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2AMIS, Université Paul-Valéry Montpellier 3, F34000, Montpellier,

France.

*Corresponding author(s). E-mail(s): julien.gibaud@umontpellier.fr;
†These authors contributed equally to this work.

Abstract

In a context of component-based multivariate modeling we propose to model
the residual dependence of the responses. Each response of a response vector is
assumed to depend, through a Generalized Linear Model, on a set of explanatory
variables, as well as on a set of additional covariates. Explanatory variables are
partitioned into conceptually homogeneous variable groups, viewed as explana-
tory themes. Variables in themes are supposed many and redundant. Thus,
generalized linear regression demands dimension reduction and regularization
with respect to each theme. By contrast, additional covariates contain few vari-
ables, selected so as not to be too redundant, thus demanding no regularization.
Supervised Component Generalized Linear Regression proposed to both regular-
ize and reduce the dimension of the explanatory space by searching each theme for
an appropriate number of orthogonal components, which both contribute to pre-
dict the responses and capture relevant structural information in themes. In this
paper, we introduce random latent variables (a.k.a. factors) so as to model the
covariance matrix of the linear predictors of the responses conditional on the com-
ponents. To estimate the model, we present an algorithm combining supervised
component-based model estimation with factor model estimation. This method-
ology is tested on simulated data and then applied to an agricultural ecology
dataset.

Keywords: EM algorithm, factor model, generalized linear latent variable model,
multivariate generalized linear model, supervised components
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1 Introduction

In multivariate modeling, accounting for mutual dependencies between the responses
is a rich ongoing research field in both theoretical and applied statistics. For instance,
see Bartholomew et al (2011, Chapter 3) for the theoretical aspects; Meyer (2009),
Pollock et al (2014), Hui (2017) for application to ecology and Watkins (2018) for a
review in the quantitative psychology field. As recalled by Ovaskainen et al (2017) in
an ecological context, the species co-occurrences are not only explained by the envi-
ronmental variables but also partly by biological interactions between the species. As
a result, species abundances can hardly be assumed independent conditional on the
environmental variables. The residual dependence of the responses (here the abun-
dances of species), assumed drawn from distributions belonging to the exponential
family, are thus modeled through random latent variables introduced in the linear
predictors. These random latent variables are henceforth referred to as “factors”.

Generalized Linear Latent Variable Models (GLLVMs) have been proposed by
Skrondal and Rabe-Hesketh (2004) to combine Generalized Linear Models (GLM;
McCullagh and Nelder, 1989) with factors. Unfortunately, when factors are involved,
the log-likelihood writes as an integral which has no closed form in general. In the
particular case of Gaussian responses, the GLLVM is a classic factor model. Sev-
eral methods for estimating GLLVMs suffer from a high computation time; see for
instance those using the adaptive quadrature (Rabe-Hesketh et al, 2002), the Expec-
tation Maximization algorithm (EM; Dempster et al, 1977) in conjunction with Monte
Carlo integration (Hui et al, 2015) or those using Bayesian Markov Chain Monte
Carlo (MCMC) (Hui, 2016; Tikhonov et al, 2020). The methods using a variational
approximation (Hui et al, 2017), a Laplace approximation (Niku et al, 2017, 2019a)
or an extended variational approximation (Korhonen et al, 2023) reduce the compu-
tation time by using a closed form approximation of the log-likelihood. From an other
perspective, a fitting approach proposed by Saidane et al (2013) assumes that maxi-
mization can be performed through the EM algorithm after linearizing the model and
assuming the linearized model is approximately Gaussian. Originally introduced by
Schall (1991), the linearization method gives, through empirical studies, an alternative
to estimate parameters in a context of intractable likelihood whether in a Generalized
Linear Mixed Model (Chauvet et al, 2019) or in a factor model context (Saidane et al,
2013).

Modeling the responses also requires taking into account a large set of possibly
highly correlated explanatory covariates, so that the GLLVM demands regulariza-
tion. This, together with an interpretable dimension reduction can be carried out by
calculating a small number of explanatory deterministic latent variables. These deter-
ministic latent variables, defined as linear combinations of the explanatory variables,
are referred to as “components”. Different approaches propose to bridge the multi-
variate GLM estimation with dimension reduction of the explanatory space. Methods
as Reduced Rank Vector Generalized Linear Model (RRVGLM; Yee and Hastie, 2003)
or concurrent ordination (van der Veen et al, 2023) reduce the number of parameters
to estimate by assuming that the set of explanatory variables can be replaced by a
small number of their linear combinations. Alternatively, orthogonal components are
constructed by the Iteratively Reweighted Partial Least Squares (IRPLS; Marx, 1996)
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and the Supervised Component-based Generalized Linear Regression (SCGLR; Bry
et al, 2013) in order to capture relevant information on the covariates for predicting
the responses. SCGLR allows both to find interpretable explanatory components, and
to produce regularized linear predictors in the high-dimensional framework, i.e. when
the covariates outnumber the statistical units. To achieve that, SCGLR optimizes a
general and flexible trade-off criterion between the Goodness-of-Fit (GoF) of the model
and the Structural Relevance (SR; Bry and Verron, 2015) of directions of the space
spanned by the explanatory variables. Later, Bry et al (2020b) developed an exten-
sion of SCGLR, called THEME-SCGLR, with the aim to search for components in
a thematic partitioning of the explanatory variables into groups, hence referred to as
“themes”. Variables in a theme must have conceptual kinship, so that the components
combining them linearly can be interpreted with respect to their common concept. For
instance, precipitations and solar radiation measures can be gathered in a “climate”
theme, soil measures in a “geology” theme, etc. Within each theme, the components
are required to extract the information that is useful to predict the responses when
associated with the components of the other themes. An SCGLR package is freely
available at https://github.com/SCnext/SCGLR.

All the extensions of SCGLR (Bry et al, 2013; Chauvet et al, 2019; Bry et al,
2020a,b; Gibaud et al, 2022) developed so far, have been assuming that the responses
are independent conditional on the explanatory covariates. We now propose to over-
come this limitation by allowing the responses to have some conditional dependence,
which we model by introducing common factors into their linear predictors. Besides,
we also take into account a thematic partitioning of the explanatory variables. To put
it shortly, we refine THEME-SCGLR in order to model the conditional dependence
between the responses drawn from a distribution belonging to the exponential family,
as GLLVM does.

In a species-rich ecosystem context, to better understand the communities-specific
characteristics of species, several works partition the responses into groups. Some
methods cluster the responses with respect only to the values they take (Swaine and
Whitmore, 1988). Others cluster responses on the basis of their regression coefficients
on covariates (Dunstan et al, 2013; Mortier et al, 2015). Others still, base the clus-
tering on the the fact that the responses depend more or less on the same subset of
covariates (Gibaud et al, 2022). In this paper, we propose to estimate the residual
covariance matrix of the responses conditional on the explanatory components, and
then, to use this matrix to partition the responses into groups of highly correlated
responses (in square value). Indeed, high correlations, whatever their sign, could hint
at interactions between species. More precisely, to group species, we perform cluster-
ing on a dissimilarity matrix built from the estimated residual correlation matrix of
the linear predictors. Identifying a group of correlated species is equivalent to identi-
fying a square block of high absolute values in this correlation matrix, once the rows
and columns are suitably reordered.

The paper is organized as follows. In Section 2, we recall the principle of THEME-
SCGLR. Section 3 presents our extension to the factor models. Section 4 details several
simulation studies that illustrate the interest and the performances of the proposed
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algorithm. Section 5 presents the results it yields on an agricultural ecology dataset.
Finally, Section 6 provides a conclusion and a discussion.

2 A reminder of THEME-SCGLR

2.1 Preliminary notations

The sequel contains mathematical developments which use notations listed hereafter:

• Let ωn be the weight of unit n, and W = diag(ωn)n=1,...,N . In practice, ωn = 1
n

and W = 1
N IN . Let a and b be vectors of RN , endowed with metric W . The

Euclidean scalar product between a and b with respect to metric W is given by
〈a, b〉W = aTWb.

• Likewise, cosW (a, b) =
〈a,b〉W

‖a‖W ‖b‖W
denotes the cosine of the angle between a and b

with respect to metric W . If a and b are centred and W = 1
N IN , the cosine is the

linear correlation coefficient, denoted ρ.
• A = [a1, . . . ,aP ] ∈ RN×P and B = [b1, . . . , bQ] ∈ RN×Q being matrices, the

concatenation of A and B writes [A,B]. The space spanned by the column-vectors
of A is denoted span[A].

• The W -orthogonal projector onto span[A] is given by ΠW
span[A] =

A(ATWA)−1ATW . The cosine of the angle between a vector b ∈ RN and span[A]
with respect to metric W is given by cosW (b, span[A]) = cosW (b,ΠW

span[A]b).

2.2 The original SCGLR method

In the framework of a multivariate GLM, consider K response vectors measured on
N statistical units, encoded in a response matrix Y = [y1, . . . ,yK ] ∈ RN×K , to
be predicted through explanatory variables partitioned in two groups. The first one
A = [a1, . . . ,aQ] ∈ RN×Q is a group of covariates that are few and not or at the most
weakly redundant. These variables are assumed to be interesting per se, and their
marginal effects have to be taken into account explicitly in the model. The second
group X = [x1, . . . ,xP ] ∈ RN×P gathers numerous and possibly highly redundant
covariates, considered as proxies to latent dimensions, which must be found and inter-
preted. Thus, the model demands dimension reduction and regularization with respect
to X, and not to A. To achieve this, SCGLR searches for explanatory components in
X jointly supervised by the responses. A component f ∈ RN writes f = Xu, where
u ∈ RP is a vector of component coefficients. For a single component model, the linear
predictor associated with response yk is given by

ηk = (Xu) γk +Aδk,

where γk and δk are regression parameters. Component f is common to all the
responses and, for identification, we impose uTMu = 1. As a general rule, we must
have M = M−1

PCA, where MPCA is the metric suitable for X’s PCA. In this paper,
assuming that X consists of P standardized numeric variables, we have M = IP .

