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1. I 1.1. Motivations and statement of the results. The Ginzburg-Landau energy, originally motivated by the theory of phase transitions in superconductors, can be used to relax geometric variational problems. An example of such a problem is to nd manifold-valued harmonic maps with prescribed Dirichlet boundary condition. The problem is the following: let N be a smooth compact connected manifold. Thanks to the Nash embedding theorem, cf. [START_REF] Nash | The imbedding problem for Riemannian manifolds[END_REF] we can assume that N is isometrically embedded in R ν for some ν ∈ N * . Let Ω ⊂ R 2 be a smooth bounded domain. We set (1.1) W 1,2 (Ω, N ) := {v ∈ W 1,2 (Ω, R ν ); v(x) ∈ N for a.e. x ∈ Ω}.

A minimizing harmonic map is a map which minimizes the Dirichlet energy

(1.2) Ω |Du| 2
among all maps in W 1,2 with the same trace on the boundary. Due to a result of Morrey [START_REF] Morrey | The problem of Plateau on a Riemannian manifold[END_REF] minimizing harmonic maps are smooth. But because of topological constraints the set {u ∈ C 0 (Ω, N ); u = γ on ∂Ω} for γ ∈ C 1 (∂Ω, S 1 ) can be empty. This is the case for example when Ω is simply connected and γ is not homotopic to a constant. Thus, in this case, there is no minimizing harmonic map in Ω with trace equal to γ. Actually by using an approximation argument cf. [START_REF] Schoen | A regularity theory for harmonic maps[END_REF], we can show that if {u ∈ C 0 (Ω, N ); u = γ on ∂Ω} = ∅ then (1.3) W 1,2 γ (Ω, N ) := {v ∈ W 1,2 (Ω, N ) : tr ∂Ω v = γ} is also empty and thus Ω |Du| 2 = +∞ for every u ∈ C 1 (Ω, N ) with u = γ on the boundary.

We can think of relaxing the problem of nding harmonic maps in W 1,2 γ (Ω, N ) in the following way. We assume that there exists a function F : R ν → R + such that (1.4) {x ∈ R ν ; F (x) = 0} = N .

For every ε > 0 we can see that there exists a minimizer u ε of (1.5)

E ε (u) = Ω |Du| 2 2 + F (u) ε 2 . in (1.6) W 1,2 γ (Ω) := {v ∈ W 1,2 (Ω, R ν ); tr ∂Ω v = γ}.
When ε is small, we expect u ε to be almost N -valued except in some small regions. In this paper we consider the question of the convergence of u ε as ε tends to zero. Note that if u ε → u 0 , in a sense which has yet to be de ned, then u 0 can be viewed as a generalized solution of the problem of minimizing Ω |Du| 2 in W 1,2 γ (Ω, N ). The exact same problem was considered in the pioneer work of Bethuel-Brezis-Hélein [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF] in the case where N = S 1 ⊂ R 2 and F (z) = (1 -|z| 2 ) 2 . In this case the functional (1.5) is the original Ginzburg-Landau energy and is used to model the behaviour of superconductors of type II. Bethuel-Brezis-Hélein showed that if d = deg(γ, ∂Ω) > 0 then there exist d points a 1 , . . . , a d in Ω, u 0 ∈ W 1,2 loc (Ω \ {a 1 , . . . , a d }, S 1 ) such that, up to a subsequence, u ε → u 0 in C 1,α loc (Ω \ {a 1 , . . . , a d }) for all α > 0 and u 0 is a harmonic map in Ω \ {a 1 , . . . , a d }. Besides the positions of the points a i , 1 ≤ i ≤ d minimize a renormalized energy which allows us to locate them in some cases.

The Ginzburg-Landau model in superconductivity is not the only physical model where functionals of the form (1.5) appear. Indeed the physicist Pierre-Gilles de Gennes received the Nobel prize in 1991 for his works on liquid crystals and polymers where he showed that in these two physical contexts phase transitions occur and can be modelled by functionals analogous to the Ginzburg-Landau one, i.e., functionals of the form (1.5) for good choices of potentials F and vacuum-manifold N . Hence the Landau-de-Gennes theory proposes to describe the state of a nematic liquid crystal by an order parameter Q which is a symmetric traceless 3 × 3 matrix and which minimizes an energy of the form (1.5) with N = F -1 (0) RP 2 . For the study of singular limits of minimizers of the Landau-de-Gennes in 2D we refer to [START_REF] Bauman | Analysis of nematic liquid crystals with disclination lines[END_REF][START_REF] Canevari | Biaxiality in the asymptotic analysis of a 2D Landau-de Gennes model for liquid crystals[END_REF][START_REF] Golovaty | On minimizers of a Landau-de Gennes energy functional on planar domains[END_REF]. Energies of the form (1.5) also appear in physics in Chern-Simon-Higgs theory, cf. [START_REF] Bauman | Analysis of nematic liquid crystals with disclination lines[END_REF] where N = S 1 × {0} S 1 and other phase transitions problems like biaxial molecules in nematic phase (N SU (2)/H, where H is the quaternion group), super uid He-3 in dipole-free phase N SU (2) × SU (2)/H and super uid He-3 in dipole-locked phases N RP 3 cf. [START_REF] Mermin | The topological theory of defects in ordered media[END_REF].

Another context where a Ginzburg-Landau type relaxation appears is numerical analysis. Indeed in some situations one looks for meshing a surface with quadrangles to compute the solution of a given problem. Numerically it is better to have a regular mesh of quadrangle. But due to topological constraints, coming from the topology of the surface and/or the boundary data prescribed, a regular mesh may not exist. Thus, one relies on a Ginzburg-Landau approximation of the problem to mesh the domain regularly except on nite number of singularities. The location of these singularities is particularly important. We refer to [START_REF] Beaufort | Computing cross elds A PDE approach based on the Ginzburg-Landau theory[END_REF][START_REF] Viertel | An approach to quad meshing based on harmonic cross-valued maps and the Ginzburg-Landau theory[END_REF] for more on this topic. In this context we are mainly interested in cross-elds and the vacuum manifolds considered are N = SO(2)/D + 4 or N = SO(3)/O where here D + 4 denotes the group of direct isometries of the 2D square and O the group of direct isometries of the 3D cube. In this last case we have that the fundamental group of N , π 1 (N ) is non-abelian and thus the situation is slightly di erent from the one in [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF]. Indeed because of the non-commutativity one has to consider the conjugacy class in π(N ) of a boundary datum to make the analysis and not only its homotopy class. More generally one can think of using a Ginzburg-Landau relaxation to study geometric problem where topological constraints prevent the existence of a smooth solution of the problem, this was done e.g. in [START_REF] Ignat | Interaction energy between vortices of vector elds on Riemannian surfaces[END_REF] for the problem of nding smooth vector elds on a Riemannian surface.

In view of all these motivations we are led to consider the general setting of the energy (1.5) and to study the asymptotic behaviour of minimizers of (1.5). We introduce the following:

De nition 1.1. We say that a map γ ∈ W 1/2,2 (∂Ω, N ) is topologically non-trivial if there is no map u in W 1,2 (Ω, N ) such that tr ∂Ω u = γ.

We now state our main theorem in a loose form. We made this choice in order not to introduce too many de nitions and notations in the introduction and to keep the presentation simple. A more precise statement of our main result can be found in Theorem 8.1.

Theorem 1.1. (Loose theorem) Let F : R ν → R + be a function satisfying

(H 1 )
F is smooth and N = F -1 (0) is a smooth compact connected manifold,

(H 2 )
for every z ∈ N and every ν ∈ (T z N ) ⊥ \ {0}, D 2 F (z)[ν, ν] > 0, (H 3 ) there exists R > 0 such that N ⊂ BR and for every z ∈ R ν \ BR , F (z) ≥ F (Rz/|z|).

Let γ 0 ∈ W 1/2,2 (∂Ω, N ) and let (u ε ) ε>0 be a family of minimizers of E ε in W 1,2 γ 0 (Ω, R ν ). Then, there exists a sequence (ε n ) n∈N → 0, k ∈ N, a 1 , . . . , a k ∈ Ω, and u 0 ∈ W 1,2 loc ∩ C 0 (Ω \ {a 1 , . . . , a k }) such that 1) u εn → u 0 strongly in W 1,2 loc (Ω \ {a 1 , . . . , a k }) and C 0 ( Ω \ {a 1 , . . . , a k }). 2) u 0 is an N -valued harmonic map in Ω \ {a 1 , . . . , a k } such that tr ∂Ω u 0 = γ 0 , 3) there exists a function W such that

(1.7) E ε (u ε ) = E sg (γ 0 ) log 1 ε + W γ 0 ,γ 1 ,...,γ k (a 1 , . . . , a k ) + o ε (1)
where the γ i can be viewed as the "topological charges" around each a i , they will be de ned in Section 2 along with the quantity E sg (γ 0 ), cf. De niton 2.5. 4) the con guration (a 1 , γ 1 ), . . . , (a k , γ k ) minimizes the renormalized energy W .

Remarks:

1) If γ 0 ∈ W 1/2,2 ∩ C 0 (∂Ω, N ) then we are able to prove that u εn → u 0 strongly in W 1,2 loc ∩ C 0 (Ω \ {a 1 , . . . , a k }) cf. Proposition 9.5.

2) We prove in Proposition 9.6 that, if γ 0 ∈ C 2 (∂Ω, N ) the convergence holds in C 1,α loc (Ω \ {a 1 , . . . , a k }).

3) The assumption (H 3 ) is used to obtain that minimizers of E ε are uniformly bounded. Since F is smooth then these minimizers satisfy the Euler-Lagrange equation (1.8) ∆u = 1 ε 2 ∇F (u) in Ω. From elliptic regularity theory the minimizers are smooth. This theorem is the analogue of the results of Bethuel-Brezis-Hélein Theorem 0.1-Theorem 0.2 in [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF]. Indeed when N = S 1 and Ω is simply connected we have E sg (γ 0 ) = π|d| where d ∈ Z is the degree or winding number of γ 0 : ∂Ω → S 1 . Our renormalized energy coincide with the one of Bethuel-Brézis-Hélein as explained in remark 1. The point 1) of Theorem 1.1 was previously obtained by Canevari in [START_REF] Canevari | Biaxiality in the asymptotic analysis of a 2D Landau-de Gennes model for liquid crystals[END_REF] by di erent techniques.

The derivation of a renormalized energy, and actually of various forms of the renormalized energy, in the case of a general vacuum-manifold allows us to obtain two other results. The rst one is a symmetry result when we work in a disk and with a boundary data which is a minimizing geodesic which induces only one singularity. This is the analogue of the situation where γ 0 (x) = x |x| : S 1 → S 1 for the classical GL energy with vacuum manifold S 1 cf. Theorem VIII-6 in [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF]. To state this result we need the notion of minimal topological resolution, De nitions 2.3-2.5, and of synharmonicity 2.9 which will be provided in Section 2.

Theorem 1.2. Let Ω := D let γ 0 : S 1 → N be a minimizing geodesic such that every minimal topological resolution of γ 0 consists in one geodesic homotopic to γ 0 . We also assume that every energy minimizing geodesic which is homotopic to γ 0 is also synharmonic to γ 0 . Let u ε be a family of minimizers of E ε in W 1,2 γ 0 (D, R ν ) we have that (1.9)

u ε → γ 0 x |x| in W 1,2 loc (D \ {0}, R ν ) and C 0 loc (D \ {0}, R ν ).
The second consequence of our analysis and in particular of a new form of the renormalized energy is Theorem 1.3. Let N be a quotient of SU (2) bi a discrete subgroup or N be a real projective space. Let k ∈ N, a 1 , . . . , a k ∈ Ω. Let u 0 ∈ W 1,2 (Ω \ {a 1 , . . . , a k }) be a limiting singular harmonic map in Theorem 8.1. Let γ 1 , • • • , γ k ∈ C 1 (S 1 , S 1 ) be the "topological charges" of u 0 near each a i . Then for i = 1, . . . , k (1.10) u 0 (a i + ρ•) → γ i in C 0 (S 1 , S 1 ) as ρ → 0.

This theorem gives a ne description of the limiting singular harmonic map of Theorem 8.1. As mentioned earlier the existence of this limiting harmonic maps was previously obtained in [START_REF] Canevari | Biaxiality in the asymptotic analysis of a 2D Landau-de Gennes model for liquid crystals[END_REF]. The author also obtained, with our notations, that there exists a subsequence (ρ l ) l∈N such that u 0 (a i + ρ l •) → γ i in C 0 (S 1 , S 1 ). It was left as an open problem to determine if the convergence holds without taking subsequences. The use of the renormalized energy allows us to answer this question, for some manifolds N as explained in Section 10.

1.2. Plan of the paper and methods of the proof. We start the paper with a preliminary section where we explain the setting and de ne the notion of topological resolution of the boundary datum. We also introduce a quantity associated to a boundary datum γ : ∂Ω → N called its "cost" or least-square topological decomposition. We de ne a notion of synharmonicity between geodesics: two geodesics are synharmonic when they are homotopic through minimizing geodesics.

In sections 3 and 4 we de ne several di erent renormalized energies. These are de ned through a relaxation process. More precisely we consider minimizing N -valued harmonic maps in the domain where we make small holes around some points and we let these holes shrink to the points. Various boundary conditions on the boundaries of the holes are considered. This idea dates back to [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF], the di erence is that in our case we cannot obtain an expression of the renormalized energies considered in terms of Green functions for the Laplacian. We show that this relaxation process leads to the de nition of singular harmonic maps which, contrarily to the case of [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF], might be not unique.

Then in section 5 we introduce a quantity which can be viewed as the cost of a vortex with a given boundary condition at in nity. The niteness of this quantity relies on a lower-bound on the Ginzburg-Landau energy derived in section 7. We need this quantity to derive an upper-bound of the ground states of the Ginzburg-Landau energy when ε is small, we note that the upper-bound that we give remains correct if the above-mentioned quantity is in nite.

The full statement of our main result can be found in section ??. Then in section 11 we apply our main result to the situation where only one singularity is present. In this case we prove that our renormalized energy is equal to the renormalized energy of [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF] up to a constant and this allows us to prove a symmetry result for the limiting singular harmonic maps when the domain is a disc.

In section 6 we construct an upper bound for the energy of minimizers of the Ginzburg-Landau energy when ε is small. In section 7 we derive the corresponding lower-bound. This is done in several steps. First we prove a lower bound for N valued maps in perforated domain. Then we use this bound to obtain a rst lower-bound on the Ginzburg-Landau energy of the form E sg (γ 0 ) log 1 ε -C. In order to do that we adapt the methods of [START_REF] Jerrard | Lower bounds for generalized Ginzburg-Landau functionals[END_REF][START_REF] Sandier | Lower bounds for the energy of unit vector elds and applications[END_REF]. Thanks to this rst lower bound we prove the compactness in some sense of sequences of maps whose Ginzburg-Landau energies is less than E sg (γ 0 ) log 1 ε + C. We then apply this result to minimizers of the Ginzburg-Landau energy and we use it to re ne the lower-bound. With the help of the upper and lower bounds obtained we are able to prove our main result and describe the asymptotic behavior of minimizers of the (GL) energy.

In section 10 we analyse the behaviour of the limiting map u 0 near its singularity . More precisely, for some vacuum manifolds, we show that if a i is a singularity then u 0 (a i + ρ•) → γ i in C 0 (S 1 ). We obtain this convergence for all ρ and not for a subsequence ρ and thus we answer a question left open in [START_REF] Canevari | Biaxiality in the asymptotic analysis of a 2D Landau-de Gennes model for liquid crystals[END_REF].

We then describe how our main result applies to speci c examples of interest in section 12.

T N

2.1. Embedding and nearest point projection. We assume that N is a compact Riemmanian manifold isometrically embedded into a Euclidean space R ν . It is known that there exists δ > 0 such that if y ∈ N δ := y ∈ R ν : dist(y, N ) < δ then there exists a unique point Π N (y) ∈ N such that (2.1) |y -Π N (y)| = dist(y, N ).

The map y ∈ N δ N → Π N (y) is called the nearest point projection. Moreover, the smoothness and an estimate on the derivative of Π N are given by the next lemma.

Lemma 2.1. There exists δ N > 0 such that the nearest point projection Π N : {y ∈ R ν : dist(y, N ) < δ 1 } → N is well-de ned, smooth and satis es for every y ∈ N δ N and v ∈ R ν

|D dist N (y)[v]| 2 + 1 - dist N (y) δ N |DΠ N (y)[v]| 2 ≤ |v| 2 ,
where for y ∈ R ν , dist N (y) := dist(y, N ).

If N = S n , one has DΠ N (y)[v] = v|y| 2 -y(y•v) |y| 3
, and thus

|DΠ N (y)[v]| 2 = |v| 2 |y| 2 -(y•v) 2 |y| 4
, and Lemma 2.1 corresponds to the formula

(y • v) 2 |y| 2 + 1 -(1 -|y|)(1 + |y|) |v| 2 |y| 2 - (y • v) 2 |y| 4 = |v| 2 .
The smoothness is classical [START_REF] Foote | Regularity of the distance function[END_REF]. For related computations on the distance function to embedded manifolds, we refer the reader to [START_REF] Ambrosio | Curvature and distance function from a manifold[END_REF][START_REF] Eminenti | Some properties of the distance function and a conjecture of De Giorgi[END_REF].

Proof of Lemma 2.1. When δ > 0 is small enough, for every y ∈ N δ , Π N is well-de ned. By de nition of nearest point projection Π, we have Π N (y) -y ∈ (T Π N (y) N ) ⊥ and for each v ∈ R ν , DΠ N (y)[v] ∈ T Π N (y) N .

For z ∈ N , let P (z) : R ν → R ν denote the projection of R ν on the space (T x N ) ⊥ orthogonally to T x N with respect to the ambient Euclidean metric of R ν . We then have for every y ∈ N δ , (I -P (Π N (y)))[Π N (y) -y] = 0

We di erentiate this identity with respect to y by using the chain rule and the Leibniz rule, for every y ∈ N δ and v ∈ R ν , (2.2)

(I -P (Π N (y))) DΠ N (y)[v] -v = (DP (Π N (y))[DΠ N (y)[v]]) Π N (y) -y ,
We observe that for every w ∈ R ν , x → P (x)[w] is a smooth map from N to T ⊥ x N , and therefore we have [16, proposition 6.2.3] 

if w, z ∈ T x N and v ∈ (T x N ) ⊥ z • (DP (x)[w])[v] = -v • B x (z, w),
where v • B x is the second fundamental form of the submanifold N along the normal vector v [16, de nition 6.2.2]. Since DΠ N (y)[v] ∈ T y N , we have

DΠ N (y)[v] • (I -P (Π N (y)))[DΠ N (y)[v] -v] = |DΠ N (y)[v]| 2 -(v -P (Π N (y))[v]) • DΠ N (y)[v]
Therefore, we have, by testing (2.2) against the vector DΠ N (y) [v],

|DΠ N (y)[v]| 2 + (Π N (y) -y) • B Π N (y) [DΠ N (y), DΠ N (y)] = (v -P (Π N (y))[v]) • DΠ N (y)[v].
Hence, we have

(2.3) (1 -C 1 |Π N (y) -y|)|DΠ N (y)[v]| ≤ |(I -P (Π N (y)))[v]|
where

C 1 = sup{|B y (z, w)| : y ∈ N , z, w ∈ T y N , |z| ≤ 1 and |w| ≤ 1}.
We notice that for every

y ∈ N δ N \ N and v ∈ R ν D dist N (y)[v] = v • (y -Π N (y)) |y -Π N (y)| = P (Π N (y))[v] • (y -Π N (y)) |y -Π N (y)| .
and thus

(2.4) |D dist N (y)[v]| ≤ |P (Π N (y))||v|
By using the fact that by orthogonality, we have

(2.5) |(I -P (Π N (y)))[v])| 2 + |P (Π N (y))[v]| 2 = 1
we obtain the conclusion with δ N := min{δ, 1 2C 1 } by combining (2.3), (2.4) and (2.5). 2.2. Nondegeneracy conditions on the energy density. We show that the second-order nondegeneracy condition (H 2 ) allows us to compare the potential F with the distance to the vacuummanifold. We translate this non-degeneracy condition in a rst-order and a zero-order condition. We de ne the three following properties:

F ∈ C 2 (R ν ) and there exist m 0 , M 0 > 0 and δ F ∈ (0, δ N ) such that for every z ∈ N δ , one has m 0 dist(z, N ) 2 ≤ D 2 F (z)[z -Π N (z), z -Π N (z)] ≤ M 0 dist(z, N ) 2 . (H (2) 2 ) F ∈ C 1 (R ν ) and there exist m 0 , M 0 > 0 and δ F ∈ (0, δ N ) such that for every z ∈ N δ , one has m 0 dist(z, N ) 2 ≤ DF (z)[z -Π N (z)] ≤ M 0 dist(z, N ) 2 . (H (1) 2 ) F ∈ C 0 (R ν ) and there exist m 0 , M 0 > 0 and δ F ∈ (0, δ N ) such that for every z ∈ N δ F , one has m 0 2 dist(z, N ) 2 ≤ F (z) ≤ M 0 2 dist(z, N ) 2 . (H (0) 2 ) Lemma 2.2. Assume that F ∈ C(R ν , R + ) and that F -1 ({0}) = N . (a) if F ∈ C 2 (R ν , R + ), (H 2 ) implies (H (2) 2 ), (b) if F ∈ C 2 (R ν , R + ) and if the second order non-degeneracy assumption (H (2)
2 ), then the rst order condition (H

(1) 2 ) holds, (c) if F ∈ C 1 (R ν , R + ) and if the rst order non-degeneracy assumption (H (1)
2 ), then the zeroth order condition (H

(0) 2 ) holds.
Proof. The assertion (a) follows by a continuity argument and the fact that for each z

∈ N δ N , z -Π N (z) ∈ T ⊥ Π N (z)) N . We rst prove (b). We recall that the nearest point projection z ∈ N δ N = {z ∈ R ν ; dist(z, N ) < δ N } → Π N (z)
is well-de ned and smooth if δ N is small enough. Since the function F achieves its minimum on N and since z -Π N (z) ∈ (T Π N (z) N ) ⊥ , we have DF (Π N (z))[z -Π N (z)] = 0 and thus by the fundamental theorem of calculus, we have

DF (z)[z -Π N (z)] = 1 0 D 2 F ((1 -t)Π N (z) + tz)[z -Π N (z), z -Π N (z)] dt,
The conclusion follows from the fact that by assumption, for each z ∈ N δ F , we have

m 0 dist(z, N ) 2 ≤ D 2 F ((1 -t)Π N (z) + tz)[z -Π N (z), z -Π N (z)] ≤ M 0 dist(z, N ) 2 ,
Let us now prove (c). We now assume this rst order condition (H

(1)
2 ). Since F = 0 on N , we have by the fundamental theorem of calculus

F (z) = 1 0 DF ((1 -t)Π N (z) + tz)[z -Π N (z)] dt.
On the other hand, we have by assumption for every t ∈ (0, 1),

m 0 t dist(z, N ) 2 ≤ DF ((1 -t)Π N (z) + tz)[z -Π N (z)] ≤ M 0 t dist(z, N ) 2 ,
and the conclusion then follows.

2.3. Topological resolution of the boundary datum. The description of asymptotic singularities for Ginzburg-Landau functionals will be based on the topological resolution of the boundary datum, which are ways to remove disks from the domain and prescribe boundary data on their boundary in such a way to prevent any obstruction to a continuous extension.

Given an open set Ω ⊂ R 2 , an integer k ∈ N and a family of distinct points points a 1 , . . . , a k ∈ Ω, we de ne

(2.6) ρ(a 1 , . . . , a k ) := inf |a i -a j | 2 : i, j ∈ {1, . . . , k} and i = j ∪ dist(a i , ∂Ω) : i ∈ {1, . . . , k} ,
in such a way that if ρ ∈ (0, ρ(a 1 , . . . , a k )), we have Bρ (a i ) ∩ Bρ (a j ) = ∅ for each i, j ∈ {1, . . . , k} such that i = j and Bρ (a i ) ⊂ Ω for each i ∈ {1, . . . , k}, and thus the set Ω \ k i=1 Bρ (a i ) has a smooth boundary. If k = 0, we set ρ(a 1 , . . . , a k ) := +∞.

De nition 2.3.

Given Ω ⊂ R 2 a domain with a Lipschitz boundary, k ∈ N * , k maps γ 1 , . . . , γ k ∈ C 0 (S 1 , N ) and γ 0 ∈ C 0 (∂Ω, N ), we say that (γ 1 , . . . , γ k ) is a topological resolution of γ 0 whenever there exist points a 1 , . . . , a k ∈ Ω, a radius ρ ∈ (0, ρ(a 1 , . . . , a k )), and a continuous map u ∈ C 0 (Ω \ k i=1 Bρ (a i ), N ) such that u| ∂Ω = γ 0 and for each i ∈ {1, . . . , k}, u(

a i + ρ•)| S 1 = γ i . If a 1 , . . . , a k ∈ Ω and ρ ∈ (0, ρ(a 1 , . . . , a k )), then there exists a homeomorphism between Ω \ k i=1 Bρ (a i ) and Ω \ k i=1 Bρ (a i
) that shows that the statement of the previous de nition is independent of the choice of the points and of the radius. Similarly, if for each i ∈ {0, . . . , k}, the map γ i is homotopic to γ i , then, by the homotopy extension property, γ 1 , . . . , γ k is also a topological resolution of γ 0 . Hence the property of being a topological resolution is invariant under homotopies.

De nition 2.3 can be extended to the case where γ 0 ∈ W 1/2,2 (∂Ω, N ) and γ 1 , . . . , γ k ∈ W 1/2,2 (S 1 , N ). Indeed, when Γ is a curve, maps in W 1/2,2 (Γ, N ) have vanishing mean oscillation (VMO) and such maps have a well de ned homotopy class [START_REF] Brezis | Degree theory and BMO. I: Compact manifolds without boundaries[END_REF][START_REF] Theory | II: Compact manifolds with boundaries, with an appendix by the authors and Petru Mironescu[END_REF].

De nition 2.4. Given Ω ⊂ R 2 a domain with a Lipschitz boundary, k ∈ N * , k maps γ 1 , . . . , γ k ∈ VMO(S 1 , N ) and γ 0 ∈ VMO(∂Ω, N ), we say that (γ 1 , . . . , γ k ) is a topological resolution of γ 0 whenever (γ 1 , . . . , γ k ) is homotopic in VMO(S 1 , N ) k to a topological resolution (γ 1 , . . . , γ k ) of a map γ 0 which is homotopic in VMO(∂Ω, N ) to a map γ 0 .
Topological resolutions can be characterized algebraically in the fundamental group π 1 (N ). Indeed, in general ∂Ω = i=1 Γ i , where for each i ∈ {1, . . . , }, the set Γ i is a connected compact curve embedded into the plane R 2 . Each homotopy class of maps from S 1 to N is associated to a conjugacy class of the fundamental group π 1 (N ) (see for example [START_REF] Hatcher | Algebraic topology[END_REF]Exercise 1.1.6]). The list (γ 1 , . . . , γ k ) is a topological resolution of γ 0 if for each i ∈ {1, . . . , k}, there exists g i ∈ π 1 (N ) belonging to the conjugacy class of π 1 (N ) associated to γ i and for every j ∈ {1, . . . , } there exists h j ∈ π 1 (N ) belonging to the conjugacy class of π 1 (N ) associated to γ 0 | Γ j under an orientation preserving homeomorphism of Γ j and S 1 such that

g 1 • • • g k • h 1 • • • h k = e,
where e ∈ π 1 (N ) is the identity element. Although the product in π 1 (N ) is nonabelian in general -and in most of our model situations afterwards -the order of the product is not important since the factors can be chosen freely in conjugacy classes; algebraically, this is related to the fact that g

• h = (g • h • g -1 ) • g = h • (h -1 • g • h).
Computationally, checking this condition seems to require testing all the possible elements in conjugacy classes, leading typically to a cost which is exponential in k unless π 1 (N ) is abelian, as it is the case for the Ginzburg-Landau functional (N = S 1 and π 1 (S 1 ) Z) and the Landau-De Gennes functional (N = RP 2 and π 1 (RP 2 ) = Z/2Z). The discussion above is related to the polygroup structure of π 1 (N ) [START_REF] Campaigne | Partition hypergroups[END_REF][START_REF] Dietzman | On the multigroups of complete conjugate sets of elements of a group, C. R[END_REF].

2.4.

Energy cost of a boundary data. We de ne the minimal length in the homotopy class of γ ∈ VMO(S 1 , N ) as

λ(γ) = inf S 1 |γ | : γ ∈ C 1 (S 1 , N ) and γ are homotopic in VMO(S 1 , N ) .
By the Cauchy-Schwarz inequality and by a classical re-parametrization, we have

(2.7) inf S 1 |γ | 2 : γ ∈ C 1 (S 1 , N ) and γ are homotopic = λ(γ) 2 2π .
In particular, if γ is a minimizing closed geodesic, then

λ(γ) = S 1 |γ | = 2π S 1 |γ | 2 .
The systole of the manifold N is the length of the shortest closed geodesic on N .

(2.8)

sys(N ) = inf λ(γ) : γ ∈ C 1 (S 1 , N ) is not homotopic to a constant .
In particular, one has always either λ(γ) = 0 or λ(γ) ≥ sys(N ).

The following quantity will play a fundamental role in the asymptotics.

De nition 2.5. If Ω ⊂ R 2 is a Lipschitz bounded domain and γ 0 ∈ VMO(∂Ω, N ), we de ne

E sg (γ 0 ) = inf k i=1 λ(γ i ) 2 4π : k ∈ N and (γ 1 , . . . , γ k ) is a topological resolution of γ 0 .
In particular, E sg is invariant under homotopies and for every γ ∈ VMO(S 1 , N ), one has

E sg (γ) ≤ λ(γ) 2 4π
. Minimal topological resolutions are optimal resolutions in De nition 2.5.

De nition 2.6. We say that (γ 1 , . . . , γ k ) is a minimal topological resolution of γ 0 whenever it is a topological resolution of γ 0 whenever

E sg (γ 0 ) = k i=1 λ(γ i ) 2 4π
and for every i ∈ {1, . . . , k}, λ(γ i ) > 0.

It will appear in the examples that minimal topological resolutions are not necessarily unique. We nally de ne the notion of atomic homotopy class.

De nition 2.7. A closed curve γ ∈ C 0 (S 1 , N ) is atomic whenever (γ) is a minimal resolution of γ.
In particular, if λ(γ) = sys(N ), then γ is atomic. Being atomic does not exclude the existence of a minimal topological resolution into several maps.

Proposition 2.8. If Ω 0 ⊂ Ω 1 and u ∈ W 1,2 (Ω 1 \ Ω 0 ), then E sg (tr ∂Ω 0 u) ≤ E sg (tr ∂Ω 1 u).
Proof. One observes that any topological resolution of tr ∂Ω 1 u can be showed thanks to v to be a topological resolution of tr ∂Ω 0 u.

Synharmony between geodesics.

We introduce the synharmony between geodesics which quanti es how homotopic mappings can be connected through a harmonic map.

De nition 2.9. The synharmonicity between two given maps γ, β ∈ W 1/2,2 (S 1 , N ), is de ned as

d synh (γ, β) := inf S 1 ×[0,L] |Du| 2 2 - L 4π λ(γ) 2 : L ∈ (0, +∞), u ∈ W 1,2 (S 1 × [0, L], N ), tr S 1 ×{0} u = γ and tr S 1 ×{0L} u = β on S 1 .
The synharmonicity is an extended pseudo-distance which is continuous with respect in the strong topology in

W 1/2,2 (S 1 , N ). Proposition 2.10. For every γ, β, α ∈ W 1/2,2 (S 1 , N ), one has (i) d synh (γ, γ) = 0, (ii) d synh (γ, β) ≥ 0, (iii) d synh (γ, β) < +∞ if and only if γ and β are homotopic in VMO(S 1 , N ), (iv) d synh (γ, β) = d synh (β, α), (v) d synh (γ, β) ≤ d synh (γ, α) + d synh (α, β). (vi) if the sequence (γ n ) n∈N converges to γ strongly in W 1/2,2 (S 1 , N ), then lim inf n→∞ d synh (γ, γ n ) = 0. Proof. For (i) we take u ∈ W 1,2 (S 1 × [0, 1], N ) such that u(•, 0) = γ, and we de ne for L ∈ (0, 2), u L (x, t) = u(x, L/2 -|t -L/2|). The property (ii) follows from the fact that if u ∈ W 1,2 (S 1 × [0, L], N ) and if tr S 1 ×{0} u = γ on S 1 , then for almost every s ∈ [0, L], u(•, s) is homotopic to γ and thus 1 2 S 1 |Du(•, s)| 2 ≥ λ(γ) 2 4π .
For the niteness property (iii), we remark that if γ and β are homotopic, then there exists a homotopy u 0 ∈ W 1,2 (S 1 × [0, L], N ) such that u 0 (•, 0) = γ, u 0 (•, L) = β, and thus

d synh (γ, β) ≤ S 1 ×[0,L] |Du 0 | 2 2 -L λ(γ) 2 4π < +∞;
if γ and β are not homotopic, d synh (γ, β) is an in mum over an empty set, so that d synh (γ, β) = +∞. For (iv), we rely on the fact that λ(γ) = λ(β) if γ and β are homotopic.

