = 0. Hence ϕ(x) > 0 in Ω. Assume now that there exists x 0 ∈ ∂Ω such that ϕ(x 0 ) = π 2 . Then we define u = ϕ -π 2 0 and we have 0 = u(x 0 ) > u(x) for x ∈ Ω. Moreover, we have ∆u -κ 2 sin(2u) 2u u = 0 in Ω.

Defining c(x) = -κ 2 sin(2u(x))

2u(x)

we know that -κ 2 c(x) 0. Therefore, using [ , Lemma . ] in the case c(x) 0 we deduce that ∂ n u(x 0 ) > 0, which contradicts ∂ n u(x 0 ) = 0 due to boundary conditions. Hence ϕ(x) < π 2 in Ω. Finally, the minimization problems ( )-( ) are obtained by simply rewriting the energy functionals E κ,γ and E κ in terms of the lifting map ϕ.

.

Uniqueness of minimizers up to a symmetry

In this section we prove Theorem , which is a direct consequence of the following two lemmas.

Lemma . Let m ∈ H 1 (Ω, S 2 ) and v ∈ H 1 0 (Ω, R 3 ) satisfy m + v ∈ S 2 a.e. in Ω.
If m satisfies the Euler-Lagrange equations ( ) and if m 1 > 0 a.e. in Ω, then m 1 is bounded below by positive constants on compact subsets of Ω and

E κ (m + v) -E κ (m) Ω m 2 1 ∇ v m 1 2 + κ 2 Ω (v • e 3 ) 2 . ( )
Proof of Lemma . We follow the ideas of [ , Lemma A. ], [ , Theorem . ] and [ , Theorem . ]. We have

E κ (m + v) -E κ (m) = Ω |∇v| 2 + κ 2 Ω (v • e 3 ) 2 + 2 Ω ∇m : ∇v + 2κ 2 Ω (m • e 3 ) (v • e 3 ).
Note that since |m| = |m + v| = 1 a.e., we also have |v| 2 a.e. in Ω. In particular, v ∈

H 1 0 (Ω, R 3 ) ∩ L ∞ (Ω, R 3 ).
Since m satisfies the Euler-Lagrange equations ( ), we get

E κ (m + v) -E κ (m) = Ω |∇v| 2 + κ 2 Ω (v • e 3 ) 2 + 2 Ω (|∇m| 2 + κ 2 (m • e 3 ) 2 )m • v.
On the other hand, since |m + v| = 1, we have 2m • v = -|v| 2 and, therefore,

E κ (m + v) -E κ (m) = Ω |∇v| 2 + κ 2 Ω (v • e 3 ) 2 - Ω (|∇m| 2 + κ 2 (m • e 3 ) 2 )|v| 2 . ( )
Hence, ( ) will follow once we prove that for all

v ∈ H 1 0 ∩ L ∞ (Ω, R 3 ), Ω |∇v| 2 Ω (|∇m| 2 + κ 2 (m • e 3 ) 2 )|v| 2 + Ω m 2 1 ∇ v m 1 2 . ( )
We first assume that v ∈ C ∞ c (Ω, R 3 ), the general case will follow by density. Now, by the Euler-Lagrange equation of m 1 in ( ) and since m 1 is assumed to be positive in Ω, we have in particular that m 1 is a positive weak superharmonic function, i.e. ∆m 1 0 weakly in Ω; we deduce from the weak Harnack-Moser inequality (see [ , Theorem . . .]) that m 1 is bounded from below by a positive constant on the support of v. Hence, we can write v in the form v = m 1 u, ( )

where u = v m1 ∈ H 1 0 (Ω, R 3 ) ∩ L ∞ (Ω, R 3 ). We then compute Ω |∇v| 2 = N j=1 Ω |u∂ j m 1 + m 1 ∂ j u| 2 ( ) = Ω |u| 2 |∇m 1 | 2 + m 2 1 |∇u| 2 + m 1 ∇m 1 • ∇|u| 2 ( ) = Ω m 2 1 |∇u| 2 + ∇m 1 • ∇(m 1 |u| 2 ). ( )
Now, testing the Euler-Lagrange equations ( ) against ϕ

:= m 1 |u| 2 e 1 ∈ H 1 0 (Ω, R 3 ) ∩ L ∞ (Ω, R 3 ), we obtain Ω ∇m 1 • ∇(m 1 |u| 2 ) = Ω (|∇m| 2 + κ 2 (m • e 3 ) 2 )m 2 1 |u| 2 . ( )
Combining the previous two relations, and recalling that v = m 1 u, we obtain the following identity:

Ω |∇v| 2 = Ω m 2 1 |∇u| 2 + (|∇m| 2 + κ 2 (m • e 3 ) 2 )|v| 2 . ( ) This proves ( ) in the case where v ∈ C ∞ c (Ω, R 3 ). In general, we have v ∈ H 1 0 (Ω, R 3 ) ∩ L ∞ (Ω, R 3 ) and there thus exists a sequence (v n ) n∈N in C ∞ c (Ω, R 3 ) such that sup n∈N v n ∞ v ∞ + 1 and v n → v in H 1 0 Ω, R 3 . ( )
By the previous computations in the smooth case, we have for every compact K ⊂ Ω and n ∈ N,

Ω |∇v n | 2 K (|∇m| 2 + κ 2 (m • e 3 ) 2 )|v n | 2 + K m 2 1 ∇ v n m 1 2 .
The conclusion follows by passing to the limit n → ∞ using the dominated convergence theorem, and then taking the supremum over compacts K ⊂ Ω using the monotone convergence theorem.

Lemma . Let m ∈ H 1 (Ω, S 2 ) and v ∈ H 1 (Ω, R 3 ) satisfy m + v ∈ S 2 a.e. in Ω. If m satisfies the Euler-Lagrange equations ( ) and if m 1 , m 3 > 0 in Ω, then

E κ,γ (m + v) -E κ,γ (m) Ω m 2 1 |∇u ⊥ | 2 + m 2 3 |∇u 3 | 2 , ( ) 
where we wrote v = m 1 u ⊥ + m 3 u 3 e 3 with u = (u ⊥ , u 3 ) ∈ H 1 (Ω, R 3 ).
Proof of Lemma . Computing as in the proof of Lemma , but observing that since now v ∈ H 1 (Ω), a boundary term persists, we have

E κ,γ (m + v) -E κ,γ (m) = Ω |∇v| 2 + κ 2 Ω (v • e 3 ) 2 + 2 Ω ∇m : ∇v + 2κ 2 Ω (m • e 3 ) (v • e 3 ) - 1 γ 2 ∂Ω (v • e 3 ) 2 + 2(m • e 3 )(v • e 3 ) ( ) and v ∈ H 1 (Ω, R 3 )∩L ∞ (Ω, R 3 ). Since m satisfies the Euler-Lagrange equations ( ) and 2m•v = -|v| 2 we obtain E κ,γ (m + v) -E κ,γ (m) = Ω |∇v| 2 + κ 2 Ω (v • e 3 ) 2 - Ω (|∇m| 2 + κ 2 (m • e 3 ) 2 )|v| 2 - 1 γ 2 ∂Ω (v • e 3 ) 2 -(m • e 3 ) 2 |v| 2 . ( )
Now, we assume that m is smooth (the general case follows similarly, as in the proof of Lemma ) and we use the fact

m 1 > 0, m 3 > 0 in Ω to represent v = m 1 u ⊥ + m 3 u 3 e 3 with u = (u ⊥ , u 3 ) ∈ H 1 (Ω, R 3 ).
In that case, we have

Ω |∇v| 2 = Ω m 2 1 |∇u ⊥ | 2 + ∇m 1 • ∇(m 1 |u ⊥ | 2 ) + m 2 3 |∇u 3 | 2 + ∇m 3 • ∇(m 3 u 2 3 ) ( ) = Ω m 2 1 |∇u ⊥ | 2 -∆m 1 m 1 |u ⊥ | 2 + ∂Ω ∂ n m 1 m 1 |u ⊥ | 2 + Ω m 2 3 |∇u 3 | 2 -∆m 3 m 3 u 2 3 + ∂Ω ∂ n m 3 m 3 u 2 3 ( ) = Ω m 2 1 |∇u ⊥ | 2 + m 2 3 |∇u 3 | 2 + (|∇m| 2 + κ 2 (m • e 3 ) 2 )|v| 2 -κ 2 (v • e 3 ) 2 + 1 γ 2 ∂Ω (v • e 3 ) 2 -m 2 3 |v| 2 . ( )
Plugging it into the energy difference we obtain

E κ,γ (m + v) -E κ,γ (m) = Ω m 2 1 |∇u ⊥ | 2 + m 2 3 |∇u 3 | 2 . ( )
This concludes the proof.