4



It is assumed in the original SCGLR method, that the responses are independent
conditional on the explanatory variables, and consequently on f .

2.3 The original SCGLR specific criterion

For the parameter estimation, SCGLR takes advantage of the GLM background. Here,
we make use of the Fisher Scoring Algorithm (FSA). Let hk denote the canonical link
function associated with the response yk, h′k its first derivative and µnk the mean
parameter for statistical unit n. In the wake of McCullagh and Nelder (1989), the
adjusted dependent variable wnk associated with ynk is then calculated as the first
order development of hk at point µnk

wnk = hk (µnk) + (ynk − µnk)h′k (µnk)

= ηnk + ζnk,

where ζnk = (ynk − µnk)h′k (µnk). In the spirit of Nelder and Wedderburn (1972), this
development leads to the conditional linearized model expressed column-wise

wk = (Xu) γk +Aδk + ζk,

with E[ζk] = 0 and V[ζk] =: W−1
k .

Due to the product uγk, this linearized model derived from the FSA is not lin-
ear and must be estimated through an alternated weighted least squares process,
estimating in turn {γk, δk} and u.

Let ΠWk

span[Xu,A] be the projection on span[Xu,A] with respect to Wk. As sug-

gested by Bry et al (2013), the vector of component coefficients u may be viewed as
the solution of the optimization program max

uTu=1
ψA(u), where

ψA(u) :=

K∑
k=1

‖wk‖2Wk
cos2Wk

(
wk,Π

Wk

span[Xu,A]wk

)
.

The sub-criterion ψA is merely a Goodness-of-Fit (GoF) measure, and maximizing
it does not lead to strong, regularizing and and interpretable components. The GoF
measure must therefore be aptly combined with an other sub-criterion to achieve both
meaningful and predictive dimension reduction, together with regularization.

Bry and Verron (2015) proposed such a sub-criterion, named Structural Relevance
(SR) to measure the ability of a component to capture information in a set of variables
containing structures such as variable-bundles. Informally, a bundle is a set of variables
correlated “enough” to be viewed as proxies to a common latent dimension. The
associated SR measure φ is defined as the following generalized average of quadratic
forms of u

φ(u) :=

(
1

P

P∑
p=1

〈Xu,xp〉2lW

)1/l

, (1)
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where W is the weight matrix. Components will align with a more or less thin bundle
depending on whether l ≥ 1 is greater or smaller respectively. The main purpose of
introducing SR is to focus on more interpretable directions.

The SCGLR specific criterion, proposed by Bry et al (2020b) combines the GoF
and the SR, introducing a hyper-parameter s ∈ [0, 1] to tune the importance of the SR
relative to the GoF. SCGLR thus attempts a trade-off between φ and ψA by solving

max
uTu=1

φ(u)sψA(u)1−s ⇔ max
uTu=1

s ln(φ(u)) + (1− s) ln(ψA(u)).

When s = 0, the criterion identifies with the GoF, while at the other end, taking s = 1
makes it identify with the SR. Increasing s intensifies both the focus of components
on “strong” dimensions, and the regularization, at the cost of some GoF. The explicit
expression of the criterion is given in Appendix A. Moreover, Appendix C gives a proof
of how SCGLR regularizes and shrinks the coefficients.

2.4 THEME-SCGLR

Bry et al (2020b) refer to the “thematic model” as the conceptual model stating that
variables in Y are dependent on R themes X1, . . . ,XR plus a set of covariates A, and
that structurally relevant dimensions should be explicitly identified in the Xr’s. For
a single component in each theme, the linear predictor associated with response yk is
then given by

ηk = (X1u1) γk1 + · · ·+ (XRuR) γkR +Aδk.

To achieve theme-specific regularization, the SCGLR criterion has to be adapted.
Denoting fr = Xrur the (first) component of theme Xr, we have ΠWk

span[f1,...,fR,A] =

ΠWk

span[fr,Ar] where Ar = [f1, . . . ,fr−1,fr+1, . . . ,fR,A]. For each theme, the GoF

measure thus becomes

ψAr (ur) :=

K∑
k=1

‖wk‖2Wk
cos2Wk

(
wk,Π

Wk

span[Xrur,Ar]wk

)
.

The SR measure remains the same φ (ur) as given by Equation (1). Finally, the
optimization program can be solved by iteratively maximizing in turn the trade-off
criterion on every ur

∀r, max
uT

r ur=1
s ln(φ(ur)) + (1− s) ln(ψAr (ur)). (2)

This combined criterion is rather general. Indeed, the GoF measure adapts any situa-
tion where a likelihood function is available for the model taking the components and
A as covariates. Generally, this likelihood involves a vector of parameters Θ. The max-
imization is carried out alternating two steps: (i) Given Θ, maximize the criterion with
respect to each ur using a dedicated algorithm: PING (for Projected Iterated Normed
Gradient) recalled in Appendix B, designed to maximize, at least locally, any criterion
on the unit sphere (Chauvet et al, 2019; Bry et al, 2020a,b; Gibaud et al, 2022). (ii)
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Given all ur, maximize the criterion with respect to Θ. This step is performed using
a classical likelihood maximization algorithm relevant to the situation.

2.5 Higher rank components

Consider step (i) of the combined criterion maximization, and suppose we want to
extract a given number of components Hr ≤ rank(Xr) from each theme Xr. Let
fhr = Xru

h
r be the rank-h component of theme Xr, and let F hr = [f1

r , . . . ,f
h
r ], where

h ≤ Hr, be the matrix of the first h components of theme Xr. The model comprising
all components writes

ηk =

H1∑
h=1

(
X1u

h
1

)
γhk1 + · · ·+

HR∑
h=1

(
XRu

h
R

)
γhkR +Aδk

= FH1
1 γk1 + · · ·+ FHR

R γkR +Aδk,

where γk1, . . . ,γkR are vectors of regression parameters.
The new component fh+1

r must best complement both all other components and

A, that is Ahr := [FH1
1 , . . . ,F

Hr−1

r−1 ,F hr ,F
Hr+1

r+1 , . . . ,FHR

R ,A]. So fh+1
r has to be

calculated using Ahr as the new set of additional covariates. Moreover, to avoid linear
redundancy of components within each theme, we impose that fh+1

r be orthogonal
to F hr , i.e. F hTr Wfh+1

r = 0. We calculate every new component as the solution of
program (2), with the additional constraint: ∆hT

r uh+1
r = 0, where ∆h

r = XT
r WFhr ,

and loop on r until convergence of the overall criterion. The first Hr components in
the Partial Least Squares (PLS; Wold et al, 1984) regression of Y on Xr are taken
as initial values of F hr . For all r = 1, . . . , R, the rank-1 component of theme Xr is
calculated using the same program with F 0

r = ∅ and ∆0
r = 0.

3 Extending SCGLR to a factor model

As mentioned above, step (ii) of the combined criterion maximization boils down
to maximizing the likelihood of the component-based model. In this section, the
components are thus taken as known. For the sake of simplicity, we shall con-
sider the matrix F = [FH1

1 , . . . ,FHR

R ] as the new set of explanatory variables and
γk = (γTk1, . . . ,γ

T
kR)T its vector of regression parameters associated with the response

yk.

3.1 SCGLR in a factor model context

Let Y = [y1, . . . ,yK ] ∈ RN×K be the response matrix. For unit n, each response is
assumed to be linearly modeled using the components and additional covariates, plus
J factors gn = (gn1, . . . , gnJ)

T
. So, the linear predictor for unit n and response yk

writes
ηnk = fTn γk + aTnδk + gTnbk,

where fn and an are the vectors composed of the nth rows of matrices F and A
respectively, and bk is the vector of loadings associated with gn. The factors are
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assumed drawn from a multivariate normal distribution gn ∼ NJ(0, IJ ) and indepen-
dent across statistical units. This model is designed so that the J factors capture as
much as possible of the covariance between the responses not accounted for by the com-
ponents and additional covariates, i.e. their residual covariance. Denoting G ∈ RN×J
the matrix containing all the realizations of factors, the linear predictor associated
with the response yk expressed column-wise becomes

ηk = Fγk +Aδk +Gbk.

Let B = [b1, . . . , bK ] ∈ RJ×K be the loading matrix. Jöreskog (1969) notices that
the loading matrix B is defined up to an arbitrary orthogonal transformation. To
guarantee the identification of the model, we choose to constrain the J×J sub-matrix
of B to be an upper triangular matrix with positive diagonal elements (Geweke and
Zhou, 1996). An advantage of the factor model is to yield the matrix Σ = BTB ∈
RK×K , storing the residual covariances of the responses, in a parsimonious manner.
Indeed, the number of factors retained may remain small with respect to the size of
the covariance matrix.

3.2 Estimating the parameters of a GLLVM

Let Θ = {γk, δk, bk | k = 1, . . . ,K} be the set of parameters. The marginal log-
likelihood of the model is obtained by integrating over factors gn

l(Θ;Y ) =

N∑
n=1

ln (L(yn; Θ))

=

N∑
n=1

ln

(∫ K∏
k=1

L(ynk | gn; Θ)L(gn) dgn

)
.

In a context of non-Gaussian responses, the maximization of this log-likelihood cannot
be obtained in closed form. In the spirit of Saidane et al (2013), the estimation of the
parameters is performed in two steps: first, we linearize the model; then, we maximize
the pseudo-likelihood of the linearized model under a Gaussian assumption.

3.2.1 The linearization step

Temporarily considering the factors given, i.e. conditional on G, the above log-
likelihood is that of a classic multivariate GLM. The adjusted dependent variable wk
can be viewed as the response in the linearized model

wk = Fγk +Aδk +Gbk + ζk,

where E[wk | G] = Fγk +Aδk +Gbk and V[wk | G] = V[ζk] = W−1
k .
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3.2.2 The estimation step

In this step, we take the distribution of the adjusted dependent variables given
F , A and G to be Gaussian, and view the factors as latent variables. The model
pseudo-log-likelihood l(Θ;W), where W denotes the matrix of adjusted dependent
variables, being difficult to maximize directly, we use the EM algorithm to estimate
the model parameters. Assuming, in the wake of Wolfinger and O’connell (1993), that
the adjusted dependent variables have a Gaussian distribution, we calculate and then
maximize the expectation of their complete log-likelihood l(Θ;W ,G). Further details
of the derived EM algorithm are given in Appendix D.