In order to prove (v), we observe that if

u ∈ W 1,2 (S 1 ×[0, L], N ), tr S 1 ×{0} u = γ, tr S 1 ×{L} u = α, v ∈ W 1,2 (S 1 × [0, L], N ), tr S 1 ×{0} v = α and tr S 1 ×{L} v = β, then we can de ne the map w ∈ W 1,2 (S 1 × [0, 2L]) by w(•, s) = u(•, s) if s ∈ [0, L] and w(•, s) = v(•, s -L) if s ∈ [L, 2L].
We now check (vi). For every n ∈ N, we let v n : S 1 × (0, +∞) and v : S 1 × (0, +∞) be the harmonic extension of γ n and of γ. Since (γ n ) n∈N converges strongly to γ, then for every

L ∈ (0, +∞), (v n | S 1 ×[0,L] ) n∈N converges strongly to v| S 1 ×[0,L] . and v n → v locally uniformly in S 1 × (0, +∞).
We de ne the function

v n,L : [0, L] → R ν by v n,L (x, t) =        v n (x, t) if 0 ≤ t ≤ L/3, 2L-3t L v n (x, t) + 3t-L L v(x, L -t) if L/3 ≤ t ≤ 2L/3, v(x, L -t) if 2L/3 ≤ t ≤ L.
We have lim

L→0 lim sup n→∞ S 1 ×[0,L] |Dv n,L | 2 = lim L→0 S 1 ×[0,2L/3] |Dv| 2 = 0.
Moreover, since (γ n ) n∈N converges strongly to γ in W 1/2,2 (S 1 , N ), we have

lim L→0 sup dist(z, N ); z ∈ v(S 1 × (0, L)) ∪ n∈N v n (S 1 × (0, L)) = 0,
and thus lim

L→0 lim n→∞ sup{dist(z, N ); z ∈ v n,L (S 1 × (0, L))} = 0.
Therefore for each L small enough, Π N • v n,L is well-de ned when n ∈ N is large enough and we have

lim L→0 lim n→∞ S 1 ×[0,L] |D(Π N • v n,L )| 2 2 = 0.
Hence we have

lim sup n→∞ d synh (γ n , γ) ≤ lim L→0 lim sup n→∞ S 1 ×[0,L] |D(Π N • v n,L )| 2 2 - L 4π λ(α) = 0.
De nition 2.11. Two maps γ, β ∈ W 1/2,2 (S 1 , N ) are synharmonic whenever d synh (γ, β) = 0.

In view of Proposition 2.10, the synharmony between minimizing geodesics is an equivalence relation, partitioning each homotopy class of minimizing geodesics into synharmony classes. Proposition 2.12. If γ, β ∈ W 1/2,2 (S 1 , N ) and d synh (γ, β) = 0, then either γ = β almost everywhere in S 1 or both β and γ are minimizing geodesics.

Proof. By de nition of synharmonic maps (De nition 2.11) and of synharmony of maps (De nition 2.9), there exists a sequence (L n ) n∈N in (0, +∞) and for each n ∈ N a map

u n ∈ W 1,2 (S 1 × [0, L n ], N ) such that u n (0, •) = γ, u n (L n , •) = β and lim n→∞ S 1 ×[0,Ln] |Du n | 2 2 - L 4π λ(γ) 2 = 0.
Up to a subsequence we can assume that either

(L n ) n∈N converges to 0, or (L n ) n∈N converges to some L ∈ (0, +∞) or (L n ) n∈N diverges towards +∞.
If the sequence (L n ) n∈N converges to 0, then by the Cauchy-Schwarz inequality

S 1 |γ -β| ≤ lim sup n→∞ S 1 ×[0,Ln] |Du n | ≤ lim n→∞ 2πL n S 1 ×[0,Ln] |Du n | 2 1 2 = 0.
If the sequence (L n ) n∈N converges to L, then there exists a map u

∈ W 1,2 (S 1 × [0, L n ], N ) such that u(0, •) = γ, u(L n , •) = β and S 1 ×[0, L] |Du| 2 2 = L 4π λ(γ) 2 .
We conclude from this that ∂u ∂t = 0 and that γ = β is a minimizing geodesic. If (L n ) n∈N diverges to +∞, there exists a map u ∈ W 1,2 (S 1 × (0, +∞), N ) such that u(0, •) = γ and for every L ∈ (0, +∞),

S 1 ×[0,L] |Du| 2 2 = L 4π λ(γ) 2 ,
from which it follows that γ is a minimizing geodesic. Similarly, β is also a minimizing geodesic.

Proposition 2.13.

If (γ n ) n∈N is a sequence in W 1/2,2 (S 1 , N ) and if lim n,m→∞ d synh (γ n , γ m ) = 0, then there exists γ ∈ W 1/2,2 (S 1 , N ) such that lim n→∞ d synh (γ n , γ) = 0 and a subsequence (γ n k ) k∈N that converges strongly to γ in W 1/2,2 (S 1 , N ).
Proof. In view of the triangle inequality (Proposition 2.10 (v)), it is su cient to prove the convergence for a subsequence. Hence, we assume without loss of generality that for every n ∈ N,

d synh (γ n , γ n+1 ) ≤ 1 2 n
. By de nition of synharmonic distance (De nition 2.9), for each n ∈ N there exists L n ∈ (0, +∞) and a map

u n ∈ W 1,2 (S 1 × [0, L n ], N ) such that tr S 1 ×{0} u n = γ n on S 1 , tr S 1 ×{Ln} u n = γ n+1 on S 1 and S 1 ×[0,L] |Du| 2 2 - L 4π λ(γ n ) 2 ≤ 1 2 n-1 .
We de ne for each n ∈ N,

T n = n-1 i=0 L i , T ∞ = i∈N L i ∈ (0, +∞] and the map u : [0, T ∞ ) → N by u(x, t) = u n (x, t -T n ) if T n ≤ t < T n-1 .
If T ∞ < +∞, then we set γ = tr S 1 ×{T∞} u, for which we observe that lim n→∞ d synh (γ n , γ) = 0 and (γ n ) n∈N converges strongly to γ in W 1/2,2 (S 1 , N ).

If T ∞ = +∞, we rst observe that

∞ 0 S 1 |Du(•, t)| 2 - λ(γ) 0 4π dt ≤ ∞ n=0 1 2 n-2 = 8 < +∞.
Hence, there exists a sequence (t n ) n∈N such that

lim n→∞ S 1 |u(•, t n ) | 2 2 = λ(γ 0 ) 2 4π .
By compactness in W 1,2 (S 1 , N ), the sequence (u(•, t n )) n∈N converges strongly to some minimizing geodesic γ ∈ W 1,2 (S 1 , N ) and it follows then that (γ n ) n∈N converges in synharmony to γ.

The next proposition states that minimizing geodesics that are homotopic through minimizing geodesics are synharmonic.

Proposition 2.14. Let H ∈ C 1 (S 1 × [0, 1], N ). If for every t ∈ [0, 1], H(•, t) : S 1 → N is a minimizing geodesic, then d synh (H(•, 0), H(•, 1)) = 0.
Proof. We de ne for every L > 0 the function u :

S 1 × [0, L] → N by u L (s, t) = H(s, t L
). and we observe that

S 1 ×[0,L] |Du L | 2 -L λ(γ) 2 4π ≤ 1 L S 1 ×[0,1] ∂H ∂t 2 ,
which goes to 0 as L → +∞.

In particular, if R(θ) ∈ SO(2) denotes the rotation of angle θ we deduce that d synh (γ • R(θ), γ) = 0, by applying Proposition 2.14 with H(s, t) = γ(R(tθ)s).

Proposition 2.15. If the set K ⊂ W 1/2,2 (S 1 , N ) is compact in W 1/2,2 (S 1 , N ) and path-connected, then sup d synh (α, β) : α, β ∈ K < +∞. In particular if Y ⊂ W 1,2 (S 1 , N ) is bounded in W 1,2 (S 1 , N ), then then Y is bounded in synhar- mony.
Proof of Proposition 2.15. This follows from the compactness and Proposition 2.10, (iii) and (vi).

The following proposition provides us with an example of non-synharmonic geodesics on a Riemannian manifold. Proposition 2.16. Assume that N = (S 1 × S 1 , g), I + and I -are connected nonempty disjoint open sets of S 1 such that ∂I + = ∂I -= {a 0 , a 1 }, where the metric g satis es the following properties:

(a) if y ∈ S 1 × {a 0 , a 1 } and v = (v 1 , 0) ∈ R × {0} T y 1 S 1 × {0}, g y (v) = |v 1 | 2 , (b) if y ∈ S 1 × S 1 and v = (v 1 , v 2 ) ∈ R 2 T y (S 1 × S 1 ), g y (v) ≥ |v 1 | 2 + α(y)g 0 (v) 2 ,
where α ∈ C 0 (S 1 × S 1 , [0, +∞)) and g 0 is the Euclidian metric in R 2 . Then d synh ((a 0 , id S 1 ), (a 1 , id S 1 )) ≥ min

I + ×S 1 α, I -×S 1 α .
The assumption (a) and (b), ensures that the homotopic maps (a 0 , id S 1 ) and (a 1 , id S 1 ) are minimizing geodesics and that λ((a 0 , id S 1 )) = λ((a 1 , id S 1 )) = 2π.

By choosing an appropriate metric g, the right-hand side in the conclusion of Proposition 2.16 can be made positive, giving an example of homotopic minimizing geodesics that are not synharmonic.

Proof of Proposition 2.16.

Let u ∈ C 1 C ∞ (S 1 × [0, L], S 1 × S 1
) and u(•, 0) = (a 0 , id) and u(•, L) = (a 1 , id), then

S 1 ×[0,L] |Du| 2 g 2 ≥ S 1 ×[0,L] |Du 1 | 2 2 + S 1 ×[0,L] α(u) |Du| 2 g 0 2 ,
where

u 1 ∈ C 2 C ∞ (S 1 × [0, L], S 1 × S 1
) is the rst component of the map u. We rst have

S 1 ×[0,L] |Du 1 | 2 2 ≥ L λ((a 0 , id S 1 )) 2 4π .
Next, since |Du| 2 g 0 ≥ 2|det Du|, we have by the area formula

S 1 ×[0,L] α(u) |Du| 2 g 0 2 ≥ S 1 ×[0,L] α(u)|det Du| ≥ S 1 ×S 1 α(y)H 0 (u -1 ({y})) dy.
We observe now that by a topological argument either u(

S 1 × [0, L]) ⊇ I + × S 1 or u(S 1 × [0, L]) ⊇ I -× S 1
. Indeed, otherwise there would exist points b

+ ∈ I + × S 1 \ u(S 1 × [0, L]) and b -∈ I -× S 1 \ u(S 1 × [0, L]).
Hence, there would exist a continuous map ρ :

S 1 × S 1 \ {b + , b -} → S 1
such that ρ| S 1 ×{a 0 } = id and ρ| S 1 ×{a 1 } would be constant, and thus ρ • u : S 1 × [0, L] → S 1 would be a homotopy between the identity and a constant map, which would be a contradiction. It follows thus that

S 1 ×[0,L] |Du| 2 g 2 ≥ L λ((a 0 , id S 1 )) 2 4π + min I + ×S 1 α, I -×S 1 α .
The result follows then by a standard approximation argument.

3. R 3.1. De nition of the renormalized energies. Given an open set Ω ⊂ R 2 with a smooth boundary ∂Ω, an integer k ∈ N, distinct points a 1 , . . . , a k ∈ Ω a radius ρ ∈ (0, ρ(a 1 , . . . , a k )), a map γ 0 ∈ W 1/2,2 (∂Ω, N ) and a topological resolution (γ 1 , . . . , γ k ) ∈ W 1/2,2 (S 1 , N ) k of γ 0 , we consider the geometrical energy outside disks

(3.1) G geom,ρ γ 0 ,...,γ k (a 1 , . . . , a k ) = inf Ω\ k i=1 Bρ(ai) |Du| 2 2 : u ∈ W 1,2 (Ω \ k i=1 Bρ (a i ), N ), u = γ 0 on ∂Ω and u(a i + ρ•)| S 1 = γ i .
and the topological energy outside disks

(3.2) G top,ρ γ 0 ,...,γ k (a 1 , . . . , a k ) = inf Ω\ k i=1 Bρ(ai) |Du| 2 2 : u ∈ W 1,2 (Ω \ k i=1
Bρ (a i ), N ), u = γ 0 on ∂Ω and u(a i + ρ•)| S 1 and γ i are homotopic.

The restrictions are understood in the sense of traces of Sobolev spaces and the homotopy in the space of maps of vanishing mean oscillation [START_REF] Brezis | Degree theory and BMO. I: Compact manifolds without boundaries[END_REF][START_REF] Theory | II: Compact manifolds with boundaries, with an appendix by the authors and Petru Mironescu[END_REF]. If (γ 1 , . . . , γ k ) is not a topological resolution of γ 0 , we set G geom,ρ γ 0 ,...,γ k (a 1 , . . . , a k ) = G top,ρ γ 0 ,...,γ k (a 1 , . . . , a k ) = +∞. Since the constraint in (3.2) is weaker than the one in (3.1), we have immediately

(3.3) G top,ρ γ 0 ,...,γ k (a 1 , . . . , a k ) ≤ G geom,ρ γ 0 ,...,γ k (a 1 , . . . , a k )
In the next two propositions we show that the geometrical energy and the topological energy enjoy monotonicity properties: Proof. For every u ∈ W 1,2 (Ω \ k i=1 Bσ , N ) such that u = γ 0 on ∂Ω and u(a i + σ•)| S 1 = γ i on S 1 for every i ∈ {1, . . . , k}, we de ne v :

Proposition 3.1. Let γ 0 ∈ W 1/2,
Ω \ k i=1 Bρ (a i ) → N for x ∈ Ω \ k i=1 Bρ (a i ) by v(x) =    γ i x-a i |x-a i | if x ∈ B σ (a i ) \ Bρ (a i ) with i ∈ {1, . . . , k}, u(x) otherwise.
For every i ∈ {1, . . . , k}, since γ i is a minimizing geodesic, we have

Bσ(a i )\ Bρ(ai) |Dv| 2 2 = σ ρ S 1 |γ i | 2 2 dr r = λ(γ i ) 2 4π log σ ρ .
We thus have v ∈ W 1,2 (Ω \ k i=1 Bρ (a i ), N ) and

Ω\ k i=1 Bρ(ai) |Dv| 2 2 = 1 2 Ω\ k i=1 Bσ(ai) |Du| 2 2 + k i=1 λ(γ i ) 2 4π log σ ρ ,
and the conclusion follows.

Proposition 3.2. Let γ 0 ∈ W 1/2,2 (∂Ω, N ) and (γ 1 , . . . , γ k ) ∈ W 1/2,2 (S 1 , N ) k be a topological resolution of γ 0 . If γ 1 , . . . , γ k are minimal geodesics and if 0 < ρ < σ < ρ(a 1 , . . . , a k ), then G top,ρ γ 0 ,...,γ k (a 1 , . . . , a k ) ≥ G top,σ γ 0 ,...,γ k (a 1 , . . . , a k ) + k i=1 λ(γ i ) 2 4π log σ ρ .
Proposition 3.2 will follow from the following lemma:

Lemma 3.3. If 0 < ρ < σ < ρ(a 1 , . . . , a k ), if u ∈ W 1,2 (Ω \ k i=1
Bρ (a i ), N ) and if for every i ∈ {1, . . . , k} the maps u(a i + ρ•)| S 1 and γ i are homotopic, then

Ω\ k i=1 Bρ(ai) |Du| 2 2 ≥ Ω\ k i=1 Bσ(ai) |Du| 2 2 + k i=1 λ(γ i ) 2 4π log σ ρ .
Proof. We rst have, by additivity of the integral,

Ω\ k i=1 Bρ(ai) |Du| 2 2 = Ω\ k i=1 Bσ(ai) |Du| 2 2 + k i=1 Bσ(a i )\ Bρ(ai) |Du| 2 2 .
Next, for every r ∈ (ρ, σ), we observe that the map u(

a i + r•)| S 1 is homotopic to γ i . Hence, Bσ(a i )\ Bρ(ai) |Du| 2 2 ≥ σ ρ S 1 1 2 d r dθ u(a i + rθ) 2 r dθ dr ≥ σ ρ λ(γ i ) 2 2πr dr = λ(γ i ) 2 2π log σ ρ .
Let γ 0 ∈ W 1/2,2 (∂Ω, N ) and (γ 1 , . . . , γ k ) ∈ C 1 (S 1 , N ) k be a topological resolution of γ 0 such that γ 1 , . . . , γ k are minimal geodesics. If we x distinct points a 1 , . . . , a k ∈ Ω, then the map

ρ ∈ (0, ρ(a 1 , . . . , a k )) → G geom,ρ γ 0 ,...,γ k (a 1 , . . . , a k ) - k i=1 λ(γ i ) 2 4π log 1 ρ
is non-decreasing by Proposition 3.1 and the map

ρ ∈ (0, ρ(a 1 , . . . , a k )) → G top,ρ γ 0 ,...,γ k (a 1 , . . . , a k ) - k i=1 λ(γ i ) 2 4π log 1 ρ
is non-increasing by Proposition 3.2. Moreover, by (3.3), we have for every ρ ∈ (0, ρ(a 1 , . . . , a k )),

G top,ρ γ 0 ,...,γ k (a 1 , . . . , a k ) - k i=1 λ(γ i ) 2 4π log 1 ρ ≤ G geom,ρ γ 0 ,...,γ k (a 1 , . . . , a k ) - k i=1 λ(γ i ) 2 4π log 1 ρ ,
so that the left and right hand sides are bounded. Therefore, we can de ne the geometrical renormalized energy by

(3.4) G geom γ 0 ,...,γ k (a 1 , . . . , a k ) = lim ρ→0 G geom,ρ γ 0 ,...,γ k (a 1 , . . . , a k ) - k i=1 λ(γ i ) 2 4π log 1 ρ
and the topological renormalized energy by

(3.5) G top γ 0 ,...,γ k (a 1 , . . . , a k ) = lim ρ→0 G top,ρ γ 0 ,...,γ k (a 1 , . . . , a k ) - k i=1 λ(γ i ) 2 4π log 1 ρ .
We immediately have, in view of (3.3) that (3.6) G top γ 0 ,...,γ k (a 1 , . . . , a k ) ≤ G geom γ 0 ,...,γ k (a 1 , . . . , a k ). By the monotonicty properties of Proposition 3.1 and Proposition 3.2, we also have

(3.7) G geom γ 0 ,...,γ k (a 1 , . . . , a k ) = inf ρ∈(0,ρ(a 1 ,...,a k )) G geom,ρ γ 0 ,...,γ k (a 1 , . . . , a k ) - k i=1 λ(γ i ) 2 4π log 1 ρ and (3.8) G top γ 0 ,...,γ k (a 1 , . . . , a k ) = sup ρ∈(0,ρ(a 1 ,...,a k )) G top,ρ γ 0 ,...,γ k (a 1 , . . . , a k ) - k i=1 λ(γ i ) 2 4π log 1 ρ .
Remark 1. When N = S 1 , both renormalized energies coincides with Bethuel, Brezis and Hélein's renormalized energy [7, §I.4], which was de ned in terms of Green functions and extension for linear problems; due to the more nonlinear character of our general setting, their approach seems quite unlikely to work here.

3.2.

Dependence on the singularities. The topological renormalized energy only depends on the homotopy classes of maps near the singularities:

Proposition 3.4. Let γ 0 ∈ W 1/2,2 (∂Ω, N ), and γ 1 , . . . , γ k ∈ W 1/2,2 (S 1 , N ).
If for every i ∈ {1, . . . , k}, γi is homotopic to γ i , and a 1 , . . . , a k are distinct points in Ω, G top γ 0 ,γ 1 ,...,γ k (a 1 , . . . , a k ) = G top γ 0 ,γ 1 ,...,γ k (a 1 , . . . , a k ). Proof. In view of (3.2), we have for every ρ > 0, G top,ρ γ 0 ,γ 1 ,...,γ k (a 1 , . . . , a k ) = G top,ρ γ 0 ,γ 1 ,...,γ k (a 1 , . . . , a k ). We conclude then by (3.5). Proposition 3.5. Let γ 0 ∈ W 1/2,2 (∂Ω, N ), and γ 1 , . . . , γ k , γ1 , . . . , γk ∈ C 1 (S 1 , N ) be minimizing geodesics. If for every i ∈ {1, . . . , k}, γi is homotopic to γ i , and a 1 , . . . , a k are distinct points in Ω then

G geom γ 0 ,γ 1 ,...,γ k (a 1 , . . . , a k ) -G geom γ 0 ,γ 1 ,...,γ k (a 1 , . . . , a k ) ≤ k i=1 d synh (γ i , γi ).
In particular, if for every i ∈ {1, . . . , k}, γ i and γi are synharmonic minimizing geodesics, then

G geom γ 0 ,γ 1 ,...,γ k (a 1 , . . . , a k ) = G geom γ 0 ,γ 1 ,...,γ k (a 1 , . . . , a k ).
The dependence of the synharmonicity is optimal, as can be seen by observing that when Ω = D is the unit disk and γ, γ are homotopic minimal geodesics, then G geom γ,γ (0) = 0 and G geom γ,γ (0) = d synh (γ, γ), and according to Proposition 2.16, the latter quantity can be positive for homotopic minimizing geodesics.

Proof of Proposition 3.5. Take σ ∈ (0, ρ(a 1 , . . . , a k )) and L > 0.

Given u ∈ W 1,2 (Ω\ k i=1 Bσ (a i ), N ) such that u(a i +σ•)| S 1 = γ i , and u i ∈ W 1,2 (S 1 ×[0, L], N ) such that u i (•, 0) = γ i and u i (•, L) = γi , we set ρ = e -L σ and we de ne v ∈ W 1,2 (Ω \ k i=1 Bρ (a i ), N ) by v(x) =    u(x) if x ∈ Ω \ k i=1 Bσ (a i ), u i x-a i |x-a i | , log σ |x-a i | if x ∈ Bσ (a i ) \ Bρ (a i ) for some i ∈ {1, . . . , k}.
We have then

Ω\ k i=1 Bρ(ai) |Dv| 2 2 - k i=1 λ(γ i ) 2 4π log 1 ρ = Ω\ k i=1 Bσ(ai) |Du| 2 2 - k i=1 λ(γ i ) 2 4π log 1 σ + k i=1 S 1 ×[0,L] |Du i | 2 2 -L λ(γ i ) 2 4π .
It follows by (3.7) that

G geom γ 0 ,γ 1 ,...,γ k (a 1 , . . . , a k ) ≤ G geom γ 0 ,γ 1 ,...,γ k (a 1 , . . . , a k ) + k i=1 d synh (γ i , γi )
and the conclusion follows.

3.3. The case of singularities lying on the boundary. When dealing with the possibility of singularities lying on the boundary it is useful to extend the boundary condition γ 0 ∈ W 1/2,2 (∂Ω, N ) to an enlarged domain; this is the object of the following lemma.

Lemma 3.6. There exists δ > 0, such that for every γ 0 ∈ W 1/2,2 (∂Ω, N ), there exists a map

Γ 0 ∈ W 1,2 (Ω δ \ Ω, N ) such that tr ∂Ω Γ 0 = γ 0 with Ω δ := {x ∈ Ω c ; dist(x, Ω) < δ}.
Proof of Lemma 3.6. We take δ > 0 small enough so that Ω δ \ Ω is di eomorphic to ∂Ω × [0, 1]; the result then follows from classical extension results in the critical case (see for example [START_REF] Bethuel | Extensions for Sobolev mappings between manifolds[END_REF]).

Remark 2. The extension in Lemma 3.6 does not give any control of the norm of the extension Γ 0 in terms of the norm of the map γ 0 . Indeed, consider a sequence of smooth maps (γ n ) n∈N that converges weakly in W 1/2,2 (∂Ω, N ) to a smooth map γ 0 . If the extensions (Γ n ) n∈N are controlled in W 1,2 (Ω δ , N ), this means that up to a subsequence, (Γ n ) ∈N has its restriction on a set homotopic to ∂Ω which are bounded in W 1,2 and thus for large enough γ n should be homotopic to γ 0 . If π 1 (N ) {0}, bubbling sequence give a counterexample (see for example [9, Lemma 2.1]).

In case a 1 , . . . , a k are distinct points in Ω, we rst extend γ 0 : ∂Ω → N to Γ 0 : Ω δ \ Ω as in Lemma 3.6 and we de ne the topological renormalized energy of (a 1 , . . . , a k ) by (3.9)

G top γ 0 ,...,γ k (a 1 , . . . , a k ) = lim ρ→0 inf Ω δ \ k i=1 Bρ(ai) |Du| 2 2 - k i=1 λ(γ i ) 2 4π log 1 ρ - Ω δ \ Ω |DΓ 0 | 2 2 : u ∈ W 1,2 (Ω δ \ k i=1 B ρ (a i ), N ), u = Γ 0 on Ω δ \ Ω ∪ k i=1 Bρ (a i )
and u(a i + ρ•)| S 1 and γ i are homotopic .

Jean: 2019-06-17 J'ai légèrement modi é la dé nition (intégration sur tout Ω δ et domaine de u) de sorte que la preuve de Proposition 3.2 s'applique.

By the proof of Proposition 3.2 where Ω is replaced by Ω δ in the de nition and where one notes that the argument still works under the additional constraint, the expression between parenthesis is non-increasing with respect to ρ so that the limit exists.

If a 1 , . . . , a k ∈ Ω, it is clear that G top γ 0 ,...,γ k (a 1 , . . . , a k ) = G top γ 0 ,...,γ k (a 1 , . . . , a k ). Otherwise, if a i ∈ ∂Ω for some i such that γ i is not homotopic to the constant map, then we shall see in the next section that G top γ 0 ,...,γ k (a 1 , . . . , a k ) = +∞. In particular, the de nition of G top g,...,γ k (a 1 , . . . , a k ) is independent from δ and from the choice of the extension Γ 0 .

3.4. Lower bound on harmonic energy. We rst recall the de nition of the Hausdor content in the particular case of planar sets.

De nition 3.7. The one-dimensional Hausdor content of a set

A ⊂ R 2 is H 1 ∞ (A) = inf 2 ∞ i=0 r i : A ⊆ ∞ i=0 B r i (a i ) with r i ∈ [0, +∞) and a i ∈ R n .
The Hausdor content is an outer measure and is bounded from above by the Hausdor measure:

(3.10) H 1 ∞ (A) ≤ H 1 (A). Proposition 3.8.
Let Ω ⊂ R 2 be a bounded domain. For every compact set K ⊂ Ω such that dist(K, ∂Ω) ≥ 2ρ and for every map v ∈ W 1,2 (Ω \ K, N ), we have

(3.11) Ω\K |Dv| 2 2 ≥ E sg (tr ∂Ω v) log 2ρ H 1 ∞ (K) .
In the de nition of Hausdor content the arbitrary covering of balls can be replaced by a disjoint covering through the merging of balls procedure [50, lemma 4.1], that we state and prove for the reader's convenience. Lemma 3.9. For every nite set of balls B of R 2 , there exists a nite set of balls B of R 2 such that (i)

Bρ(a)∈B B ρ (a) ⊆ B ρ (a )∈B B ρ (a ) (ii) for every B ρ (a ) ∈ B , Bρ(a)∈B Bρ(a)⊂B ρ (a ) ρ = ρ , (iii) B ρ 1 (a 1 ), B ρ 2 (a 2 ) ∈ B , and B ρ 1 (a 1 ) = B ρ 2 (a 2 ), then Bρ 1 (a 1 ) ∩ Bρ 2 (a 2 ) = ∅.
Proof. The lemma clearly holds when #B = 1 since the disjointness condition (iii) is then trivially satis ed. vacuous. Let us assume by induction that the lemma holds for any collection with #B -1 balls. If (iii) holds, then there is nothing to prove. Otherwise, there exists

B ρ 1 (a 1 ), B ρ 2 (a 2 ) ∈ B, such that B ρ 2 (a 1 ) = B ρ 1 (a 2 ) and Bρ 1 (a 1 ) ∩ Bρ 2 (a 2 ) = ∅, or equivalently |a 1 -a 2 | ≤ ρ 1 + ρ 2 We de ne ρ = ρ 1 + ρ 2 and ã = ρ 1 ρ 1 + ρ 2 a 1 + ρ 2 ρ 1 + ρ 2 a 2 so that |ã -a 1 | = ρ 2 ρ 1 + ρ 2 |a 2 -a 1 | = ρ 2 and |ã -a 2 | = ρ 1 ρ 1 + ρ 2 |a 2 -a 1 | = ρ 1 .
Therefore, we have

B ρ 1 (a 1 ) ∪ B ρ 2 (a 2 ) ⊆ B ρ(ã)
. By our induction hypothesis, we can apply the proposition to

B \ {B ρ 1 (a 1 ), B ρ 2 (a 2 )} ∪ {B ρ(ã)},
and the conclusion of our proposition follows then immediately.

We will use decomposition of the plane into balls, in what is known as a ball growth construction [50, Theorem 4.2] (see also [START_REF] Jerrard | Lower bounds for generalized Ginzburg-Landau functionals[END_REF][START_REF] Sandier | Lower bounds for the energy of unit vector elds and applications[END_REF]).

Proposition 3.10. Let k ∈ N * , ρ i ∈ R + , a i ∈ R 2 for i = 1, . . . , k and (B ρ i (a i )) i=1,.
..,k be a nite collection of balls. Then there for every t ∈ [0, +∞), there exists a nite set of disjoint closed balls

B(t), such that (i) we have k i=1 B ρ i (a i ) ⊆ B∈B(0) B, (ii) for t, s ∈ I such that t ≤ s, we have B∈B(t) B ⊂ B∈B(s) B, (iii) for every t, s ∈ I such that t ≤ s, we have H 1 ∞ ( B∈B(s) B) ≤ e s-t H 1 ∞ ( B ∈ B(t))B, ( 
iv) there exists ∈ N * and some intervals I j ⊂ R intervals such that I = j=1 I j and such that for each j = 1, . . . , there exist k j ∈ N * and a i j ∈ R 2 and ρ

i j ∈ R + for i = 1, . . . , k j such that B(s) = {B ρ i j e s (a i j ) : i ∈ {1, . . . , k j }}.
The statement of Proposition 3.10 is essentially the same as in Sandier and Serfaty's book [50, theorem 4.2].

Proof of Proposition 3.10. If k = 1 we take I = R + and the family of growing balls is just one single ball, thus we take = 1,

I = I 1 = R + , k 1 = 1, a 1 1 = a 1 , ρ 1 1 = ρ 1 . If k ≥ 2 we rst apply Lemma 3.9 to nd k 1 ∈ N * , ρ i 1 ∈ R + , a i 1 ∈ R 2 i = 1, . . . , k 1 such that Bρ i 1 (a i 1 ) ∩ Bρ i 1 (a i 1 ) = ∅ if i = i . If k 1 = 1
we stop the process and we obtained the family with I = [0, +∞). If k 1 > 1 we then de ne

t 1 = sup{t ∈ [0, +∞) : for every i, i ∈ {1, . . . , k 1 } with i = i , one has Bρ i 1 e t (a i 1 ) ∩ Bρ i 1 e t (a i 1 ) = ∅}.
We set I 1 = [0, t 1 ) and for every s ∈ [0, t 1 ) we set B(s) = ( Bρ i 1 e t (a i 1 )) i=1,...,k 1 . We apply Lemma 3.9 again to nd

k 2 < k 1 , ρ i 2 ∈ R + , a i 2 ∈ R 2 , i = 1, . . . , k 2 such that Bρ i 2 (a i 2 ) ∩ Bρ i 2 (a i 2 ) = ∅ for i = i and k 1 i=0 B ρ i 1 e t 1 (a i 1 ) ⊂ k 2 i=0 B ρ i 2 (a i 2 ). We then set I 2 = [t 1 , t 2 ) and B(s) = ( Bρ i 2 e t (a i 2 )) i=1,...,k 2 .
We can repeat the merging construction of Lemma 3.9 and we can repeat the process to obtain the conclusion of Proposition 3.10. The merging process can occur only a nite number of times denoted by since it strictly decreases the number of balls.