Proof of Theorem . We first consider the case γ = 0. If the constant out-of-plane configurations ±e 3 are the only global minimizers of E κ,0 , we are done. If not, this means by Theorem that E κ,0 has a global minimizer of the form m = (sin ϕ, 0, cos ϕ)

with ϕ ∈ H 1 (Ω) such that 0 < ϕ π 2 a.e. in Ω. If m = m+v is another minimizer with v ∈ H 1 0 (Ω, R 3 ), then we have by Lemma that v = m 1 v 0 for some v 0 ∈ R 3 . But, in order to satisfy the constraint m+m 1 v 0 ∈ S 2 , we must have v 0 • (m 1 v 0 + 2m) = 0.
Restricted to the boundary ∂Ω, where we have m = e 3 , this condition yields v 0 • e 3 = 0. Hence, since m 2 ≡ 0, we arrive at the equation 0 = v 0 • (m 1 v 0 + 2m 1 e 1 ) which means that |v 0 + e 1 | 2 = 1. Hence, v 0 = (cos θ -1, sin θ, 0) for some θ ∈ R, which means that m = (cos θ sin ϕ, sin θ sin ϕ, cos ϕ), i.e., m is a rotation of m of angle θ around the x 3 -axis.

In the case γ > 0, if constant out-of-plane ±e 3 or constant in-plane configurations are the only minimizers, then the result follows by noting that ±e 3 and constant in-plane configurations cannot be minimizers simultaneously. Indeed, a simple computation shows that if their energies coincide, then any constant unit vector has the same energy and is thus a solution of the Euler-Lagrange equations ( )-( ), which is not possible.

If constant configurations are not the only minimizers, then by Theorem the energy E κ,γ has a global minimizer of the form m = (sin ϕ, 0, cos ϕ)

with ϕ ∈ H 1 (Ω) such that 0 < ϕ < π 2 in Ω. If m = m + v is another minimizer with v ∈ H 1 (Ω, R 3
), then by Lemma we have that v = m 1 w ⊥ + m 3 w 3 e 3 for some (constant) vector w = (w ⊥ , w 3 ) ∈ R 3 because of the right-hand side of ( ) vanishing. But, in order to satisfy the constraints m + v ∈ S 2 , and m = (m 1 , 0, m 3 ) ∈ S 2 , we must have

m 2 1 |e 1 + w ⊥ | 2 + m 2 3 (w 3 + 1) 2 = 1, m 2 1 + m 2 3 = 1.
We note that m 1 > 0 and m 3 > 0 and that they are not constants by assumption that m is a non-constant minimizer. Therefore, the only possible solution to the first equation will be

|e 1 + w ⊥ | 2 = 1, (w 3 + 1) 2 = 1.
Hence, we obtain w 3 ∈ {0, -2} and |w ⊥ + e 1 | = 1, implying the result.

Proof of Corollary .

Having two different solutions of ( ) if γ = 0 (resp. ( ) if γ > 0) would provide minimizers of E κ,γ that do not differ by composition by an element of O(3, e 3 ).

Remark . . We note that using Lemma we actually proved uniqueness (up to a symmetry) of a solution of the Euler-Lagrange equation ( ) with m 1 > 0 under the boundary condition m = ±e 3 for any κ > 0. In a similar way it is possible to prove the same result under a prescribed Dirichlet boundary conditions g ∈ H 1/2 (∂Ω, S 2 ) with either g 1 > 0 or g 2 > 0.

Analogously, using Lemma we have proved uniqueness (up to a symmetry) of a solution of the Euler-Lagrange equation ( ) with m 1 > 0 and m 3 > 0 on Ω for any γ > 0 and κ > 0.

. Comparison of solutions . . Minimizers with different penalizations. Before proving Theorem , we introduce the localized energy functional defined for κ 0, γ > 0, ϕ ∈ H 1 (Ω, R) and every Borel set O ⊂ R N , by

F κ,γ (ϕ, O) := O∩Ω |∇ϕ| 2 + κ 2 O∩Ω cos 2 ϕ + 1 γ 2 O∩∂Ω sin 2 ϕ. ( )
When γ = 0, we also define for every Borel subset O ⊂ Ω,

F κ,0 (ϕ, O) := O |∇ϕ| 2 + κ 2 O cos 2 ϕ. ( )
Proof of Theorem . We proceed in steps.