3.3 The overall algorithm

The overall algorithm, presented in Appendix E, consists in alternating the following
steps: (i) On the current linearized model, given the current set of parameters and
corresponding expected factor values, calculate all the components of all the themes
iteratively through the PING algorithm. (ii) Given the current components, calculate
the adjusted dependent variables of the linearized model and their variance matrix.
(iii) Given the adjusted dependent variables, re-estimate the factor model parameters
and expected factor values through the EM algorithm. The method thus implemented
is named F-SCGLR (for Factor-SCGLR).

3.4 Posterior clustering of responses

Recall that one of the aims of this work is to group the responses according to their
mutual residual dependencies. In other words, two responses having a high residual
correlation (positive or negative) should be cast to the same cluster. To achieve this,
we propose the following strategy

1. Estimate the residual covariance matrix Σ := BTB of the linear predictors.
2. Calculate the corresponding residual correlation matrix C where Cij :=

Σij/
√

ΣiiΣjj .

3. Calculate the associated dissimilarity matrix D where D2
ij := 2

(
1− C2

ij

)
. The

squared residual correlation is used in order to consider as close two highly
correlated responses whether this correlation be positive or negative.

4. Perform Multidimensional Scaling (MDS; Cox and Cox, 2008) on the matrix D
to obtain a Euclidean representation of the responses (i.e. a set of coordinates in
a Euclidean space) with respect to this distance structure. We use the function
cmdscale of the stats package (R Core Team, 2023).

5. Perform a K-means algorithm (taking as a starting point the output of a hierarchical
clustering procedure) on the coordinates obtained on the previous step. We use the
factoextra package (Kassambara, 2017) where the function hkmeans runs the
K-means and the function fviz-nbclust optimizes the number of clusters using the
silhouette criterion.
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4 Simulation study

Several simulation studies have been conducted to assess the performance of F-
SCGLR. The first one focuses on the identification of the right combination of
components and factors. The combination was calibrated across the cross-product
grid (H1, . . . ,HR, J) ∈ {1, . . . , 4}R × {0, . . . , 5} by minimizing the Bayesian Infor-
mation Criterion (BIC; Schwarz, 1978). As shown by Chauvet et al (2019), the
hyper-parameters must be chosen so as to prevent the components from being drawn
too strongly towards the principal components (s > 0.5) or towards too local bundle
(l > 10). Thus, the second simulation aims at studying the influence of the hyper-
parameters s ∈ {0.1, 0.3, 0.5} and l ∈ {1, 2, 3, 4, 7, 10} in the situation of a more or less
clearly separated response cluster pattern. In this simulation, we use the Rand Index
(RI; Rand, 1971) and the Adjusted Rand Index (ARI; Hubert and Arabie, 1985) to
assess the correctness of the classification steps detailed in Section 3.4. In addition,
to measure the quality of the latent dimensions recovery, we calculate the maximum
square correlation between each true dimension, represented by their direction vector
ξ used for simulation, and the components

ρ2 (ξ, .) = max
r,h

ρ
(
ξ,fhr

)2
,

where fhr denotes the hth component of theme Xr. Finally, as reference values for
comparison, we also calculated the RI and ARI of the partitions output by a competing

package in a context of binary data. For each simulation, five hundred samples have
been generated. The developed package FactorSCGLR and the simulation codes
are available at https://github.com/julien-gibaud/FactorSCGLR.

4.1 Simulation in a context of mixed distributions

4.1.1 Generation of the simulated data

The variables are simulated on N = 100 statistical units. Five latent dimensions ξ1,
ξ2, ξ3, ξ4 and ξ5 are independently simulated from a standard multivariate normal
distribution. The X matrix consists in two themes: X = [X1,X2]. The first theme
X1 = [X 1,X 2,M1] is made of three blocks: X 1 ∈ RN×90 and X 2 ∈ RN×60 are
bundles of variables distributed about ξ1 and ξ2 respectively, and M1 contains fifty
unstructured noise variables drawn from a standard multivariate normal distribution.
Likewise, the second theme X2 = [X 3,X 4,X 5,M2] is made of four blocks: X 3 ∈
RN×100, X 4 ∈ RN×80 and X 5 ∈ RN×60 are bundles of variables distributed about
ξ3, ξ4 and ξ5 respectively, and M2 contains sixty unstructured noise variables drawn
from a standard multivariate normal distribution. This generation leads to P = 500
explanatory variables. More formally, for all i = 1, . . . , 5, a variable xp within a bundle
is simulated as xp = ξi+εp, where εp ∼ NN (0, 0.1IN ). The bundles are thus generated
rather thin. To study the influence of wider bundles on the components, we refer the
reader to Chauvet et al (2019). The N realizations of the J = 3 factors, simulated
through gn ∼ NJ(0, IJ ), are stored in matrix G ∈ RN×J . The matrix B ∈ RJ×K of
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factor loadings is generated so as to exhibit a three-cluster pattern

∀k = 1, . . . , 5, bk ∼ NJ
(
µ1, σ

2
BIJ

)
∀k = 6, . . . , 10, bk ∼ NJ

(
−µ1, σ

2
BIJ

)
∀k = 11, . . . , 20, bk ∼ NJ

(
µ2, σ

2
BIJ

)
∀k = 21, . . . , 35, bk ∼ NJ

(
−µ2, σ

2
BIJ

)
∀k = 36, . . . , 50, bk ∼ NJ

(
µ3, σ

2
BIJ

)
,

where σ2
B = 0.1, µ1 = (2, 0, 0)T , µ2 = (0,−1, 0)T and µ3 = (0, 0, 1.5)T . Finally,

the response matrix Y is simulated as a mix of Gaussian, Poisson and Bernoulli
distributions, with

∀k = 1, . . . , 20, yk ∼ NN (µ = γ1kξ1 + γ2kξ2 +Gbk,Σ = IN )

∀k = 21, . . . , 40, yk ∼ P (λ = exp [0.5γ1kξ4 + 0.5γ2kξ3 +Gbk])

∀k = 41, . . . , 50, yk ∼ B
(
p = logit−1 [γ2kξ3 + γ3kξ2 +Gbk]

)
,

where for all k, γ1k, γ2k and γ3k are uniformly generated, with γ1k ∈ [−4, 4], γ2k ∈
[−2, 2] and γ3k ∈ [−0.5, 0.5]. In the linear predictors, we order the latent variables by
decreasing magnitude of their regression parameter.

4.1.2 Identification of the true model

In this simulation, the hyper-parameters are first calibrated through the SCGLR
package (e.g. without factors) and set to s = 0.3 and l = 4. Appendix F sums up the
results on a cross-product grid. As expected, the combination which minimizes the
BIC is given by the true combination (H1, H2, J) = (2, 2, 3). However, several points
deserve mentioning. We observe, for all component combinations, that the values of
BIC decrease drastically when enough factors are involved in the model. This shows
that, as mutual dependencies may generally exist, the residual covariance should be
modeled. When the model involves too many factors (when J = 4 and J = 5), the
number of useful components is underestimated. Indeed, the variability of the model
captured by the factors then contains a part of the variability otherwise captured by
the components. In the opposite situation, when J = 0, the BIC leads to overestimate
the number of components.

4.1.3 Varying the hyper-parameters and the variance within the
response clusters

Henceforth, keeping the true combination found by the BIC, we focus on the influence
of the hyper-parameters s and l on the classification decision and latent dimension
recovery. In order to compare the results in a context of more or less distinct cluster
pattern, we vary the variance within the cluster by taking σ2

B ∈ {0.1, 0.2, 0.3}. As an
illustration, Appendix G shows the residual correlation matrices.

Table 1 gives the results for σ2
B = 0.1. The tables summing up the results for σ2

B =
0.2 and σ2

B = 0.3 are presented in Appendix H. As expected, the higher the variance
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Table 1: Mean values of RI, ARI and square correlation over
five hundred samples with σ2

B = 0.1, s ∈ {0.1, 0.3, 0.5} and
l ∈ {1, 2, 3, 4, 7, 10}.
s l RI ARI ρ2(ξ1, .) ρ2(ξ2, .) ρ2(ξ3, .) ρ2(ξ4, .)

0.1

1 0.933 0.847 0.967 0.937 0.801 0.864
2 0.920 0.818 0.988 0.970 0.887 0.931
3 0.915 0.802 0.988 0.970 0.888 0.939
4 0.931 0.842 0.983 0.970 0.888 0.956
7 0.924 0.825 0.981 0.970 0.869 0.958
10 0.918 0.812 0.980 0.970 0.869 0.958

0.3

1 0.920 0.820 0.975 0.940 0.720 0.739
2 0.926 0.831 0.993 0.972 0.931 0.946
3 0.926 0.836 0.985 0.972 0.927 0.967
4 0.924 0.830 0.983 0.972 0.921 0.971
7 0.925 0.834 0.978 0.972 0.904 0.968
10 0.921 0.824 0.976 0.972 0.895 0.966

0.5

1 0.919 0.817 0.975 0.938 0.713 0.661
2 0.921 0.823 0.994 0.972 0.928 0.950
3 0.919 0.818 0.986 0.974 0.922 0.973
4 0.920 0.820 0.984 0.974 0.920 0.975
7 0.919 0.818 0.982 0.974 0.903 0.972
10 0.920 0.821 0.982 0.974 0.903 0.972

within the cluster, the weaker the values of RI and ARI for all the combinations of
s and l. The main result about the square correlations is that the variance within
the cluster does not have a relevant influence on the quality of the latent dimensions
recovery. Indeed, the search for components is related to the deterministic part of the
model, while σ2

B is involved in the random part of the model. The square correlations,
for s = 0.3 and s = 0.5 with l ≥ 2, are greater than for s = 0.1. This observation
is consistent with Chauvet et al (2019) who notice that the thinner the bundles, the
greater the value of s has to be to recover the latent dimensions correctly. Here, indeed,
the variance within the bundles is equal to 0.1 (thin bundles). However, the particular
case of l = 1 deserves mentioning. The components calculated with l = 1 being closer
to the principal components, the two components of theme X2 are drawn in between
the three bundles and so, produce low square correlations with the latent dimensions.
The interest of tuning the locality parameter l is shown by the gap between the results
obtained for l = 1 and l = 2: in the latter case, the square correlations are higher.
Furthermore, ξ3 being the less explanatory latent dimension, ρ2(ξ3, .) is always lower
than the other square correlations.