Proof of Proposition 3.8. We consider a family of balls B 0 such that K ⊂ B∈B 0 B and for each B ∈ B 0 , one has B∩K = ∅. We let {B(t)} t∈I be the family of growing balls given by Proposition 3.10. We de ne the set

A(t) = B∈B(t) B.
We claim that for every t ∈ [0, +∞) such that A(t) ⊂ Ω, we have (3.12)

A(t)\A(0) |Dv| 2 2 ≥ E sg (tr ∂A(t) v)t.
Indeed, according to Proposition 3.10 we can write

[0, t) = k i=1 [t i-1 , t i ) with t 0 = 0 and t k = t. By (iv) in Proposition 3.10, we have for every s ∈ [t i , t i+1 ), B(s) = {B(a i j , ρ i j e s ) : i ∈ {1, . . . , k j }}.
By integration in polar coordinates, for every 1 ≤ i ≤ k 0 we have B(a i j ,ρ i j e t i )\B(a i j ,ρ i j e t i-1 )

|Dv| 2 2 = ρ i j e t i ρ i j e t i-1 ∂B(a 0 i ,r) |Dv| 2 2 dr ≥ ρ i j e t i ρ i j e t i-1 E sg (v |∂B(a i j ,r)) r dr = E sg (tr ∂B i v ),
where we have used that r 2 ∂B(a i j ,r) |Dv| 2 ≥ E sg (tr ∂Br v). Since the balls are disjoint, we get

A(t i )\A(t i-1 ) |Dv| 2 2 ≥ k i j=1 E sg (tr ∂B(a i j ,ρ i j e t i-1 ) v)(t i -t i-1 ) ≥ E sg (tr ∂A(t i ) v)(t i -t i-1 ).
By the monotonicity property of the growing balls ((ii) in Proposition 3.10), we conclude by summing that

A(t)\A(0) |Dv| 2 2 ≥ k i=1 A(t i )\A(t i-1 ) |Dv| 2 2 ≥ k i=1 E sg (tr ∂A(t i ) v)(t i -t i-1 ) ≥ E sg (tr ∂A(t) v)t,
which is our claim (3.12). For every t ∈ [0, +∞), if B ∈ B(t), then by de nition of Hausdor content and by (iii) in Proposition 3.10

diam(B) ≤ H 1 ∞ (A(t)) ≤ e t H 1 ∞ (A(0)
). we observe that since every ball A ∈ B(t) intersects K, we have

(3.13) B∈B(t) B ⊂ K + B(0, e t H 1 ∞ (A(0)))
If we de ne T := sup t : A(t) ⊆ Ω , we have by (3.13)

T ≥ log ρ H 1 ∞ (A(0))
.

We then have by (3.12) and by Proposition 2.8

Ω\K |Dv| 2 2 ≥ A(t)\A(0) |Dv| 2 2 ≥ E sg (tr ∂A(t) v) log ρ H 1 ∞ (A(0)) ≥ E sg (tr ∂Ω v) log ρ H 1 ∞ (A(0))
.

We reach the conclusion by applying the de nition of Hausdor content (De nition 3.7).

3.5. Boundedness from below and coercivity. We now prove that the renormalized energies are bounded from below and that they are in nite if one of the singularity lies on the boundary of the domain.

Proposition 3.11. Let γ 0 ∈ W 1/2,2 (∂Ω, N ) and (γ 1 , . . . , γ k ) ∈ W 1/2,2 (S 1 , N ) k be a minimal topological resolution of γ 0 . Then, the function Ḡtop γ 0 ,γ 1 ,...,γ k is bounded from below.
Proof. Let δ > 0 and Γ 0 : Ω δ \ Ω be an extension given by Lemma 3.6.

Given v ∈ W 1,2 (Ω δ \ k i=1 B ρ (a i ), N ) such that v(a i + ρ•) is homotopic to γ i , we have if ρ ≤ δ, Ω δ \ k i=1 Bρ(a i ) |Dv| 2 2 ≥ E sg (γ 0 ) δ 2kρ ,
and it follows then that Ḡtop γ 1 ,...,γ k is bounded from below.

Proposition 3.12.

Let γ 0 ∈ W 1/2,2 (∂Ω, N ) and (γ 1 , . . . , γ k ) ∈ W 1/2,2 (S 1 , N ) k be a minimal topological resolution of γ 0 , then for each i ∈ {1, . . . , k}, the sequence (a n i ) n∈N is a sequence of distinct points in Ω converging to some a i ∈ Ω and lim sup n→∞ G top γ 0 ,γ 1 ,...,γ k (a n 1 , . . . , a n k ) < +∞,
then for every i ∈ {1, . . . , k} such that γ i is not homotopic to the constant map, we have a i ∈ Ω, and if (ã 1 , . . . , ã ) is a family of distinct points such that {ã 1 , . . . , ã } = {a 1 , . . . , a k }, and for each j ∈ {1, . . . , l}, I j := {i : a i = ãj }, then for each j ∈ {1, . . . , l}, there exists γj

∈ C 1 (S 1 , N ) l such that λ( γj ) 2 = i∈N j λ(γ i ) 2 ,
the maps (γ i ) i∈N j are a topological resolution of γj and the maps γj and (γ i ) i∈{1,...,k}\I j are a topological resolution of γ 0 .

In particular, we have for every family of distinct points a 1 , . . . , a k in Ω,

(3.14) G top γ 0 ,...,γ k (a 1 , . . . , a k ) = G top γ 0 ,...,γ k (a 1 , . . . , a k ) if a 1 , . . . , a k ∈ Ω, +∞ otherwise.
By the inequality (3.6), Proposition 3.12 also holds for the geometrical renormalized energy. Proposition 3.12 ensures that both renormalized energies con ne singularity points away from the boundary of the domain ∂Ω. Proposition 3.12 also restricts the possibilities of collision of singularities in such a way that they are prevented in many examples. Proposition 3.12 implies the classical result of con nement away from the boundary and noncollision of vortices for the classical Ginzburg-Landau case N = S 1 [7, Theorem I.10]. Indeed, the homotopy class of a map from S 1 to S 1 is classi ed by a degree deg γ ∈ Z, and λ(γ) = 2π|deg γ|; the minimality condition imposes that all the maps γ 1 , . . . , γ k share the same degree 1 or -1; the collision condition imposes that if m singularities converge to the same point, then

m 2 = m, that is, m = 1.
In general collision can occur, as can be seen by considering N = S 1 × S 1 . The Dirichlet energy decouples as the sum of two functionals for maps in S 1 each of which being applied to one component. The renormalized energy is then the sum of two renormalized energies and nothing prevent singularities of both components to merge in the limit. Algebraically in the collision condition, this is related to the fact that

|(1, 1)| 2 = |(1, 0)| 2 + |(0, 1)| 2 . Lemma 3.13. Let Ω ⊂ R 2 and u ∈ W 1,2 (B τ (a) \ B σ (a), N ), then (Bτ (a)\ Bσ(a))∩Ω |Du| 2 ≥ λ(γ) 2 2πν τ,σ (a) log τ σ 1 - 2π Bτ (a)\(Ω∪Bσ(a)) |Du| 2 λ(γ) 2 log τ σ 1/2 2
, where γ is homotopic to tr ∂Br(a) for every r ∈ [τ, σ] and

ν τ,σ (a) := 1 2π log τ σ (Bτ (a)\ Bσ(a))∩Ω 1 |x -a| 2 dx
Proof. Now, for every r ∈ (σ, τ ), we have

1 r ∂Br(a) |Du| dH 1 ≥ λ(γ) r ,
and therefore by integration (3.15)

Bτ (a)\ Bσ(a) |Du(x)| |x -a| dx ≥ λ(γ) log τ σ .
On the other hand, by the Cauchy-Schwarz inequality, we have

Bτ (a)\ Bσ(a) |Du(x)| |x -a| dx ≤ (Bτ (a)\ Bσ(a))∩Ω 1 |x -a| 2 dx 1/2 (Bτ (a)\ Bσ(a))∩Ω |Du| 2 1/2 + (Bτ (a)\ Bσ(a))\Ω 1 |x -a| 2 dx 1/2 (Bτ (a)\ Bσ(a))\Ω |Du| 2 1/2 = 2π log τ σ 1 2 ν τ,σ (a) (Bτ (a)\ Bσ(a))∩Ω |Du| 2 1/2 + Bτ (a)\(Ω∪Bσ(a))
|Du| 2 1/2 .

(

We reach the conclusion by (3.15) and (3.16).

Proof of Proposition 3.12. We consider for each i ∈ {1, . . . , k}, a sequence (a n i ) n∈N of distinct points in Ω converging to some a i ∈ Ω. We divide the proof into three steps: we rst derive a lower bound on G top γ 0 ,...,γ k (a n 1 , . . . , a n k ), then we deduce a lower bound on the map G top γ 0 ,...,γ k by assuming by contradiction G top γ 0 ,...,γ k (a n 1 , . . . , a n k ) → -∞, nally we show the con ning property and the necessary condition for collision of singularities.

Up to a permutation of the indices, there exist distinct points ã1 , . . . , ã in Ω and indices 0 =

k 0 < k 1 < • • • < k = k such that a i = ãj if k j-1 < i ≤ k j .
Let δ > 0 and Γ 0 : Ω δ \ Ω be given by Lemma 3.6 and choose τ ∈ (0, δ) such that if i, j ∈ {1, . . . , } and i = j, then |ã i -ãj | ≥ 4τ . We also take ρ, σ > 0 such that σ < τ and

B ρ (a i ) ⊂ B σ/2 (a i ) if k j-1 < i ≤ k j and u ∈ W 1,2 (Ω δ \ k i=1 Bρ (a n i ), N ) such that u = Γ 0 on Ω δ \ Ω and such that u(a n i + ρ•)| S 1 and γ i are homotopic for each i ∈ {1, . . . , k}.
We rst estimate (3.17)

Ω δ \ k i=1 Bρ(a n i ) |Du| 2 ≥ j=1 Bτ (ã j )\Bσ(ã j ) |Du| 2 + j=1 Bσ(ã j )\ k j i=k j-1 +1 Bρ(aj ) |Du| 2 .
We de ne γj ∈ C(S 1 , N ) to be a map which is homotopic to u(ã j +r•)| S 1 for almost every r ∈ (σ, τ ).

If we let

η := Ω δ \Ω |DΓ 0 | 2 .
we have by Lemma 3.13

(3.18) (Bτ (ã j )\ Bσ(ãj ))∩Ω |Du| 2 ≥ λ(γ j ) 2 2πν τ,σ (ã j ) log τ σ 1 - 2πη λ(γ j ) 2 log τ σ 1/2 2 , Since for every i ∈ {k j-1 +1, . . . , k j } we have B ρ (a n i ) ⊂ B σ (ã j ), the maps γ k j-1 +1 , . . . , γ k j form a topological resolution of γj . By Proposition 3.8, for each j ∈ {1, . . . , }, since B ρ (a i ) ⊂ B σ/2 (a i ), we have (3.19) Bσ(ã j )\ k j i=k j-1 +1 Bρ(aj ) |Du| 2 2 ≥ E sg (γ i ) log σ 4(k j -k j-1 )ρ ≥ k j i=k j-1 -1 λ(γ i ) 2 4π log σ 4(k j -k j-1 )ρ .
By (3.17), (3.19) and (3.18), we deduce that

lim inf n→∞ Ḡtop γ 0 ,...,γ k (a n 1 , . . . , a n k ) ≥ j=1 λ(γ j ) 2 4πν τ,σ (ã j ) 1 - 2πη λ(γ j ) 2 log τ σ 1/2 2 log τ σ + k i=1 λ(γ i ) 2 4π log σ 4(k j -k j-1 )
.

(3.20)

We assume now that we have

lim sup n→∞ Ḡtop γ 0 ,...,γ k (a n 1 , . . . , a n k ) < +∞. By letting σ → 0 in (3.20), we deduce that j=1 λ(γ j ) 2 lim sup σ→0 ν τ,σ (ã j ) ≤ k i=1 λ(γ i ) 2 .
Since γ 1 , . . . , γ k is a minimal topological resolution of γ 0 and ν τ,σ (ã j ) ≤ 1, we necessarily have

j=1 λ(γ j ) 2 = k i=1 λ(γ i ) 2
and, for all j ∈ {1, . . . , l} such that λ(γ j ) > 0, lim sup σ→0 ν τ,σ (ã j ) = 1. Since the boundary ∂Ω is Lipschitz, the latter condition implies that ãj ∈ Ω whenever γj is not homotopic to a constant map.

3.6. Regularity of the renormalized energies. The next proposition states that the topological and geometrical renormalized energies are Lipschitz continuous. Proposition 3.14. Let γ 0 ∈ W 1/2 (∂Ω, N ) and (γ 1 , . . . , γ k ) ∈ W 1/2,2 (S 1 , N ) k be a topological resolution of γ 0 . Then the renormalized energy G top γ 0 ,...,γ k is locally Lipschitz-continuous on the open set of k-tuples (a 1 , . . . , a k ) with distinct components a 1 , . . . , a k in Ω. Similarly, if γ 1 , . . . , γ k are minimizing geodesics, then G geom γ 0 ...,γ k is locally Lipschitz-continuous.

Jean: J'ai supprimé la dé nition de G relax,top γ 0 ,γ 1 ,...,γ k qui n'apparaissait nulle part ailleurs.

In order to compare the renormalized energies at k-tuples (a 1 , . . . , a k ) and

(b 1 , . . . , b k ), we use a deformation of Ω \ k i=1 Bρ (b i ) onto Ω \ k i=1 Bρ (a i )
given by the following lemma:

Lemma 3.15. Let a 1 , . . . , a k be distinct points in Ω, τ > 0 be a small parameter such that the balls B4τ (a i ) are disjoint subsets of Ω and b 1 , . . . , b k be a family of points in Ω such that for each

i ∈ {1, . . . , k}, |a i -b i | < τ /2. Then, there exists a C 1 -di eomorphism ϕ : Ω → Ω such that (i) ϕ(x) = x for every x ∈ Ω \ k i=1 B 2τ (b i ), (ii) for each i ∈ {1, . . . , k} and every x ∈ B τ (b i ), φ(x) = x + a i -b i , (iii) Dϕ -id L ∞ (Ω) ≤ 2 τ max i∈{1,...,k} {|a i -b i |}. Proof of Lemma 3.15. Let χ ∈ C ∞ (R 2 , [0, 1]
) be a non-negative smooth function such that,

Dχ L ∞ (R 2 ) < 2, χ(x) = 1 for every x ∈ B 1 (0), and χ(x) = 0 for every x ∈ R 2 \ B 2 (0),
and de ne the function ϕ ∈ C ∞ (Ω, R 2 ) for each x ∈ Ω by (3.21) ϕ(x) = x + k i=1 χ(|x -b i |/τ )(a i -b i ),
so that (i) and (ii) are satis ed, and we also get that ϕ(Ω) ⊂ Ω. We now prove that ϕ :

Ω → Ω is a bijection. Since ϕ = id on Ω \ k i=1 B 2τ (b i ) and for each i ∈ {1, . . . , k}, ϕ(B 2τ (b i )) ⊂ B 3τ (b i ), it is enough to prove that ϕ : B 3τ (b i ) → B 3τ (b i ) is a bijection. For each xed y ∈ B 3τ (b i ), the mapping Ψ y : x ∈ B 3τ (b i ) → y -k i=1 χ(|x -b i |/τ )(a i -b i ) ∈ R 2 is a contraction since Dψ y L ∞ (B 3τ (b i )) ≤ Dχ L ∞ τ max |a i -b i | : i ∈ {1, . . . , k} < 2 τ max |a i -b i | : i ∈ {1, . . . , k} < 1. If y ∈ B 2τ (b i ), we have in addition that Ψ y (B 3τ (b i )) ⊂ B 3τ (b i ) and we deduce by the Banach xed point theorem that Ψ y has a xed point in B 3τ (b i ); if y ∈ B 3τ (b i ) \ B 2τ (b i ), we have Ψ y (y) = y.
In any case, we deduce that Ψ y has a xed point in B 3τ (b i ) and it is unique since Ψ y is a contraction; thus, ϕ :

B 3τ (b i ) → B 3τ (b i ) is a bijection. Moreover, since Dϕ -id L ∞ (Ω) ≤ Dχ L ∞ τ max{|a i -b i | : i ∈ {1, . . . , k}} < 2 τ max{|a i -b i | : i ∈ {1, . . . , k}} < 1,
we deduce by the implicit function theorem that ϕ : Ω → Ω is a local di eomorphism and hence a global di eomorphism.

Proof of Proposition 3.14. We write the proof for G top γ 0 ,...,γ k ; the proof for G geom γ 0 ,...,γ k is the same. Let τ > 0, a 1 , . . . , a k , b 1 , . . . , b k ∈ Ω and ϕ be as in Lemma 3.15. For every ρ ∈ (0, τ ) and u

∈ W 1,2 (Ω \ k i=1 Bρ (a i ), N ), we estimate the energy of v := u • ϕ ∈ W 1,2 (Ω \ k i=1 Bρ (b i ), N ) as follows. First, since ϕ translates Bτ (b i ) \ Bρ (b i ) onto Bτ (a i ) \ Bρ (a i ), we have for each i ∈ {1, . . . , k}, Bτ (b i )\ Bρ(bi) |Dv(y)| 2 dy = Bτ (a i )\ Bρ(ai) |Du(x)| 2 dx.
Since Dv(y) = Du(ϕ(y))Dϕ(y), we deduce from the change of variable y = ϕ -1 (x) and the previous equality that

Ω\ k i=1 Bρ(bi) |Dv(y)| 2 dy - Ω\ k i=1 Bρ(ai) |Du(x)| 2 dx ≤ Ω\ k i=1 Bτ (a i ) |Du(x)| 2 |Dϕ(ϕ -1 (x))| 2 Jϕ(ϕ -1 (x)) -1 dx ≤ |Dϕ| 2 Jϕ -1 L ∞ (Ω) Ω\ k i=1 Bτ (a i ) |Du(x)| 2 dx, (3.22) 
where Jϕ stands for the Jacobian determinant of ϕ and here we used the Frobenius norm of matrices |A| := tr(AA T ) which is an algebra norm. Now, by (3.2) and (3.5), there exists a sequence of maps

(u ρ ) ρ∈(0,τ ) such that for each ρ ∈ (0, τ ), u ρ ∈ W 1,2 (Ω \ k i=1 Bρ (a i ), N ), u ρ = γ 0 on ∂Ω, u(a i + ρ•)
and γ i are homotopic for each i ∈ {1, . . . , k}, and

(3.23) G top γ 0 ,...,γ k (a 1 , . . . , a k ) = lim ρ→0 Ω\ k i=1 Bρ(ai) |Du ρ | 2 2 - k i=1 λ(γ i ) 2 4π log 1 ρ .
Moreover, by (3.5) and since the map u ρ • ϕ is admissible in the minimization problem (3.2) de ning G top,ρ γ 0 ,...,γ k , we have that

(3.24) G top γ 0 ,...,γ k (b 1 , . . . , b k ) ≤ lim inf ρ→0 Ω\ k i=1 Bρ(bi) |D(u ρ • ϕ)| 2 2 - k i=1 λ(γ i ) 2 4π log 1 ρ .
Applying (3.22) with u = u ρ and v = u ρ • ϕ, we deduce from (3.23) and (3.24) that

G top γ 0 ,...,γ k (b 1 , . . . , b k ) ≤ G top γ 0 ,...,γ k (a 1 , . . . , a k ) + |Dϕ| 2 Jϕ -1 L ∞ (Ω) lim inf ρ→0 Ω\ k i=1 Bτ (a i ) |Du ρ | 2 2 . (3.25)
Now, we have on the one hand by Lemma 3.3 and (3.23), that

lim inf ρ→0 Ω\ k i=1 Bτ (a i ) |Du ρ | 2 2 ≤ lim inf ρ→0 Ω\ k i=1 Bρ(ai) |Du ρ | 2 2 - k i=1 λ(γ i ) 2 4π log τ ρ = G top γ 0 ,...,γ k (a 1 , . . . , a k ) + k i=1 λ(γ i ) 2 4π log 1 τ .
(3.26)

Jean: 2019-06-09 Cela donne une estimation avec un membre de droite qui dépend de l'énergie renormalisée au point (a1, . . . , a k ). Or à ce moment-ci, nous n'avons pas encore montré que c'est localement borné. Il faudrait d'abord utiliser l'inégalité pour démontrer que l'énergie est bornée localement, et ensuite l'utiliser pour démontrer le caractère localement lipschitzien.

On the other hand, we have |Dϕ| 2 Jϕ = F (Dϕ), where F is de ned for invertible matrices M ∈ R 2×2 by

F (M ) := |M | 2 det(M * M ) ;
since the map F : R 2×2 → R + is smooth on the set of invertible matrices, it is in particular Lipschitz in a ball B α (id) ⊂ R 2×2 centered at id; hence 

(3.27) |Dϕ| 2 Jϕ -1 L ∞ = F (Dϕ) -F (id) L ∞ ≤ L Dϕ -id L ∞ ≤ LC max i {|a i -b i |},
G top γ 0 ,...,γ k (b 1 , . . . , b k ) ≤ G top γ 0 ,...,γ k (a 1 , . . . , a k ) + LC max i {|a i -b i |}, provided max i {|a i -b i |} < α C .
All together, we have nally proved the existence of constants 

α τ := min{ τ 2 , α C } > 0 and L τ := CL > 0 depending on τ, Ω, only such that G top γ 0 ,...,γ k (b 1 , . . . , b k ) ≤ G top γ 0 ,...,
v : Ω → N is renormalizable if there exist a nite set {a 1 , . . . , a k } ⊂ Ω such that for every ρ > 0 v ∈ W 1,2 (Ω \ k i=1 ρ, N ) and (4.1) G ren (u) := lim inf ρ→0 Ω\ k i=1 Bρ(ai) |Du| 2 2 - k i=1 E sg (tr ∂Ω u) log 1 ρ < +∞.
We denote by W 1,2 ren (Ω, N ) the set of renormalizable mappings. By Lemma 3.3, we deduce that the map ρ ∈ (0, ρ(a 1 , . . . , a k )) → G ren,ρ (u) -E sg (tr ∂Ω u) log 1 ρ is non-decreasing, and the liminf is thus a limit. We have thus

G ren (u) = lim ρ→0 Ω\ k i=1 Bρ(ai) |Du| 2 2 - k i=1 E sg (tr ∂Ω u) log 1 ρ < +∞ = sup ρ∈(0,ρ(a 1 ,...,a k )) Ω\ k i=1 Bρ(ai) |Du| 2 2 - k i=1 E sg (tr ∂Ω u) log 1 ρ < +∞. (4.2) Proposition 4.2. If u ∈ W 1,2
ren (Ω, N ), then there exists a set sing(u) = {(a 1 , γ 1 ), . . . , (a k , γ k )} ⊂ Ω × C 1 (S 1 , N ), such that (i) for each i ∈ {1, . . . , k}, γ i is a non-trivial minimizing closed geodesic, (ii) there exists a sequence (ρ ) ∈N converging to 0 such that (u(a i + ρ •)) ∈N converges strongly to

γ i in W 1,2 (S 1 , N ), (iii) for each i ∈ {1, . . . , k}, lim ρ→0 d synh (u(a i + ρ •), γ i ) = 0 (iv) G ren (u) ≥ G geom γ 0 ,...,γ k (a 1 , . . . , a k ). Proof of Proposition 4.2. Let k ∈ N, a 1 , .
. . , a k ∈ Ω be distinct points, given by De nition 4.1. Given ρ * ∈ (0, ρ(a 1 , . . . , a k )) (where ρ was de ned in (2.6)), we de ne γi = u(a i + ρ * •). We observe that for every ρ ∈ (0, ρ(a 1 , . . . , a k ), u(a i + ρ •) and γi are homotopic in VMO(S 1 , N ).

Step 1. Upper bound near singularities. We observe that for every i ∈ {1, . . . , k} and ρ ∈ (0, ρ(a 1 , . . . , a k )), we have

B ρ(a 1 ,...,a k ) (a i )\Bρ(a i ) |Du| 2 2 ≥ λ(γ i ) 2 4πρ ,
hence we deduce that

(4.3) ρ(a 1 ,...,a k ) 0 S 1 |u(a i + r•) | 2 2 - λ(γ i ) 2 4π dr r ≤ C 3 .
In particular, if γi is homotopic to a constant map, then λ(γ i ) = 0 and u ∈ W Step 2. Construction of the singularities γ i . We deduce from the preceding estimate (4.3) that there exists a sequence (ρ ) ∈N ⊂ (0, ρ(a 1 , . . . , a k )) converging to 0 with (4.4) lim

→∞ S 1 |u(a i + ρ •) | 2 2 = λ(γ i ) 2 4π .
This implies that for each i ∈ {1, . . . , k}, (u(

a i + ρ •)) is bounded on W 1,2 (S 1 , N )
and that it has a subsequence which converges weakly in W 1,2 (S 1 , R ν ) to some map γ i ∈ W 1,2 (S 1 , N ). In particular, since (γ u,a i ) i∈{1,...,k} is a minimal topological resolution of tr ∂Ω u, we have

k i=1 S 1 |γ i | 2 2 ≤ k i=1 lim inf →∞ S 1 |u(a i + ρ •) | 2 2 = k i=1 λ(γ u,a i ) 2 4π = E sg (tr ∂Ω u 2 ).
Since the homotopy classes are closed under uniform convergence, γ i is homotopic to γ u,a i for each i. We deduce that (γ i ) i∈{1,...,k} is a minimal topological resolution of tr ∂Ω u and that each γ i is a minimizing geodesic.

Step 3. Strong convergence in W 1,2 (S 1 , N ). We prove that for each i ∈ {1, . . . , k}, u(a i + ρ •) → γ i strongly in W 1,2 (S 1 , N ). Since (4.4) holds, γ i is a minimizing geodesic, and γi and γ i are homotopic, then for each i ∈ {1, . . . , k},

λ(γ u,a i ) 2 4π = λ(γ i ) 2 4π = S 1 |γ i | 2
this implies then

lim →∞ S 1 |u(a i + ρ •) | 2 = S 1 |γ i | 2 ,
and hence the sequence converges strongly.

Step 4. Convergence in synharmonicity of γ i . If ρ ∈ (0, ρ(a 1 , . . . , a k ), we set T := log(ρ a ) and

v(σ, t) = u(a + e t σ) for every t ∈ (-∞, T ], σ ∈ S 1 .
By (4.3), we obtain

T -∞ S 1 |Dv| 2 2 dσ - λ(γ u,a ) 2 4π dt ≤ C 3 .
In particular, we have

(4.5) lim s,t→-∞ d synh (u(a + e s •), u(a + e t •)) ≤ lim s,t→-∞ t s S 1 |Dv| 2 2 dσ - λ(γ u,a ) 2 4π dt = 0.
Moreover, since by assumption the sequence (u(a+ρ •)) ∈N converges to γ a strongly in W 1,2 (S 1 , N ), we deduce from Proposition 2.10 that

lim →∞ d synh (u(a + ρ •), γ a ) = 0;
the conclusion follows from the latter fact and (4.5) since the pseudometric d synh (•, •) satis es the triangle inequality (Proposition 2.10 (v)).

Step 4. Geometric renormalized energy. First note that, by Fubini's theorem, we have u(

a i + σ •)| S 1 ∈ W 1,2 (S 1 , N )
for almost every σ ∈ (0, ρ(a 1 , . . . , a k )). Given such a radius σ, we take L > 0 and

u i ∈ W 1,2 (S 1 × [0, L], N ) such that u i (•, 0) = u(a i + σ •)| S 1 and u i (•, L) = γ i , we set ρ := e -L σ and we de ne v ∈ W 1,2 (Ω \ k i=1 Bρ (a i ), N ) by v(x) =    u(x) if x ∈ Ω \ k i=1 Bσ (a i ), u i x-a i |x-a i | , log σ |x-a i | if x ∈ B σ (a i ) \ Bρ (a i ) for some i ∈ {1, . . . , k}.
We have then

Ω\ k i=1 Bρ(ai) |Dv| 2 2 - k i=1 λ(γ i ) 2 4π log 1 ρ = Ω\ k i=1 Bσ(ai) |Du| 2 2 - k i=1 λ(γ i ) 2 4π log 1 σ + k i=1 S 1 ×[0,L] |Du i | 2 2 -L λ(γ i ) 2 4π .
It follows by (3.7) and (4.2) that

G geom γ 0 ,...,γ k (a 1 , . . . , a k ) ≤ G ren (u) + k i=1 lim inf σ→0 d synh (γ i , u(a i + σ •)| S 1 ) = G ren (u).

4.2.

Renormalizable harmonic maps. The topological renormalized energy G top γ 0 ,...,γ k is de ned as a supremum of in ma over classes of maps. For given points a 1 , . . . , a k ∈ Ω, it can be computed in terms of a limit of energies of a minimal harmonic map with prescribed singularities.

Proposition 4.3. Let a 1 , . . . , a k ∈ Ω, γ 0 ∈ W 1/2,2 (∂Ω, N ) and (γ 1 , . . . , γ k ) ∈ C 1 (S 1 , N ) k be a topological resolution of γ 0 . There exists a map u ∈ W 1,2 (Ω, N ), such that if sing(u) = {(a 1 , γ1 ), . . . , (a k , γk )} (i) for every ρ > 0, u ∈ W 1,2 (Ω \ k i=1 Bρ (a i ), N
) is a minimizing harmonic map inside its domain with respect to its own boundary conditions, (ii) tr ∂Ω u = γ 0 , (iii) for every i ∈ {1, . . . , k}, the maps γi and γ i are homotopic, (iv)

G ren (u) = G top γ 0 ,...,γ k (a 1 , . . . , a k ). Moreover, u ∈ C ∞ (Ω \ {a 1 , . . . , a k }, N ), k i=1 ρ(a 1 ,...,a k ) 0 ∂Br(a i ) |Du| 2 - λ(γ i ) 2 2πr dr < +∞.
and for every x

∈ Ω \ {a 1 , . . . , a k }, |Du(x)| ≤ C 4 k i=1 1 |x -a i | .
For the classical Ginzburg-Landau problem with N = S 1 , the map u, known as the canonical map, is unique [7, Corollary I.1] whose energy outside small disks was already known to give asymptotically the renormalized energy [7, Theorem I.8] and which is the limit of harmonic maps outside small disks [7, Theorem I.6].

