
HAL Id: hal-04263074
https://hal.science/hal-04263074v1

Preprint submitted on 27 Oct 2023 (v1), last revised 8 Apr 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalized linear model based on latent factors and
supervised components

Julien Gibaud, Xavier Bry, Catherine Trottier

To cite this version:
Julien Gibaud, Xavier Bry, Catherine Trottier. Generalized linear model based on latent factors and
supervised components. 2023. �hal-04263074v1�

https://hal.science/hal-04263074v1
https://hal.archives-ouvertes.fr


Generalized linear model based on latent factors

and supervised components

Julien Gibaud (0000-0002-6667-5057)1*†, Xavier Bry1† and
Catherine Trottier1,2†
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Abstract

In a context of component-based multivariate model we propose to model the
residual dependence of the responses. Each response of a response matrix is
assumed to depend, through a Generalized Linear Model, on a set of explanatory
variables, as well as on a set of additional covariates. Explanatory variables are
partitioned into conceptually homogeneous variable groups, viewed as explana-
tory themes. Variables in themes are supposed many and redundant. Thus,
generalized linear regression demands dimension reduction and regularization
with respect to each theme. By contrast, additional covariates contain few vari-
ables, selected so as not to be too redundant, thus demanding no regularization.
Regularization is performed searching each theme for an appropriate number of
orthogonal components that both contribute to predict the responses and capture
relevant structural information in themes. A small set of latent factors completes
the model so as to model the covariance matrix of the linear predictors of the
responses conditional on the components. To estimate the multiple-theme model,
we present an algorithm combining thematic component-based model estimation
and factor model estimation. This methodology is tested on simulated data and
then applied to an agricultural ecology dataset.

Keywords: EM algorithm, Factor model, Latent variables, Multivariate Generalized
Linear Model, Supervised components
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1 Introduction

In multivariate modeling, accounting for mutual dependencies between the responses
is a rich ongoing research field in both theoretical and applied statistics (Meyer, 2009).
In an ecological context for instance, the species co-occurrences that are not explained
by the environmental variables demand to be modeled. With this aim in mind, we
model the residual dependence of the responses assumed drawn from Generalized Lin-
ear Models (GLM, McCullagh and Nelder, 1989), by means of random numeric latent
variables called factors, which we introduce in the linear predictors. Estimating the
residual covariance matrix will allow us to identify groups of species. In a Bayesian
context, Bystrova et al (2021) profit from the clustering properties of the Dirichlet pro-
cess to group the species. Indeed, the species in the same cluster have the same rows
in the residual correlation matrix. In the same vein, we propose to group the species
sharing strong (positive or negative) residual correlations. To do this, we estimate the
residual variance-covariance matrix of the linear predictors, and then perform cluster-
ing on a dissimilarity matrix built from the estimated correlation matrix. Identifying a
group of correlated species is equivalent to identifying a square block of high absolute
values in the correlation matrix, once the rows and columns are suitably reordered.

An approach, named Generalized Linear Latent Variable Model (GLLVM), has
been proposed by Skrondal and Rabe-Hesketh (2004) to combine GLM with random
latent variables. Unfortunately, when factors are involved, the log-likelihood cannot
be derived from the GLLVM analytically. Several works propose to maximize this
log-likelihood but, some of them suffer from a high computation time. We may cite
for instance the works using the adaptive quadrature (Rabe-Hesketh et al, 2002), the
Expectation Maximization algorithm (EM, Dempster et al, 1977) in conjunction with
Monte Carlo integration (Hui et al, 2015) or the works using Bayesian Markov Chain
Monte Carlo (MCMC) (Hui, 2016; Tikhonov et al, 2020). Few methods reduce the
computation time by using a closed form approximation of the log-likelihood. The
works employing a variational approximation (Hui et al, 2017), a Laplace approxima-
tion (Niku et al, 2017, 2019a) or an extended variational approximation (Korhonen
et al, 2023) deserve mentioning. To better reduce the computation time, we propose to
use a modeling approach based on Saidane et al (2013), which assumes that maximiza-
tion should be performed through the EM algorithm after linearizing the and assuming
the linearized model is approximately Gaussian. As demonstrated by Wolfinger and
O’connell (1993), the linearization method proves to be an interesting alternative to
estimate parameters in a context of intractable likelihood. However, modeling the
responses also requires taking into account a large set of possibly highly correlated
explanatory covariates, so that the GLLVM demands regularization. This can be car-
ried out by means of component-based dimension reduction. This consists in assuming
that there exists a small number of common latent explanatory dimensions, which
we aim to capture through as many linear combinations of the explanatory variables,
named components.