Step . Energy estimates. Let ϕ i be a minimizer of the energy E κi,γi that takes values into [0, π 2 ], with i = 1, 2. By Theorem we know that ϕ 1 and ϕ 2 are smooth on Ω. We define

O := {x ∈ Ω : ϕ 1 (x) > ϕ 2 (x)};
we shall see that O = ∅, i.e., ϕ 1 ϕ 2 on Ω. First, observe that, using ∇ϕ 1 = ∇ϕ 2 a.e. on {ϕ 1 = ϕ 2 } ∩ Ω and comparing the functions ϕ 1 , ϕ 2 with their minimum ϕ 1 ∧ ϕ 2 and their maximum ϕ 1 ∨ ϕ 2 , by minimality,

F κ1,γ1 (ϕ 1 , Ω) F κ1,γ1 (ϕ 1 ∧ ϕ 2 , Ω) and F κ2,γ2 (ϕ 2 , Ω) F κ2,γ2 (ϕ 1 ∨ ϕ 2 , Ω). ( )
Hence, using ( ), we obtain the following estimates (where if γ 1 = 0, so that ϕ 1 ∈ H 1 0 (Ω) and O ⊂ Ω, all the boundary terms are ignored),

F κ1,γ1 (ϕ 1 , O) F κ1,γ1 (ϕ 2 , O) = F κ2,γ2 (ϕ 2 , O) + κ 2 1 -κ 2 2 O∩Ω cos 2 ϕ 2 + 1 γ 2 1 - 1 γ 2 2 O∩∂Ω sin 2 ϕ 2 F κ2,γ2 (ϕ 1 , O) + (κ 2 1 -κ 2 2 ) O∩Ω cos 2 ϕ 2 + 1 γ 2 1 - 1 γ 2 2 O∩∂Ω sin 2 ϕ 2 = F κ1,γ1 (ϕ 1 , O) + (κ 2 1 -κ 2 2 ) O∩Ω cos 2 ϕ 2 -cos 2 ϕ 1 + 1 γ 2 1 - 1 γ 2 2 O∩∂Ω sin 2 ϕ 2 -sin 2 ϕ 1 ,
from which we infer that

(κ 2 1 -κ 2 2 ) O∩Ω cos 2 ϕ 2 -cos 2 ϕ 1 + 1 γ 2 1 - 1 γ 2 2 O∩∂Ω sin 2 ϕ 2 -sin 2 ϕ 1 0.
Now we use the assumption κ 1 κ 2 , γ 1 γ 2 and (κ 1 , γ 1 ) = (κ 2 , γ 2 ). Noticing that x → cos 2 (x) is decreasing and x → sin 2 (x) is increasing on [0, π 2 ], and that ϕ 2 < ϕ 1 on O by definition, it entails

O ∩ Ω = ∅ if κ 1 < κ 2 , O ∩ ∂Ω = ∅ if γ 1 < γ 2 .
( ) (Note that when γ 1 = 0, the second assertion is not a consequence of the previous estimates, but it is trivially satisfied because ϕ 1 = 0 on ∂Ω and O ⊂ Ω in this case.)

The first assertion means that

ϕ 1 ϕ 2 in Ω if κ 1 < κ 2 . ( )
When κ 1 = κ 2 , we need more work:

Step . Comparison of solutions when κ 1 = κ 2 =: κ and γ 1 < γ 2 . By ( ), we have ϕ 1 ϕ 2 on ∂Ω. ( )