Proof of Proposition 4.3. By de nition of the topological renormalized energy ((3.2) and (3.5)), for every ρ > 0 such that ρ < ρ(a 1 , . . . , a k ), there exists a map u ρ ∈ W 1,2 (Ω \ k i=1 Bρ (a i ), N ) such that tr ∂Ω u ρ = γ 0 on ∂Ω and for every i ∈ {1, . . . , k} the maps u ρ (a i + ρ•)| S 1 and γ i are homotopic and

Ω\ k i=1 Bρ(ai) |Du ρ | 2 2 = G top,ρ γ 0 ,...,γ k (a 1 , . . . , a k ). By Lemma 3.3, if ρ < σ < ρ(a 1 , . . . , a k ), we have Ω\ k i=1 Bσ(ai) |Du ρ | 2 2 ≤ G top,ρ γ 0 ,...,γ k (a 1 , . . . , a k ) - k i=1 λ(γ i ) 2 4π log σ ρ ,
and thus, by de nition of the renormalized energy G top γ 0 ,...,γ k (a 1 , . . . , a k ) we have

(4.6) lim sup ρ→0 Ω\ k i=1 Bσ(ai) |Du ρ | 2 2 - k i=1 λ(γ i ) 2 4π log 1 σ ≤ G top γ 0 ,...,γ k (a 1 , . . . , a k ).
By the boundedness condition (4.6) and by a diagonal argument, there exists a sequence (ρ n ) n∈N → 0 and a map u : Ω \ {a 1 , . . . , a k } → N such that for every σ ∈ (0, ρ(a 1 , . . . , a k )), the sequence

(u ρn | Ω\ k i=1 Bσ(ai) ) n∈N converges weakly to u| Ω\ k i=1 Bσ(ai) in W 1,2 (Ω \ k i=1 Bσ (a i ), N )
. By weak lower semi-continuity of the Dirichlet integral, we deduce from (4.6) that for every σ ∈ (0, ρ(a 1 , . . . , a k ))

(4.7) Ω\ k i=1 Bσ(ai) |Du| 2 2 - k i=1 λ(γ i ) 2 4π log 1 σ ≤ G top γ 0 ,...,γ k (a 1 , . . . , a k ).
Next, we observe that by Fatou's lemma we have for every i ∈ {1, . . . , k}, if 

0 < σ < τ < ρ(a 1 , . . . , a k ), τ σ lim inf n→∞ ∂Br(a i ) |Du ρn | 2 2 dr ≤ lim inf n→∞ Bτ (a i )\ Bσ(ai) |Du ρn | 2 2 ≤ G top γ 0 ,...,γ k (a 1 , . . . , a k ) + k i=1 λ(γ i ) 2 4π
(a i + r•)| S 1 ) ∈N converges in L ∞ (S 1 , N ) to u. Therefore, the map u(a i + r•)| S 1 is homotopic to γ i .
In particular, we have, by de nition of G top,σ γ 0 ,...,γ k (a 1 , . . . , a k ),

Ω\ k i=1 Bσ(ai) |Du| 2 ≥ G top,σ γ 0 ,...,γ k (a 1 , . . . , a k ). (4.8) 
By combining (4.8), (4.7), the de nition of renormalized energies G top γ 0 ,...,γ k (a 1 , . . . , a k ) in (3.2) and (3.5) G ren (u) in (4.2), we have

G top γ 0 ,...,γ k (a 1 , . . . , a k ) = lim σ→0 Ω\ k i=1 Bσ(ai) |Du| 2 2 - k i=1 λ(γ i ) 2 4π log 1 σ = G ren (u). Since u| Ω\ k i=1 Bσ(ai)
is a weak limit of a sequence of minimizing harmonic maps, it is a minimizing harmonic map [START_REF]Convergence of minimizers for the p-Dirichlet integral[END_REF]. The regularity follows then from the classical regularity theory for harmonic maps on planar domains [44, Theorem 3.2; 45, Theorem 9.4.2]. Finally, we observe that for every ρ > 0,

k i=1 ρ(a 1 ,...,a k ) ρ r ∂Br(a i ) |Du| 2 - λ(γ i ) 2 2π dr r ≤ Ω\ k j=1 Bρ(a j ) |Du| 2 - k j=1 λ(γ i ) 2 2π log ρ(a 1 , . . . , a k ) ρ .
We observe that the integrand of the outer integral on the left-hand side is non-negative. In view of (4.7) and by Lebesgue's monotone convergence theorem, we obtain,

k i=1 ρ(a 1 ,...,a k ) 0 r 2 ∂Br(a i ) |Du| 2 - λ(γ i ) 2 4π dr r ≤ G top γ 0 ,...,γ k (a 1 , . . . , a k ) + k j=1 λ(γ i ) 2 4π log 1 ρ(a 1 , . . . , a k ) < +∞.
Next we observe that for every ρ ∈ (0, ρ(a 1 , . . . , a k ), we have

Bρ(a i )\B ρ/2 (a i ) |Du| 2 ≤ (log 2) λ(γ) 2 2π + G top γ 0 ,...,γ k (a 1 , . . . , a k ) + k j=1 λ(γ i ) 2 2π log 1 ρ(a 1 , . . . , a k ) .
It follows then from C 1 regularity estimates for harmonic maps (see for example [START_REF] Hardt | Mappings minimizing the L p norm of the gradient[END_REF]) that for every

x ∈ Ω \ {a 1 , . . . , a k }, |Du(x)| ≤ C 1 k i=1 1 |x -a i | .
We now state the analogous of Proposition 4.3 for the geometrical renormalized energy G geom γ 0 ,...,γ k :

Proposition 4.4. Let a 1 , . . . , a k be distinct points in Ω, γ 0 ∈ W 1/2,2 (∂Ω, N ) and γ 1 , . . . , γ k ∈ C 1 (S 1 , N ) be a minimal topological resolution of γ 0 such that each γ i is a minimizing geodesic. Then, there exist a map u ∈ W 1,2 ren ( Ω, N ) such that if {(a 1 , γ1 ), . . . , (a k , γk )} = sing(u), (i) for every ρ > 0, u ∈ W 1,2 (Ω \ k i=1 Bρ (a i ), N
) is a minimizing harmonic map inside its domain with respect to its own boundary conditions, (ii) tr ∂Ω u = γ 0 , (iii) for every i ∈ {1, . . . , k}, γi is a minimizing geodesic homotopic to γ i , (iv) for every i ∈ {1, . . . , k}, and

(4.9) lim σ→0 d synh (u(a i + σ •), γi ) = 0. (v) G geom γ 0 ,...,γ k (a 1 , . . . , a k ) = G ren (u) + k i=1 d synh (γ i , γi ).
Proof of Proposition 4.4. By de nition of the renormalized energy, for every ρ ∈ (0, ρ(a 1 , . . . , a k )), there exists a map u

∈ W 1,2 (Ω \ k i=1 Bρ (a i ), N ) such that tr ∂Ω u = γ 0 on ∂Ω, u(a i + ρ•)| S 1 = γ i on S 1 for every i ∈ {1, . . .

, k}, and

Ω\ k i=1 Bρ(ai) |Du ρ | 2 2 = G geom,ρ γ 0 ,...,γ k (a 1 , . . . , a k ). By Lemma 3.3, if ρ < σ < ρ(a 1 , . . . , a k ), we have Ω\ k i=1 Bσ(ai) |Du ρ | 2 2 ≤ G geom,ρ γ 0 ,...,γ k (a 1 , . . . , a k ) - k i=1 λ(γ i ) 2 4π log σ ρ ,
and thus, by de nition of the renormalized energy G geom γ 0 ,...,γ k (a 1 , . . . , a k ) we have

(4.10) lim sup ρ→0 Ω\ k i=1 Bσ(ai) |Du ρ | 2 2 - k i=1 λ(γ i ) 2 4π log 1 σ ≤ G geom γ 0 ,...,γ k (a 1 , . . . , a k ).
By the boundedness condition (4.10) and by a diagonal argument, there exists a sequence (ρ n ) n∈N → 0 and a map u : Ω \ {a 1 , . . . , a k } → N such that for every σ ∈ (0, ρ(a 1 , . . . , a k )), the sequence (u ρn | Ω\ k i=1 Bσ(ai)

) n∈N converges weakly to u| Ω\ k i=1 Bσ(ai) in W 1,2 (Ω \ k i=1 Bσ (a i ))
. By weak lower semi-continuity of the Dirichlet integral, we deduce from (4.10) that for every σ ∈ (0, ρ(a 1 , . . . , a k )),

(4.11) Ω\ k i=1 Bσ(ai) |Du| 2 2 - k i=1 λ(γ i ) 2 4π log 1 σ ≤ G geom γ 0 ,...,γ k (a 1 , . . . , a k ).
Next, we observe that by Fatou's lemma we have for every i ∈ {1, . . . , k}, if 

0 < σ < τ < ρ(a 1 , . . . , a k ), τ σ lim inf n→∞ ∂Br(a i ) |Du ρn | 2 2 dr ≤ 1 2 lim inf n→∞ Bτ (a i )\ Bσ(ai) |Du ρn | 2 2 ≤ G geom γ 0 ,...,γ k (a 1 , . . . , a k ) + k i=1 λ(γ i ) 2 4π
(u ρ n r (a i + r•)| S 1 ) ∈N → u(a i + r•) weakly in W 1,2 and strongly in L ∞ .
Therefore, the map u(

a i + r•)| S 1 is homotopic to γ i .
In particular, (γ u,a 1 , . . . , γ u,a k ) is a minimal topological resolution of γ 0 . Since by (4.11), we have also G ren (u) < +∞, we deduce by Proposition 4.2 that there exists a sequence of positive radii (σ ) ∈N → 0 and a family of minimizing geodesics (γ 1 , . . . , γk ) such that for each i ∈ {1, . . . , k}, (4.9) holds true. Now, for every n, ∈ N such that ρ n < σ < ρ(a 1 , . . . , a k ), we observe that by de nition of the synharmonic distance, we have for every i ∈ {1, . . . , k}, (4.13)

Bσ (a i )\Bρ n (a i ) |Du ρn | 2 2 - λ(γ i ) 2 4π log σ ρ n ≥ d synh (u ρn (a i + σ •), γ i ).
Hence, by (4.13), (4.12), Proposition 2.10 and by Fatou's lemma,

G geom γ 0 ,...,γ k (a 1 , . . . , a k ) = lim n→∞ Ω\ k i=1 Bρn (a i ) |Du ρn | 2 2 - k i=1 λ(γ i ) 2 4π log 1 ρ n ≥ lim n→∞ Ω\ k i=1 Bσ (a i ) |Du ρn | 2 2 - k i=1 λ(γ i ) 2 4π log 1 σ + k i=1 d σ (u ρn (a i + σ •), γ i ) ≥ Ω\ k i=1 Bσ (a i ) |Du| 2 2 - k i=1 λ(γ i ) 2 4π log 1 σ + k i=1 d σ (u(a i + σ •), γ i ).
By de nition of G ren , (4.9) and Proposition 2.10, we obtain in the limit → ∞,

G geom γ 0 ,...,γ k (a 1 , . . . , a k ) ≥ G ren (u) + k i=1 d synh (γ i , γ i ).
For the reverse inequality, we have by a similar argument and by (4.9), that

G ren (u) = lim →∞ Ω\ k i=1 Bσ (a i ) |Du| 2 2 - k i=1 λ(γ i ) 2 4π log 1 σ ≥ lim →∞ G geom γ 0 ,γ 1 ,...,γ k (a 1 , . . . , a k ) - k i=1 d synh (u(a i + σ •), γ i ) = G geom γ 0 ,γ 1 ,...,γ k (a 1 , . . . , a k ) - k i=1 d synh (γ i , γ i ),
and we conclude by Proposition 3.5. G geom,ρ γ 0 ,...,γ k (a 1 , . . . , a k ) ≥ G top,ρ γ 0 ,...,γ k (a 1 , . . . , a k ). Next we show that equality is achieved Under the condition that γ 1 , . . . , γ k are minimizing geodesics which are synharmonic to all geodesics that are homotopic to it, we prove that these two notions coincide.

Proposition 4.5. Let γ 0 ∈ W 1/2,2 (∂Ω, N ) k ∈ N * a 1 , . . . , a k ∈ Ω and γ 1 , . . . , γ k ∈ C 1 (S 1 , N ).
There exists u ∈ (W 1,2 ren ∩ C ∞ )(Ω \ {a 1 , . . . , a k }, N ) and γ1 , . . . , γk be a family of energy minimizing geodesic

G ren (u) = G top γ 0 ,γ 1 ,...,γ k (a 1 , . . . , a k ) = G top γ 0 ,γ 1 ,...,γ k (a 1 , . . . , a k ) = G geom γ 0 ,γ 1 ,...,γ k (a 1 , . . . , a k ). Proposition 4.5 means that (4.15) G top γ 0 ,...,γ k (a 1 , . . . , a k ) = inf G top γ 0 ,γ 1 ,...,γ k (a 1 , . . . , a k ) : for each i ∈ {1, . . . , k},
γi is a minimizing geodesic homotopic to γ i .

Proof of Proposition 4.5. We let u ∈ (W 1,2 ren ∩ C ∞ )(Ω \ {a 1 , . . . , a k }, N ) be a singular minimizing harmonic map given by Proposition 4.3 and γ1 , . . . , γk be a family of energy minimizing geodesic such that u(a i + ρ •) → γi in W 1,2 (S 1 ) given by Proposition 4.3. By (4.14), which followed from the de nitions (3.2) and (3.1), we had

lim sup ρ→0 G geom,ρ γ 0 ,...,γ k (a 1 , . . . , a k ) - k i=1 λ(γ i ) 2 4π log 1 ρ ≥ G top γ 0 ,...,γ k (a 1 , . . . , a k ).
It remains thus to prove an upper bound on G geom,ρ γ 0 ,...,γ k (a 1 , . . . , a k ). In order to do this, we observe that

G geom,ρ γ 0 ,...,γ k (a 1 , . . . , a k ) ≤ G ren,ρ (u) + k i=1 d synh (u(a i + ρ•), γi ).
By Proposition 4.2, the synharmonic distances go to 0 and it follows then from (3.4) and (4.2), that G geom γ 0 ,...,γ k (a 1 , . . . , a k ) ≤ G ren (u).

Jean: 2019-06-17 J'ai mis une preuve rapide par synharmonie.

In particular if for every i ∈ {1, . . . , k}, all maps that are homotopic to γ i are synharmonic to γ i , then by Proposition 4.5 and Proposition 3.5, G geom γ 0 ,γ 1 ,...,γ k (a 1 , . . . , a k ) = G top γ 0 ,γ 1 ...,γ k (a 1 , . . . , a k ). This is the case in particular for the classical Ginzburg-Landau problem for N = S 1 for which the equivalence between topological and geometric renormalized energies was proved by Bethuel, Brezis and Hélein [7, Theorem I.9 and Remark I.5].

M

For every ε > 0, every radius R < 0 and every curve γ ∈ W 1/2,2 (S 1 , R ν ), we set

(5.1) Q F,R γ := inf B R |Du| 2 2 + F (u) : u ∈ W 1,2 (B R , R ν ) s.t. tr ∂B R u = γ ,
where B R is the ball of radius R centred at the origin 0 ∈ R 2 . Note that, by scaling, we have for every ε, R ∈ (0, +∞)

(5.2) inf B R |Du| 2 2 + F (u) ε 2 : u ∈ W 1,2 (B R , R ν ) and tr ∂B R u = γ(R•) = Q F, R ε γ .
The following proposition gives the properties of Q F,R γ :

Proposition 5.1. If γ ∈ C 1 (S 1 , N ) is a minimizing geodesic, then the map R ∈ (0, +∞) → Q F,R γ - λ(γ) 2 4π log R
is non-increasing.

Proposition 5.1 entitles us to de ne for every minimizing closed geodesic γ ∈ C 1 (S 1 , N ), the quantity Q F γ de ned as

(5.3) Q F γ = lim R→+∞ Q F,R γ - λ(γ) 2 4π log R ∈ [-∞, +∞).
Remark 3. We shall see in Section 7 that

Q F γ > -∞ if the minimizing geodesic γ is indecomposable, i.e. E sg (γ) = λ(γ) 2 4π (see Corollary 7.5). Proof of Proposition 5.1. Given R 1 , R 2 ∈ (0, +∞) with R 1 < R 2 , we consider a map u ∈ W 1,2 (B R 1 , R ν ) such that u(R 1 •) = γ on S 1 and we de ne the map v ∈ W 1,2 (B R 2 , R ν ) by v(x) =    u(x) if x ∈ B R 1 , γ x |x| if x ∈ B R 2 \ B R 1 .
Since γ is a minimizing geodesic, one has

B R 2 |Dv| 2 2 + F (v) ≤ B R 1 |Du| 2 2 + F (u) + S 1 |γ | 2 2 R 2 R 1 dr r = B R 1 |Du| 2 2 + F (u) + λ(γ) 2 4π log R 2 R 1 .
By minimizing over u, one gets by de nition of

Q F,R γ that Q F,R 2 γ - λ(γ) 2 4π log R 2 ≤ Q F,R 1 γ - λ(γ) 2 4π log R 1 .
Proposition 5.2. For every γ, γ ∈ W 1/2,2 (S 1 , N ), we have for every

R > 0 inf S≥R Q F,S γ - λ(γ) 2 4π log S ≤ Q F,R γ - λ(γ) 2 4π log R + d synh (γ, γ).
In particular, if γ and γ are minimizing geodesics, then

Q F γ ≤ Q F γ + d synh (γ, γ
). and if the maps γ and γ are synharmonic, then

Q F γ = Q F γ .
Proof of Proposition 5.2. If the maps γ and γ are not homotopic, then d synh (γ, γ) = +∞; thus, one can assume that γ and γ are homotopic and, in particular, that λ(γ

) = λ(γ). We take R ∈ (0, +∞), u ∈ W 1,2 (B R , R ν ) such that tr ∂B 1 u = γ, L > 0 and H ∈ W 1,2 (S 1 × [0, L], N ) such that H(•, 0) = γ, H(•, L) = γ. We de ne v ∈ W 1,2 (B e L R , R ν ) by v(x) =    u(x) if x ∈ B R , H x |x| , log |x| R if x ∈ B e L R \ B R .
By taking the in mum with respect to u we obtain , we have

Q F,e L R γ - λ(γ) 2 4π log(e L R) ≤ Q F,R γ - λ(γ) 2 4π log R + S 1 ×[0,L] |DH| 2 2 - L 4π λ(γ) 2 ,
and thus by de nition of synharmonicity (De nition 2.9),

inf S≥R Q F,S γ - λ(γ) 2 4π log S ≤ Q F,R γ - λ(γ) 2 4π log R + d synh (γ, γ).
Let a 1 , . . . , a k ∈ Ω and let u ∈ W 1,2 loc (Ω \ {a 1 , . . . , a k }, N ) be renormalizable. From Proposition 4.2 there exist γ 1 , . . . , γ k minimizing geodesics and (R ) → 0 such that u(a i + R •) → γ i in W 1,2 (S 1 , N ). Besides the synharmonicity class of each γ i is unique (though, γ i may not be unique) and so, by Proposition 5.2, the quantity Q F γ i only depends on u and a i . Thus, we may de ne

(5.4) Q F (u) := k i=1 Q F γ i Proposition 5.3. If γ ∈ W 1,2 (S 1 , R ν ), if dist N (γ) ≤ δ N , then for every R ≥ 1, |Q F,R γ -Q F,R Π N • γ | ≤ C S 1 |γ | 2 R + RF (γ) . Proof. Given u ∈ W 1,2 (B R , R ν ) such that tr ∂B R (u) = γ, we set v(x) = u((1 + 1 R )x) if |x| ≤ R -1, (R -|x|)Π N (γ(x)) + (|x| -(R -1))u(x) if R -1 ≤ |x| ≤ R, We estimate B R |Dv| 2 + F (v) ≤ B R |Du| 2 + F (u) + C 1 S 1 |γ | 2 R + S 1 |γ -Π N • γ| 2 R .

U

We now state a simpler upper bound which do not depend on admissible limits u but only on possible sets of geometric singularities (a 1 , γ 1 ), . . . , (a k , γ k ):

Proposition 6.1 (Geometric upper bound). Let k ∈ N * , a 1 , . . . , a k be distinct points in Ω, γ 0 ∈ W 1/2,2 (∂Ω, N ) and let (γ 1 , . . . , γ k ) be a minimal topological resolution of γ 0 , then, as ε → 0, inf{E ε (u) : u ∈ W 1,2 (Ω, R ν ) and tr ∂Ω u = γ 0 } ≤ E sg (γ 0 ) log 1 ε + G geom γ 0 ,...,γ k (a 1 , . . . , a k ) + k i=1 Q F γ i + o(1).
Proof. For every ρ ∈ (0, ρ(a 1 , . . . , a k )), we consider a map

u 0 ∈ W 1,2 (Ω \ k i=1 Bρ (a i ), N ) such u 0 | ∂Ω = γ 0 and u 0 (a i + ρ•)| S 1 = γ i for every i ∈ {1, . . . , k} and maps u 1 , . . . , u k ∈ W 1,2 (B ρ , R ν ) such that u 1 (ρ•)| S 1 = γ i . We then have u(x) := u 0 (x) if x ∈ Ω \ k i=1 B ρ (a i ), u i (x -a i ) if x ∈ B ρ (a i ) for some i ∈ {1, . . . , k},
and we have since

F (u 0 ) = 0 in Ω \ k i=1 B ρ (a i ) Ω |Du| 2 2 + F (u) ε 2 = Ω\ k i=1 Bρ(a i ) |Du 0 | 2 2 + n i=1 Bρ |Du i | 2 2 + F (u i ) ε 2 .
By taking the in mum over u 0 , u 1 , . . . , u k , we obtain by (3.1) and (5.2), we have

inf E ε (u) : u ∈ W 1,2 (Ω, R ν ) and tr ∂Ω u = γ 0 ≤ G geom,ρ γ 0 ,γ 1 ,...,γ k (a 1 , . . . , a k ) + k i=1 Q F,ρ/ε γ i . By choosing now ρ = √ ε, we obtain inf{E ε (u) : u ∈ W 1,2 (Ω, R ν ) and tr ∂Ω u = γ 0 } - k i=1 λ(γ i ) 2 4π log 1 ε ≤ G geom, √ ε γ 0 ,γ 1 ,...,γ k (a 1 , . . . , a k ) - k i=1 λ(γ i ) 2 4π log 1 √ ε + k i=1 Q F, √ ε γ i - k i=1 λ(γ i ) 2 4π log 1 √ ε ,
and the conclusion follows from (3.4) and (5.3) by letting ε → 0.

In this section we prove an upper-bound on the Ginzburg-Landau energy of some maps. In the next section we will derive a matching lower-bound and this will allow us to prove our main result in Section 8. Proposition 6.2 (Upper bound). Let k ∈ N * , a 1 , . . . , a k be distinct points in Ω and v ∈ W 1,2 loc (Ω \ {a 1 , . . . , a k }, N ) be a renormalizable map. Then for every ρ > 0,

inf{E ε (u) : u ∈ W 1,2 (Ω, R ν ) and u = v in Ω \ k i=1 B ρ (a i ) } ≤ G ren (u) + k i=1 Q F a i (u) + o(1).
The quantity Q F a (u) has been de ned in (5.4). Proof of Proposition 6.2. From the de nition of renormalizable maps De nition 4.1 and from Proposition 4.2, we deduce that there exist minimizing geodesics (γ 1 , . . . , γ k ) which form minimal topological resolution of tr ∂Ω u such that for each i ∈ {1, . . . , k}, (6.1)

lim σ→0 d synh (u(a i + σ •), γ i ) = 0,
as σ → 0.

For any σ > 0, we observe that for every u 1 , . . . ,

u k ∈ W 1,2 (B σ , N ) such that u(σ•) = v(a i +σ•) on S 1 , if we set u(x) = v(x) if x ∈ Ω \ k i=1 Bσ (a i ), u i (x -a i ) if for some i ∈ {1, . . . , k}, x ∈ B σ (a i ).
we have

E ε (u) = Ω\ k i=1 Bσ(a i ) |Dv| 2 2 + k i=1 Ω |Du i | 2 2 + F (u i ) ε 2 ,
and thus by taking the in mum, we obtain by (5.2),

inf{E ε (u) : u ∈ W 1,2 (Ω, R ν ) and u = v in Ω \ k i=1 B ρ (a i ) } ≤ Ω\ k i=1 Bσ(a i ) |Dv| 2 2 + k i=1 Q F,σ/ε u(a i +σ•) .
If we set σ = √ ε and ε > 0 is small enough, we have

inf E ε (u) : u ∈ W 1,2 (Ω, R ν ) and u = v in Ω \ k i=1 B ρ (a i ) = Ω\ k i=1 Bσ(a i ) |Dv| 2 2 - k i=1 λ(γ i ) 2 4π log 1 ε + k i=1 Q F,σ/ε u(a i +σ•) - λ(γ i ) 2 4π log 1 ε ,
and thus we reach by (4.2)

lim sup ε>0 inf E ε (u) : u ∈ W 1,2 (Ω, R ν ) and u = v in Ω \ k i=1 B ρ (a i ) = G ren (v) + lim sup ε→0 k i=1 Q F,σ/ε u(a i + √ ε•) - λ(γ i ) 2 4π log 1 ε .
We conclude by Proposition 5.2, (5.3) and (6.1).

L

We derive a lower bound for the Ginzburg-Landau (1.5) of maps u in W 1,2 (Ω, R ν ) with given boundary datum tr ∂Ω u = γ 0 that matches the upper bounds of Proposition 6.2. We rst prove in Section 7.1 a rst lower bound of the form E sg (γ 0 ) log 1 ε -C for maps in W 1,2 γ 0 (Ω, R ν ) and for the Ginzburg-Landau energy. This lower bound along with a localization of the energy argument allows us to prove boundedness of sequences which have their energies bounded by E sg (γ 0 ) log 1 ε + C in Section 7.2. We have seen in the previous section that such a bound is satis ed by minimizers of (1.5). With the help of the compactness of minimizers we are able to improve the lower bound and obtain the desired result in Section 7.3.

7.1. Leading order lower bound for the energy. De nition 7.1. For every γ 0 ∈ W 1/2,2 (∂Ω, N ) we de ne the tubular neighbourhood extension energy by

E ext (γ 0 ) := inf ∂Ω×[0,1] |Dv| 2 2 : v ∈ W 1,2 (∂Ω × [0, 1], N ) and tr ∂Ω×{0} v = γ 0 .
We also de ne dist N (y) := dist(y, N ) for every y ∈ R ν .

Proposition 7.2. If (H (0) 
2 ) holds, there exist constants C, c, such that for every ε > 0, every γ 0 ∈ W 1/2,2 (∂Ω, N ) and every u ∈ W 1,2 γ 0 (Ω, R ν ) we have

c Ω |D(dist N • u)| 2 2 + F (u) ε 2 ≤ Ω |Du| 2 2 + F (u) ε 2 + E ext (γ 0 ) -E sg (γ 0 ) log C εE sg (γ 0 ) .
Proposition 7.2 will follow from a slightly re ned result for smooth maps together with an approximation argument.

Lemma 7.3. If (H (0)
2 ) holds, there exist constants C, c, such that for every ε > 0 and every u ∈ C 2 ( Ω, R ν ) such that γ 0 := tr ∂Ω u takes its values into N , we have

c Ω |D(dist N • u)| 2 2 + F (u) ε 2 + E sg (γ 0 ) δ N δ N 0 Ψ δ N E sg (γ 0 ) H 1 ∞ (K s ) s Cε ds ≤ Ω |Du| 2 2 + F (u) ε 2 + CE ext (γ 0 ) -E sg (γ 0 ) log C εE sg (γ 0 ) 2 ,
where the function Ψ : (0, +∞) → R is de ned for each τ ∈ (0, +∞) by Ψ(τ ) := τ -1 -log τ , the sets K s are de ned for every s ∈ (0, +∞) by

K s := (dist N • u) -1 ([s, +∞)) = {x ∈ Ω : dist(u(x), N ) ≥ s}. Lemma 7.4. If K ⊆ R 2 is compact, then H 1 ∞ (K) = H 1 ∞ ( 
∂K). Lemma 7.4 does not hold for the Haudor measure; the proof of Lemma 7.4 can be seen to work when K ⊆ R n is compact and n ≥ 2; the equality fails when n = 1 and K = [0, 1] ⊂ R.

Proof of Lemma 7.4. First, by monotonicity of the Hausdor content, we have

H 1 ∞ (K) ≥ H 1 ∞ (∂K).
It remains thus to establish the converse inequality.

We x η > 0. By de nition, there exist points a 1 , . . . , a k ∈ R 2 and radii ρ 1 , . . . , ρ k ∈ (0, +∞)

such that ∂K ⊆ k i=1 B ρ i (a i ) and k i=1 2ρ i ≤ H 1 ∞ (∂K) + η. By Lemma 3.9, we can assume that Bρ i (a i ) ∩ Bρ j (a j ) = ∅ if i, j ∈ {1, . . . , k} with i = j. We claim that K ⊂ k i=1 B ρ i (a i ).
Indeed, assume by contradiction that there exists a point

x ∈ K \ k i=1 B ρ i (a i ). Since the balls Bρ 1 (a 1 ), . . . , Bρ k (a k ) are disjoint, the set R 2 \ k i=1 B ρ i (a i ) is path-connected. Since the set K is compact, we have R 2 \ (K ∪ k i=1 B ρ i (a i )) = ∅ and there exists thus a continuous map γ ∈ C([0, 1], R 2 \ k i=1 B ρ i (a i )) such that γ(0) = x and γ(1) ∈ K.
Since the map γ is continuous, there exists some t * ∈ [0, 1] such that γ(t * ) ∈ ∂K and we would thus have ∂K \ k i=1 B ρ i (a i ) = ∅. We have thus

H 1 ∞ (K) ≤ 2 k i=1 ρ i ≤ H 1 ∞ (∂K) + η;
we conclude by letting η → 0.

Proof of Lemma 7.3. We rst extend the function u to a function u ∈ W 1,2 (Ω δ ∂Ω , R ν ) in such a way that u ∈ N almost everywhere in Ω δ ∂Ω \ Ω and

Ω δ ∂Ω \Ω |Du| 2 2 ≤ C 1 E ext (tr ∂Ω u),
for some constant C 1 depending only on ∂Ω, in view of De nition 7.1. By Lemma 2.1 we have (7.1)

Ω\K δ N ? |D(dist N • u)| 2 + 1 - dist N • u δ N |D(Π N • u)| 2 ≤ Ω |Du| 2 ,
with the nearest point projection Φ N being de ned in Lemma 2.1.

For every s ∈ (0, +∞) we de ne the sets

K s := (dist N • u) -1 ([s, +∞)) = {x ∈ Ω : dist(u(x), N ) ≥ s},
and

Σ s := (dist N • u) -1 ({s}) = {x ∈ Ω : dist(u(x), N ) = s}. Since u ∈ C 2 (Ω)
, by Sard's lemma for almost every λ ∈ (0, +∞), K λ is a smooth compact set and Σ λ = ∂K λ . Since by Lemma 2.2, for all y ∈ N such that dist N (y) < δ N , we have dist N (y) ≤ 2F (y)/m 0 , and hence by Young's inequality we have

Ω\K δ N |D(dist N • u)|(dist N • u) ≤ 1 √ m 0 Ω\K δ N |D(dist N • u)| √ 2F • u ≤ ε √ m 0 Ω\K δ N |D(dist N • u)| 2 2 + F • u ε 2 . (7.2)
By using the coarea formula, we have

(7.3) Ω\K δ N |D(dist N • u)|(dist N • u) = δ N 0 H 1 (Σ s ) s ds,
and we deduce that (7.4)

δ N 0 H 1 (Σ s ) s ε ds + Ω |D(dist N • u)| 2 2 + F • u ε 2 ≤ C 2 Ω |D(dist N • u)| 2 2 + F • u ε 2 with C 2 = 1 √ m 0 + 1.
On the other hand, by Fubuni's theorem, we have (7.5)

Ω\K δ N 1 - dist N • u δ N |D(Π N • u)| 2 2 = Ω\K δ N 1 δ N δ N dist N • u ds |D(Π N • u)| 2 2 1 δ N δ N 0 Ω\Ks |D(Π N • u)| 2 2 ds.
Since Π N • u is a mapping into N , by Proposition 3.8, we have for every s ∈ (0, δ N ),

E sg (tr ∂Ω u) log δ ∂Ω H 1 ∞ (K s ) ≤ Ω δ ∂Ω \Ks |D(Π N • u)| 2 2 ≤ Ω\Ks |D(Π N • u)| 2 2 + C 1 E ext (tr ∂Ω u)
and thus

(7.6) E sg (tr ∂Ω u) δ N δ N 0 log δ ∂Ω H 1 ∞ (K s ) ds ≤ Ω\K δ N 1 - dist N • u δ N |D(Π N • u)| 2 2 + C 1 E ext (tr ∂Ω u).
From (7.4), (7.6) and (7.1) we obtain

(7.7) 1 C 2 Ω |D(dist N • u)| 2 2 + F • u ε 2 + δ N 0 H 1 (Σ s ) s C 2 ε + E sg (tr ∂Ω u) δ N log δ ∂Ω H 1 ∞ (K s ) ds ≤ Ω |Du| 2 2 + F • u ε 2 + C 1 E ext (tr ∂Ω u)
. By Lemma 7.4 and (3.10), we have

H 1 ∞ (K s ) = H 1 ∞ (Σ s ) ≤ H 1 (Σ s )
, and thus for every s ∈ (0, δ N ), we nd

(7.8) H 1 (Σ s ) s C 2 ε + E sg (tr ∂Ω u) δ N log δ ∂Ω H 1 ∞ (K s ) ≥ H 1 ∞ (K s ) s C 2 ε + E sg (tr ∂Ω u) δ N log δ ∂Ω H 1 ∞ (K s ) Since Antonin: J'ai du sortir une feuille et un crayon mais c'est correct H 1 ∞ (K s ) s C 2 ε + E sg (tr ∂Ω u) δ N log δ ∂Ω H 1 ∞ (K s ) = E sg (tr ∂Ω u) δ N 1 + log sδ ∂Ω δ N C 2 εE sg (tr ∂Ω u) + Ψ H 1 ∞ (K s ) sδ N C 2 εE sg (tr ∂Ω u) .
Thus we arrive by (7.7) at (7.9)

1 C 2 Ω |D(dist N • u)| 2 2 + F • u 2ε 2 + E sg (tr ∂Ω u) δ N δ N 0 1 + log sδ ∂Ω δ N C 2 εE sg (tr ∂Ω u) + Ψ H 1 ∞ (K s ) s4πδ N C 2 εE sg (tr ∂Ω u) ds ≤ Ω |Du| 2 2 + F (u) ε 2 + C 1 E ext (tr ∂Ω u).
We compute that

E sg (tr ∂Ω u) δ N δ N 0 1 + log sδ ∂Ω δ N C 2 εE sg (tr ∂Ω u) ds = E sg (tr ∂Ω u) log δ ∂Ω δ 2 N C 2 εE sg (tr ∂Ω u)
and the conclusion follows.