Figure 1 shows the correlation scatterplots in the component planes (1, 2) for the
first two themes. The components are almost perfectly aligned with the explanatory
bundles. However, as observed in Table 1, the bundle X 3 seems slightly less correlated
with the component f2

2 than the other bundles with their corresponding components.

4.2 Comparative study

To compare the different GLLVM implementations, we use the package gllvm (Niku
et al, 2019b, 2023). This package offers three ways to fit GLLVM: using a variational
approximation (VA; Hui et al, 2017), a Laplace approximation (LA; Niku et al, 2017,
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Fig. 1: Correlation scatterplot of plane (1,2) for the two themes with s = 0.3 and
l = 4 obtained by the F-SCGLR algorithm. The red arrows represent the bundles
X1 and X2 which explain the first theme. The blue arrows represent the bundles X3

and X4 which explain the second theme. The percentage of inertia captured by each
component is given in parentheses.

2019a) or an extended variational approximation (EVA; Korhonen et al, 2023). The
package gllvm also proposes the concurrent ordination (van der Veen et al, 2023)

which performs a reduced rank regression in order to reduce the number of parameters
to estimate.

The performances of the methods are compared through the RI and ARI of the
partitions output by the estimated residual correlation matrix, the Procrustes errors
between the true and estimated loading matrix B and between the true and estimated
matrix of factors G, latent dimension recovery, root mean square errors of the regres-
sion parameters of matrix A and computation time in seconds. The results are output
by our package FactorSCGLR performing the F-SCGLR method, on the one hand,
and the package gllvm implementing the LA, VA or EVA approaches, on the other
hand.

Due to the excessive computation time of the Bayesian MCMC methods, the
packages boral (Hui, 2016) and Hmsc (Tikhonov et al, 2020) are not tested in this
article. Their performances are respectively discussed by Niku et al (2019b) and Pichler
and Hartig (2021).

4.2.1 Generation of the simulated data

The variables are simulated on N ∈ {100, 200, 300} statistical units. Two bundles
of five variables distributed about the latent dimensions ξ1 and ξ2 respectively are
generated. Ten unstructured noise variables complete the matrix X. One categorical
variable with eight levels is taken as only additional covariate A. In this simulation,
J = 2 factors are simulated to model the residual covariance of the K ∈ {10, 30, 50}
responses. The loadings of the factors are generated in order to get a two-cluster design

∀k = 1, . . . , 0.4K, bk ∼ NJ
(

(−1)
k
µ1, 0.1IJ

)
13



∀k = 0.4K + 1, . . . ,K, bk ∼ NJ
(

(−1)
k
µ2, 0.1IJ

)
,

where µ1 = (0, 2)T and µ2 = (1.5, 0)T . As an illustration, Appendix G shows the
residual correlation matrices. For all k = 1, . . . ,K, the simulated linear predictor for
response yk is thus given by

ηk = γ1kξ1 + γ2kξ2 +Aδk +Gbk,

where γ1k, γ2k and δk are uniformly generated, with γ1k ∈ [−4, 4], γ2k ∈ [−2, 2]
and δk ∈ [−0.5, 0.5]. The package we want to compare F-SCGLR to, not allowing to
consider different distribution families for the responses, we restrict the comparison
to responses having the same distribution.

This comparative study is divided into three parts. First, the response variables
are drawn from a normal distribution. In this context, the estimation of the param-
eters being the same for VA and EVA, our method is compared with LA and VA.
In the second part, the response variables are Poisson distributed for which LA and
VA are available in the gllvm package. The third part is dedicated to Bernoulli dis-
tributed responses. As detailed by Korhonen et al (2023), the VA method fails to give
a closed-form approximation of the log-likelihood with the logit link. However, the
FactorSCGLR package is only implemented for the logit link. So, this part compares
F-SCGLR with LA and EVA only. In all cases, the gllvm package runs with a reduced
rank regression in order to compare the estimates of the components and factors.

In this simulation the package SCGLR calibrates the hyper-parameters to
s = 0.5 and l = 4, while the BIC selects H1 = 2 and J = 2.

4.2.2 Comparison results for the Gaussian distribution

Table 2 sums up the results for the Gaussian distribution. As expected, the three meth-
ods perform better when the number of either statistical units or responses increase.
When K 6= 10, the three methods have classification indices close to 1. Similarly, the
Procrustes errors of the loadings B are small for the best combination of each method.
F-SCGLR, LA and VA respectively reach 0.006, 0.029 and 0.041. The gllvm package
has close Procrustes errors of the loadings G for VA (0.122) and LA (0.124), while
0.047 is obtained by F-SCGLR. Indeed, since the concurrent ordination method imple-
mented in the gllvm package does not deal with structural relevance, the components
found by F-SCGLR better align with the latent dimensions than VA and LA. This
observation remains valid across the simulations when using other distributions for the
responses. The lowest value of RMSE is obtained by F-SCGLR, albeit a same order
of magnitude is achieved by the three methods. For all cases, F-SCGLR is the fastest
method. Moreover, we observe that LA runs faster than VA when K or N increase.

4.2.3 Comparison results for the Poisson distribution

Table 3 sums up the results for the Poisson distribution. Unlike with the simulations
involving Gaussian and Bernoulli distributions, F-SCGLR has the least good rate of
classification for all N and K. Moreover, for N = 300, we observe that a higher number
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Table 2: Mean values of RI, ARI, Procrustes error of the factors G and
their loadings B, latent dimension recovery, root mean square error and
computation time over five hundred samples with N ∈ {100, 200, 300} and
K ∈ {10, 30, 50} for the Gaussian distribution.

N 100 200 300
K 10 30 50 10 30 50 10 30 50

F-SCGLR
RI 0.966 0.994 0.997 0.970 0.993 0.999 0.981 0.993 0.998
ARI 0.930 0.988 0.994 0.938 0.986 0.998 0.962 0.987 0.997

Proc B 0.020 0.022 0.022 0.010 0.010 0.010 0.007 0.006 0.007
Proc G 0.162 0.121 0.112 0.117 0.071 0.064 0.102 0.057 0.047
ρ2(ξ1, .) 0.970 0.968 0.968 0.974 0.975 0.974 0.976 0.976 0.975
ρ2(ξ2, .) 0.945 0.943 0.943 0.963 0.963 0.962 0.966 0.965 0.966
RMSEA 0.772 0.862 0.771 0.563 0.554 0.571 0.441 0.467 0.448
Time 0.520 2.552 7.117 0.938 4.396 12.60 1.352 6.115 18.26

gllvm-VA
RI 0.913 0.981 0.980 0.931 0.977 0.986 0.928 0.974 0.989
ARI 0.823 0.963 0.960 0.859 0.953 0.972 0.857 0.949 0.978

Proc B 0.164 0.067 0.056 0.122 0.058 0.048 0.174 0.061 0.041
Proc G 0.219 0.172 0.170 0.163 0.136 0.126 0.169 0.136 0.122
ρ2(ξ1, .) 0.852 0.828 0.829 0.834 0.840 0.822 0.844 0.846 0.848
ρ2(ξ2, .) 0.718 0.797 0.812 0.777 0.811 0.804 0.786 0.832 0.846
RMSEA 0.793 0.902 0.777 0.590 0.562 0.606 0.464 0.497 0.490
Time 4.486 13.15 29.89 12.83 35.30 65.44 26.64 63.07 112.8

gllvm-LA
RI 0.951 0.970 0.963 0.966 0.961 0.997 0.948 0.970 0.992
ARI 0.899 0.940 0.926 0.930 0.923 0.994 0.892 0.940 0.983

Proc B 0.060 0.047 0.050 0.029 0.040 0.033 0.051 0.035 0.034
Proc G 0.235 0.161 0.195 0.203 0.175 0.124 0.207 0.166 0.126
ρ2(ξ1, .) 0.859 0.811 0.851 0.850 0.848 0.835 0.808 0.841 0.874
ρ2(ξ2, .) 0.706 0.783 0.824 0.813 0.836 0.817 0.779 0.837 0.870
RMSEA 0.818 0.879 0.798 0.614 0.582 0.600 0.479 0.513 0.500
Time 6.060 13.79 28.22 13.62 26.92 59.54 17.70 42.71 79.34

of responses may cause a deterioration of the classification of the compared methods.
The Procrustes errors of B and G computed by F-SCGLR are greater than those of
methods implemented in the gllvm package. The linearization might be to blame in
the Poisson case, because the log link can cause instability in the estimation results.
We observe that these errors are around twice as high for F-SCGLR. This causes the
RI and ARI to be lower. The latent dimension recovery, although better than with
VA and LA, appears to be greater when an other distribution is used for the response
variables. In all cases, F-SCFLR obtains the highest RMSE. The estimation of the
regression parameters of A given by VA and LA are of the same order. In the Poisson
distribution case, the computation time is significantly longer for the three methods.

4.2.4 Comparison results for the Bernoulli distribution

Table 4 sums up the results for the Bernoulli distribution. We observe that, for N ∈
{100, 200}, F-SCGLR gives the best values of RI and ARI, followed by LA and EVA.
When N = 300 and K = 50, the three methods have a classification rate close to
1. The highest value obtained of the ARI is given by LA, followed by F-SCGLR and
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Table 3: Mean values of RI, ARI, Procrustes error of the factors G and
their loadings B, latent dimension recovery, root mean square error and
computation time over five hundred samples with N ∈ {100, 200, 300} and
K ∈ {10, 30, 50} for the Poisson distribution.