In the wake of Marx (1996), the Supervised Component-based Generalized Lin-
ear Regression (SCGLR) was proposed by Bry et al (2013) in order to bridge
the multivariate GLM estimation with the component-based dimension reduction of
the explanatory space. Moreover, SCGLR allows both to find strong interpretable
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explanatory directions, and to produce regularized predictors in the high-dimensional
framework (when the covariates outnumber the statistical units). Indeed, SCGLR opti-
mizes a general and flexible trade-off criterion between the Goodness-of-Fit (GoF) of
the model and the Structural Relevance (SR, Bry and Verron, 2015) of relevant direc-
tions of the space spanned by the explanatory variables. To extend this method, Bry
et al (2020b) developed THEME-SCGLR with the aim to search for the components
in a thematic partitioning of the explanatory variables, hence referred to as “themes”.
Within each theme, the components are required to extract the information that is use-
ful to predict the responses, when associated with the components of the other themes.
An package SCGLR is freely available at https://github.com/SCnext/SCGLR.

All the aforementioned extensions assume that the responses are independent con-
ditional on the explanatory covariates. We now propose to overcome this limitation by
allowing the responses to have some conditional dependence, which we model by intro-
ducing common factors into their linear predictors. Besides this dependence, we may
also need to take into account a thematic partitioning of the explanatory variables.
We thus have to extend THEME-SCGLR to the GLLVM.

The paper is organized as follows. In Section 2, we recall the principle of the original
SCGLR and its thematic extension. Section 3 presents our extension of SCGLR to the
factor models. Section 4 details several simulation studies that illustrate the interest
and the good performances of the proposed algorithm. Section 5 presents the results
it yields on an agricultural ecology dataset. Finally, Section 6 provides a conclusion
and a discussion.

2 SCGLR with a partitioning of explanatory
variables

2.1 Preliminary notations

The sequel contains mathematical developments which use notations listed hereafter:

• Let a, b ∈ RN be vectors and W ∈ RN×N be a symmetric positive definite matrix.
The Euclidean scalar product between a and b with respect to metric W is given

by 〈a, b〉W = aTWb. Likewise, cosW (a, b) =
〈a, b〉W
‖a‖W ‖b‖W

denotes the cosine of

the angle between a and b with respect to metric W .
• If a and b are centred and W = 1

N IN , the cosine defines the linear correlation
coefficient, denoted ρ.

• A = [a1, . . . ,aP ] ∈ RN×P and B = [b1, . . . , bQ] ∈ RN×Q being matrices. The
space spanned by their column-vectors is denoted span[A,B].

• Let wn be the weight of unit n, and W = diag(wn)n=1,...,N . Let RN be endowed
with metric W , and let A ∈ RN×P be a matrix. The W -orthogonal projector

onto span[A] is given by ΠW
span[A] = A

(
ATWA

)−1
ATW . The cosine of the angle

between a vector b ∈ RN and span[A] with respect to metric W is given by

cosW (b, span[A]) = cosW

(
b,ΠW

span[A]b
)

.
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2.2 The original SCGLR context

In the framework of a multivariate GLM we consider K response-vectors measured
on N statistical units, encoded in a response matrix Y = [y1, . . . ,yK ] ∈ RN×K , to
be predicted through explanatory variables partitioned in two groups. The first one
A = [a1, . . . ,aQ] ∈ RN×Q is a group of covariates that are few and weakly or not
redundant. These variables are assumed to be interesting per se, and their marginal
effects have to be taken into account explicitly in the model. The second group X =
[x1, . . . ,xP ] ∈ RN×P gathers numerous and possibly highly redundant covariates,
considered as proxies to latent dimensions, which must be found and interpreted.
Thus, the matrix X demands dimension reduction and regularization, contrary to A.
To achieve this, SCGLR searches for explanatory components in X jointly supervised
by the response set. A component f ∈ RN writes f = Xu, where u ∈ RP is a loading
vector. For a single component model, the linear predictor associated with response
yk is given by

ηk = (Xu) γk +Aδk,

where γk and δk are regression parameters. Component f is common to all the
responses and, for identification, we impose uTu = 1. It was assumed originally
that the responses are independent conditional on the explanatory variables, and
consequently on f .