Corollary 7.5. If F satis es (H

2 ) and if γ ∈ C 1 (S 1 , N ) is an atomic minimizing geodesic, then

(7.10) Q F γ = inf ρ∈(0,+∞) Q F,ρ γ - λ(γ) 2 4π log ρ > -∞.
Proof. We apply Lemma 7.3 to Ω = B 1 ; we get C = C(N , F, γ) ∈ R such that for every ε > 0 and every u ∈ W 1,2 γ (B 1 , R ν ) we have (7.11)

B 1 |Du| 2 2 + F (u) ε 2 -E sg (γ) log 1 ε ≥ C(N , F, γ).
We minimize over u to obtain, in view of (5.2),

Q F, 1 ε γ -E sg (γ) log 1 ε ≥ C(N , F, γ).
The claim follows with ρ = 1 ε since, by assumption, E sg (γ) = λ(γ) 2 4π .

Localization of the energy.

The next proposition provides some information on the localization of the energy of mapping satisfying a logarithmic bound.

Proposition 7.6. For every κ > 0, there exists C > 0, such that for every η ∈ (0, C), γ > 0 and ε > 0 such that

e γ(κ+Esg(tr ∂Ω u) (CE sg (tr ∂Ω u)ε) 1-γ ≤ γη, if u ∈ W 1,2 γ 0 (Ω, R ν ) satis es E ext (tr ∂Ω u) ≤ κ,
and 

Ω |Du| 2 2 + F (u) ε 2 ≤ E sg (tr ∂Ω u) log 1 εE sg (γ 0 ) 2 + κ, then if c √ εe κ ≤ η ≤ ρ,
|Du| 2 2 + F (u) ε 2 ≥ Bρ(a)∈B E sg (Π N • tr ∂Bρ(a) u) log γη CE sg (tr ∂Ω u)ε -C(κ + E sg (tr ∂Ω u)).
The systole sys(N ) of the manifold N was de ned in (2.8).

As a rst tool we have a Sobolev type embedding theorem with dependence on ε.

Lemma 7.7. There exists a constant C such that for every r > 0, for every h ∈ W 1,2 (S 1 r , R) and for every ε ≤ r, one has

h 2 L ∞ (S 1 r ) ≤ C S 1 r ε|h | 2 + |h| 2 ε . Proof. Let h ∈ C 1 ([-πr, πr], R). If λ ∈ (0, πr],
integrations by parts on both [-λ, 0] and [0, λ] yield

|h(0)| ≤ 1 2 [-λ,λ] 1 - |t| λ |h (t)| dt + 1 2λ [-λ,λ] |h(t)| dt
and thus by the Cauchy-Schwarz inequality

|h(0)| 2 ≤ λ 3 [-πr,πr] |h (t)| 2 dt + 1 λ [-πr,πr] |h| 2 .
The next tool for the proof of Proposition 7.6, is a lower bound on the Ginzburg-Landau energy on circles at scales larger than ε. Lemma 7.8. There exists a constant c 0 > 0, such that for every r > 0, for every u

∈ W 1,2 (S 1 r , R ν ) such that dist(u(•), N ) ≤ δ N almost everywhere in S 1
r and for every ε < r, one has

S 1 r |u | 2 2 + F (u) ε 2 ≥ 1 ε c 0 + 4πr λ(Π N • u) 2 .
The proof of Lemma 7.8 relies on the following elementary inequality. Lemma 7.9. For every z ∈ [0, 1] and α ∈ (0, +∞),

1 -z α + z 2 ≥ 1 α + 1 Proof. If α ≥ 1
2 , then the left hand side in the desired inequality is minimal for z = 1 2α ∈ [0, 1] and we thus obtain that for every z ∈

[0, 1], 1-z α + z 2 ≥ 1 α -4 α 2 ≥ 1 α+1 ; if α < 1 2 , we have 1-z α + z 2 ≥ 1 ≥ 1 α+1 . Proof of Lemma 7.8. By Lemma 2.1, we have |u | 2 ≥ 1 - dist N • u δ N |(Π N • u) | 2 + |(dist N • u) | 2 , almost everywhere on S 1 r . If we set θ := dist N • u L ∞ (S 1 r ) ∈ [0, δ N ],
we rst have, by de nition of θ and by the characterization of λ(Π N • u) (see (2.7)),

S 1 r 1 - dist N • u δ N |(Π N • u) | 2 2 ≥ 1 - θ δ N λ(Π N • u) 2 4πr .
Since F satis es the assumption (H

2 ) with a constant m 0 > 0 and since by assumption dist(u(•), N ) ≤ δ N almost everywhere in S 1 r , we have

F (u) ≥ m 0 2 (dist N • u) 2
almost everywhere in S 1 r ; by Lemma 7.7, we deduce

S 1 r |(dist N • u) | 2 2 + F (u) ε 2 ≥ S 1 r |(dist N • u) | 2 2 + m 0 (dist N • u) 2 2ε 2 ≥ θ 2 C 1 ε , for some constant C 1 > 0. It follows thus that if c 0 ≤ δ 2 N /C 1 , by Lemma 7.9, S 1 r |u | 2 2 + F (u) ε 2 ≥ 1 - θ δ N λ(Π N • u) 2 4πr + θ 2 C 1 ε ≥ c 0 ε 1 - θ δ N λ(Π N • u) 2 ε 4πrc 0 + θ δ N 2 ≥ c 0 ε( 4πrc 0 λ(Π N • u) 2 ε + 1) = 1 ε c 0 + 4πr λ(Π N • u) 2 .
Proof of Proposition 7.6. We rst consider the case where u ∈ C 2 (Ω). We extend the function u to a function u ∈ W 1,2 (Ω δ ∂Ω , R ν ) in such a way that u ∈ N almost everywhere in Ω δ ∂Ω \ Ω and

Ω δ ∂Ω \Ω |Du| 2 2 ≤ C 1 E ext (γ 0 ),
By Lemma 7.3, there exists a constant C 2 , such that

E sg (γ 0 ) δ N δ N 0 Ψ δ N E sg (γ 0 ) H 1 ∞ (K s ) s C 3 ε ds ≤ C 4 (κ + E sg (γ 0 )).
Since for every τ ∈ (0, +∞), one has Ψ(τ ) ≥ τ 2 -log 2, we have

δ N 0 H 1 ∞ (K s ) s 2Cε ds ≤ E sg (γ 0 ) δ N δ N 0 Ψ δ N E sg (γ 0 ) H 1 ∞ (K s ) s Cε ds + E sg (γ 0 ) log 2
we deduce by monotonicity of the Hausdor content and by Lemma 7.3, that (7.12)

H 1 ∞ (K δ N ) ≤ 2 δ 2 N δ N 0 H 1 ∞ (K s ) s ds ≤ C 5 (E sg (tr ∂Ω u) + κ)ε.
Since the set K δ N is compact, by de nition of the Hausdor content (De nition 3.7) and by Lemma 3.9, there exists a family of disjoint disks B 0 with disjoint closures such that K δ N ⊂ Bρ(a)∈B 0 Bρ (a), and (7.13)

Bρ(a)∈B 0 ρ ≤ 2H 1 ∞ (K δ N ) ≤ 2C 5 (E sg (tr ∂Ω u) + κ)ε.
In particular, if 4C 5 εκ ≤ δ, the disks of B 0 are all contained in the set Ω δ ∂Ω . We now claim that for every s ∈ [0, s), where

s := sup s ∈ [0, +∞) : C 6 s log(1 + s) εE sg (tr ∂Ω u) log 1 E sg (tr ∂Ω u)ε + κ ≤ δ ∂Ω 2
there exists a collection of balls B(s) such that (a) the closure of the balls in B(s) are disjoint and contained in

Ω δ ∂Ω , (b) if t ≤ s, then Bσ(b)∈B(s) B σ (b) ⊂ Bρ(a)∈B(t) B ρ (a) (c) for every B ρ (a) ∈ B(s), ρ ≥ ελ(tr ∂Bρ(a) v) 2 4πc 0 s, (d) for every B ρ (a) ∈ B(s), Bρ(a) |Du| 2 2 + F (u) ε 2 ≥ c 0 ε ρ log(1 + s) s - Bσ(b)∈B 0 Bσ(b)⊂Bρ(a) σ ,
We rst set B(0) := B 0 . We have showed that (a) holds; the assertions (b) and (c) hold trivially and nally (d), we observe that the right-hand side when s → 0 (understood more precisely at the limit of the right-hand side when s → 0) vanishes.

Assume now that the assertions (a), (b), (c) and (d) are satis ed for some s * ∈ (0, +∞). We de ne then the set of disks By construction, the assertions (a) and (c) hold for every s ∈ [s * , s * ). In order to prove (d), we apply Lemma 7.8

B ρs/s * (a)\Bρ(a) |Du| 2 2 + F (u) ε 2 ≥ ρs/s * ρ 1 ε c 0 + 4πt λ(Π • u) 2 dt ≥ λ(Π • u) 2 4π log ε c 0 + 4πρ λ(Π • u) 2 ε c 0 + 4πρs/s * λ(Π • u) 2 = c 0 ρ ε log 1 + s 1 + s * , since ρ/s * = ελ(tr ∂Bρ(a) v) 2 c 0 4π
and therefore

B ρs/s * (a) |Du| 2 2 + F (u) ε 2 ≥ c 0 ε ρ log(1 + s * ) s * - Bσ(b)∈B(s) Bσ(b)⊂Bρ(a)
σ .

Moreover, we deduce from (d) that

Bρ(a)∈B(s) ρ ≤ s log(1 + s) ε c 0 Ω |Du| 2 2 + F (u) ε 2 + Bσ(b)∈B 0 σ ≤ C 6 s log(1 + s) εE sg (tr ∂Ω u) log 1 E sg (tr ∂Ω u)ε + κ + E sg (tr ∂Ω ) (7.14) 
In order to de ne B(s * ), we rst set

B * := {B ρs * /s * (a) : B ρ (a) ∈ B * } ∪ B(s * ) \ B * .
We rst note that by (7.14), when ε is taken small enough, we have Bρ(a)∈B * B r (a) ⊂ Ω δ N /2 . It remains thus to cover the case where some disks intersect. We perform then a ball merging procedure by ?? and we de ne B(s * ) to be the resulting ball collection. By (c), for every B ρ (a) ∈ B(s * ), we have

ρ = Bσ(b)∈B * Bσ(b)⊂Bρ(a) σ ≥ Bσ(b)∈B * Bσ(b)⊂Bρ(a) ελ(tr ∂Bσ(b) v) 2 4πc 0 s * ≥ ελ(tr ∂Bρ(ā) v) 2 4πc 0 s * ,
so that assertion (c) still holds for the modi ed collection of balls. We also have, since B * satis es assertion (d),

Bρ(a) |Du| 2 2 + F (u) ε 2 ≥ Bσ(b)∈B * Bσ(b)⊂Bρ(a) Bσ(b) |Du| 2 2 + F (u) ε 2 ≥ Bσ(b)∈B * Bσ(b)⊂Bρ(a) c 0 ε σ log(1 + s) s - Bτ (c)∈B 0 Bτ (c)⊆Bσ(b) τ = c 0 ε ρ log(1 + s) s - Bτ (c)∈B 0 Bτ (c)⊆Bρ(a)
τ , and hence assertion (d) also holds for the modi ed collection of disks.

Since at each step either the number of disk decreases or the number of disks with equality in (c) increases, we ll the full announced interval of s in a nite number of steps.

In order to conclude we set, if η > εC 6 E sg (tr ∂Ω u)/γ s := γη C 6 εE sg (tr ∂Ω u) -1.

so that, we have by (7.14),

Bρ(a)∈B(s) ρ ≤ ηγ C 6 εEsg(tr ∂Ω u) -1 log γη C 6 εEsg(tr ∂Ω u) εE sg (tr ∂Ω u) log 1 E sg (tr ∂Ω u)ε + κ ≤ γη log e κ+Esg(tr ∂Ω u) Esg(tr ∂Ω u)ε log γη C 6 Esg(tr ∂Ω u)ε ≤ η, provided e γ(κ+Esg(tr ∂Ω u) (C 7 E sg (tr ∂Ω u)ε) 1-γ ≤ γη. with C 7 ≥ C 6 .
We now de ne the collection B := {B ρ (a) ∈ B(σ) : E sg (tr ∂Br(a) v) > 0}. We then have for every B ρ (a) ∈ B(σ), by (c) and by (d),

Bρ(a) |Du| 2 2 + F (u) ε 2 ≥ E sg (tr ∂Bρ(a) u) log γη C 6 ελ(tr ∂Ω u) 2 - Bσ(b)∈B 0 Bσ(b)⊆Bρ(a) ρ.
Hence, for every subcollection of disks B ⊂ B, then by summing and by (7.13), we obtain (7.15)

Bρ(a)∈B Bρ(a) |Du| 2 2 + F (u) ε 2 ≥ Bρ(a)∈B E sg (tr ∂Bρ(a) u) log γη C 6 ελ(tr ∂Ω u) 2 -2C 5 (E sg (tr ∂Ω u) + κ)ε.
The proposition is proved when u ∈ C 2 (Ω).

Otherwise, we approximate u ∈ W 1,2 (Ω), by a sequence (u n ) n∈N in C 2 (Ω). Converging strongly to u in W 1,2 (Ω). Let B n be the associated balls. If C 7 is large enough, by (7.15) and since for every

B ρ (a) ∈ B n , E sg (Π N • tr ∂Bρ(a) u n ) ≥ syst(N ) 2 4π
, the number of balls in B n remains bounded. This implies that (Π N tr ∂Bρ(a) u n ) Bρ(a)∈Bn can be chosen to remain in the same homotopy class and #B n can be chosen to be constant. The conclusion then follows from a compactness argument and Lebesgue's dominated convergence theorem. 7.3. Double order lower bound for the energy. Proposition 7.10. Let γ 0 ∈ W 1/2,2 (∂Ω, N ), (u n ) n∈N be a sequence in W 1,2 γ 0 (Ω, R ν ) and (ε n ) n∈N be a sequence in (0, +∞) converging to 0 such that (7. [START_REF] Carmo | Mathematics: Theory & Applications[END_REF])

sup n∈N Ω |Du n | 2 2 + F (u n ) ε 2 n -E sg (γ 0 ) log 1 ε n < +∞.
Then up to a subsequence, there exists a map u

∈ W 1,2 ren (Ω, N ), such that if sing(u) = {(a 1 , γ 1 ), . . . , (a k , γ k )} ⊂ Ω × C 1 (S 1 , N ), one has (i) the sequence (u) n∈N converges to u weakly in W 1,2
loc (Ω \ {a 1 , . . . , a k }, N ) and almost everywhere in Ω, and

F (u εn )/ε 2 n → 0 in L 1 loc (Ω \ {a 1 , . . . , a k }), (ii) sup n∈N Ω |D(dist N • u n )| 2 2 + F (u n ) ε 2 n < +∞, (iii) G ren (u) + Q F (u) ≤ lim inf n→∞ Ω |Du n | 2 2 + F (u n ) ε 2 n -E sg (γ 0 ) log 1 ε n ,
(iv) for every ρ ∈ (0, ρ(a 1 , . . . , a k )),

G ren (u) + Q F (u) ≤ Ω\ k i=1 Bρ(a i ) |Du| 2 2 + lim inf n→∞ k i=1 Bρ(a i ) |Du n | 2 2 + F (u n ) ε 2 n -E sg (γ 0 ) log 1 ε n
This proposition follows from Proposition 7.6 as in [START_REF] Jerrard | Lower bounds for generalized Ginzburg-Landau functionals[END_REF][START_REF] Sandier | Lower bounds for the energy of unit vector elds and applications[END_REF].

Proof of Proposition 7.10. The assertion (ii) follows immediately from Lemma 7.3. We consider a sequence (η p ) p∈N in (0, +∞) converging to 0. By Proposition 7.6, for each p ∈ N, there exists a collection B n,p of nitely many disjoint of radius less than η, and n p ∈ N such that if n ≥ n p , Ω∩ Bρ(a)∈Bn,p Bρ(a)

|Du n | 2 2 + F (u n ) ε 2 n ≥ Bρ(a)∈Bn,p E sg (Π N • tr ∂Bρ(a) u n ) log η p ε n + C 1 .
and Bρ(a)∈Bn,p E sg (Π N • tr ∂Bρ(a) u n ) ≥ E sg (γ 0 ). It follows thus from the assumption that (7.17)

Bρ(a)∈Bn,p E sg (Π N • tr ∂Bρ(a) u n ) log η p ε n ≤ E sg (γ 0 ) log 1 ε n + C 2 .
Since N is compact, λ(γ) only takes discrete values, and thus there exists δ > 0 such that if (γ 1 , . . . , γ ) is a topological resolution of γ 0 , and

i=1 E sg (γ i ) ≤ E sg (γ 0 ) + δ, then i=1 E sg (γ i ) = E sg (γ 0 ).
Up to a subsequence, we can assume that ε θ n ≤ η p for some θ ∈ (0, 1) to be xed later, and thus log

ηp ε = log ηp ε θ n + log 1 ε 1-θ n ≥ (1 -θ) log 1
εn we then have by (7.17),

(1 -θ) Bρ(a)∈Bn,p E sg (Π N • tr ∂Bρ(a) u n ) log 1 ε n ≤ E sg (γ 0 ) log 1 ε n + C 2 ,
and hence if (up to a subseqence) ε n ≤ 1, we have

Bρ(a)∈Bn,p E sg (Π N • tr ∂Bρ(a) u n ) log 1 C st ??ε n ≤ E sg (γ 0 ) + θ 1 -θ E sg (γ 0 ) + C 3 log 1 εn .
It follows thus that up to a subsequence, we can assume that Bρ(a)∈Bn,p

E sg (Π N • tr ∂Bρ(a) u n ) ≤ E sg (γ 0 ),
and thus in particular 

#B n,p ≤ 4πE sg (γ 0 ) syst(N ) (7.18) Ω\ B∈Bn,p B |Du n | 2 2 + F (u n ) ε 2 n ≤ E sg (γ 0 ) log 1 η + C 4 , for every B ∈ B, dist N • tr ∂B u < δ N ,
Ω\ k i=1 B 2ηp (a i ) |Du n | 2 2 + F (u n ) ε 2 n ≤ E sg (γ 0 ) log 1 2η p + C 5 ,
with C 5 := C 4 +E sg (γ 0 ) log 2. By the weak compactness, up to a subsequence, the sequence

(u n ) n∈N converges weakly in W 1,2 (Ω \ k i=1 B ηp (a i ))
. By a diagonal argument and Rellich's compactness theorem, up to another subsequence, the sequence thus converges almost everywhere to some u : Ω → N and weakly in W 1,2 (Ω \ k i=1 B ρ (a i ), R ν ) for every ρ > 0. Moreover, for every p ∈ N, we have by (7.19), by lower semicontinuity (7.20)

Ω\ k i=1 B 2ηp (a i ) |Du| 2 2 ≤ lim inf n→∞ Ω |Du n | 2 2 + F (u n ) ε 2 n ≤ E sg (γ 0 ) log 1 2η p + C 5 .
We extend u to ū ∈ W 1,2 loc ( Ωδ ∂Ω \ {a 1 , . . . , a k }, N ). By Lemma 3.13, for p big enough so that η p < ρ := sup{r > 0 : for each i ∈ {1, . . . , k}, B r (a i ) ⊂ Ω δ ∂Ω and for each j ∈ {1, . . . , k} \ {i}, B r (a i ) ∩ B r (a j ) = ∅}, we have

i=1 Ω\ k i=1 B 2ηp (a i ) |Du| 2 ≥ n i=1 λ(tr ∂B 2ηp u) 2 2πν ρ,2ηp (a i ) log ρ 2η p 1 - 2πC 6 E ext (tr ∂Ω u) λ(tr ∂B 2ηp u) 2 log ρ 2ηp 1/2 2
. 

It
(dist N • u n ) 2 dr ≤ lim sup n→∞ ε n ρ 0 ∂Br(a i ) |D(dist N • u n )| 2 2 + |dist N • u n | 2 ε 2 n dr = 0,
Antonin: c'est là où l'on utilise le contrôle de dist N (un) 2 , que je remplacerais par

F (un), F (t) := inf{F (u) : dist N (u) = t}.
On a encore, par Young, une inégalité du type

F (h) 2 L ∞ (S 1 r ) ≤ C S 1 r ε|h | 2 + F (h) ε .
and thus, up to a subsequence, for almost every r ∈ (0, ρ),

lim n→∞ sup ∂Br(a i ) dist N • u n = 0.
Given r ∈ (0, ρ), if p is large enough, there exists m p ∈ N such that for every n ≥ m p , all the balls of B n,p do not intersect ∂B r (a i ) and at least one is contained in B r (a i ). By minimality of the singularities (tr ∂B u n ) B∈Bn,p this implies that Π N • tr ∂Br(a i ) u n is not homotopic in VMO to a constant map. Since Π N • tr ∂Br(a i ) u n is homotopic to tr ∂Br(a i ) u for n large enough, we deduce that tr ∂Br(a i ) u is not homotopic to a constant in VMO. Therefore, we have sing(u) = {(a 1 , γ 1 ), . . . , (a k , γ k )} with γ i = tr ∂Br(a i ) u and thus (iii) holds.

Antonin: Est-on sûrs que Π N • tr ∂Br (a i ) un est bien dé ni ? Je ne vois pas pourquoi dist N • tr ∂Br (a i ) un < δ N

In order to prove (iii), up to a subsequence we can assume that

Ω |Du n | 2 2 + F (u n ) ε n -E sg (γ 0 ) log 1 ε n n∈N converges.
By (7.19), for almost every ρ ∈ (0, ρ), we have for each i ∈ {1, . . . , k},

lim inf n→∞ ∂Bρ(a i ) |Du n | 2 2 + F (u n ) ε 2 n < +∞.
Hence if we de ne γ ρ i,n (x) := u n (a i + ρx), we have

(7.21) lim inf n→∞ 1 ρ S 1 |(γ ρ i,n ) | 2 2 + ρ 2 ε 2 n F (γ ρ i,n ) < +∞
We take a subsequence (n k ) k∈N (depending on ρ) such that

sup k∈N 1 ρ S 1 |(γ ρ i,n k ) | 2 2 + ρ 2 ε 2 n k F (γ ρ i,n k ) < +∞ and thus lim inf k→∞ S 1 ε n k ρ |(γ ρ i,n ) | 2 2 + ρ ε n k F (γ ρ i,n k ) = 0. Hence if k is large enough dist N • γ ρ i,n k < δ N and

thus, by Proposition 5.3, we have

Antonin: Cette étape demande peut-être un peu plus de détail... (7.22)

lim inf k→∞ Q F,ρ/εn k γ ρ i,n k - λ(γ i ) 2 4π log ρ ε n k = lim inf k→∞ Q F,ρ/εn k Π N • γ ρ i,n k - λ(γ i ) 2 4π log ρ ε n k .
On the other hand, by (7.21), the sequence 

(γ ρ i,n k ) k∈N converges to u(a i + ρ•) in W 1/2,2 (S 1 , R ν ), and thus (Π N • γ ρ i,n k ) k∈N converges to u(a i + ρ•) in W 1/2,2 (S
Q F,ρ/εn k γ ρ i,n k - λ(γ i ) 2 4π log ρ ε n k = lim inf k→∞ Q F,ρ/εn k u(a i +ρ•) - λ(γ i ) 2 4π log ρ ε n k .
Finally by Proposition 5.2 again, we have in view of (7.23)

lim inf k→∞ Q F,ρ/εn k γ ρ i,n k - λ(γ i ) 2 4π log ρ ε n k ≥ Q F,γ i -d synh (u(a + ρ•), γ i ).
It follows thus that

lim k→∞ Ω |Du n k | 2 2 + F (u n k ) ε 2 n k ≥ Ω\ k i=1 Bρ(a i ) |Du n k | 2 2 + F (u n ) ε 2 n + k i=1 Bρ(a i ) |Du n k | 2 2 + F (u n k ) ε 2 n k ≥ G geom,ρ γ 1 ,...,γ k (a 1 , . . . , a k ) -E sg (γ 0 ) log 1 ρ + Q F,γ i -d synh (u(a + ρ•), γ i ).
We reach the conclusion (iii) by letting ρ → 0. The proof of (iv) is similar.

Finally by (iv), we have for every ρ > 0, lim sup

n→∞ Ω\ k i=1 Bρ(a i ) |Du εn | 2 2 + F (u εn ) ε 2 n ≤ Ω\ k i=1 Bρ(a i ) |Du| 2 2 ,
and hence the strong convergence follows.

8. E 8.1. Main result. We are now ready to fully state and prove our main result:

Theorem 8.1. Let γ 0 ∈ W 1/2,2 (∂Ω, N ) and for each ε ∈ (0, 1), u ε ∈ W 1,2
(Ω, R ν ) be a minimizer of the energy under Dirichlet boundary conditions. Then there exist k ∈ N, a nite set {a 1 , . . . , a k } ⊂ Ω (the empty set if k = 0), a family of maps

(γ 1 , . . . , γ k ) ∈ C 1 (S 1 , N ) k , a map u 0 ∈ W 1,2
ren (Ω, N ) and a sequence (ε n ) n∈N → 0 such that (i) (u εn ) n∈N converges almost everywhere to u and strongly in W 1,2 loc ( Ω \ {a 1 , . . . , a k }), (ii) tr ∂Ω u 0 = γ 0 and for every ρ ∈ (0, ρ(a 1 , . . . , a k )), u 0 ∈ W 1,2 (Ω \ k i=1 Bρ (a i ), N ) is a minimizing harmonic map inside its domain with respect to its own boundary conditions, (iii) u 0 minimizes G ren (u) + Q F (u) among u ∈ G ren (Ω, N ) with tr ∂Ω u = γ 0 , (iv) the family of singularities sing(u) = {(a 1 , γ 1 ), . . . , (a k , γ k )} minimizes the quantity

G geom η 1 ,...,η (b 1 , . . . , b ) + i=1 Q F η i among all ∈ N, {b 1 , . . . , b } ⊂ Ω,
and all topological resolutions (η 1 , . . . , η ) of γ 0 .

(v) we have the equalities

lim ε→0 Ω |Du ε | 2 2 + F (u ε ) ε 2 -E sg (γ 0 ) log 1 ε = G geom γ 0 ,γ 1 ,...,γ k (a 1 , . . . , a k ) + k i=1 Q F γ i = G ren (u 0 ) + k i=1 Q F a i (u).
The strong convergence in was also proved in [START_REF] Canevari | Biaxiality in the asymptotic analysis of a 2D Landau-de Gennes model for liquid crystals[END_REF].

Proof of Theorem 8.1.

Step 1. Geometric upper energy bound. Since (u ε ) ε>0 is a sequence of minimizers, it follows from Proposition 6.1 that for every ε ∈ (0, 1),

(8.1) lim sup ε→0 Ω |Du ε | 2 2 + F (u ε ) ε 2 -E sg (γ 0 ) log 1 ε ≤ W min ,
where, we have set

(8.2) W min := inf G geom γ 0 ,η 1 ,...,η (b 1 , . . . , b ) + i=1 Q F η i ,
the in mum being taken over every family of distinct points (b 1 , . . . , b ) in Ω and every minimal resolution (η 1 , . . . , η ) of γ 0 .

Step 2. Limit of u ε . By Proposition 7.10, there exists a family of points (a 1 , . . . , a k ) in Ω and a sequence

(ε n ) n∈N → 0 such that sup n≥0 Ω\ k i=1 Bρ(a i ) |Du εn | 2 2 + F (u εn ) ε 2 n < +∞ for every ρ > 0;
hence, up to the extraction of a subsequence, one can assume that (u εn ) n∈N converges weakly in

W 1,2 loc (Ω \ {a 1 , . . . , a k }, R ν ) to some limit u 0 ∈ W 1,2 loc (Ω \ {a 1 , . . . , a k }, N ).
Step 5. u 0 is harmonic minimizing. By the lower bound of Proposition 7.10, the upper bound Proposition 6.2 and by minimality of the energy of each map u εn , we deduce that

G ren (u 0 ) + Q F (u 0 ) ≤ G ren (u) + Q F (u)
for every every renormalizable map u ∈ W 1,2 ren (Ω, N ). In particular, for every ρ ∈ ρ(a 1 , . . . , a k ), if the map u ∈ W 1,2 loc ( Ω \ {a 1 , . . . , a k }, N ) satis es u = γ 0 on ∂Ω and u = u 0 in B ρ (a i ) for each i ∈ {1, . . . , k} then

Q F a i (u) = Q F a i (u 0 ) and Ω\ k i=1 Bρ(a i ) |Du| 2 2 = Ω\ k i=1 Bρ(a i ) |Du 0 | 2 2 G ren (u) -G ren (u 0 ) ≥ Ω\ k i=1 Bρ(a i ) |Du 0 | 2 2 . ≥ 0.
Therefore, u 0 is harmonic minimizing in Ω\ k i=1 Bρ (a i ) with respect to its own boundary conditions and, in particular, u 0 ∈ C ∞ (Ω \ {a 1 , . . . , a k }, N ) by the result of [START_REF] Morrey | The problem of Plateau on a Riemannian manifold[END_REF].

Step 6. Minimality of geometric singularities ((a 1 , γ 1 ), . . . , (a k , γ k )). By Proposition 4.2 (iv) and by (??), we have

G geom γ 0 ,γ 1 ,...,γ (a 1 , . . . , a k ) + k i=1 Q F γ i ≤ G ren (u 0 ) + Q F a i (u 0 );
the desired minimality property (iv) follows from the lower bound (??) and the geometric upper bound (??)-(8.2).

8.2.

The Gamma-convergence setting.

Proposition 8.1 (Compactness). Let γ 0 ∈ W 1/2,2 (∂Ω, N ), (ε n ) n∈N be a sequence of positive numbers converging to 0 and assume that F : R ν → R + satis es the zero order non degeneracy condition (H

(0)
2 ) and (H 3 ). Then every sequence

(u n ) n∈N ⊂ W 1,2 γ 0 (Ω, R ν ) such that sup n∈N E εn (u n ) -E sg (γ 0 ) log 1 ε n < +∞ is relatively compact in L p (Ω, R ν ) for every p ∈ [1, +∞).
Proof. By the compactness result Proposition 7.10, we already know that there exists a measurable map u : Ω → N such that (u n ) n∈N tends to u almost everywhere. We de ne the projection π R : R ν → BR by

π R (z) = z if |z| ≤ R, Rz |z| if |z| > R.
By assumption, we have for every n ∈ N,

E εn (u n ) ≥ E εn (π R • u n ) + {|un|>R} |Du n | 2 2 - |D(π R • u n )| 2 2 ≥ E εn (π R • u n ) + {|un|>R} |D(|u n |)| 2 2 .
By applying the lower bound established in the previous sections to the map π R • u n ∈ W 1,2 γ 0 (Ω, R ν ) and the energy bound assumed on (u n ) n∈N , we deduce that (8.3) sup

n∈N Ω |D(|u n | -R) + | 2 2 < +∞,
where we have introduced the map

(|u n | -R) + := sup{|u n | -R; 0}, which satis es D(|u n | - R) + = D(|u n |) if |u n | > R and D(|u n | -R) + = 0 if |u n | ≤ R.
We deduce that the sequence

((|u n | -R) + ) n∈N is bounded in W 1,2 0 (Ω) and thus compact in L p (Ω) (note that (|u n | -R) + = (|γ 0 | -R) + = 0 on ∂Ω since N ⊂ BR ). Hence, ((|u n | -R) + ) n∈N → (|u| -R) + = 0 in L p (Ω).
We shall deduce that (u n ) n∈N → u in L p (Ω). Indeed, we have

|u n -u| ≤ |u n -u|1 {|un|≤2R+ u L ∞ } + |u n -u|1 {|un|>2R+ u L ∞ } .
By dominated convergence, the rst term of the right hand side goed to 0 in L p (Ω) as n → ∞. For the second term, we observe that for every

x ∈ Ω with |u n (x)| > 2R + u L ∞ , we have |u n -u| ≤ |u n | + |u| = 2(|u n | -R) + + 2R + |u| -|u n | ≤ 2(|u n | -R) + ,
and the last term goes to 0 in L p (Ω) as n → ∞.