N 100 200 300
K 10 30 50 10 30 50 10 30 50

F-SCGLR
RI 0.826 0.881 0.881 0.872 0.824 0.855 0.865 0.866 0.855
ARI 0.651 0.763 0.765 0.743 0.650 0.713 0.727 0.735 0.714

Proc B 0.307 0.286 0.341 0.257 0.388 0.366 0.260 0.349 0.423
Proc G 0.512 0.550 0.579 0.456 0.517 0.548 0.429 0.507 0.526
ρ2(ξ1, .) 0.966 0.958 0.966 0.974 0.974 0.963 0.976 0.966 0.976
ρ2(ξ2, .) 0.816 0.909 0.876 0.825 0.892 0.849 0.808 0.900 0.889
RMSEA 0.914 1.141 1.528 0.886 1.015 1.387 0.959 0.943 1.233
Time 4.373 13.51 29.22 8.053 24.44 63.03 10.66 32.76 102.7

gllvm-VA
RI 0.939 0.942 0.951 0.940 0.886 0.904 0.900 0.900 0.886
ARI 0.874 0.884 0.903 0.877 0.773 0.811 0.797 0.800 0.774

Proc B 0.157 0.152 0.121 0.170 0.233 0.215 0.244 0.205 0.245
Proc G 0.273 0.249 0.236 0.253 0.287 0.281 0.289 0.270 0.289
ρ2(ξ1, .) 0.817 0.815 0.817 0.852 0.818 0.827 0.816 0.808 0.823
ρ2(ξ2, .) 0.579 0.730 0.759 0.708 0.789 0.782 0.692 0.766 0.782
RMSEA 0.708 0.789 0.715 0.476 0.619 0.511 0.363 0.412 0.501
Time 8.893 35.98 78.44 33.92 101.8 206.4 73.93 223.2 438.9

gllvm-LA
RI 0.915 0.920 0.917 0.919 0.858 0.918 0.941 0.918 0.896
ARI 0.825 0.840 0.838 0.832 0.716 0.839 0.878 0.836 0.794

Proc B 0.104 0.164 0.176 0.141 0.266 0.205 0.148 0.211 0.198
Proc G 0.278 0.280 0.271 0.247 0.353 0.272 0.245 0.280 0.263
ρ2(ξ1, .) 0.832 0.755 0.818 0.850 0.852 0.787 0.825 0.850 0.801
ρ2(ξ2, .) 0.704 0.721 0.767 0.828 0.782 0.778 0.803 0.857 0.799
RMSEA 0.718 0.753 0.756 0.455 0.522 0.486 0.363 0.430 0.403
Time 100.7 228.2 456.4 160.4 480.0 933.4 280.3 671.6 1557

for LA. For all cases, the lowest Procrustes errors on B and G are reached by F-
SCGLR. The minimal errors for B are 0.055, 0.129 and 0.078 for F-SCGLR, EVA
and LA respectively. However, we may note that all methods predict the factors with
the same order of magnitude. In their best combinations, the values of the Procrustes
error on G are equal to 0.153 (F-SCGLR), 0.179 (EVA) and 0.163 (LA). For K = 50
and N ∈ {200, 300}, the lowest value of RMSE is reached by LA while for the other
cases F-SCGLR gives the lowest value. Across this simulations, EVA is the fastest
for N = 100. For the other cases, F-SCGLR ran faster. As noted by Korhonen et al
(2023), LA is relatively slow.

5 Analysis of an agricultural ecology dataset

5.1 Data description

We apply F-SCGLR to the dataset available following the link
https://doi.org/10.15454/AJZUQN. The sample we consider gives the observation
of K = 12 agrobiodiversity variables over N = 54 winter cereal fields in the French
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Table 4: Mean values of RI, ARI, Procrustes error of the factors G and
their loadings B, latent dimension recovery, root mean square error and
computation time over five hundred samples with N ∈ {100, 200, 300} and
K ∈ {10, 30, 50} for the Bernoulli distribution.

N 100 200 300
K 10 30 50 10 30 50 10 30 50

F-SCGLR
RI 0.852 0.824 0.851 0.920 0.950 0.971 0.957 0.975 0.991
ARI 0.693 0.649 0.706 0.834 0.900 0.943 0.910 0.950 0.982

Proc B 0.171 0.194 0.225 0.096 0.087 0.090 0.068 0.055 0.056
Proc G 0.478 0.283 0.224 0.440 0.234 0.176 0.424 0.217 0.153
ρ2(ξ1, .) 0.966 0.970 0.969 0.973 0.975 0.974 0.974 0.976 0.976
ρ2(ξ2, .) 0.946 0.945 0.943 0.963 0.963 0.963 0.965 0.966 0.966
RMSEA 1.423 1.763 1.820 0.807 0.967 1.009 0.657 0.765 0.788
Time 3.954 5.828 7.126 1.072 3.520 9.712 1.384 4.807 12.69

gllvm-EVA
RI 0.655 0.719 0.724 0.691 0.890 0.945 0.721 0.940 0.969
ARI 0.325 0.439 0.449 0.394 0.781 0.890 0.451 0.880 0.939

Proc B 1.051 0.670 0.579 1.120 0.551 0.238 1.132 0.358 0.129
Proc G 0.664 0.393 0.337 0.644 0.291 0.214 0.637 0.265 0.179
ρ2(ξ1, .) 0.798 0.839 0.870 0.815 0.849 0.847 0.829 0.812 0.842
ρ2(ξ2, .) 0.483 0.620 0.738 0.537 0.719 0.750 0.616 0.710 0.780
RMSEA 1.971 1.914 1.952 1.291 1.195 1.110 0.980 0.885 0.857
Time 1.454 2.806 4.601 2.623 12.56 43.61 3.966 38.36 107.9

gllvm-LA
RI 0.691 0.759 0.780 0.878 0.938 0.962 0.859 0.997 0.990
ARI 0.389 0.520 0.567 0.749 0.876 0.925 0.719 0.995 0.981

Proc B 1.072 1.321 1.439 1.137 0.655 0.398 1.132 0.078 0.094
Proc G 0.707 0.349 0.261 0.519 0.250 0.192 0.507 0.230 0.163
ρ2(ξ1, .) 0.812 0.824 0.834 0.851 0.835 0.792 0.810 0.844 0.851
ρ2(ξ2, .) 0.432 0.620 0.664 0.620 0.742 0.749 0.637 0.791 0.820
RMSEA 2.533 2.196 1.911 1.422 0.947 0.706 1.634 0.516 0.527
Time 174.3 479.9 825.5 180.7 227.5 591.1 146.9 333.3 623.3

Vallées et Coteaux de Gascogne. The agrobiodiversity is reported through three
carabid beetle variables (two abundances and a Shannon index), three vascular plant
variables (richness, relative cover and a Shannon index) and six axes from corre-
spondence analyses (CA) performed on presence-absence data of carabid species and
plant species respectively. The three abundance and richness responses are assumed
to be Poisson random variables while the other responses are considered normally
distributed. To model the agrobiodiversity, we have P = 21 variables partitioned
into R = 4 themes and Q = 1 additional covariate. The first theme X1 characterizes
the pest control through four variables. Six farming intensity variables make up the
second theme X2. The third and fourth themes X3 and X4 gather six and five vari-
ables representing the landscape heterogeneity related to semi-natural covers and to
the crop mosaic, respectively. The binary categorical variable coding the observation
year (2016 or 2017) is taken as the additional covariate put into matrix A. For more
information about this dataset, we refer the reader to Duflot et al (2022).
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5.2 Results and interpretation

As in Section 4, we need to calibrate the hyper-parameters. We first tune s and l
through the SCGLR package, then find the best combination of component and
factor numbers using the BIC. In view of the small number of explanatory variables in
each theme, we only allow the number of components to reach Hr = 3. We thus mini-
mize the BIC on the cross-product grid (H1, H2, H3, H4, J) ∈ {0, . . . , 3}4 × {0, . . . , 5}
with the s and l values previously found.

The cross-validation performed by the SCGLR package recommends tuning
hyper-parameters to s = 0.5 and l = 1 for this agricultural ecology dataset. Then, the
component combination minimizing the BIC is (H1, H2, H3, H4) = (0, 3, 0, 0), meaning
that only the farming intensity theme was found relevant for the prediction of the
agrobiodiversity. Duflot et al (2022) make the assumption that agrobiodiversity is
predictable from the farming intensity (theme X2) and the landscape heterogeneity
(themes X3 and X4). The combination found by the BIC validates this hypothesis
as to the effect of the farming intensity and the non-effect of the pest control in
the prediction of the agrobiodiversity. However, the landscape heterogeneity themes
proved useless for this prediction here.

Let us now try to interpret the components of the second theme. The first compo-
nent f1

2 is correlated (ρ = −0.924, ρ = −0.794 and ρ = −0.738) with a bundle of three
variables, of which “TFI.total” and “TFI.h” represent a treatment frequency index of
herbicides, and “nb.op” is the total number of operations conducted by the farmers.
The second component f2

2 is correlated (ρ = 0.779) with the variable “cum.till.depth”
measuring the cumulative tillage depth. The quantity of nitrogen denoted “qtyN.kg”
is the most correlated explanatory variable (ρ = −0.781) with the last component f3

2 .
Figure 2 represents the correlation plots of the second theme (farming intensity).

In this agricultural ecology dataset, three factors are recommended by the BIC, to
model the residual variance-covariance matrix. By applying the clustering steps given
in Section 3.4, four groups of responses are identified. The first group is composed
by the three measures of the carabids. The second group gathers the first CA axis
of the carabids, the plant richness and the plant Shannon diversity index. The third
group gathers the carabids’ second CA axis, the plant cover and the first and third
plants’ CA axis. Finally, the fourth group contains the carabids’ third CA axis and the
plants’ second CA axis. Figure 3 shows the residual correlation values alongside their
Euclidean representation output by the MDS. The carabids’ measure group having
very high residual correlations, the distances between the responses composing it are
close to 0 leading to a very compact group (in red) on the first principal plane of the
MDS. On the contrary, the weaker the residual correlations, the wider the groups are
scattered on the graph.