2.3 The original SCGLR specific criterion

For parameter estimation, SCGLR takes advantage of the GLM background. Here,
we make use of the Fisher Scoring Algorithm (FSA). Let hk denote the canonical link
function associated with the response yk, h′k its first derivative and µnk the mean
parameter for statistical unit n. The working variable wnk associated with ynk is then
calculated as the first order development of hk at point µnk

wnk = hk (µnk) + (ynk − µnk)h′k (µnk)

= ηnk + ζnk,

where ζnk = (ynk − µnk)h′k (µnk). In the spirit of Nelder and Wedderburn (1972), this
development leads to the conditional linearized model expressed column-wise

wk = (Xu) γk +Aδk + ζk,

with E[ζk] = 0 and V[ζk] =: W−1
k .

Due to the product uγk, this linearized model derived from the FSA is not lin-
ear and must be estimated through an alternated weighted least squares process,
estimating in turn {γk, δk} and u.

Let ΠWk

span[Xu,A] be the projection on span[Xu,A] with respect to Wk. As sug-

gested by Bry et al (2013), the loading vector u may be viewed as the solution of the
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optimization program max
uTu=1

ψA(u), where

ψA(u) :=

K∑
k=1

‖wk‖2Wk
cos2Wk

(
wk,Π

Wk

span[Xu,A]wk

)
.

The sub-criterion ψA is merely a Goodness-of-Fit (GoF) measure, and maximizing
it does not lead to strong and interpretable components. The GoF measure must
therefore be aptly combined with an other sub-criterion to achieve both meaningful
and predictive dimension reduction, together with regularization.

Bry and Verron (2015) proposed such a sub-criterion, named Structural Relevance
(SR) to measure the ability of a component to capture information in a set of vari-
ables containing structures such as variable-bundles. Informally, a bundle is a set of
variables correlated “enough” to be viewed as produced by a common latent dimen-
sion. Assuming that X consists of P standardized numeric variables, the associated
SR measure φ is defined as the following generalized average of quadratic forms of u

φ(u) :=

(
1

P

P∑
p=1

〈Xu,xp〉2lW

)1/l

, (1)

where W is the weight matrix (in practice, W = 1
N IN ). Components will line up

with a more or less thin bundle depending on whether l ≥ 1 is greater or smaller
respectively. The main objective is to focus on the most interpretable directions.

The SCGLR specific criterion, proposed by Bry et al (2020b), introduces a hyper-
parameter s ∈ [0, 1] to tune the importance of the SR relative to the GoF. SCGLR
thus attempts a trade-off between φ and ψA by solving

max
uTu=1

s ln(φ(u)) + (1− s) ln(ψA(u)).

When s = 0, the criterion identifies with the GoF, while at the other end, taking s = 1
makes it identify with the SR. Increasing s intensifies both the focus of components
on “strong” dimensions, and the regularization, at the cost of some GoF. The explicit
expression of the criterion is given in Appendix A.

2.4 THEME-SCGLR

Bry et al (2020b) refer to the “thematic model” as the conceptual model stating that
variables in Y are dependent on R themes X1, . . . ,XR plus a set of covariates A, and
that structurally relevant dimensions should be explicitly identified in the Xr’s. For
a single component in each theme, the linear predictor associated with response yk is
then given by

ηk = (X1u1) γk1 + · · ·+ (XRuR) γkR +Aδk.

To achieve theme-specific regularization, the SCGLR criterion has to be adapted.
Denoting fr = Xrur the (first) component of theme Xr, we have ΠWk

span[f1,...,fR,A] =
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ΠWk

span[fr,Ar] where Ar = [f1, . . . ,fr−1,fr+1, . . . ,fR,A]. For each theme, the GoF

measure thus becomes

ψAr (ur) :=

K∑
k=1

‖wk‖2Wk
cos2Wk

(
wk,Π

Wk

span[Xrur,Ar]wk

)
.