Hence, ϕ 1 = ϕ 1 ∧ ϕ 2 and ϕ 2 = ϕ 1 ∨ ϕ 2 on ∂Ω. By minimality this yields

F κ (ϕ 1 ) F κ (ϕ 1 ∧ ϕ 2 ) and F κ (ϕ 2 ) F κ (ϕ 1 ∨ ϕ 2 ),
where we have set

F κ (ϕ) := Ω |∇ϕ| 2 + κ 2 Ω cos 2 ϕ.
Since we have also

F κ (ϕ 1 ) + F κ (ϕ 2 ) = F κ (ϕ 1 ∧ ϕ 2 ) + F κ (ϕ 1 ∨ ϕ 2 )
, we obtain that

F κ (ϕ 1 ) = F κ (ϕ 1 ∧ ϕ 2 ) and F κ (ϕ 2 ) = F κ (ϕ 1 ∨ ϕ 2 ).
The second equality means that both ϕ 2 and ϕ 1 ∨ ϕ 2 minimize F κ under their own Dirichlet boundary condition on ∂Ω; in particular, they solve the Euler-Lagrange equation -∆u = κ 2 sin u in the variable u = 2ϕ. By uniqueness for positive solutions to sublinear elliptic equations with Dirichlet boundary conditions (see [ , Appendix II]), we deduce that either ϕ 2 ≡ 0, or ϕ 1 ∨ϕ 2 ≡ 0, or ϕ 2 ≡ ϕ 1 ∨ ϕ 2 . In the case where ϕ 2 ≡ 0, we have also ϕ 1 = 0 on ∂Ω by ( ) and we deduce from our uniqueness result for minimizers under homogeneous Dirichlet boundary conditions (that is, Theorem with γ = 0), that ϕ 1 ≡ 0 in Ω. In any case, we have proved that

ϕ 1 ϕ 2 on Ω if γ 1 < γ 2 . ( )
Step . Strict comparison of solutions in Ω. We know that u i = 2ϕ i solve the Euler-Lagrange equations associated with E κi,γi ,

-∆u i = κ 2 i sin(u i ) in Ω, ( ) 
∂u i ∂n = - 1 γ 2 i sin u i on ∂Ω if 0 < γ i (and u i ≡ 0 on ∂Ω if γ i = 0), ( )
and that, by ( ) and ( ), u 1 u 2 in Ω. ( ) Using that u → u + sin u is non decreasing and that κ 1 κ 2 , we find that

-∆(u 2 -u 1 ) + κ 2 1 (u 2 -u 1 ) κ 2 1 (sin(u 2 ) + u 2 -sin(u 1 ) -u 1 ) 0 in Ω. ( )
By the strong maximum principle, we obtain that either u 2 ≡ u 1 in Ω, or u 1 < u 2 in Ω.

In the first case, i.e., u 1 ≡ u 2 , we deduce by ( ) that if κ 1 < κ 2 then either u 1 = u 2 ≡ 0 or u 1 = u 2 ≡ π in Ω; when κ 1 = κ 2 and γ 1 < γ 2 , we have by ( ) that either u 1 = u 2 ≡ π or u 1 = u 2 ≡ 0 on ∂Ω and by Hopf lemma it follows that u 1 and u 2 are constants in Ω since ∂ui ∂n ≡ 0 on ∂Ω.

Step . Strict comparison of solutions on ∂Ω when u 1 < u 2 in Ω and γ 2 > 0. In this case, we want to show that u 1 < u 2 on ∂Ω. Assume there is x 0 ∈ ∂Ω such that u 1 (x 0 ) = u 2 (x 0 ) then by Hopf lemma we obtain ∂(u2-u1) ∂n (x 0 ) < 0. If 0 < γ 1 γ 2 then using ( ) we deduce that ∂(u2-u1)(x0) ∂n 0, obtaining the contradiction. If γ 1 = 0 < γ 2 , we know that u 1 = 0 on ∂Ω; hence u 2 (x 0 ) = 0 and, by ( ), ∂u2 ∂n (x 0 ) = 0. Applying Hopf lemma to u 2 we obtain that u 2 ≡ 0 in Ω, thus contradicting the fact that u 1 < u 2 in Ω. Therefore if γ 2 > 0 we have u 2 > u 1 on Ω.

. Radial symmetry of minimizers in a ball: Proof of Theorem Numerical simulations suggest that when the domain Ω has spherical symmetry, the minimizers of E κ,γ are radially symmetric (cf. Figure ). The aim of this section is to turn this observation into a quantitative statement.

The proof we give below for the radial symmetry of minimizers E κ,γ also works for the boundary value problem associated with E κ,0 . However, radiality of the minimizers of E κ,0 immediately follows from a celebrated result of Gidas-Ni-Nirenberg [ ] about radial symmetry for semilinear elliptic equations. We give the details below.

Proposition . If Ω is a ball centered at the origin, then any minimizer m of the energy E κ,0 is radially symmetric. More precisely, m is either constant with m • e 3 ∈ {0, -1, 1}, or there exist σ ∈ O(3, e 3 ) and a solution ϕ : R + → (0, π 2 ) in ( ) such that m(x) = σ • (sin ϕ(|x|), 0, cos ϕ(|x|)) a.e. in Ω.