6 Conclusion and discussion

The original SCGLR was designed to regularize GLM estimation and reduce the
explanatory dimension through components, so as to decompose the linear predictor
in an interpretable way. It allowed to find strong and interpretable supervised compo-
nents common to response variables, by achieving a trade-off between Goodness-of-Fit
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Fig. 2: Correlation plots of F-SCGLR plane (1,2), (2,3) and (1,3) of the second theme
(farming intensity). The black arrows represent the theme’s covariates while the red
arrows are the linear predictors of the responses. The plot displays only variables
having a cosine greater than 0.75 with the plane. The percentage of inertia captured
by each component is given in parentheses.

and a Structural Relevance measure. THEME-SCGLR extended SCGLR to a thematic
partition of the explanatory variables, allowing to make better use of the complemen-
tary between the explanatory themes, both statistically when fitting the model, and
conceptually when interpreting the components. F-SCGLR refines THEME-SCGLR
in a major way: using factors besides components, it models the residual variance-
covariance matrix of the responses with parsimony. This matrix can then be used for
clustering, enabling to identify groups of linked responses.
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Fig. 3: The residual correlation matrix alongside the Euclidean representation output
by the MDS.

In our simulation study, F-SCGLR proved to behave as expected regarding
response clusters. Whenever the clusters were reasonably distinct, the original par-
tition was recovered. We compared F-SCGLR with other methods in situations
allowing the comparison. With Normal and Bernoulli-distributed responses, F-SCGLR
performed better than the competing methods, which was not the case with Poisson-
distributed responses. This might be due to some instability introduced in the
linearized model by the log link function. Whatever the dispersion of the regression
coefficients within the clusters, F-SCGLR provided components aligned with the sim-
ulated latent dimensions underlying the explanatory variables. Our package refines
the package gllvm in two ways: (i) Components having enough SR allow both an
interpretable dimension reduction and regularization, which is mandatory whenever
the explanatory variables are not linearly independent, e.g. in a high dimensional
situation. Besides, the coefficient shrinkage implied in this regularization improves pre-
diction. (ii) Responses with different distribution families are allowed in the response
set. Applying the method to the agricultural ecology dataset, we found four groups
of responses. The first group gathers the measures of the carabids. The other groups
are composed by a mix between the plant variables and the axes output by correspon-
dence analyses. However, even though a strong residual covariance between responses
may hint at a biological interaction between species (Pollock et al, 2014), Poggiato
et al (2021) recall that the residual correlations cannot distinguish the biotic from the
abiotic effects. Besides, performing F-SCGLR revealed that the treatment by herbi-
cides, the operations conducted by the farmers, the tillage depth and the quantity of
nitrogen are the variables most involved in the prediction of the agrobiodiversity.

In this research, some limitations have been reached. Using the EM algorithm on
each step of the overall algorithm involves a high number of iterations. Due to the
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absence of consensus about the maximization of the log-likelihood, we think that more
research on this topic is necessary. SCGLR and its extensions have too many hyper-
parameters, which make it necessary so far to use heuristics for their calibration.
Moreover, only Bernoulli, Binomial, Gaussian and Poisson distributions are currently
handled in the FactorSCGLR package. The package should be improved by adding
different distributions as Negative Binomial, Zero Inflated Poisson, Tweedie, Gamma,
Beta or Exponential, which are allowed in the gllvm package, among others. Finally,
for distributions allowing it, an (extended) variational approximation approach to
criterion maximization should be implemented.
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Appendix A Analytical expression of the
SCGLR–specific criterion and its
derivative

The specific criteria, which SCGLR maximizes to compute the (h + 1)-th vector of
component coefficients, writes

φ(u) =

(
J∑
j=1

ωj
(
uTXTNjXu

)l)1/l

(A1)

and

ψAh
(u) =

K∑
k=1

‖wk‖2Wk
cos2Wk

(
wk, span[Xu,Ah]

)
, (A2)

where for all j = 1, . . . , J , Nj is a symmetric semi-definite positive matrix. These
matrices are chosen such that the quadratic forms uTXTNjXu measure the closeness
of the vector of component coefficients, or equivalently the corresponding component,
to some reference structures in the data.

To facilitate the computation of the vector of component coefficients, we give below
an analytical expression of each sub-criterion and its gradient.
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A.1 The structural relevance measure

In practice, we take either the variance component or the variable powered inertia
(VPI). In the first case, the SR and its gradient are easily given by

φ(u) = ‖Xu‖2W and ∇uφ(u) = 2XTWXu.

The explicit expression of the VPI is

φ(u) =

(
1

P

P∑
p=1

〈Xu,xp〉2lW

)1/l

.

To calculate the gradient, we use the classical rules of derivation

∇uφ(u) =
1

l

[
∇u

(
1

P

P∑
p=1

〈Xu,xp〉2lW

)][
1

P

P∑
p=1

〈Xu,xp〉2lW

]1/l−1

=
1

l

[
1

P

P∑
p=1

2lXTWxp 〈Xu,xp〉2l−1W

]
φ(u)1−l

=
2

P
φ(u)1−lXTW

P∑
p=1

〈Xu,xp〉2l−1W xp.

A.2 The goodness of fit measure

We aim at expressing ψAh
(u) as a function of quadratic forms. To achieve that, we

decompose the projection on the regression space as follows

span[Xu,Ah] = span[Xh
ku,Ah] with Xh

k = ΠWk

span[Ah]⊥
X.

Since span[Xh
k ] is orthogonal to span[Ah],

ΠWk

span[Xu,Ah] = ΠWk

span[Xh
k u,Ah]

= ΠWk

span[Xh
k u]

+ ΠWk

span[Ah].

Consequently, by classical Euclidean statistical concepts, we get

cos2Wk
(wk, span[Xu,Ah])

= cosWk
(wk, span[Xu,Ah]) cosWk

(wk, span[Xu,Ah])

=


∥∥∥ΠWk

span[Xu,Ah]wk

∥∥∥
Wk

‖wk‖Wk




〈
wk,Π

Wk

span[Xu,Ah]wk

〉
Wk

‖wk‖Wk

∥∥∥ΠWk

span[Xu,Ah]wk

∥∥∥
Wk


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=

〈
wk,

(
ΠWk

span[Xh
k u]

+ ΠWk

span[Ah]

)
wk

〉
Wk

‖wk‖2Wk

=

〈
wk,Π

Wk

span[Xh
k u]
wk

〉
Wk

‖wk‖2Wk

+

〈
wk,Π

Wk

span[Ah]wk

〉
Wk

‖wk‖2Wk

.

The goodness of fit measure ψAh
(u) then writes more explicitly

ψAh
(u) =

K∑
k=1

‖wk‖2Wk
cos2Wk

(wk, span[Xu,Ah])

=

K∑
k=1

(〈
wk,Π

Wk

span[Xh
k u]
wk

〉
Wk

+
〈
wk,Π

Wk

span[Ah]wk

〉
Wk

)
.

Now, 〈
wk,Π

Wk

span[Xh
k u]
wk

〉
Wk

= wTkWkΠ
Wk

span[Xh
k u]
wk

= wTkWkXh
ku
(
uTXhT

k WkXh
ku
)−1

uTXhT
k Wkwk

=
uTXhT

k Wkwkw
T
kWkXh

ku

uTXhT
k WkXh

ku
.

Let
ak := XhT

k Wkwkw
T
kWkXh

k , bk := XhT
k WkXh

k

and
ck :=

〈
wk,Π

Wk

span[Ah]wk

〉
Wk

.

We finally have

ψAh
(u) =

K∑
k=1

(
uTaku

uT bku
+ ck

)
and

∇uψAh
(u) = 2

K∑
k=1

(
uT bku

)
aku−

(
uTaku

)
bku

(uT bku)
2 .

Appendix B The PING algorithm

The Projected Iterated Normed Gradient (PING) algorithm is an extension of the
Power Iteration algorithm. To find the hth component, we use the PING algorithm
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which aims at solving any optimization program of the form{
max
u

Ch(u),

s.t. uTMu = 1 and ∆T
hu = 0,

(B3)

where Ch is a function of u to maximize and ∆h an additional constraint matrix.
In the SCGLR context, Ch(u) is the specific criterion and ∆h the orthogonal con-
straint matrix. We rewrite this optimization program by setting v = M1/2u, Gh(v) =
Ch(M−1/2v) and Eh = M−1/2∆h.{

max
v

Gh(v),

s.t. vT v = 1 and ETh v = 0.
(B4)

To solve (B4), we must equate to zero the gradient of the following Lagrangian

L(v, λ,η) = Gh(v)− λ(vT v − 1)− ηTETh v.

Setting Γh(v) = ∇vGh(v), we have

∇vL(v, λ,η) = 0⇔ Γh(v)− 2λv −Ehη = 0 (B5)

⇔ v =
1

2λ
(Γh(v)−Ehη) . (B6)

Multiplying (B5) by ETh

2λETh v︸ ︷︷ ︸
=0

= ETh Γh(v)−EThEhη ⇔ ETh Γh(v) = EThEhη

⇔ η =
(
EThEh

)−1
ETh Γh(v). (B7)

Substituting (B7) in (B6), we get

v =
1

2λ

(
Γh(v)−Eh

(
EThEh

)−1
ETh Γh(v)

)
=

1

2λ

(
I −Eh

(
EThEh

)−1
ETh

)
Γh(v)

=
1

2λ
Πspan[Eh]⊥Γh(v),

where Πspan[Eh]⊥ = I −Eh
(
EThEh

)−1
ETh . Finally, the constraint ‖v‖2 = 1 gives

v =

1
2λΠspan[Eh]⊥Γh(v)∥∥∥ 1
2λΠspan[Eh]⊥Γh(v)

∥∥∥ =
Πspan[Eh]⊥Γh(v)∥∥∥Πspan[Eh]⊥Γh(v)

∥∥∥ ,
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which suggests the basic iteration of the PING algorithm

v(t+1) =
Πspan[Eh]⊥Γh(v(t))∥∥∥Πspan[Eh]⊥Γh(v(t))

∥∥∥ . (B8)

Let us show that the basic iteration of the PING algorithm follows a direction of
ascent. One way to do this is to show that the direction given by the arc (v(t),v(t+1))
is a direction of ascent. In other words, that〈

v(t+1) − v(t),Γh
(
v(t)
)〉
≥ 0.