The SR measure remains the same φ (ur) as given by Equation (1). Finally, the
optimization program can be solved by iteratively maximizing in turn the trade-off
criterion on every ur

∀r, max
uT

r ur=1
s ln(φ(ur)) + (1− s) ln(ψAr (ur)). (2)

This combined criterion is quite general. Indeed, the GoF measure adapts any situation
where a likelihood function is available for the model taking the components and
A as covariates. Generally, this likelihood involves a vector of parameters Θ. The
maximization is carried out alternating two steps: (i) Given Θ, maximize the criterion
with respect to each ur using a dedicated algorithm: PING (for Projected Iterated
Normed Gradient) recalled in Appendix B, designed to maximize, at least locally,
any criterion on the unit sphere (Chauvet et al, 2019; Bry et al, 2020a,b; Gibaud
et al, 2022). (ii) Given all ur, maximize the criterion with respect to Θ. This step is
performed using a classical likelihood maximization algorithm relevant to the situation.

2.5 Higher rank components

Consider step (i) of the combined criterion maximization, and suppose we want
to extract a given number of components Hr from each theme Xr. Let fhr =
Xru

h
r be the rank-h component of theme Xr, and let F hr = [f1

r , . . . ,f
h
r ], where

h ≤ Hr, be the matrix of the first h components of theme Xr. The new compo-
nent fh+1

r must best complement both the existing ones and A, that is Ahr :=

[FH1
1 , . . . ,F

Hr−1

r−1 ,F hr ,F
Hr+1

r+1 , . . . ,FHR

R ,A]. So fh+1
r has to be calculated using Ahr

as the new set of additional covariates. Moreover, to avoid linear redundancy of compo-
nents, we impose that fh+1

r be orthogonal to F hr , i.e. F hTr Wfh+1
r = 0. We calculate

every new component as the solution of program (2), with the additional constraint:
∆hT
r uh+1

r = 0, where ∆h
r = XT

r WFhr , and loop on r until overall convergence of
the component system. For all r = 1, . . . , R, the rank-1 component of theme Xr is
calculated using the same program with F 0

r = ∅ and ∆0
r = 0.

3 Extending SCGLR to a factor model

As mentioned above, step (ii) of the combined criterion maximization boils down to
maximizing the likelihood of the component-based model. In this section, the compo-
nents are thus taken as known. For the sake of simplicity, we shall consider the matrix
F = [FH1

1 , . . . ,FHR

R ] as the new set of explanatory variables and γk = (γk1, . . . , γkR)
T

its vector of regression parameters associated with the response yk.
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3.1 SCGLR in a factor model context

Let Y = [y1, . . . ,yK ] ∈ RN×K be the response matrix. For unit n, each response is
assumed to be linearly modeled using the components and additional covariates, plus
J random latent factors gn = (gn1, . . . , gnJ)

T

ηnk = fTn γk + aTnδk + gTnbk,

where fn and an are the vectors composed of the nth rows of matrices F and A
respectively, and bk is the vector of regression parameters associated with gn. The
factors are assumed drawn from a multivariate normal distribution gn ∼ NJ(0, IJ )
and independent across statistical units. This model is designed so that the J factors
capture as much as possible of the covariance between the responses not accounted for
by the components and additional covariates, hence their residual covariance. Denoting
G ∈ RN×J the matrix containing all the realizations of factors, the linear predictor
associated with the response yk expressed column-wise becomes

ηk = Fγk +Aδk +Gbk.

Let B = [b1, . . . , bK ] ∈ RJ×K be the loading matrix. Jöreskog (1969) notices that
the loading matrix B is defined up to an arbitrary orthogonal rotation. To guarantee
the identification of the model, we choose to constrain the J × J sub-matrix of B
to be an upper triangular matrix with positive diagonal elements (Geweke and Zhou,
1996). An advantage of the factor model is to yield the matrix Σ = BTB ∈ RK×K ,
storing the residual covariances of the responses, in a parsimonious manner. Indeed, the
number of factors retained may remain small with respect to the size of the covariance
matrix.

3.2 Estimating the parameters of a GLM with factors

Let Θ = {γk, δk, bk | k = 1, . . . ,K} be the set of parameters. The marginal log-
likelihood of the model is obtained by integrating over latent variables gn

l(Θ;Y ) =

N∑
n=1

ln (L(yn; Θ))

=

N∑
n=1

ln

(∫ K∏
k=1

L(ynk | gn; Θ)L(gn) dgn

)
.