Proof of Proposition . Without loss of generality, one can assume that m is not constant. By Theorem , there exists σ ∈ O(3, e 3 ) and a solution ϕ ∈ H 1 0 (Ω) ∩ C ∞ (Ω) of ( ) such that m = σ(sin ϕ, 0, cos ϕ) and 0 < ϕ < π 2 in Ω. In particular, ϕ solves the Euler-Lagrange equation ∆(2ϕ) + κ 2 sin(2ϕ) = 0 in Ω. The radial symmetry of ϕ then follows from [ ].

In the case of the penalization of the boundary datum, we use a reflection method introduced in [ ] and the unique continuation principle for elliptic equations (see, for instance, [ ]). Note that this method also works for the boundary value problem associated with E κ,0 , and the following proof also covers Proposition .

Proof of Theorem . We concentrate on the case γ > 0. Without loss of generality, one can assume that m is not a constant minimizer. By Theorem , there exists σ ∈ O(3, e 3 ) and a solution ϕ ∈ C ∞ (B R ) of ( ) such that m = σ(sin ϕ, 0, cos ϕ) and 0 < ϕ < π 2 in B R . As before, we get that ϕ is a solution of ∆(2ϕ) + κ 2 sin(2ϕ) = 0 in B R .

( )

Now, let H be a hyperplane passing through the origin and dividing R N into two half-spaces H + and H -. Up to interchange H + and H -, one can assume that We now argue that u is non-increasing. Indeed, set u * (r) = sup s∈ [r,R] 

H -∩ B R |∇ϕ| 2 + κ 2 cos 2 ϕ + 1 γ 2 H -∩ ∂B R sin 2 ϕ H + ∩ B R |∇ϕ| 2 + κ 2 cos 2 ϕ + 1 γ 2 H + ∩ ∂B R sin 2 ϕ. Let ϕ * ∈ H 1 (B R ) be defined by ϕ * = ϕ on H -∩ B R and ϕ * = ϕ • σ H on H + ∩ B R

  2 . In what follows, we denote by O(3, e 3 ) := {σ ∈ O(3) : σ (e 3 ) = e 3 or σ (e 3 ) = -e 3 } the group of isometries preserving the e 3 -axis.

Figure .

 . Figure .On the left, a minimizer of E κ,γ , with κ 2 = 5, γ = 0.1, in the unit disk of R 2 . On the right, we isolated a ray in order to visualize the profile of the minimizer better.

  a smooth bounded domain, and let κ ∈ [0, +∞), γ ∈ [0, +∞). If m and m are two minimizers of the energy E κ,γ , then there exists σ ∈ O(3, e 3 ) such that m = σ • m. Corollary . Both ( ) and ( ) have a unique solution.

  u(s). We have that u * is Lipschitz with 0≤ -(u * ) |u | a.e. on [0, R]. Indeed, if 0 r 1 r 2 R, then u * (r 2 ) u * (r 1 ) and u * (r 1 ) sup s∈[r2,R] u(s) + sup s∈[r1,r2] |u(s) -u(r 2 )| u * (r 2 ) + (r 2 -r 1 ) sup s∈[r1,r2] |u (s)|.But then, the function ϕ * ∈ W 1,2 (B R ), defined by ϕ * (x) = u * (|x|) for every x ∈ B R , satisfies ϕ = ϕ * a.e. on ∂B R , and cos ϕ * cos ϕ and |∇ϕ * | |∇ϕ| a.e. in B R . Hence, cos ϕ * = cos ϕ a.e., and so ϕ = ϕ * a.e., since otherwise, ϕ * would have strictly less energy than ϕ in ( ).Finally, as a solution of ( ), ϕ(x) = u(|x|) 2 must be a solution of the associated Euler-Lagrange equation, which means that u solves the system ( )-( ).
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  where σ H stands for the reflection through H. By the previous inequality, we have that E κ,γ (ϕ * ) E κ,γ (ϕ), i.e., ϕ * is also a global minimizer. Hence it also solves ( ). However, since ϕ * = ϕ on H -∩ B R , we deduce by the unique continuation principle (seeTheorem III in [ ]) that ϕ * = ϕ, i.e., ϕ = ϕ • σ H in B R .Since the hyperplane H is arbitrary, this means that ϕ is radially symmetric. Moreover, since ϕ is smooth, u is smooth.

	This means that we can write ϕ(x) = u(|x|) 2	for every x ∈ B R , for some function u : [0, R] → [0, π].
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