By construction, we know that on every iteration t of the algorithm, v(t) is orthogonal
to span[Eh]. Thus, since for all t, v(t) = Πspan[Eh]⊥v

(t), we have〈
v(t+1) − v(t),Γh

(
v(t)
)〉

=
〈
Πspan[Eh]⊥

(
v(t+1) − v(t)

)
,Γh

(
v(t)
)〉

=
〈
v(t+1) − v(t),Πspan[Eh]⊥Γh

(
v(t)
)〉

.

Now, Equation (B8) implies that

Πspan[Eh]⊥Γh(v(t)) = v(t+1)
∥∥∥Πspan[Eh]⊥Γh(v(t))

∥∥∥ .
So,

sgn
(〈
v(t+1) − v(t),Γh

(
v(t)
)〉)

= sgn
(〈
v(t+1) − v(t),v(t+1)

〉)
= sgn

(∥∥∥v(t+1)
∥∥∥2 − 〈v(t),v(t+1)

〉)
= sgn

(
1− cos

(
v(t),v(t+1)

))
.

Finally, 〈
v(t+1) − v(t),Γh

(
v(t)
)〉
≥ 0.

Although iteration (B8) follows a direction of ascent, it does not guarantee that
function Gh actually increases on every step. Indeed, we may go too far in such a
direction, and overshoot the maximum. However, let us consider

κ(t) =
Πspan[Eh]⊥Γh(v(t))∥∥∥Πspan[Eh]⊥Γh(v(t))

∥∥∥ .
Staying close enough to the current starting point on the arc (v(t),κ(t)) ensures that
function Gh increases on every iteration. Indeed, let $ be the plane tangent to the
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unit sphere on v(t) and let w denote the unit–vector tangent to arc (v(t),κ(t)) on v(t).
Then, there exists τ > 0 such that, w = τΠ$κ

(t), and〈
w,κ(t)

〉
= τ

〈
Π$κ

(t),κ(t)
〉

= τ cos2(κ(t),$) > 0.

However, staying too close to the current starting point can impact the convergence
speed of the algorithm to reach the maximum. We avoid that by using a one dimen-
sional maximization function (e.g. Gauss-Newton) to find the maximum of Gh on the
arc (v(t),κ(t)), and take it as v(t+1). We consider two possible generic iterations for
the PING algorithm to deal with this problem. Algorithm 1 and Algorithm 2 present
these alternatives. The first one should be preferred, but is less easy to program.

Algorithm 1 PING algorithm

1: while not convergence do

2: κ(t) ←
Πspan[Eh]⊥Γh(v(t))∥∥∥Πspan[Eh]⊥Γh(v(t))

∥∥∥
3: Use a Newton-Raphson unidimensional maximization procedure to find the

maximum of Gh(v) on the arc (v(t),κ(t)) and take it as v(t+1)

4: t← t+ 1
5: end while

Algorithm 2 Alternative PING algorithm

1: m←
Πspan[Eh]⊥Γh(v(t))∥∥∥Πspan[Eh]⊥Γh(v(t))

∥∥∥
2: while Gh(m) < Gh(v(t)) do

3: m← v(t) +m∥∥v(t) +m
∥∥

4: end while
5: v(t+1) ←m
6: t← t+ 1

Appendix C How SCGLR regularizes and shrinks

We first recall the general context given in Appendix A and Appendix B. We aim at
calculating f = Xu the (h+ 1)-th component, subject to the constraint uTMu = 1,
where M is a Euclidean metric suitable for the variables in X. Let F h = [f1, . . . ,fh]
be the matrix concatenating the previous components calculated in X and Ah =
[F h,A] the additional covariates.
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The structural relevance φ of the component, defined by Equation (A1), could be
expressed as φ(u) = ‖Xu‖2W φ̃(u), where

φ̃(u) =

 J∑
j=1

ωj

[(
Xu

‖Xu‖W

)T
Nj

(
Xu

‖Xu‖W

)]l1/l

.

The likelihood ψAh
of the model fitted on f , all the previous component and additional

covariates is defined by Equation (A2). It is important to note that φ̃ and ψAh
are

zero-degree homogeneous functions of u, that is, for all t ∈ R, φ̃(tu) = φ̃(u) and
ψAh

(tu) = ψAh
(u).

The current vector of component coefficients u? is solution of the following
optimization program{

max
u∈RP

Ch(u),

s.t. uTMu = 1 and (F h)TWXu = 0,
(C9)

where
Ch(u) = φ(u)sψAh

(u)1−s = ‖Xu‖2sW τh(u),

where
τh(u) = φ̃(u)sψAh

(u)1−s

and s ∈]0, 1]. Clearly, τh is a zero-degree homogeneous function of u.
Let E = {v ∈ RP | f = Xu? = Xv} be the affine space of vectors giving the

component f . If we suppose that X is full-rank, the vector of component coefficients
u? is the only vector giving the component f (i.e. E = {u?}). Thus, the equation
Xv = Xu? implies that v = u?, and then ‖v‖M = ‖u?‖M . Now, assuming that X
is not full-rank, we have

Lemma 1. For all v ∈ E \ {u?}, we have ‖v‖M > ‖u?‖M .

Proof. Since X is not full-rank, there is an infinity of vectors giving the component
f . Let v 6= u? be any one of them, f = Xu? = Xv. By setting ṽ = v/‖v‖M , we
have ‖ṽ‖M = 1 and (F h)TWXṽ = 0. Since u? is the solution of the optimization
program (C9), we obtain

Ch(ṽ) ≤ Ch(u?)⇔ ‖Xṽ‖2sW τh(ṽ) ≤ ‖Xu?‖2sW τh(u?).

Since τh is zero-degree homogeneous, we have τh(ṽ) = τh(v) = τh(u?). As Ch is
positive and its maximum most generally non-zero, so is τh, and we get

‖Xṽ‖2sW ≤ ‖Xu?‖2sW ⇔
‖Xv‖2sW
‖v‖2sM

≤ ‖Xu
?‖2sW

‖u?‖2sM
⇔ ‖v‖M ≥ ‖u?‖M .

⇔ ‖v‖M ≥ 1. (C10)
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Now, the affine space E is tangent to the unit sphere at point u?. Indeed, if we
suppose that v 6= u? belongs to the intersection of E with the unit sphere, the vector
w = (v + u?)/2 still belongs to E . Moreover, the unit sphere being a strictly convex
set, we have ‖w‖M < 1. But this contradicts Equation (C10).

Since the affine space E is tangent to the unit sphere, v could be expressed as
v = u? + ΠM

span[u?]⊥
v. We thus have

‖v‖2M =
∥∥∥u? + ΠM

span[u?]⊥
v
∥∥∥2
M

= ‖u?‖2M +
∥∥∥ΠM

span[u?]⊥
v
∥∥∥2
M
.

Finally, since v 6= u?, we get

‖v‖2M > ‖u?‖2M ⇔ ‖v‖M > ‖u?‖M .

This concludes the proof.

For the sake of visualization, Lemma 1 is represented by Figure C1.
Now, the linear predictor associated with response yk writes

ηk = (Xu?)γk +Ahδk.

If X is not full rank, the linear predictor could be expressed as

ηk = (Xv)γk +Ahδk,

where v 6= u?. Denoting βu
?

k = u?γk and βvk = vγk, we have

Theorem 2. For all v ∈ E \ {u?}, if γk 6= 0 then ‖βvk‖M > ‖βu?

k ‖M .

Proof. From Lemma 1, we have

‖v‖M > ‖u?‖M ⇒ |γk| ‖v‖M > |γk| ‖u?‖M ⇒ ‖βvk‖M > ‖βu
?

k ‖M .

Informally, whenX is not full rank, SCGLR gives the smallest vector of coefficients
with respect to its component.

Appendix D The EM algorithm

Consider the linearized model where the factors are unknown. We shall use the
EM algorithm to estimate the parameters. The previous developments lead to the
conditional linearized model

wk = Fγk +Aδk +Gbk + ζk,
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u?

span[u?]⊥

E

v

ΠM
span[u?]⊥

v

Fig. C1: Expression of the vector v with respect to u? and its orthogonal projection.

where E[wk | G] = Fγk +Aδk +Gbk and

V[wk | G] = V[ζk] = W−1
k = diag

(
υ−1nk

)
n=1,...,N

,

with υ−1nk := ank(φk)vk (µnk)h′k (µnk)
2
, ank and vk being known functions and φk

being the dispersion parameter related to yk. The linearized model expressed row-wise
writes

wn = ΓT fn + ∆Tan +BT gn + ζn,

where Γ = [γ1, . . . ,γK ], ∆ = [δ1, . . . , δK ], B = [b1, . . . , bK ], and where wn, fn,
an and gn are the vectors composed of the nth rows of matrices W , F , A and G
respectively. The expectation and the variance of wn are given by

E[wn] = ΓT fn + ∆Tan and V[wn] = BTB + Υ−1
n ,

where
Υ−1
n = diag

(
υ−1nk

)
k=1,...,K

.
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Denoting Θ = {Γ,∆,B} the set of parameters, the complete log-likelihood writes

l(Θ;W ,G)

= ln (L(W ,G; Θ))

=

N∑
n=1

ln (L(wn | gn; Θ)) + ln (L(gn; Θ))

=

N∑
n=1

[
− ln

(
(2π)K/2det

(
Υ−1
n

)1/2)
− 1

2

(
wn − ΓT fn −∆Tan −BT gn

)T
Υn

(
wn − ΓT fn −∆Tan −BT gn

)
− ln

(
(2π)J/2

)
− 1

2
gTngn

]
= −1

2

N∑
n=1

[
K∑
k=1

ln
(
υ−1nk

)
+ gTngn + (K + J) ln(2π)

+

K∑
k=1

υnk
(
wnk − fTn γk − aTnδk − gTnbk

)2]
.