For each p ∈ [1, +∞), γ 0 ∈ W 1/2,2 (∂Ω, N ) and ε ∈ (0, +∞), we de ne

E p,γ 0 ε on L p (Ω, R ν ) by setting E p,γ 0 ε (u) = Ω |Du| 2 2 + F (u) ε 2 -E sg (γ 0 ) log 1 ε if u ∈ W 1,2 γ 0 (Ω, R ν ); +∞ otherwise.
We also de ne the limit functional E p,γ 0 0 on L p (Ω, R ν ) by setting

(8.4) E p,γ 0 0 (u) = G ren (u) + Q F a (u) if u(x) ∈ N a.e.
, u = γ 0 on ∂Ω and u : Ω → N is renormalizable, and

E p,γ 0 0 (u) = +∞ otherwise. Proposition 8.2 (Γ-convergence). The sequence of functionals (E p,γ 0 ε ) ε>0 Γ-converges to E p,γ 0 0 in the L p (Ω, R ν )
strong topology as ε → 0, that is, for every sequence of positive numbers (ε n ) n∈N → 0, we have the two following properties:

• (lower bound) for every u ∈ L p (Ω, R ν ) and every sequence

(u n ) n∈N → u in L p (Ω, R ν ), E p,γ 0 0 (u) ≤ lim inf n→∞ E p,γ 0 εn (u n ), • (upper bound) for every u ∈ L p (Ω, R ν ), there exists (u n ) n∈N → u in L p (Ω, R ν ) such that E p,γ 0 0 (u) ≥ lim sup n→∞ E p,γ 0 εn (u n ).
Proof. In proving the lower bound, we can assume that (E p,γ 0 εn (u n )) n∈N is bounded so that the desired inequality follows from the compactness result Proposition 7.10 and lower bound Lemma 7.3.

The upper bound follows from the upper bound Proposition 6.2 and the L p -compactness result we have just proved, Proposition 8.1. 9. I Proposition 9.1. If (ε n ) n∈N is a sequence converging to 0 and if for every n ∈ N, u n ∈ W 1,2 (Ω, R ν ) is a solution to the Ginzburg-Landau equation (1.8) and tr ∂Ω u n = γ 0 ∈ W 1/2,2 (∂Ω, N ). If a ∈ Ω and ρ > 0 are such that

lim n→∞ 1 ε 2 n Ω∩B(a,ρ) F (u n ) = 0, then lim n→∞ dist(u n , N ) L ∞ (Ω∩B(a,ρ)) = 0.
The next lemma states that harmonic functions tend uniformly to the set of boundary data.

Lemma 9.2. If Ω has a Lipschitz boundary and if v ∈ W 1,2 (Ω, R ν ), -∆v = 0 in Ω, then lim x→∂Ω dist(v(x), v(∂Ω)) = 0.
Lemma 9.2 follows from the corresponding property for harmonic extensions of functions of vanishing mean oscillation (VMO) [START_REF] Theory | II: Compact manifolds with boundaries, with an appendix by the authors and Petru Mironescu[END_REF]Theorem A3.2] and the embedding of W 1/2,2 (∂Ω) in VMO (see [START_REF] Berlyand | Minimax critical points in Ginzburg-Landau problems with semi-sti boundary conditions: existence and bubbling[END_REF]Lemma 2.12] for N = S 1 ). We give a direct proof in W 1,2 (Ω).

Proof. Since v is harmonic, for every x ∈ Ω, if r = dist(x, ∂Ω), we have by the mean value property for harmonic functions

: J'ai changé 2 en 1/πr 2 : J'ai changé 2 en 1/πr 2 v(x) = 1 πr 2 B(x,r) v.
Hence, by the triangle inequality and by Jensen's inequality,

dist(v(x), v(∂Ω)) ≤ 1 πr 2 B(x,r) dist(v(x), v(∂Ω)) ≤ 1 πr 2 B(x,2r)∩Ω dist(v(x), v(∂Ω)) 2 1 2
.

Since the set Ω has a Lipschitz boundary, we have

B(x,2r)∩Ω dist(v(x), v(∂Ω)) 2 ≤ C 1 r 2 B(x,2r)∩Ω |Dv| 2 .
The conclusion then follows from Lebesgue's dominated convergence theorem.

: On doit supposer schitz alors? Je compas la démonstra-: On doit supposer schitz alors? Je compas la démonstra-

Lemma 9.3. If w ∈ W 1,2 (B(a, ρ)), then w L ∞ (B(a,ρ)) ≤ C( Dw L ∞ (B(a,ρ)) + 1 ρ ) 1/2 B(a,ρ) |w| 2 1/4 .
Proof. We observe that for every y ∈ B(a, ρ),

|w(y)| ≥ (|w(x)| -Dw L ∞ (B(a,ρ)) |y -x|) + ,
and thus

B(a,ρ) w 2 ≥ B(a,ρ) (|w(x)| -Dw L ∞ (B(a,ρ)) |y -x|) 2 + . Hence if ρ Dw L ∞ (B(a,ρ)) ≥ |w(x)|, B(a,ρ) w 2 ≥ C 2 |w(x)| 4 Dw 2 L ∞ (B(a,ρ))
, for some constant C 2 > 0. Otherwise, we have

B(a,ρ) w 2 ≥ C 3 |w(x) 4 |, for some constant C 3 > 0.
Proof of Proposition 9.1. Let v be a solution to the Dirichlet problem

-∆v = 0 in Ω, v = γ 0 on ∂Ω.
We de ne the function w n := u n -v, which satis es by assumption on u n and by construction of v,

     -∆w n = f (u n ) ε 2 n in Ω, w n = 0 on ∂Ω.
By classical elliptic estimates, we have

Dw n L ∞ (Ω) ≤ C 1 ( w n L ∞ (Ω) + ∆w n L ∞ (Ω) ) 1/2 w n 1/2 L ∞ (Ω) ≤ C 2 ε n . (9.1)
Let now δ > 0. By Lemma 9.2, there exists r > 0,

such that if dist(x, ∂Ω) ≤ r, dist(v(x), N ) ≤ δ/2. If moreover dist(x, ∂Ω) ≤ ε n δ/(2C 2 ), then we have |w n (x)| ≤ δ/2 and thus dist(u n (x), N ) ≤ δ.
On the other hand, if dist(x, ∂Ω) > ε n δ/(2C 2 ), we have then by classical estimates on harmonic extensions

|Dv(x)| ≤ C 3 ε n δ ,
and thus

|Du n (x)| ≤ C 4 ε n min(δ, 1)
.

Hence, we have by Lemma 9.3, in view of the assumption on F and by (9.1),

dist(u n , N ) ≤ C 5 Du n 1/2 L ∞ (B(a,ρ)∩Ω) Ω dist(u n , N ) 2 1/4 ≤ C 6 1 ε 2 n Ω∩B(a,ρ/2) F (u n ) 1/4
Up to now for a sequence of minimizers (u ε ) ε of E ε we have the existence of k singularities a 1 , . . . , a k and of a limiting map u 0 ∈ W 1,2 loc (Ω \ {a 1 , . . . , a k }, N ) such that, up to a subsequence u ε u 0 in W 1,2 (Ω \ {a 1 , . . . , a k }, N ). Our goal in this section is to improve this weak convergence in strong convergence away from the singularities. We also obtain strong convergence in C 0 away from the singularities and up to the boundary. Then, under a supplementary hypothesis on the potential F we prove C 1,α convergence for every 0 < α < 1.

Once we have obtained the strong convergence in W 1,2 loc (Ω \ {a 1 , . . . , a k }), to prove the convergence in C 0 (Ω \ {a 1 , . . . , a k }) we use that the limit map is smooth outside the singularities and a result which gives us a uniform gradient bound of a sequence of solutions on a ball if we assume that the energy of the sequence is uniformly small enough in a bigger ball. This is the content of the next proposition:

Proposition 9.4. Let γ 0 ∈ C 2 (∂Ω, N ). There exist ε 0 > 0, η 0 > 0 and C = C(F, Ω, γ 0 ) > 0 such that for every 0 < ε < ε 0 , every 0 < r < 1 and every x 0 ∈ Ω, any solution u ∈ C 7 C ∞ (Ω, R ν ) ∩ C 2 ( Ω, R ν ) of (1.8) with tr ∂Ω u = γ 0 with (9.2) E := E ε (u, B 2r (x 0 )) = Ω∩B 2r (x 0 ) |Du ε | 2 2 + F (u ε ) ≤ η 0 ,
satis es

(9.3) r 2 sup B r/2 |Du ε | 2 2 + F (u ε ) ≤ C(E + r 2 ).
This proposition was proved in [START_REF] Contreras | On the convergence of minimizers of singular perturbation functionals[END_REF] in dimension n ≥ 3 but the proof is the same for n = 2. It relies on the fact that the information (9.2) allows us to deduce that dist(u ε , N ) is small when ε is small and if dist(u ε , N ) < δ for some δ > 0 then a Böchner-type formula holds -∆e ε (u) ≤ Ce ε (u) 2 if u is a solution of (1.8). It also relies on boundary elliptic estimates on the gradient. We point out that in the proof of this proposition 9.4 we use that we work with uniformly bounded solutions in L ∞ and thus the assumption (H 3 ) is used. In [START_REF] Canevari | Biaxiality in the asymptotic analysis of a 2D Landau-de Gennes model for liquid crystals[END_REF], to prove the uniform convergence of a subsequence u ε → u 0 in C 0 (Ω \ {a 1 , . . . , a k }), the author uses a result of Chen-Struwe analogous to the above proposition [START_REF] Chen | Existence and partial regularity results for the heat ow for harmonic maps[END_REF]Lemma 2.4]. However since we want to prove uniform convergence up to the boundary we need proposition 9.4. From this proposition we can obtain:

Proposition 9.5. Let γ 0 ∈ C 2 (∂Ω, N ). Let u ε be a sequence of solutions to (1.8) with tr ∂Ω u ε = γ 0 ∈ C 2 (∂Ω, N ) and u ε ∈ C ∞ (Ω, R ν ) ∩ C 2 ( Ω, R ν ). We assume that there exist k ∈ N, a 1 , . . . , a k ∈ Ω and a harmonic map u 0 ∈ C ∞ (Ω \ {a 1 , . . . , a k }, N ) ∩ C 2 (Ω \ {a 1 , . . . , a k }, N )such that (9.4) u ε → u 0 in W 1,2 loc (Ω \ {a 1 , . . . , a k }). Then (9.5) sup K |∇u ε | ≤ C(K)
for any K compact set such that K ⊂ Ω \ {a 1 , . . . , a k }. Thus the convergence holds strongly in C 0,α loc (Ω \ {a 1 , . . . , a k }) for all 0 < α < 1.

Proof. Let K ⊂ Ω \ {a 1 , . . . , a k }. Since u 0 is in W 1,2 loc ( Ω \ {a 1 , .
. . , a k }, N ) for every x ∈ K we can nd r x such that Ω∩Br x (x) |Du 0 | 2 < η 0 /2 with η 0 as in Proposition 9.4. Now, from ??, since

u ε → u in W 1,2 loc (K) and 1 ε 2 K F (u ε ) → 0,
we can nd ε 0 (x) > 0 such that for all 0 < ε < ε 0 we have (9.6)

Br x (x)∩Ω e ε (u ε ) < η 0 .
By applying Proposition 9.4 we obtain sup B rx/4 (x) |Du ε | ≤ C for 0 < ε < ε 0 (x). By using the compactness of K we obtain (9.5).We can now use the Arzela-Ascoli theorem to obtain that, up to a subsequence, u ε converges uniformly to u 0 in K.

For the Ginzburg-Landau equations or the Landau-de-Gennes equations the convergence can still be improved in a C 1,α (Ω \ {a 1 , . . . , a k }) convergence for every 0 < α < 1. This is due to the special form of the potential. The strategy is to bound 1 ε 2 |∇F (u ε )| uniformly and then to use the Euler-Lagrange equations (1.8) and elliptic estimates to obtain the convergence in W 2,p loc (Ω \ {a 1 , . . . , a k }) and thus in C 1,α loc (Ω \ {a 1 , . . . , a k }). Proposition 9.6. Let u ε , u 0 , k, a 1 , . . . , a k as in Proposition 9.5. Then

u ε → u 0 in W 2,p
loc (Ω \ {a 1 , . . . , a k }) for every 1 ≤ p < +∞ and the convergence also holds in C 1,α loc (Ω \ {a 1 , . . . , a k }) for any 0 < α < 1. We start with the following intermediate result:

Lemma 9.7. Let F : R ν → R + which satis es (H 1 )-(H 2 ). There exists δ > 0 such that if u ∈ C 2 (Ω, R ν ) with dist(u, N ) < δ then there exists C > 0 such that (9.7) ∇F (u) • D 2 F (u).∇F (u) ≥ C dist(u, N ) 2 .
Proof. First we note that if δ is small enough and dist(u, N ) < δ then the nearest-point projection Π N (u) is well-de ned and we have dist(u, N ) = |u -Π N (u)|. By using Taylor's formula with integral remainder and the compactness of N we have

(9.8) ∇F (u) = ∇F (Π N (u)) + D 2 F (Π N (u))(u -Π N (u)) + O(δ 2 ), (9.9) D 2 F (u) = D 2 F (Π N (u)) + O(δ).
We point out that the rst equation means that

∇F (u) -∇F (Π N (u)) + D 2 F (Π N (u))(u - Π N (u)) L ∞ (Ω) ≤ Cδ 2 and the second D 2 F (u)-D 2 F (Π N (u)) L ∞ (Ω) ≤ Cδ. But ∇F (Π N (u)) = 0 since Π N (u) ∈ N
and F attains its minimum on N . We thus obtain (9.10)

∇F (u)•D 2 F (u).∇F (u) = D 2 F (Π N (u))(u-Π N (u))•D 2 F (Π N (u)).D 2 F (Π N (u))(u-Π N (u))+O(δ 2 ).
We note that, since

D 2 F (Π N (u)) is auto-adjoint and since D 2 F (Π N (u)).v = 0 for all v ∈ T Π N (u) N we have that D 2 F (Π N (u))(u -Π N (u)) ∈ T ⊥ Π N (u) N . Indeed D 2 F (Π N (u))(u -Π N (u)) • v = u -Π N (u) • D 2 F (Π N (u))v = 0 for all v ∈ T Π N (u) N .
Thus by using (H 2 ) and the compactness of N we nd that there exists C > 0 such that (9.11)

D 2 F (Π N (u))(u -Π N (u)) • D 2 F (Π N (u)).D 2 F (Π N (u))(u -Π N (u)) ≥ C > 0.
By using (9.10) and (9.11) and by choosing δ small enough we obtain the conclusion.

Proof. Let R > 0 we work in a ball B R (x 0 ) ⊂ Ω \ {a 1 , . . . , a k }. Thanks to Proposition 9.5 we have u ε → u 0 in C 0 loc (Ω \ {a 1 , . . . , a k }), thus we can assume that, for ε small enough we have dist(u ε , N ) ≤ δ with δ > 0 small enough and thus, from Lemma 9.7

D 2 F (u ε ).∇F (u ε ) • ∇F (u ε ) ≥ C|u ε -Π N (u ε )| 2 in B R (x 0 ). We set Y ε := |∇F (u ε )| 2 =: g(u ε ) where g(x) := |∇F (x)| 2 . A direct computation shows that (9.12) ∆Y ε = ν j=1 ∂ j g(u ε )∆u j ε + ∂ x u ε • D 2 g(u ε ).∂ x u ε + ∂ y u ε • D 2 g(u ε ).∂ y u ε .
By using the Euler-Lagrange equations (1.8) we nd that (9.13)

∂ j g(u ε )∆u j ε = 1 ε 2 ∂ j g(u ε )∂ j F (u ε ). But g(x) = |∇F (x)| 2 and thus ∂ j g(x) = 2 ν l=1 ∂ 2 jl F (x)∂ l F (x)
. This implies that (9.14)

∂ j g(u ε )∆u j ε = 2 ε 2 ν =1 ∂ j F (u ε )∂ 2 jl F (u ε )∂ F (u ε ),
and

ν j=1 ∂ j g(u ε )∆u j ε = 2 ε 2 ν =1 ∂ j F (u ε )∂ 2 jl F (u ε )∂ F (u ε ) = 2 ε 2 D 2 F (u ε ).∇F (u ε ) • ∇F (u ε ) ≥ C ε 2 |u ε -Π N (u ε )| 2 ≥ C ε 2 Y ε . On the other hand, ∂ x u ε .D 2 g(u ε ).∂ x u ε = ∂ x u ε .D 2 g(Π N (u ε )).∂ x u ε + ∂ x u ε .D D 2 g(Π N (u ε )) .(u ε -Π N (u ε )).∂ x u ε + c ε |∂ x u ε | 2 |u ε -Π N (u ε )|,
for some c ε → 0 as ε → 0. Now we use inequality (9.5) in proposition 9.5 to obtain

∂ x u ε .D 2 g(u ε ).∂ x u ε ≥ ∂ x u ε .D 2 g(Π N (u ε )).∂ x u ε -C|u ε -π(u ε )|.
But since g vanishes on N , it achieves its minimum on N and thus on

Π N (u ε ). Hence D 2 g(Π N (u ε )) ≥ 0. Thus ∂ x u ε .D 2 g(u ε ).∂ x u ε ≥ -C|u ε -Π N (u ε )| ≥ -C Y ε . Here we have used that 1 C |u ε -Π N (u ε )| ≤ |∇F (u ε )| ≤ C|u ε -Π N (u ε )|
for some C > 0, and for ε > small enough. We can estimate ∂ y u ε .D 2 g(u ε ).∂ y u ε and hence Y ε satis es

∆Y ε ≥ C Y ε ε 2 -C Y ε .
By using that u ε is uniformly bounded thanks to assumption (H 3 ) and the smoothness of

F we have that √ Y ε ≤ C. Thus Y ε satis es (9.15) -ε 2 ∆Y ε + CY ε ≤ Cε 2 in B R (x 0 ) ∩ Ω Y ε = 0 on B R (x 0 ) ∩ ∂Ω.
Note that the boundary condition holds because u ε ∈ N on ∂Ω and if B R (x 0 ) ∩ ∂Ω = ∅ then this condition is empty. By using, Lemma 6 and Lemma 7 in [START_REF] Nguyen | Re ned approximation for minimizers of a Landau-de Gennes energy functional[END_REF], we can prove that

|Y ε | ≤ Cε 2 in B R/2 (x 0 ) ∩ Ω. Thus we nd that (9.16) |∆u ε | ≤ C in B R/2 (x 0 ) ∩ Ω.
By elliptic estimates we obtain that u ε is bounded in W 2,p loc (B R/2 (x 0 ) ∩ Ω) for every 1 ≤ p < +∞. The Sobolev injections allow us to say that, up to a subsequence, u ε → u 0 in C 1,α (B R/2 ∩ Ω) for every 0 < α < 1 and this concludes the proof.

We note that the C 1,α convergence is the best we can hope for if we consider convergence up to the boundary, cf. Remark 1 in [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF]. However it is natural to address the question of higher convergence in the interior of Ω away from the singularities. Since this relies on a bootstrap argument such a result is not easy to obtain for general potential F and should be rather address for speci c F . We refer to [START_REF] Bethuel | Ginzburg-Landau vortices[END_REF] and [START_REF] Nguyen | Re ned approximation for minimizers of a Landau-de Gennes energy functional[END_REF] for results in this direction in the Ginzburg-Landau and Landau-de-Gennes models.

10. B 10.1. Local behavior of geodesics under non degeneracy conditions. Up to now, we know that if (u ε ) ε>0 is a family of minimizers of the Ginzburg-Landau functional, then there is a sequence (ε n ) n∈N → 0 such that (u εn ) n∈N u 0 , with u 0 which is renormalizable and harmonic out of k ∈ N points a 1 , . . . , a k (see Theorem 8.1). Moreover, by Proposition 4.2, we know that there exist minimizing geodesics γ 1 , . . . , γ k and a sequence of positive radii (ρ ) ∈N → 0 such that

u 0 (a i + ρ •) → γ i in C 0 (S 1 , N ) as → ∞ for each i ∈ {1, . . . , k}.
We now address the problem of the convergence of the whole family (c ρ ) ρ>0 where c ρ : s ∈ S 1 → u 0 (a i + ρs). It was mentioned as an open problem in [START_REF] Canevari | Biaxiality in the asymptotic analysis of a 2D Landau-de Gennes model for liquid crystals[END_REF].

To this aim, we will use in a crucial way the fact that, by Theorem 8.1, u 0 minimizes G ren (u)

among maps u ∈ W 1,2 loc (Ω \ {a 1 , . . . , a k }, N ) such that u(a i + ρ•) is homotopic to γ i for ρ > 0 small enough. This implies that if σ > 0 is small enough, then u 0 | Bσ(a i ) minimizes G ren (u) among maps u ∈ W 1,2 loc (B σ (a i ) \ {a i }, N ) with u = u 0 on ∂B σ (a i ).
Then it su ces to show that such a minimizer u satis es that u(a i + ρ•) → z i in L ∞ (S 1 , N ) as ρ → 0 for some energy minimizing geodesic z i homotopic to γ i .

We now introduce some notations. Let γ 0 : S 1 → N be a loop in N . We denote by E the Dirichlet energy of a loop:

(10.1) E(z) := S 1 |z (s)| 2 2 ds, z ∈ W 1,2 (S 1 , N ).
We denote by Σ(γ 0 ) the set of all minimizers of E among loops homotopic to γ 0 . Every map z 0 ∈ Σ(γ 0 ) has constant speed and satis es that E(z 0 ) = λ(γ 0 ) 2 4π .

Theorem 10.1. Let γ 0 ∈ C 1 (S 1 , N ) and assume that:

(H) there exist η, c > 0 such that for every z ∈ W 1,2 (S 1 , N ) with dist L ∞ (z, Σ(γ 0 )) < η, E(z) ≥ λ(γ 0 ) 2 4π + c dist L ∞ (z, Σ(z 0 )) 2 ,
and that a map

u ∈ W 1,2 loc ( Bσ \ {0}, N ) solves min G ren (u, B σ ) : u(σs) = γ 0 (s) for every s ∈ S 1 .
Then there exists a minimizing geodesic z 0 in the homotopy class of γ 0 such that

lim ρ→0 u(ρ •) -z 0 L 2 (S 1 ,N ) = 0.
ANTONIN : A priori je ne sais pas comment montrer que la convergence est uniforme, et je n'en suis pas sûr (il y avait une erreur dans la version précédente). Peut-être qu'on peut montrer que l'énergie de u(ρ•) (à savoir K(u(ρ•))) est bornée. En tous cas il faut montrer la compacité pour la convergence uniforme. Le théorème donne seulement l'unicité de la limite.

Remark 4. The inequality in (H) can be weakened in

E(z) ≥ λ(γ 0 ) 2 4π + c dist L ∞ (z, Σ(z 0 )) ν , with 0 < ν < 4.
We rst reformulate the problem of minimizing G ren in more geometric terms. We rst use the conformal change of variables (t, s) → exp(t + is), writing

v(t, s) := u(exp(t)s), t ∈ (-∞, log σ), s ∈ S 1 ∂B 1 .
to see that for every ρ ∈ [0, σ), one has Bσ\Bρ |∇u| 2 2

λ(γ 0 ) 2 4π log σ ρ = log σ log ρ S 1 |∇v| 2 2 ds dt - λ(γ 0 ) 2 4π log σ ρ = log σ log ρ 1 2 ∂v ∂t 2 L 2 (S 1 ) + E(v(t, •)) - λ(γ 0 ) 2 4π dt
For every z ∈ L 2 (S 1 , N ), we introduce the weight function

K(z) =    2E(z) -λ(γ 0 ) 2 2π if z ∈ W 1,2 (S 1 , N ) is homotopic to γ 0 , +∞ otherwise.
Since λ(γ 0 ) 2 4π is the minimal value of E in the homotopy class of γ 0 , the map K : L 2 (S 1 , N ) → [0, +∞] is well de ned, and it vanishes only for minimizing geodesics in the homotopy class of γ 0 . Moreover,

K is lower semicontinuous in (L 2 (S 1 , N ), d L 2 ) and the sublevel sets {K ≤ c} are compact in C 0 (S 1 , N ) by the Ascoli theorem. Now, if u ∈ W 1,2 loc (B σ \ {0}, N ) with u(σ •) = γ 0 , then the L 2 -curve v : t ∈ (-∞, log σ] → v(t) := v(t, •) ∈ L 2 (S 1 , N ) is locally 1/2-Hölder in (-∞, log σ] since for every σ ∈ (0, σ) and t 1 , t 2 ∈ R with log σ ≤ t 1 ≤ t 2 ≤ log σ, one has (10.2) v(t 2 ) -v(t 1 ) 2 L 2 (S 1 ) = S 1 t 2 t 1 ∂ ∂t v(t, s) dt 2 ds ≤ ∇u 2 L 2 (Bσ\B σ ) √ t 2 -t 1 .
Moreover v(t) remains in the homotopy class of γ 0 at any time t ∈ (-∞, log σ] since W 1,2 -maps preserve the homotopy. Thus, for ρ = 0, the previous computations yield

(10.3) G ren (u, B σ ) = log σ -∞ 1 2 ∂v ∂t 2 L 2 (S 1 ) + 1 2 K(v(t)) 2 dt =: E K (v, (-∞, log σ]).
Thus, minimizing G ren among maps in W 1,2 loc (B σ \ {0}, N ) with a boundary condition given by γ 0 at ∂B σ is the same as minimizing E K among curves in L 2 (S 1 , N ) de ned on (-∞, log σ] and ending at γ 0 . Of course, up to replace v with v(log σ -•), one can restrict our attention to curve de ned on [0, +∞) starting at γ 0 . Thus, Theorem 10.1 will follow from the following:

Proposition 10.1. Under the assumption (H), if v ∈ W 1,2 loc (R + × S 1 , N ) and if the L 2 -curve v : t ∈ [0, +∞) → v(t) := v(t, •) ∈ L 2 (S 1 , N ) minimizes E K under the constraint v(0) = γ 0 , then it has nite L 2 -length, i.e. +∞ 0 ∂v ∂t L 2 (S 1 ) dt < +∞;
in particular, v has a limit in L 2 (S 1 , N ) at +∞. Remark 5. Under the assumption of Proposition 10.1, one has E K (γ, [0, +∞)) < +∞ and so K(γ(•)) ∈ L 2 ([0, +∞)). Thus, we already get for free that (γ(t n )) n converges uniformly to some z 0 ∈ Σ(γ 0 ) for a sequence (t n ) n∈N → +∞; but we do not know for now whether the limit is unique.

We will use the easy estimate E K (v, I) ≥ L K (v, I), where

L K (v, I) := I K(v(t)) ∂v ∂t L 2 (S 1 ) dt, v : I → L 2 (S 1
, N ) absolutely continuous; the advantage of L K is that it is invariant under re-parametrization, so that the choice of the interval I ⊂ R is not relevant. We also introduce the distance induced by K on L 2 (S 1 , N ):

d K (z 1 , z 2 ) := inf L K (v, [0, 1]) : v(0) = z 1 , v(1) = z 2 .
Lemma 10.2. There exist constants C > 0 and η > 0 depending on N and γ 0 :

S 1 → N only such that for every z ∈ L 2 (S 1 , N ) with d L ∞ (z, Σ(γ 0 )) < η, one has d K (z, Σ(γ 0 )) ≤ Cd L ∞ (z, Σ(γ 0 )) K(z) + z L 2 d L ∞ (z, Σ(γ 0 ) .
Proof. There exists δ > 0 such that if we set dist N = dist(•, N ), then the nearest point projection Π : {x ∈ R ν : dist N (x) < δ} → N is well de ned, smooth and satis es

|D dist N | 2 + 1 - dist N δ 2 |DΠ| 2 ≤ 1.
In particular, we have

|DΠ| ≤ 1 -dist N δ -1 ≤ 1 + C dist N for some constant C > 0. Now, we assume that η < δ/2, we take z 0 ∈ Σ(γ 0 ) such that z -z 0 L ∞ ≤ 2d L ∞ (z, Σ(γ 0 )) < δ, and we de ne v(t) = Π • (tz 0 + (1 -t)z) for every t ∈ [0, 1]. For every t ∈ [0, 1], s ∈ S 1 , we have |DΠ|(tz 0 (s) + (1 -t)z(s)) ≤ 1 + C dist N (tz 0 (s) + (1 -t)z(s))) ≤ 1 + C |z(s) -z 0 (s)| 2 ;
we deduce

E(v(t)) ≤ S 1 1 + C |z(s) -z 0 (s)| 2 2 |tz 0 (s) + (1 -t)z (s)| 2 ds ≤ 1 + C z -z 0 2 L ∞ (S 1 ) 2 tE(z 0 ) + (1 -t)E(z) ≤ 1 + C z -z 0 2 L ∞ (S 1 ) tE(z 0 ) + (1 -t)E(z) ,
where we have used the uniform boundedness of z -z 0 L ∞ . Now, since z 0 ∈ Σ(γ 0 ), we have

E(z 0 ) = λ(γ 0 ) 2 2π ≤ E(z) and K(v(t)) 2 = E(v(t)) -E(z 0 ) ≤ 1 + C z -z 0 2 L ∞ (S 1 ) tE(z 0 ) + (1 -t)E(z) -E(z 0 ) = (1 -t)(E(z) -E(z 0 )) + C z -z 0 2 L ∞ (S 1 ) tE(z 0 ) + (1 -t)E(z) ≤ K(z) 2 + 2C z -z 0 2 L ∞ (S 1 ) E(z).
We now estimate the metric derivative of the curve v, i.e. ∂v ∂t

L 2 (S 1 ) ≤ 1 + C z -z 0 2 L ∞ (S 1 ) z -z 0 L 2 (S 1 ) ≤ C z -z 0 L ∞ (S 1 )
.

Finally, we have

d K (z, Σ(γ 0 )) ≤ L K (v, [0, 1]) = 1 0 K(v(t)) ∂v ∂t L 2 (S 1 ) dt ≤ C z -z 0 L ∞ (S 1 ) K(z) + √ 2C z -z 0 L ∞ (S 1 ) E(z) 1/2 . Since z -z 0 L ∞ (S 1 ) ≤ 2d L ∞ (S 1 ) (z, Σ(γ 0 )), we deduce the claim.
It is standard that minimizing E K amounts to minimizing L K ; due to the in nite dimensional setting, we state this result in the following lemma:

Lemma 10.3. One has inf E K (v, [0, +∞)) : v ∈ AC([0, +∞), L 2 (S 1 , N )), v(0) = γ 0 = inf L K (v, [0, +∞]) : v ∈ AC([0, +∞], L 2 (S 1 , N )), v(0) = γ 0 , v(+∞) ∈ Σ(γ 0 ) ,
where AC(I, L 2 (S 1 , N )) is the set of absolute continuous curves de ned on the interval I and valued in (L 2 (S 1 , N ), d L 2 ). Moreover, if v is a minimizer of the rst in mum then it is a minimizer of the second in mum.

Lemma 10.4. If Φ : [0, +∞) → [0, +∞) is a continuous and increasing function such that Φ(0) = 0 and its inverse function Φ -1 is integrable near 0, and if f : [0, +∞) → [0, +∞) is integrable, then there exists t ∈ [0, +∞) such that

+∞ t f (s) ds ≥ Φ(f (t)).
Je ne sais si on peut/doit ecrire le lemme avec Φ -1 , qui n'est pe pas de nie partout. En plus la fonction qui apparait dans l'estimation clef, c'est bien Φ, pas son inverse.