D.1 The expectation (E) step

We first calculate the expectation of the complete log-likelihood conditional on the
data W

E[l (Θ;W ,G) |W ; Θ′] =

N∑
n=1

∫
ln (L (wn | gn; Θ)L (gn; Θ))L (gn | wn; Θ′) dgn.

We first need to find the law of gn | wn. Assuming wn is approximately Gaussian,
the random vector (wTn , g

T
n )T is Gaussian, and(

wn
gn

)
∼ N

((
ΓT fn + ∆Tan

0

)
,

(
BTB + Υ−1

n BT

B IJ

))
.

Using the conditioning rule of the multivariate Gaussian , we get

gn | wn ∼ N
(
αn
(
wn − ΓT fn −∆Tan

)
, IJ −αnBT

)
,

where αn = B(BTB + Υ−1
n )−1. The moments of the random variable gn | wn are

given by

g̃n := E [gn | wn; Θ]

= αn
(
wn − ΓT fn −∆Tan

)
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and

R̃n := E
[
gng

T
n | wn; Θ

]
= V [gn | wn; Θ] + E [gn | wn; Θ]E [gn | wn; Θ]

T

= IJ −αnBT + g̃ng̃
T
n .

Finally, we get the following explicit form of the expectation of the complete log-
likelihood

E[l (Θ;W ,G) |W ,Θ′]

= −1

2

N∑
n=1

{
(K + J) ln(2π) +

K∑
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)
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]}

= −1

2

N∑
n=1

{
(K + J) ln(2π) +

K∑
k=1

ln
(
υ−1nk

)
+ E

[
gTngn | wn; Θ′

]
+

E

[
K∑
k=1

υnk

((
wnk − fTn γk − aTnδk

)2
+ bTk

(
gng

T
n

)
bk−

2
(
wnk − fTn γk − aTnδk

)
gTnbk

)
| wn; Θ′

]}
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)
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[
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]
+

K∑
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[(
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2
(
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]}
= −1

2
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n=1
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ln
(
υ−1nk

)
+
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E
[
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)
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,

where the rows of the matrix G̃ are composed of the g̃Tn ’s.

D.2 The maximization (M) step

This step maximizes the conditional expectation of the complete log-likelihood with
respect to Θ, subject to the upper triangular constraint on matrix B. However, for
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all k, the parameters γk and δk are not concerned by the constraint. Denoting βTk =

(γTk , δ
T
k ) and X̃ = [F ,A], the first order conditions of the maximization yield

∇βk
E[l(Θ;W ,G) |W ,Θ′] = 0

⇔ ∇βk

{∥∥∥wk − X̃βk∥∥∥2
Wk

− 2
(
G̃bk

)T
Wk

(
wk − X̃βk

)}
= 0

⇔ X̃TWk

(
wk − X̃βk

)
− X̃TWkG̃bk = 0

⇔ X̃TWkX̃βk = X̃TWk

(
wk − G̃bk

)
⇒ β̂k =

(
X̃TWkX̃

)−1
X̃TWk

(
wk − G̃bk

)
.

If a response is drawn from a Gaussian law yk ∼ NN
(
X̃βk, σ

2
kIN

)
, the residual

variance σ2
k must be estimated. In that case,

∇σ2
k
E[l(Θ;W ,G) |W ,Θ′] = 0

⇔ ∇σ2
k

{
N ln

(
σ2
k

)
+

1

σ2
k
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(
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)
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−2
(
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)T (
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)]}
= 0

⇔ N − 1

σ2
k
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(
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)
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−2
(
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)T (
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= 0

⇒ σ̂2
k =

1
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(
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)
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wk − X̃βk

)}
.

Now, we need to estimate the vector bk under the upper triangular constraint.
For each k = 1, . . . , J , let bTk = (bT1:k,k,0

T ) be the regression parameters, where

bT1:k,k = (b1k, . . . , bkk) is a vector of length k to be estimated and 0 is a null vector of

length (J − k). In this case, we define (R̃n)1:k,1:k as the sub-matrix of size k × k of

R̃n and G̃1:k as the matrix composed by the first k columns of G̃. The maximization
yields

∇b1:k,k
E[l(Θ;W ,G) |W ,Θ′] = 0

⇔ ∇b1:k,k

{
bT1:k,k

[
N∑
n=1

υnk

(
R̃n

)
1:k,1:k

]
b1:k,k
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−2
(
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)T
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(
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⇔
(
G̃1:k

)T
Wk

(
wk − X̃βk

)
−

[
N∑
n=1

υnk

(
R̃n

)
1:k,1:k

]
b1:k,k = 0

⇒ b̂1:k,k =

[
N∑
n=1

υnk

(
R̃n

)
1:k,1:k

]−1 (
G̃1:k

)T
Wk

(
wk − X̃βk

)
.

Likewise, for k = J + 1, . . . ,K, the estimate b̂k is given by

b̂k =

[
N∑
n=1

υnkR̃n

]−1
G̃TWk

(
wk − X̃βk

)
.

D.3 The algorithm

As a result of the aforementioned developments, we use Algorithm 3 to estimate the
parameters of the factor model.

Appendix E The overall F-SCGLR algorithm

Algorithm 4 consists in alternating the following steps: (i) Given the current set of
parameters, calculate all the components of all the themes iteratively through the
PING algorithm. (ii) Given the current components, calculate the adjusted dependent
variables of the linearized model and their variance matrix. (iii) Given the adjusted
dependent variables, estimate the factor model parameters through the EM algorithm.

Appendix F Identification of the true model

Table F1 sums up the identification diagnostics on a cross-product grid.

Appendix G Figures of the residual correlation
matrices

Figure G2 shows the residual correlation matrices for the three values of σ2
B presented

in section 4.1.3. Figure G3 shows the residual correlation matrices obtained for the
three values of K presented in section 4.2.1.

Appendix H Additional simulation studies

The Tables summing up the results for σ2
B = 0.2 and σ2

B = 0.3 are presented in Table
H2 and Table H3.
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Algorithm 3 The EM algorithm applied to factor models

1: while not convergence do
2: Expectation step
3: for n = 1, . . . , N do

4: α
(t+1)
n = B(t)

(
B(t)TB(t) + Υ−1

n

)−1
5: g̃

(t+1)
n = α

(t+1)
n

(
wn − Γ(t)Tfn −∆(t)Tan

)
6: R̃

(t+1)
n = IJ −α(t+1)

n B(t)T + g̃
(t+1)
n g̃

(t+1)T
n

7: end for
8: Maximization step
9: for k = 1, . . . ,K do

10: β
(t+1)
k =

(
X̃TWkX̃

)−1
X̃TWk

(
wk − G̃(t+1)b

(t)
k

)
11: end for
12: if Gaussian then

13: σ
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k =

1

N

{∥∥∥wk − X̃β(t+1)
k

∥∥∥2 + b
(t)T
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)
b
(t)
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(t)
k
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k

)}
15: end if
16: if k ≤ J then
17: b

(t+1)
1:k,k =

18:

[∑N
n=1 υnk

(
R̃

(t+1)
n

)
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)
19: else

20: b
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k =

[∑N
n=1 υnkR̃

(t+1)
n

]−1
G̃(t+1)TWk

(
wk − X̃β(t+1)

k

)
21: end if
22: t← t+ 1
23: end while
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(a) Residual correlation
matrix for σ2B = 0.1
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(b) Residual correlation
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(c) Residual correlation
matrix for σ2B = 0.3

Fig. G2: Heatmap of the residual correlation matrices for various values of σ2
B . The

color intensity (irrespective of the color itself) reveals three response clusters, each
gathering responses having a high residual correlation in absolute value.
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Algorithm 4 The F-SCGLR algorithm

1: while not convergence do
2: Compute the components through the PING algorithm
3: ∀r = 1, . . . , R,∀h = 1, . . . ,Hr, fhr

(t+1) = Xru
h
r

(t+1)

4: Compute the adjusted dependent variables through the IRLS algo-
rithm

5: η
(t+1)
k = F (t+1)γ

(t)
k +Aδ

(t)
k +Gb

(t)
k

6: µ
(t+1)
nk = h−1k

(
η
(t+1)
nk

)
, ∀n = 1, . . . , N

7: w
(t+1)
nk = η

(t+1)
nk + h′k

(
µ
(t+1)
nk

)(
ynk − µ(t+1)

nk

)
, ∀n = 1, . . . , N

8: W
(t+1)
k = diag

([
ank(φk)vk

(
µ
(t+1)
nk

)
h′k

(
µ
(t+1)
nk

)2]−1)
n=1,...,N

9: Compute the model parameter through the EM algorithm
10: Θ(t+1) = argmax

Θ
l(Θ(t);W)

11: Increment
12: t← t+ 1
13: end while

Table F1: Mean values of BIC over five hundred samples for (H1, H2) ∈
{1, 2, 3, 4}2 and J ranging from 0 to 5. The lowest values are in bold font.

J = 0 J = 1
H2/H1 1 2 3 4 H2/H1 1 2 3 4

1 44808 42432 39535 37904 1 40616 36292 50764 28050
2 38240 36456 35118 33532 2 49517 24509 57579 38288
3 36405 34927 33718 32797 3 52801 26072 62440 37556
4 36028 34423 33182 32202 4 25759 25976 28371 29019

J = 2 J = 3
H2/H1 1 2 3 4 H2/H1 1 2 3 4

1 23756 24077 22492 23051 1 20201 16324 16910 16733
2 21206 20065 22313 22777 2 18917 15515 15685 15881
3 20826 20899 21136 21718 3 19006 15533 15763 16042
4 21084 20487 20369 20405 4 19077 15959 16115 16305

J = 4 J = 5
H2/H1 1 2 3 4 H2/H1 1 2 3 4

1 18661 16837 16941 17165 1 16436 16034 16217 16342
2 17014 16888 16979 17363 2 16516 16103 16181 16585
3 17284 16971 17149 17337 3 16487 16542 16390 16816
4 17435 17071 17261 17634 4 16690 16706 16892 18027
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gathering responses having a high residual correlation in absolute value.
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