Par ailleurs, cela me semble plus clair d'ecrire le lemme avec un Φ general plutot qu'avec x α , a n de voir le role des hypotheses et de Φ -1 dans la preuve.

Proof. If the conclusion of the lemma fails to be true then

F (t) < Φ(-F (t)), where F (t) := +∞ t f (s) ds for almost every t ∈ [0, +∞).
Since Φ is increasing and Φ(0) = 0, we deduce that F (t) ∈ Im(Φ) and

1 < -F (t) Φ -1 (F (t))
for almost every t ∈ [0, +∞).

Integrating over [0, +∞) thus yields

+∞ = F (0) 0 dy Φ -1 (y)
which is a contradiction with the integrability of Φ -1 .

Proof of Proposition 10.1. Step 1. One can assume that K(v(t)) > 0 for every t ∈ [0, +∞). Indeed, if there exists t 0 ∈ [0, +∞) such that K(v(t 0 )) = 0, then, the minimality of v implies that v| [t 0 ,+∞) has no more energy that the curve constant equal to v(t 0 ), i.e. E K (v| [t 0 ,+∞) ) = 0. This means that

v| [t 0 ,+∞) is constant; in particular +∞ 0 ∂v ∂t L 2 (S 1 ) = t 0 0 ∂v ∂t L 2 (S 1 ) < +∞.
Step 2. Arc length parametrization of the curve v. If v : [0, +∞) minimizes E K under the constraint v(0) = γ 0 then, by Lemma 10.3, it also minimizes the L K -length between γ 0 and Σ(γ 0 ). Let us de ne its L 2 arc-length re-parametrization The L 2 -curve t ∈ [0, L] → w(t) := w(t, •) ∈ L 2 (S 1 , N ) has unit speed, i.e. ∂w ∂t L 2 (S 1 ) = 1 a.e. and it still minimizes the L K -length between γ 0 and Σ(γ 0 ) since L K is invariant by re-parametrization.

w : [0, L] × S 1 → N , L := +∞ 0 ∂v ∂t L 2 (S
Step 3. We prove that L = +∞ 0 ∂v ∂t L 2 (S 1 ) dt < +∞. Assume by contradiction that L = +∞, then w is de ned on [0, +∞). We apply Lemma 10.4 to Φ(y) = y 1+α for some α ∈ (0, 1) and f (t) = K(w(t + n)) for every n ∈ N; we obtain a sequence of instants (t n ) n∈N → +∞ such that

L K (w, [t n , +∞)) = +∞ tn K(w(t)) dt ≥ K(w(t n )) 1+α .
In particular, K(w(t n )) tends to 0 as n → +∞ so that there exists z 0 ∈ Σ(γ 0 ) such that

lim n→+∞ w(t n ) = z 0 in L ∞ (S 1 , N ).
Then we use Lemma 10.2 and the optimality of w to see

L K (w, [t n , +∞)) ≤ Cd L ∞ (w(t n ), Σ(γ 0 )) K(w(t n )) + ∂ ∂s w(t n , •) L 2 (S 1 ) d L ∞ (w(t n ), Σ(γ 0 )) .
From the two preceding inequalities, and the fact that (w(t n )) n∈N is bounded in W 1,2 (S 1 , N ), we deduce

(10.4) K(w(t n )) 1+α ≤ Cd L ∞ (w(t n ), Σ(γ 0 )) K(w(t n )) + d L ∞ (w(t n ), Σ(γ 0 )) .
We then use the main assumption (H), which yields

K(w(t n ))) ≥ c d L ∞ (w(t n ), Σ(γ 0 ))
for n large enough, with c > 0.

We deduce from (10.4) that

K(w(t n ))) α ≤ C c (1 + 1 c )K(w(t n ))
which is a contradiction with the fact that (K(w(t n ))) n → 0 and K(w(t n )) > 0 for each n ∈ N (by Step 1).

10.2. Non degeneracy of geodesics. In this subsection we prove that the non degeneracy condition (H) required in theorem 10.1 holds for a large class of manifolds including our examples of the next section. Let N be a connected Riemannian manifold. Assume that N is complete, meaning that every (maximal) geodesic is globally de ned or, equivalently, that for every p ∈ N , the Riemannian exponential map exp p is well de ned on the entire tangent space T p N (see [32, §10] for the theory of complete manifolds). Under this condition, the metric space N endowed with its Riemannian distance d N is complete, and any two points p, q ∈ N can be connected by a minimizing geodesic:

γ ∈ Argmin E(c, [0, 1]) : c : [0, 1] → N is a smooth curve with c(0) = p and c(1) = q ,
where the energy of a curve γ on an interval I ⊂ R is de ned by

E(γ, I) := 1 2 I |γ (t) 2 | dt.
Such a minimizing geodesic needs not be unique; however it is unique when q does not belong to the cut locus of p [16, Corollary 2.8], which is de ned by Cut(p) := q ∈ N : there is a geodesic γ connecting p = γ(0) to q = γ(1) such that

γ is minimizing on [0, 1] but not on [0, 1 + ε] if ε > 0 .
The set Cut(p) is closed in N [16, Corollary 2.10]. To each q ∈ N \ Cut(p), one can associate the initial velocity log p (q) := γ (0) of the unique minimizing geodesic γ connecting γ(0) = p to γ(1) = q. The image of this map is called the injectivity domain of exp p , it is denoted by Inj(p) ⊂ T p N and it is characterized by

Inj(p) = {v ∈ T p N : there exists ε > 0 s.t. t ∈ [0, 1 + ε] → exp p (tv) is minimizing}.
The terminology injectivity domain is justi ed by the fact that the map

exp p : Inj(p) → N \ Cut(p)
is a global di eomorphism with inverse log p : N \ Cut(p) → Inj(p).

We have seen that if q / ∈ Cut(p), there is a unique minimizing geodesic γ between p and q; but we can actually be more precise: Proposition 10.5. If p ∈ N and q ∈ N \ Cut(p), then there exists λ > 0 such that for every Lipschitz curve γ : [0, 1] → N between p and q, (10.5)

E(γ) ≥ E(γ 0 ) + λd L ∞ (γ, γ 0 ) 2 ,
where γ 0 : [0, 1] → N is the unique minimizing geodesic from p to q.

This global non degeneracy property will follow from the local one:

Proposition 10.6. Assume that two points p, q ∈ N are connected by a minimizing geodesic γ 0 : [0, 1] → N such that there is no conjugate point of p along γ 0 , i.e. we assume that d exp p (tγ 0 (0)) is invertible for every t ∈ [0, 1]. Then there exists an open neighbourhood V of γ 0 ([0, 1]) in N such that for every Lipschitz curve γ : [0, 1] → N between p and q with γ([0, 1]) ⊂ V , one has

E(γ) ≥ E(γ 0 ) + λd L ∞ (γ, γ 0 ) 2 ,
where λ := It is not surprising that the (local) non degeneracy of the energy near a given curve γ 0 is linked to the absence of conjugate points. Indeed, p and q are conjugated along γ 0 if and only if there exists a non trivial Jacobi eld [16, De nition 3.1] along γ 0 vanishing at its endpoints. Such Jacobi elds correspond exactly to the elements of the null space of the so-called index form of N , which represents the second variation of the energy E. Proposition 10.6 generalizes the Jacobi theorem [25, Theorem 3.73].

When q ∈ Cut(p), there could be two or more minimizing geodesics between p and q, as it happens for the spheres S n (see [START_REF] Carmo | Mathematics: Theory & Applications[END_REF]Proposition 2.2] for more precisions on what happens at a cut point). However we can still hope that (10.5) holds for at least one speci c minimizing geodesic γ 0 depending on γ. In order to prove it, we actually need an additional non-degeneracy assumption:

(C) For every p ∈ N and q ∈ Cut(p), there exists λ > 0 such that for every r ∈ N with d N (r, p) = d N (r, q),

(10.6) λ inf m∈M (p,q) d N (m, r) 2 ≤ 1 2 d N (p, r) 2 + 1 2 d N (r, q) 2 - 1 4 d N (p, q) 2 .
where M (p, q) consists of points m ∈ N which are the midpoint of a minimizing geodesic between p and q. This condition imposes a restriction on how fat a geodesic triangle (prq) can be. By Toponogov's Remy: What is the co citation here?
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comparison theorem [?], Riemannian manifolds that satisfy (10.6) for every p, q, r and λ = 1 correspond exactly to those with non-positive sectional curvature (which is not the case of our examples). However, (10.6) is known to be true for small geodesic triangles (p, r, q) and even when q / ∈ Cut(p), at least for one λ ∈ (0, 1) (see Remark 6); this is why it has been written only for q ∈ Cut(p).

Condition (C) is trivially satis ed when the set of every minimizing geodesics between p and q cover the whole space since in this case, the LHS of (10.6) vanishes. This is the case of the spheres S d with their usual metrics since then, the cut locus of a point p is reduced to its antipodal point q and any geodesic starting from p meets q after the same amount of time. This includes the special case of the Lie group S 3 ≡ SU (2) endowed with its bi-invariant metric in both cases. Remark 6. Let γ pr : [0, 1/2] → N be a minimizing geodesic between p and r, γ rq : [1/2, 1] → N be a minimizing geodesic between r and q and γ pq : [0, 1] → N be a minimizing geodesic between p and q. Then,

1 2 E(γ pr • γ pq ) -E(γ pq ) = 1 2 d N (p, r) 2 + 1 2 d N (r, q) 2 - 1 4 d N (p, q) 2
and it is not di cult to see that

C 1 d N (m, r) ≤ d L ∞ (γ pr • γ rq , γ pq ) ≤ C 2 d N (m, r), C 1 , C 2 > 0,
where γ pr • γ rq : [0, 1] → N is equal to γ pr on [0, 1/2] and γ rq on [1/2, 1], and m = γ pq (1/2) is the midpoint between p and q. Thus, assuming (C) is the same as assuming (10.5) for some constant λ > 0, in the particular case of γ being the composition of two minimizing geodesics γ pr and γ rq and for at least one geodesic γ = γ pq .

Proposition 10.7. Let p, q be two points in a complete Riemannian manifold N satisfying the preceding condition (C). Then, there exists λ > 0 such that for every Lipschitz curve γ : [0, 1] → N connecting p to q, there exists a minimizing geodesic γ 0 : [0, 1] → N connecting p to q such that

E(γ) ≥ E(γ 0 ) + λd L ∞ (γ, γ 0 ) 2 .
When minimizing the energy of closed geodesics in their homotopy class of loops, rather than paths, the desired non-degeneracy property will follow by lifting: Proposition 10.8. Let N be a complete Riemannian manifold such that its universal Riemannian covering space satis es (C). Assume also that N is homogenous, i.e. the group of isometries of N acts transitively on N . Then, for every homotopy class of loops α there exists a constant λ(α) ∈ (0, +∞) such that for every smooth loop γ ∈ α, there exists a geodesic γ 0 ∈ α which minimizes E over α and such that

E(γ) ≥ E(γ 0 ) + λ(α)d L ∞ (γ, γ 0 ) 2 .
By Riemannian convering space, we mean a covering space Π : Ñ → N by a manifold Ñ endowed with the metric Π * g N , where g N is the metric of N (see [START_REF] Helgason | Di erential geometry, Lie groups, and symmetric spaces[END_REF]Proposition 10.6]). The universal covering space of N is the unique covering of it by a simply connected space Ñ (see [START_REF] Hatcher | Algebraic topology[END_REF] for more details).

Any quotient of SU (2) by a discrete subgroup H (with the metric induced by the bi-invariant metric of SU (2)) falls into the framework of Proposition 10.8. Indeed, it is clear that SU (2)/H is homogeneous, and the projection map Π : SU (2) → SU (2)/H is its universal covering by SU [START_REF] Ambrosio | Curvature and distance function from a manifold[END_REF] (which satis es (C)). This is also the case of the real projective spaces RP n . Indeed, RP n is covered by S n (which satisfy (C)) and SO(n) acts transitively on RP n .

Before giving a proof of the preceding results, we start by a particular instance of the local non-degeneracy property Proposition 10.6, namely when γ is a re-parametrization of γ 0 . Lemma 10.9. For every geodesic γ 0 : [0, 1] → N and for every Lipschitz surjective function θ : [0, 1] → [0, 1], one has

E(γ 0 • θ) ≥ E(γ 0 ) + E(γ 0 )d L ∞ (γ 0 • θ, γ 0 ) 2 .
Proof. Since γ 0 is a geodesic, it has constant speed equal to its length; thus

E(γ 0 • θ) -E(γ 0 ) = E(γ 0 ) 1 0 (θ (t) 2 -1) dt (10.7)
and for every t ∈ [0, 1],

d N (γ 0 • θ(t), γ 0 (t)) 2 ≤ (θ(t) -t) 2 ≤ t 0 |θ (s) -1| ds 2 ≤ 1 0 (θ (s) -1) 2 ds.
The result follows since (θ (s) -1) 2 = (θ (s) 2 -1) + 2(1 -θ (s)) and 1 0 (1 -θ (s)) ds = 0.

We also need the following monotone rearrangement technique: 

A = k (a k , b k ),
where the index k lies in a nite or countable set and a < a

1 < b 1 < • • • < a k < b k < • • • < b.
Moreover, we have θ = θ on {a k , b k }. Since θ is non decreasing, we have also θ(a k ) ≤ θ(b k ), we claim that we have actually

(10.8) θ(a k ) = θ(b k ). Indeed, if θ(a k ) < θ(b k ), then, by continuity, there would exist c ∈ (a k , b k ) such that θ(c) < θ(b k ).
By compactness, there exists

t 0 ∈ [c, b] such that θ(t 0 ) = θ(c)(= inf [c,b] θ); in particular, θ(t 0 ) = θ(t 0 ). Moreover, θ(t 0 ) = θ(c) < θ(c) < θ(b k ) = inf [b k ,b] θ; this obviously entails t 0 < b k . Thus, t 0 ∈ (a k , b k ) and θ(t 0 ) = θ(t 0 ) which is a contradiction.
We have just proved that θ(a k ) = θ(b k ). Since θ is non decreasing, this implies that

θ ≡ θ(a k ) = θ(b k ) on [a k , b k ].
In 

≤ t a k | ∂γ ∂s (s, t)| ds ≤ √ b -a θ L 2 ([a k ,b k ]) .
Furthermore, since by Gauss' lemma [START_REF] Carmo | Mathematics: Theory & Applications[END_REF]Lemma 3.5], the tangent vectors ∂ s γ and ∂ t γ are orthogonal in T p N , we have on the one hand

E t → γ(t, t), [a k , b k ] = 1 2 b k a k | ∂γ ∂s (t, t)| 2 + | ∂γ ∂t (t, t)| 2 dt = 1 2 b k a k θ (t) 2 + θ(t) 2 | d exp p u (t)| 2 dt
and on the other hand,

E(γ(a k , •), [a k , b k ]) = 1 2 b k a k θ(t) 2 | d exp p u (t)| 2 dt.
Since θ 2 ≤ θ 2 , we deduce from the two preceding equations that

E t → γ(t, t), [a k , b k ] -E γ(a k , •), [a k , b k ] ≥ 1 2 b k a k θ (t) 2 dt.
With (10.9), this yields the conclusion. It remains to consider the general case, where θ and u are just assumed to be smooth on the set {t ∈ (a, b) : θ(t) > 0}. But, by considering the decomposition of the open set {t ∈ [a, b] : θ(t) > 0} in connected components, just as we did in the rst part of the proof, we are left to the rst case.

Proof of Proposition 10.6. Since γ 0 is a geodesic, one has

γ 0 (t) = exp p •Φ 0 (t), where Φ 0 (t) := tγ 0 (0), t ∈ [0, 1].
By assumption, d exp p (v) is invertible for every v ∈ Φ 0 ([0, 1]). By compactness and by the inverse function theorem, there exists a subdivision

t 0 = 0 < t 1 < • • • < t k = 1 such that exp p is a di eomorhism from an open convex neighbourhood U i of Φ 0 ([t i , t i+1 ]) in T p N
to the open set V i := exp p (U i ) for every i ∈ {0, . . . , k -1}. Note that we do not assume that γ 0 is injective, so that exp p needs not be injective on Φ 0 ([0, 1]). However, if U is an open convex set such that Φ 0 ([0, 1]) ⊂ U ⊂ ∪ i U i , then

exp p : U → V := exp p (U )
is a smooth covering map since it is a local di eomorphism and every y ∈ V has a nite number of preimages. Thus, if γ([0, 1]) ⊂ V , then the curve γ can be lifted to U , i.e. there exists a unique smooth map Φ : [0, 1] → T p N such that

Φ(0) = 0 and γ(t) = exp p •Φ(t), ∀t ∈ [0, 1].
The condition γ(1) = γ 0 (1) also entails

Φ(1) = Φ 0 (1) = γ 0 (0).
Indeed, this is a standard property of covering maps; it relies on the fact that along a lifting

Φ s : [0, 1] → U of a homotopy γ s : [0, 1] → V of paths from γ 0 to γ 1 = γ, the end-point Φ s (1) ∈ exp -1 p (γ 0 (1)
) is preserved. We now use the polar coordinates of Φ(t):

θ(t) := |Φ(t)| and u(t) := Φ(t) |Φ(t)| if Φ(t) = 0, u 0 if Φ(t) = 0,
where u 0 is any xed unit vector of T p N , and we set

θ(t) := inf{θ(s) : s ∈ [t, 1]} and Φ(t) := θ(t)u(t), t ∈ [0, 1].
By Lemma 10.10, we have (10.10)

1 2 d L ∞ (exp p •Φ, exp p •Φ) 2 ≤ E(exp p •Φ) -E(exp p •Φ).
We also set

Φ 0 (t) := Φ 0 θ(t) θ(1) , t ∈ [0, 1].
To estimate the distance between exp p •Φ and exp p •Φ 0 , we proceed as in the proof of Lemma 10.10. We set γ(s, t) := exp p (θ(s)u(t)), s, t ∈ [0, 1]. In particular, for every s ∈ [0, 1], γ(s, s) = exp p •Φ(s) and γ(s, 1) = exp p (θ(s)u( 1)) = exp p •Φ 0 (s).

Indeed, Φ 0 (s) = θ(s) θ(1) γ 0 (0) and, since γ(1) = γ 0 (1), we have γ 0 (0) = θ(1)u [START_REF] Alicandro | Ginzburg-Landau functionals and renormalized energy: a revised Γ-convergence approach[END_REF]. Hence,

d N (exp p •Φ(s), exp p •Φ 0 (s)) 2 ≤ 1 s | ∂γ ∂t (s, t)| dt 2 = 1 s θ(s) 2 | d exp p [θ(s)u(t)]u (t)| 2 dt ≤ 1 s θ(t) 2 | d exp p [θ(s)u(t)]u (t)| 2 dt,
where we have used that s ≤ t and θ is non decreasing. Note that θ(s)u(t) ∈ U since U is convex, 0 ≤ θ(s) ≤ θ(t), and {0, θ(t)u(t)} ⊂ U . Hence,

(10.11) d L ∞ (exp p •Φ, exp p •Φ 0 ) 2 ≤ λ 1 2 1 0 θ(t) 2 |u (t)| 2 dt,
where

λ 1 := sup v∈U sup w∈TpN | d exp p [v]w| |w| .
Furthermore, applying the Gauss lemma as in the proof of Lemma 10.10, we get (10.12)

E(exp p •Φ) -E(exp p •Φ 0 ) = 1 2 1 0 θ(t) 2 | d exp p [θ(t)u(t)]u (t)| 2 dt.
By (10.11) and (10.12), we have (10.13)

sup t∈[0,1] d N (exp p •Φ(t), exp p •Φ 0 (t)) 2 ≤ 2 λ 1 2 λ 2 2 (E(exp p •Φ) -E(exp p •Φ 0 )),
where

λ 2 := inf v∈U inf w∈TpN | d exp p [v]w| |w| .
Finally, we have by Lemma 10.9

(10.14) d L ∞ exp p •Φ 0 , exp p •Φ 0 2 = d L ∞ γ 0 θ(1) -1 θ(•) , γ 0 2 ≤ 2 E(γ 0 ) (E(exp p •Φ 0 ) -E(γ 0 )).
Putting together estimates (10.10), (10.13) and (10.14), we obtain

d L ∞ (γ, γ 0 ) 2 ≤ 6 max λ 1 2 λ 2 2 , 1 E(γ 0 ) (E(γ) -E(γ 0 )).
Proposition 10.6 follows, up to reduce the neighbourhood U of Φ 0 ([0, 1]) from the de nitions of λ 1 and λ 2 .

Proof of Proposition 10.5. Proposition 10.6 provides a constant λ > 0 such that (10.5) holds true whenever γ takes its values in some open neighbourhood V of γ 0 ([0, 1]), γ 0 being the unique minimizing geodesic between p and q. If however γ meets N \ V , we would have

L(γ) := 1 0 | γ| dt ≥ inf r∈N \V d N (p, r) + d N (r, q).
The last in mum is achieved by some r 0 ∈ N \ V since N is complete and N \ V is closed. Thus, those curves such that γ(

[0, 1]) ∩ N \ V = ∅ satisfy L(γ) -L(γ 0 ) ≥ d N (p, r 0 ) + d N (r 0 , q) -d N (p, q) > 0,
where the last inequality comes from the fact that γ 0 is the unique geodesic between p and q and N is complete. To conclude, note that
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2(E(γ) -E(γ 0 )) ≥ L(γ) 2 -L(γ 0 ) 2 ≥ 2L(γ 0 )(L(γ) -L(γ 0 )).
Proof of Proposition 10.7. We proceed by contradiction. Assume that there is a sequence (γ k ) k≥1 of smooth curves between p and q such that (10.15)

E(γ k ) ≤ inf γ 0 ∈Ωpq E(γ 0 ) + 2 -k d L ∞ (γ k , γ 0 ) 2 ,
where Ω pq is the set of every minimizing geodesics γ 0 : 

[0, 1] → N from p to q. Since E(γ k ) ≥ L(γ k ) 2 ≥ sup t∈[0,1] d N (γ k (t), p) 2 , the sequence (d L ∞ (γ k , γ 0 )) k is bounded.
m k = γ k (t 0 k ) such that d N (p, m k ) = d N (m k , q), converges to the middle point m ∞ = γ ∞ (1/2) of γ ∞ and (t 0 k ) k converges to 1/2 as k → ∞. Since, by de nition, m ∞ / ∈ Cut(p) ∪ Cut(q)
and since Cut(p) ∪ Cut(q) is closed, we deduce that m k / ∈ Cut(p) ∪ Cut(q) for k large enough. For such k, there exist unique minimizing geodesics γ l k : [0, 1/2] → N between p and m k , and γ r k : [1/2, 1] → N between m k and q. We denote by γ l k • γ r k the composition of these two paths, i.e.

γ l k • γ r k (t) = γ l k (t) if t ∈ [0, 1/2], γ r k (t) if t ∈ [1/2, 1]. Applying Proposition 10.5 to convenient a ne renormalizations of the restrictions of γ k on [0, t 0 k ] and [t 0 k , 1] yields E(γ k ) -E(γ l k • γ r k ) ≥ λd L ∞ (γ k , γ l k • γ r k ) 2
for large values of k. Together with (10.15), this gives

E(γ l k • γ r k ) ≤ inf γ 0 ∈Ωpq E(γ 0 ) + 2 1-k d L ∞ (γ l k • γ r k , γ 0 ) 2 ,
for k large enough. This is a contradiction with the assumption (C) in view of Remark 6.

Proof of Proposition 10.8. Since N is assumed to be homogenous, we can restrict our attention to loops σ : 

(t) = Π • σ(t) for every t ∈ [0, 1].
Moreover, there is a one to one correspondence between homotopy classes of loops based at p and the set of preimages q ∈ Π -1 ({p}). Namely, if α is homotopy class of loops based at p, then all the lifts of loops in α end at the same point q(α) ∈ Π -1 (p), and to every q ∈ Π -1 (p), it corresponds a unique α with q = q(α).

We thus x such an α and the corresponding q := q(α). For every loop σ ∈ α, we will note by α its lifting based at p. Since Π : Ñ → N is a local isometry, one has E(σ) = E(σ) for every σ. Since Ñ is a simply connected it is easy to deduce from the preceding considerations that

γ ∈ Argmin{E(σ) : σ ∈ α} ⇔ γ ∈ Argmin{E(λ) : λ ∈ Ω pq },
where Ω pq stands for the set of paths from p to q in Ñ (here, all paths/loops are assumed to be smooth). Thus, Proposition 10.8 follows from Proposition 10.7 (note that Ñ is complete since N is complete [32, Proposition 10.6]). 

σ : S 1 → N is a minimizing geodesic, γ 0 ∈ W 1/2,2 (∂Ω, S 1 ) and γ 1 ∈ C 1 (S 1 , S 1
) is a minimizing geodesic, if Ω is simply connected and if the map γ 0 : ∂Ω → S 1 is length minimizing (or monotone), then for every a ∈ Ω,

G geom σ • γ 0 ,σ • γ 1 (a) = λ(σ) 2π 2 G geom γ 0 ,γ 1 (a). Lemma 11.2. Let v ∈ C 1 ( Ω \ B ρ (a), N ). Assume that ∂Ω |∂ t v| = ∂Bρ(a) |∂ t v| = λ(v| ∂Ω ). If H ∈ C 2 (Ω, R) satis es      ∆H = 0 in Ω \ B ρ (a), ∂ n H = |∂ t v| on ∂Ω, ∂ n H = -|∂ t v| on ∂B ρ (a).
then

Ω |dH ∧ dv| ≥ Ω |∇H| 2 .
Here we have

|dH ∧ dv| = |∂ 1 H∂ 2 v -∂ 2 H∂ 1 v|.
By the Cauchy-Schwarz inequality, Lemma 11.2 implies immediately that

Ω |Dv| 2 ≥ Ω |∇H| 2 ;
if equality holds, then the derivative of v vanishes in the direction of ∇H.

Proof of Lemma 11.2. By Sard's lemma we have that the singular values of H, i.e. the s ∈ R such that there exists x ∈ Ω with H(x) = s and ∇H(x) = 0 are negligible for the Lebesgue measure on R. Thus we can write, by the coarea formula:

Ω |dv ∧ dH| = R H -1 (s)∩Ω |dv ∧ dH| |∇H| ds.
Now we observe that, up to a sign the vector ∇H/|∇H| is the normal vector to H -1 (s). Thus we nd

Ω |dv ∧ dH| = R H -1 ({s})∩Ω |∂ t v| ds,
where ∂ t v denotes the tangential derivative on H -1 ({s}) which is locally a smooth curve. For almost every s ∈ R, since the function H is harmonic and since the exterior normal derivative is negative on ∂B ρ (a), by the strong maximum principle every connected component of the set H -1 ((s, +∞)) touches ∂Ω. Similarly, every connected component of H -1 ((-∞, s)) touches ∂B ρ (a). This implies that the set ∂(Ω ∩ H -1 ((-∞, +s))) is the image of a Lipschitz-continuous : I don't really unnd this, we need to more : I don't really unnd this, we need to more curve homotopic to the curve corresponding to ∂B ρ (a) and thus we have

∂(Ω∩H -1 ((-∞,+s))))
|∂ t v| ≥ λ(v| ∂Ω ).

We deduce therefrom that for almost every s ∈ R,

H -1 ({s})∩Ω |∂ t v| = ∂(Ω∩H -1 ((-∞,+s)) |∂ t v| - ∂Ω∩H -1 ((-∞,+s)) |∂ t v| ≥ λ(v| ∂Ω ) - ∂Ω∩H -1 ((-∞,+s)) |∂ t v| = ∂Ω ∂ n H - ∂Ω∩H -1 ((-∞,+s)) ∂ n H = H -1 ({s})∩Ω -∂ n H = H -1 ({s})∩Ω |∇H|.
Therefore, in view of the coarea formula again, we have

Ω |dv ∧ dH| ≥ R H -1 ({s})∩Ω |∇H| ds = Ω |∇H| 2 . Lemma 11.3. If γ 0 ∈ W 1/2,2 (∂Ω, S 1
) and γ 1 : S 1 → S 1 is a minimizing geodesic and if γ 0 is length-minimizing, then for every w ∈ W 1,2 (Ω, N ) such that w = σ • γ 0 on ∂Ω and w = σ • γ 1 on ∂B ρ (a), then

1 2 Ω\ Bρ(a) |Dw| 2 ≥ λ(σ) 2π 2 inf 1 2 Ω\ Bρ(a) |Dv| 2 : v ∈ W 1,2 (Ω \ Bρ (a), S 1 ) τ ∈ SO(2), v = γ 0 on ∂Ω and v = τ • γ 1 ((• -a)/ρ)on ∂B ρ (a) .
Proof. By approximation it su ces to prove this when w ∈ C 1 ( Ω \ B ρ (a), N ).

Let v be a minimizer for the variational problem on the right-hand side. Assume that ϕ ∈ C 1 ( Ω, R), ϕ = 0 on ∂Ω and ϕ is constant on ∂B ρ (a). We de ne the vector eld:

v ∧ ∇v := (v ∧ ∂ x v, v ∧ ∂ y v). Then 0 = d dt 1 2 Ω\ Bρ(a) |D(e itϕ v) 2 | t=0 = Ω v ∧ ∇v • ∇ϕ.
Indeed we can compute for example that

|∂ x (e itϕ v)| 2 = |it∂ x ϕv + ∂ x v| 2 = t 2 |∂ x ϕ| 2 |v| 2 + |∂ x v| 2 + 2Re(it∂ x ϕv∂ x v) = t 2 |∂ x ϕ| 2 |v| 2 -2t∂ x ϕIm(v∂ x v) = t 2 |∂ x ϕ| 2 |v| 2 + 2t∂ x ϕv ∧ ∂ x v.
It follows then that v is a harmonic map and satis es the equation

div(v ∧ ∇v) = 0 in Ω \ B ρ (a).
By integrating by parts the relation Ω\Bρ(a) v ∧ ∇v • ∇ϕ = 0, we deduce that (11.1)

∂ Bρ(a) (v ∧ ∂ n v)ϕ = 0.
We de ne the potential H : Ω → R by setting,

∇ ⊥ H = λ(σ) 2π v ∧ ∇v,
In view of the Poincaré lemma and (11.1), it follows that H is well-de ned. Moreover we have

|∇H| = λ(σ) 2π |∇v| in Ω, ∂ n H = λ(σ) 2π v ∧∂ t v = λ(σ) 2π |∂ t v| = |∂ t w| on ∂Ω and ∂ n H = -λ(σ) 2π v ∧∂ t v = -λ(σ)
2π |∂ t v| = -|∂ t w| . By Lemma 11.2, we deduce that

1 2 Ω\ Bρ(a) |Dw| 2 ≥ 1 2 λ(σ) 2π 2 Ω\ Bρ(a) |DH| 2 = 1 2 λ(σ) 2π 2 Ω\ Bρ(a) |Dv| 2 .
Proof of Proposition 11.1. We rst observe that if B ρ (a) ⊂ Ω and if v ∈ W 1,2 (Ω \ B ρ (a), S 1 ), then by the chain rule and the fact that σ : S 1 → N is a minimizing geodesic, we have

1 2 Ω\Bρ(a) |D(σ • v)| 2 = 1 2 Ω\Bρ(a) |σ • v| 2 |Dv| 2 = λ(σ) 2 2π 2 1 2 Ω\Bρ(a) |Dv| 2 .
It follows then that

G geom,ρ σ • γ 0 ,σ • γ 1 (a) ≤ λ(σ) 2π 2 
G geom,ρ γ 0 ,γ 1 (a), and thus, by letting ρ → 0,

(11.2) G geom σ • γ 0 ,σ • γ 1 (a) ≤ λ(σ) 2π 2 G geom γ 0 ,γ 1 (a).
Conversely, assume that w ∈ W 1,2 (Ω \ B ρ (a), N ) satis es w = σ • γ 0 on ∂Ω and w = σ • γ 1 ((• -a)/ρ) on ∂B ρ (a). Then we have by Lemma 11.3, and with v de ned in this lemma:

1 2 Ω\Bρ(a) |Dw| 2 ≥ λ(σ) 2π 2 1 2 Ω\Bρ(a) |Dv| 2 , with v = γ 0 on ∂Ω and v = τ • γ 1 ((• -a)/ρ on ∂B ρ (a). It follows thus, in view of (3.7) G geom,ρ σ • γ 0 ,σ • γ 1 (a) ≥ λ(σ) 2π 2 G geom,ρ γ 0 ,τ • γ 1 (a).
Moreover, by Proposition 2.14, we have d synh (γ 1 , τ • γ 1 ) = 0, and thus

G geom,ρ σ • γ 0 ,σ • γ 1 (a) ≥ λ(σ) 2π 2 G geom γ 0 ,γ 1 (a).
Therefore, we deduce by (3.7) again that

G geom σ • γ 0 ,σ • γ 1 (a) ≥ λ(σ) 2π 2 G geom γ 0 ,γ 1 (a).
Proposition 11.4. If Ω = D is the unit disk and a ∈ D and γ : S 1 → N is a minimizing geodesic, then

G geom γ,γ (a) = λ(γ) 2 4π log 1 1 -|a| 2 .
Proof. We have from[33; 37, Proposition 2]

G geom id,id (a) = π log 1 1 -|a| 2 .
Proposition 11.5. Let Ω := D let γ 0 : S 1 → N be a minimizing geodesic such that every minimal topological resolution of γ 0 consists in one geodesic homotopic to γ 0 . We also assume that every energy minimizing geodesic which is homotopic to γ 0 is also synharmonic to γ 0 . Then

min{G geom γ 0 ,γ (a)+Q F γ ; a ∈ D, γ minimizing geodesic homotopic to γ 0 } = G geom γ 0 ,γ 0 (0)+Q F γ 0 = Q F γ 0 . Moreover, if u ε is a family of minimizers of E ε in W 1,2 γ 0 (D, R ν ) we have that (11.3) u ε → γ 0 x |x| in W 1,2 loc (D \ {0}, R ν ) and C 0 loc (D \ {0}, R ν ).
Proof. Since we assumed that every energy minimizing geodesic homotopic to γ 0 is synharmonic to γ 0 , we have from Propositions 3.5 and 5.2 that for any such a geodesic and any a ∈ D (11.4)

G geom γ 0 ,γ (a) + Q F γ = G geom γ 0 ,γ 0 (a) + Q F γ 0 . Now, from the previous proposition we know that (11.5) G geom γ 0 ,γ 0 (a) = λ(σ) 2π 2 G geom id,id (a) 
.

By Proposition 11.4, the minimum of the renormalized energy is attained for a = 0. This concludes the proof of the rst part of the proposition. For the second part, we invoke theorem 8.1 item v) and vi) to say that, up to a subsequence, we have that u ε → u 0 in W 1,2 loc (D \ {0}, R ν ) with u 0 which is a minimzing harmonic map and which satis es (11.6)

G geom γ 0 ,γ 0 (0) = lim ρ→0 1 2 D\Bρ(0) |Du 0 | 2 - λ(γ 0 ) 2 4π log 1 ρ .
We now show that u 0 (x) = γ 0 x |x| . We let f (ρ) := 1 2 D\Bρ(0) |Du 0 | 2 -λ(γ 0 ) 2 4π log 1 ρ . By Lemma 3.3 we have that f is non-increasing. By contradiction if there exists r > 0 such that u 0 | ∂Br(0) = γ 0 , we then have 1 2 D\Br(0) |Du 0 | 2 -λ(γ 0 ) 2 4π log 1 r > 0. Thus we nd that (11.7)

lim r→0 1 2 D\Br(0) |Du 0 | 2 - λ(γ 0 ) 2 4π log 1 r > 0
which is a contradiction with the fact that G geom γ 0 ,γ 0 (0) = 0. We thus conclude that u 0 (x) = γ 0 x |x| .

12. E

In the examples we have in mind from condensed matter physics and numerical analysis (meshing and cross-elds theory), the vacuum-manifolds can be obtained as quotients of the special orthogonal group SO(3) by some of its subgroups. We introduce a general framework to deal with such spaces which are particular cases of homogeneous spaces. We start with recalling general theorems giving the manifold and Riemannian structures on those spaces. Then we indicate how to compute their fundamental group and the conjugacy classes in the non-abelian case. We also describe the closed minimizing geodesics in homotopy classes and describe the minimal topological resolution, cf. below de nition (2.5) of some maps from ∂Ω → N .

We would like to point out that a potential F that satis es (H 1 )-(H 2 )-(H 3 ) and that respects the symmetries of the problem can always be built if N is a compact homogeneous manifold. Indeed in this case there exists an equivariant isometric embedding i : N → R ν (for some ν ∈ N * ) and we can take F (x) := φ(dist(x, i(N )) 2 ) for a smooth function φ : R + → R + which vanishes only at zero and such that the hypothesis (H 1 ),(H 2 ),(H 3 ) are satis ed. In some cases building the potential F for which the model ts numeral simulations or experiments is a subject of research, see e.g. [START_REF] De Matteis | Landau theory for biaxial nematic liquid crystals with two order parameter tensors[END_REF].

12.1. Fundamental group and geodesics on homogeneous spaces. Given a Lie group G and closed subgroup H ⊆ G, we consider the homogeneous space G/H = {gH : g ∈ G} obtained by quotienting G by its subgroup H. Proposition 12.1 (Riemannian structure on homogeneous spaces). Let G be a Lie group and let H be a closed subgroup of G. Assume that G is endowed with a Riemannian metric which is left invariant by the action of G and right invariant by the action of H. The left coset space G/H is a Riemannian manifold of dimension dim G -dim H , and has a unique Riemannian structure such that the quotient map π : G → G/H is a Riemannian submersion and G acts isometrically on G/H. The fact that π is a Riemannian submersion is equivalent to the fact dπ(e) is an isometry from the orthogonal h ⊥ in the Lie algebra of g of G of the Lie algebra h of H into T eH G/H.

In terms of Lie algebra, the left-invariance requires that for each x ∈ g and y ∈ h, one should If the metric on G is bi-invariant, then it remains to examine whether for a given isotropy group G p ⊂ G, two geodesics having their endpoints homotopic in G p are identical up to an isometry. Our main tool to prove this on examples will be the following proposition that classi es up geodesics on SU (d).

Proposition 12.5. Let g ∈ SU (d), endowed with its bi-invariant metric. For every g ∈ SU (d), the set of minimizing geodesics from e to g is connected. Moreover, if γ 0 , γ 1 are two geodesics of same length there exists ξ ∈ su(d) = {M ∈ M n (C; M * = -M } such that for every s ∈ [0, 1], γ 1 (s) = exp(ξ)γ 0 (s) exp(-ξ), and for every t ∈ [0, 1], g = exp(ξt)g exp(-ξt).

Proof. Let γ 0 , γ 1 ∈ C([0, 1], SU (d)) be minimizing geodesics from e to g. There exist σ 0 , σ 1 ∈ su(2) such that |σ 0 | = |σ 1 | = d SU (d) (e, g) and for every t ∈ [0, 1], γ j (t) = exp(tσ j ). Since the geodesics Remy: Ce n'est pas plètement clair pour m Remy: Ce n'est pas plètement clair pour m are minimizing, the spectrum of σ 0 and σ 1 is contained in the interval [-πi, πi] of the imaginary axis in the complex plane. We set V := ker(g + e) ⊂ C d and we observe that V = ker(σ 0 + iπ id) ⊕ ker(σ 0 -iπ id) = ker(σ 1 + iπ id) ⊕ ker(σ 1 -iπ id) Therefore, the spaces V and V ⊥ are invariant subspaces of the linear operators g, σ 0 and σ 1 on C d . Since the complex exponential is injective on the segment (-πi, πi), we have ker(σ j -λ id) = ker(g -e λ id), and therefore σ 0 | V ⊥ = σ 1 | V ⊥ . On the other hand, we have

tr σ 0 | V = -tr σ 0 | V ⊥ = -tr σ 1 | V ⊥ = tr σ 1 | V .
Since the spectra of both σ 0 and σ 1 are contained in {-πi, πi}, the matrices σ 0 and σ 1 have thus the same eigenvalues with the same multiplicity. There exists thus ξ ∈ su(d) such that V ⊂ ker ξ, the eigenvalues of ξ are in [-πi, πi) and σ 1 = exp(ξ)σ 0 exp(-ξ), It follows then that exp(sσ 1 ) = exp(ξ) exp(sσ 2 ) exp(-ξ) and g = exp(ξ)g exp(-ξ). Since the eigenvalues of ξ are in [-πi, πi), we have for every t ∈ R, g = exp(tξ)g exp(-tξ).

The previous proposition along with Proposition 2.14 allow us to prove that minimizing geodesics in homotopy classes are synharmonic in some quotients of SU (2). This will be developed on concrete examples. 12.2. Concrete examples. We review several examples of void manifold that we consider either for their relevance in applications in physics or computer graphics or for the illustration of the wide spectrum of behaviours that can arise. 12.2.1. The circle S 1 . The case N = S 1 where the void manifold is the circle arises in superconductivity models and in two-dimensional cross-elds generation. The circle is embedded in the two-dimensional plane S 1 ⊂ R 2 and one recovers the classical Ginzburg-Landau by taking F (y) = 1 4 (1 -|y| 2 ) 2 . In view of S 1 R/Z, one has π 1 (S 1 ) = Z. Moreover, since the closed geodesics on S 1 can be written as t ∈ [0, 2π] S 1 → e iα e int , for some α ∈ R and for some n ∈ Z that corresponds to the degree of the geodesic, any two homotopic geodesics are automatically synharmonic. Moreover, the systolic geodesics are the degree one geodesics, i.e., t → e iα e int for some α ∈ R and n ∈ {-1, 1} and for every geodesic γ : S 1 → S 1 of degree n, And E sg (γ) = π|n|. In particular, the only decomposition of a map of degree n is into |n| maps of degree sgn(n).

12.2.2. Flat torus. The at torus S 1 × S 1 can be studied readily because of its Cartersian product. One has π 1 (S 1 × S 1 ) π 1 (S 1 ) × π 1 (S 1 ) Z × Z. With the embedding S 1 × S 1 ⊂ R 4 , one can take the decoupled Ginzburg-Landau functional by taking F (y , y ) = 1 4 ((1 -|y | 2 ) 2 + (1 -|y | 2 ) 2 ). Each geodesic in S 1 × S 1 is a pair of geodesic into S 1 and thus all geodesics in a given homotopy class are synharmonic. We have (n, m) ∈ π 1 (S 1 × S 1 ), λ((n, m)) = √ n 2 + m 2 2π while E sg (n, m) = (|n| + |m|)π. The systoles correspond to (1, 0), (-1, 0), (0, 1), (0, -1) Each of the elements (1, 1), (-1, 1), (1, -1), (-1, 1) have two optimal free decompositions, in either two systolic elements or in itself. The orthogonal singularities (1, 0) and (0, 1) do not repulse each other in the Ginzburg-Landau renormalized energy; this example shows that decoupling can prevent repulsion between singularities.

12.2.3. Equilateral torus. The equilateral torus is N = C/H with H = {n + me 2πi/3 : n, m ∈ Z}.

One has then π 1 (N ) = H and for every k ∈ π 1 (N ), λ(k) = |k| (the Euclidean norm). Closed geodesics lift into line segments whose endpoints di er by an element of H. In particular all geodesics in a homotopy class are synharmonic and there are six atomic minimizing geodesics, corresponding to e 2kπ/3 ∈ π 1 (N ) with k ∈ {0, . . . , 5} and correspond to the length of the systole.

: Je ne comprends la : Je ne comprends la

Other homotopy classes have decomposition into these six classes; each minimal decomposition contains only two neighbouring vectors. This example shows that the geometry of N matters in the decompositions of homotopy classes.

12.2.4. Projective spaces and orthogonal group. We consider the case of projective spaces RP n with n ≥ 2. In particular RP 2 arises in nematic liquids crystals models, RP 3 SO(3) appears in models of super uid Helium 3 ( 3 He) in the dipole-locked A phase. The projective space can be realized as the set of orthogonal projections of R n whose trace is 1, or equivalently as polynomials {P : R 2 → R : P is a homogeneous polynomial of degree 2 and ∆P = 1 and |DP | 2 = P }.

This latter space is a subset of an a ne space of dimension (n-1)(n+2)

2

. The Q-tensor representation [START_REF] Ball | Orientability and energy minimization in liquid crystal models[END_REF] corresponds to the corresponding trace-less tensors.

The projective space is obtained from the sphere by quotienting antipodal points. We have RP n = S n /(-id), and thus when n ≥ 2, π 1 (RP n ) = Z 2 = Z/2Z. The geodesics in RP n are the image of the great circles of S n by the canonical projection π : S n → RP n . Every geodesic which is not constant is topologically non-trivial; they are all homotopic, synharmonic and systolic, since they all have the same length. The decompositions of the di erent homotopy classes is summarized in Table 1. where we identify SU (2) with the unit sphere in the eld of the quaternions H C + jC. By Proposition 12.3, since {( j k , (-1) k ) : k ∈ {0, . . . , 3} } Z 4 = Z/4Z, we have π 1 (N ) Z 4 . Since π 1 (N ) is abelian, we have four homotopy classes of maps from S 1 to N . By Proposition 12.4, we can reduce our study to geodesics from SU (2) × SU (2) to points of H that minimize the distance to a connected component of H. If we consider now a geodesic to ((j, -1)H 0 . Since the second component is xed, we can minimize equivalently the Euclidean distance. By the modulus formula for quaternions, we observe that for every θ ∈ R, |je iθ -1| 2 = (-e iθ j -1)(j e iθ -1) = 2, which means that geodesics to any point of (j, -1)H 0 all minimize the distance. The length of this geodesic is √ 5 π (with the metric normalized on SU (2) so that antipodal points are at distance 2π). All the corresponding geodesics can be obtained from each other by conjugation with elements of H 0 , and are thus all synharmonic. For the element 2 ∈ Z 4 , we have for every θ ∈ R, |j e iθ -1| 2 = 2(1-cos θ), and there is thus a unique point that minimize the distance, and the geodesic. The corresponding geodesic starting from the identity is unique, and thus all the corresponding geodesics on N are synharmonic. The length of the corresponding geodesic is 2π. The length of the systole correspond to 2π. The properties of the decomposition are summarized in Table 2. Interestingly, every homotopy class is atomic and whereas π 1 (N ) is cyclic, the systolic length of N does not correspond to a generator of π 1 (N ). and the 180°rotations with respect to the coordinate axes. By Proposition 12.4, the geodesics in N correspond to arcs of great circle in S 3 . We deduce therefrom that homotopic geodesics are thus synharmonic. The geodesics corresponding to the 180°rotations have length 2π and are systolic; since (2π) 2 > 2π 2 , the homotopy class of the 360°rotation is not atomic and has three decompositions in twice a 180°rotation. Interestingly, in this case we have a homotopy class that has multiple decompositions.

12.2.7. Tetrahedral space. The con gurations of regular tetrahedron in R 3 are parametrized by SO(3)/T , where T is the tetrahedral group. Under the double covering of SO(3) by SU (2), T is the image of the binary tetrahedral group 2T which is generated by 1 2 (1 + i + j + k) and to the possible rotations of a face (or equivalently of a vertex) and of a vertex and are described on Table 4. The systole corresponds to rotations of faces by ±120°. This two homotopy classes are atomic. The 240°rotations can be decomposed into to 120°rotation, and are not atomic because ( 4π 3 ) 2 > 2( 2π 3 ) 2 . The 180°decompose into 120°and -120°rotation, this decomposition is minimal since (π) 2 > 2( 2π 3 ) 2 . Similarly, since (2π) 2 > 3( 2π 3 ) 2 , the 360°decomposes in either three 120°r otations or three -120°rotation. By Proposition 12.5 and Proposition 12.4, all homotopic geodesics are synharmonic. Interestingly, this example features two atomic systolic homotopy classes. 12.2.8. Hexahedral space. The hexahedral space describes the con guration of a cube in the Euclidean space R 3 up to identi cation of faces. It is parametrized by N = SO(3)/O, where O is the octahedral group of orientation preserving isometries that preserve an octahedron, or equivalently a cube (hexahedron). The group O is isomorphic to the symmetric group S 4 . The space N can be obtained as a subset of an a ne 9-dimensional subspace of fourth order tensors satisfying a quadratic condition (1 + i). There are 8 conjugacy classes described in Table 5. There is one systolic homotopy class corresponding to the shortest rotation of 90°of a face of the cube. The second shortest is the 120°rotation around a vertex. It can be decomposed in to two 90°rotations of face; but this decomposition is not minimal since 2( π 4 ) 2 > ( π 3 ) 2 ; hence the 120°rotation is also atomic. The other homotopy classes can be treated by a combinatorial analysis of the di erent possible decompositions whose results are summarized in Table 5. An interesting feature of the hexahedral space is that there are two atomic homotopy classes. By Proposition 12.5 and Proposition 12.4, all homotopic geodesics are synharmonic. 12.2.9. Dodecahedral space. This space N = SO(3)/I, also known as the Poincaré homology sphere, is obtained by quotienting the rotation group SO(3) by the group I of direct isometries of the icosahedron. The group I is isomorphic to the alternating group A 5 of permutations of 5 elements. Under the double covering by SU (2) of SO(3), we have SO(3)/I SU (2)/2I, where 2I is the binary octahedral group, generated by the quaternions 1 2 (1 + i + j + k) and 1 2 (

√ 5+1 2 + √ 5-1
2 i + j). The geodesic corresponding to 72°rotations of a face of the dodecahedron is systolic and is the only atomic geodesic. The conjugacy classes and their minimal decompositions are described in Table 6. One should note there is a single atomic homotopy class. By Proposition 12.5 and Proposition 12.4, all homotopic geodesics are synharmonic. quaternions e iπ/n and j. The corresponding decompositions are summarized in Tables 7 and8. By Proposition 12.5 and Proposition 12.4, all homotopic geodesics are synharmonic. R
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 3 Relationship between renormalized energies. By the de nitions (3.2) and (3.1) we have immediately the lower bound on the geometric energy(4.14) 

  there exists a collection of balls B with (i) for every B ρ (a) ∈ B, ρ ≤ η, (ii) for every B ∈ B ρ (a), the map dist N • tr ∂Bρ(a) u < δ N , Π N • tr ∂Bρ(a) u is not homotopic to a constant and the maps (Π N • tr ∂Bρ(a) u) Bρ(a)∈B are a topological resolution of γ 0 = tr ∂Ω u, (iii) for every subset B ⊂ B, Bρ(a)∈B Ω∩Bρ(a)

  B * := {B ρ (a) ∈ B(s * ) : equality holds in (c)}, and the number s * := sup σ ∈ [s * , +∞) : for each s ∈ [s * , σ) (a) holds and strict inequality holds in (c) for each B ρ (a) ∈ B(s) \ B * . and for every s ∈ (s * , s * ), the family of balls B(s) := {B ρs/s * (a) : B r (a) ∈ B * } ∪ B(s * ) \ B * .

  1 ) dt, by setting for every t ∈ [0, +∞), s ∈ S 1 , w(λ(t), s) := v(t, s), with λ(t) := t 0 ∂v ∂t L 2 (S 1 ) dt.

  p [tγ 0 (0)]w| |w| and λ 2 := inf t∈[0,1] inf w∈TpN | d exp p [tγ 0 (0)]w| |w| .

Lemma 10 . 10 .

 1010 Let a ∈ R, b ∈ (a, +∞) and let u : [a, b] → T p N , θ : [a, b] → [0, +∞) be maps such that θ(a) = 0, θ is continuous on [a, b] and both θ and u are smooth on {t ∈ (a, b) :θ(t) > 0}. We de ne θ(t) := inf{θ(s) : s ∈ [t, b]}, t ∈ [0, b],the monotone rearrangement of θ. Then,d L ∞ ([a,b]) exp p (θu), exp p ( θu) 2 ≤ 2(b -a) E(exp p (θu), [a, b]) -E(exp p ( θu), [a, b]) .Proof. We rst assume that θ and u are smooth on (a, b). Also, w.l.o.g., we can assume that the setA := {t ∈ [a,b] : θ(t) < θ(t)} is not empty. Since θ(a) = θ(a) = a and θ(b) = θ(b), the set A is open in (a, b). Its connected components are thus open and it can be decomposed as

  [0, 1] → N based at some xed point p ∈ N , i.e. σ(0) = σ(1) = p. Indeed if σ is any loop based at another point p , there exists an isometry ϕ p p of N sending p to p; thus the loop ϕ p p • σ is based at p and has the same energy as σ. Let us x p ∈ Ñ such that Π N (p) = p, where Π : Ñ → N is the universal Riemannian covering space of N . Every loop σ : [0, 1] → N based at p has a unique lifting to Ñ based at p [29], i.e. a path σ : [0, 1] → Ñ such that σ(0) = p and σ

1 .

 1 Comparing with the circle. Proposition 11.1. If

T 1 .

 1 Decomposition of closed geodesics of the real projective space RP n = S n /{id, -id} γ Description Conjugates λ(γ) Decompositions E sg (γ)

12. 2 . 5 . 3 k=0(

 253 Super uid Helium 3 in the dipole-free A phase. In super uid Helium 3 in the dipole-free A phase, one considers the manifold N = SU (2) × SU (2)/H, withH = j k , (-1) k )H 0 and H 0 = (e iθ , 1) ∈ SU (2) × SU (2) ⊂ H × H : θ ∈ R ,

T 2 . 4 T 3 . 4 γ y 180°rotation around the y-axis 2 π γ y π 4 γ z 180°rotation around the z-axis 2 π γ z π 4 γ w 360°rotation 1 2π γ x γ x γ y γ y γ z γ z π 2 12. 2 . 6 .

 243444226 Decomposition of closed geodesics of SU (2) × SU (2)/H γ Description Conjugates λ(γ) Decompositions E sg (γ) Decomposition of closed geodesics of SO(3)/D 2 SU (2)/Q. γ Description Conjugates in Q λ(γ) Decompositions E sg (γ) Orthorombic space. We consider the case where N = SO(3)/D 2 where D 2 ⊂ SO(3) is the group with four elements corresponding to the identity and 3 rotations of 180°with respect to three mutually perpendicular axes. This manifold arises in biaxial nematics models. Under the double covering of SO(3) by SU (2) S 3 ⊂ H, we have N = SU (2)/Q, where Q = {±1, ±i, ±j, ±k} is the quaternion group. By Proposition 12.3, we have π 1 (SO(3)/D 2 ) = π 1 (SU (2)/Q) = Q. This is our rst example of non-abelian fundamental group. Since k -1 ik = -i, i -1 ji = -j, and j -1 kj = -k, we have ve conjugacy classes {1}, {-1}, {±i}, {±j} and {±k}, corresponding geometrically to the trivial geodesic, the 360°rotation corresponding to the generator of π 1 (SO(3))

1 2 ( 1 +

 11 i + jk). By Proposition 12.3, we have π 1 (N ) 2T . The conjugacy classes correspond Remy: Je ne compre pas cette phrase Remy: Je ne compre pas cette phrase

T 4 . 3 T 5 .v γ v π 8 γ e 180°rotation of an edge 12 π γ v γ f 25π 144 γ v 3 270°rotation of a face 6 3π 2 γ v γ v γ v 3π 16 γ f 2 240°rotation of a vertex 8 3π 2 γ f γ f 2π 9 γ w 360°rotation 1 2π γ v γ v γ v γ v π 4 [

 43583224 Decomposition of closed geodesics of SO(3)/T SU (2)/2T . γ Description Conjugates in 2T λ(γ) Decompositions E sg (γ) γ + γ + γ -γ -γ - π Decomposition of closed geodesics octahedral con gurations SO(3)/O SU (2)/2O. γ Description Conjugates in 2O λ(γ) Decomposition E sg (γ) 15]: {P : R 3 → R : P is a homogeneous polynomial of degree 4, for every x ∈ R 3 ∆P (x) = 1 12 |x| 2 and |D 2 P (x)| 2 = P (x)} Under the universal covering of SO(3) by SU (2) the octahedral group O lifts to the binary octahedral group 2O, which is generated by the quaternions 1 2 (1 + i + j + k) and 1 √ 2

12. 2 . 10 . 6 . 5 γ v γ v 2π 25 γ e 180°rotation of an edge 30 π γ v γ v γ v 3π 25 γ v 3 216°rotation of a vertex 12 6π 5 γ v γ v γ v 3π 25 γ f 2 240°rotation of a face 20 4π 3 γ v γ v γ v γ v 4π 25 γ v 4 288°rotation of a vertex 12 8π 5 γ v γ v γ v γ v 4π 25 γ w 360°rotation 1 2π γ v γ v γ v γ v γ v π 5 T 7 .T 8 . 2 2kπ n γ k b kπ n 2 γ f 180°rotation around a lateral face n π γ f π 4 γ e 180°rotation around a lateral edge n π γ e π 4

 210652552355782244 Dihedral spaces. Dihedral spaces correspond to N = G/D n , where D n is the group of 2n rotations that leave invariant a at regular n-gon. Its double covering in SU (2) is generated by the T Decomposition of closed in the dodecahedral space SO(3)/I SU (2)/2I. γ Description Conjugates in 2O λ(γ) Decomposition E sg (γ) Decomposition of closed geodesics of SO(3)/D n with n ≥ 3 odd. γ Description Conjugates λ(γ) Decompositions E sg (γ) around a basis k ∈ {1, . . . , n -1} 2 Decomposition of closed geodesics of SO(3)/D n with n ≥ 4 even. γ Description Conjugates λ(γ) Decompositions E sg (γ) around a basis k ∈ {1, . . . , n -1}

  2 (∂Ω, N ) and (γ 1 , . . . , γ k ) ∈ W 1/2,2 (S 1 , N ) k be a topological resolution of γ 0 . If γ 1 , . . . , γ k are minimal geodesics and if 0 < ρ < σ < ρ(a 1 , . . . , a k ), then G geom,ρ γ 0 ,...,γ k (a 1 , . . . , a k ) ≤ G geom,σ γ 0 ,...,γ k (a 1 , . . . , a k ) +

	k i=1	λ(γ i ) 2 4π	log	σ ρ	.

  and where we have used the estimate on Dϕ -id L ∞ provided by Lemma 3.15.

Jean: 2019-06-17 La constante me semble dépendre de (a1, . . . , a k ) à travers l'énergie renormalisée. provided C max i {|a i -b i |} < α, where L > 0 is the Lipschitz constant of F on B α (id) Combining (3.25), (3.26) and (3.27), we obtain

  and (Π N • tr B u) B∈Bn,p is a minimal topological resolution of tr ∂Ω u.Let C n,p denote the set of centres of the disks in B n,p . Up to a subsequence in n and by a diagonal argument, we can assume that for each p ∈ N, the sequence (C n,p ) n∈N converges in Hausdor distance to a nite set C p in Ω of cardinality at most (4πE sg (γ 0 )/ sys(N )) 2 . Taking a subsequence, we can assume further that (C p ) p∈N converges in Hausdor distance to a nite set C = {a 1 , . . . , a k } ⊂ Ω, with k ≤ 4πE sg (γ 0 )/ sys(N )) 2 . (The sets C p,n , C p and C might be empty; we understand that a sequence converges to the empty set in Hausdor distance whenever it is identically the empty set).

	By (7.18), we have if dist

H (C n,p , C) ≤ η p ,

(7.19) 

  follows by(7.20) that lim p→∞ ν ρ,2ηp (a i ) = 1, which implies that a i ∈ Ω. Hence, in view of De nition 4.1 and (7.20), the map u is renormalizable.

	By Lemma 7.7 and (ii),
		ρ	
	lim sup		sup
	n→∞	0	∂Br(a i )

  1 , N ) and hence by Proposition 2.10 (vi), 0 = lim k→∞ d synh (Π N • γ i,n k , u(a i + ρ•)) and thus by(7.22) and Proposition 5.2

	(7.23)	lim inf k→∞

  order to estimate the supremum of d N (exp p (θu), exp p ( θu)) over [a k ; b k ], we introduce the function of two variables

γ(s, t)

:= exp p (θ(s)u(t)), s, t ∈ [a k , b k ],

so that γ(a k , t) = exp p ( θ(t)u(t)). First, for every t ∈ [a k , b k ], we have

(10.9) 

d N (γ(t, t), γ(a k , t))

  Thus, by(10.15) again, (E(γ k )) k is bounded and the sequence (γ k ) k has a subsequence that converges uniformly. Still denote the subsequence by (γ k ) k and let γ ∞ be its limit which, by (10.15), must be minimizing, i.e. γ ∞ ∈ Ω pq . In particular, the middle point of γ k , i.e.

  This shows the uniqueness of the Riemannian metric. Proposition 12.4 reduces the question of classifying homotopic closed geodesics in G/H to the question of classifying geodesics in a Lie group G that minimize the distance to a connected component of a closed subgroup H.

		Remy: Je ne compre Remy: Je ne compre
	have [x, y], x = 0.	pas pourquoi pas pourquoi
	Proof of Proposition 12.1. The fact that π is a smooth submersion is standard [36, Theorem 21.17].	
	Since the canonical projection is a submersion and since dπ(g) = 0 on T	

g (gH), for all g ∈ G the orbit gH = π -1 ({π(g)}) is a a smooth sub-manifold of G and the tangent map dπ(g) :

T g G → T π(g) (G/H) is a surjection, induces a linear surjective isomorphism dπ(g)| Tg(gH) ⊥ (T g (gH)) ⊥ → T π(g) (G/H) which depends smoothly on g ∈ G. For every v, w ∈ T π(g) (G/H), we de ne v, w π(x) = dπ(g)| -1 (ker dπ(g)) ⊥ [v]

, dπ(g)| -1 (ker dπ(g))

⊥ 

[w] g .

Jean: 20190628 La preuve de la Proposition 3.8 ne tenait pas compte de ce que les disques optimaux dans la dé nition de contenu de Hausdor n'étaient pas nécessairement contenus dans Ω. Ça devrait être corrigé maintenant.

Let us show that the right hand-side does not depends on the representative g of the orbit gH and thus it de nes a Riemannian structure on G/H. For h ∈ H, let R h : G → G be the rightmultiplication map de ned for every k ∈ G by R h (k) = kh. By assumption this map R h is an isometry and π • R h = π. Hence, we have dR h (g)[ker dπ(g)] = ker dπ(gh). Since R h is an isometry, we have ker dπ(g

From the chain rule we have : J'ai modi é mais je prends pas bien : J'ai modi é mais je prends pas bien

The fact that G acts isometrically on G/H follows from the left-invariance of the metric on G.

The Ginzburg-Landau relaxation procedure requires an isometric embedding into R ν . The classical Nash embedding theorem [START_REF] Nash | The imbedding problem for Riemannian manifolds[END_REF] provides such an embedding; if G/H is compact it is possible to obtain an equivariant isometric embedding. Proposition 12.2 (Moore, 1976 [START_REF] Moore | Equivariant embeddings of Riemannian homogeneous spaces[END_REF] (see also [START_REF] Moore | On equivariant isometric embeddings[END_REF])

In contrast with Nash's embedding theorem, the dimension ν of the target space R ν depends on the metric on G and on the choice of the subgroup H, and the compactness of

The fundamental group of G/H can be computed by the following theorem [46, §8].

Proposition 12.3 (Fundamental group on homogeneous spaces). Let G be a connected, simply connected topological group, let H be a closed subgroup of G and let H 0 be the connected component of the identity of H, then H 0 is a normal subgroup of H and π 1 (G/H) H/H 0 .

The restriction that G is simply connected can be overcome by replacing G by its universal covering.

In many cases we will consider manifolds that are quotients of the orthogonal group SO(3). We recall how SO(3) is doubly-covered by the unitary group SU (2) which is isomorphic to the unit sphere of the eld of the quaternions H. Indeed, we have R 3 {x ∈ H : x = -x}, g ∈ H 3 \ {0}, the map x ∈ R 3 → g -1 xg is an isometry; any rotation can be realized for some quaternion g ∈ H such that |g| = 1. In order to have an isometry with the metric on SO(3) whose distance correspond to the amplitude of rotation angle, we x the metric on SU (2) S 3 such that the distance between antipodal points is 2π.

We now turn out to the classi cation of geodesics in order to describe their synharmony. We rst have a lifting property of geodesics.

Proposition 12.4. If G is simply connected and if γ 0 , γ 1 ∈ C 1 (S 1 , G/H) are homotopic closed geodesics minimizing in their homotopy class, then there exist g 0 , g

g 0 and g 1 are minimizing geodesics in G,