In a context of non-Gaussian responses, the maximization of this log-likelihood is not
allowed. In the spirit of Saidane et al (2013), the estimation of the parameters is
performed in two steps: first, we linearize the model; then, we maximize the pseudo-
likelihood of the linearized model under a Gaussian assumption.
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3.2.1 The linearization step

Temporarily considering the factors given, i.e. conditional on G, the above log-
likelihood is that of a classic multivariate GLM. The working variable wk could be
viewed as the response in the linearized model

wk = Fγk +Aδk +Gbk + ζk,

where E[wk | G] = Fγk +Aδk +Gbk and V[wk | G] = V[ζk] = W−1
k .

3.2.2 The estimation step

In this step, we assume that the distribution of the working variables given F , A
and G is Gaussian, and view the factors as latent variables. The model pseudo-log-
likelihood l(Θ;W), where W denotes the matrix of working variables, being difficult
to maximize directly, we use the EM algorithm to estimate the model parameters.
Assuming in the wake of Wolfinger and O’connell (1993) that the working variables
have a Gaussian distribution, we calculate and then maximize the expectation of their
complete log-likelihood l(Θ;W ,G). Further details of the EM algorithm are given in
Appendix C.

3.3 The overall algorithm

The overall algorithm, presented in Appendix D, consists in alternating the following
steps: (i) Given the current set of parameters, calculate all the components of all the
themes iteratively through the PING algorithm. (ii) Given the current components,
calculate the working variables of the linearized model and their variance matrix. (iii)
Given the working variables, estimate the factor model parameters through the EM
algorithm. The method thus implemented is named F-SCGLR (for Factor-SCGLR).

3.4 The clustering steps

Recall that the final aim of this work is to group the responses according to their
mutual dependencies. In other words, two responses having a high residual correlation
(positive or negative) should be cast to the same group. To achieve this, we propose
the following strategy

1. Estimate the residual covariance matrix Σ := BTB.
2. Calculate the corresponding residual correlation matrix C where Cij :=

Σij/
√

ΣiiΣjj .

3. Calculate the associated dissimilarity matrix D where D2
ij := 2

(
1− C2

ij

)
. The

squared residual correlation is used in order to consider as close two responses
highly correlated, be it positively or negatively.

4. Perform Multidimensional Scaling (MDS, Cox and Cox, 2008) on the matrix D
to obtain a Euclidean representation of the responses (i.e. a set of coordinates in
a Euclidean space) with respect to this distance structure. We use the function
cmdscale of the stats package (R Core Team, 2021).
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5. Perform a K-means algorithm (taking as a starting point the output of a hierarchical
clustering procedure) on the coordinates obtained on the previous step. We use the
factoextra package (Kassambara, 2017) where the function hkmeans runs the
K-means and the function fviz-nbclust optimizes the number of clusters using the
silhouette criterion.

4 Simulation study

Several simulation studies have been implemented to assess the performance of F-
SCGLR. The first one focuses on the identification of the right combination of
components and factors. The combination was calibrated across the cross-product
grid (H1, . . . ,HR, J) ∈ {1, . . . , 4}R × {0, . . . , 5} by minimizing the Bayesian Infor-
mation Criterion (BIC, Schwarz, 1978). As shown by Chauvet et al (2019), the
hyper-parameters must be chosen to avoid the components to be too close to the
principal components (s > 0.5) or to be drawn towards too local bundle (l > 10).
Thus, the second simulation aims at studying the influence of the hyper-parameters
s ∈ {0.1, 0.3, 0.5} and l ∈ {1, 2, 3, 4, 7, 10} in a situation of a more or less clearly sepa-
rated cluster pattern. In this simulation, we use the Rand Index (RI, Rand, 1971) and
the Adjusted Rand Index (ARI, Hubert and Arabie, 1985) to assess the correctness of
the classification steps detailed in Section 3.4. In addition, to measure the quality of
the latent dimensions recovery, we calculate the maximum square correlation between
each true dimension, represented by their direction vector ξ used for simulation, and
the components

ρ2 (ξ, .) = max
r,h

ρ
(
ξ,fhr

)2
,

where fhr denotes the hth component of theme Xr. Finally, as reference values for
comparison, we also calculated the RI and ARI of the partitions output by a competing

package in a context of binary data. For each simulation, one hundred samples
have been generated. The package FactorSCGLR and the simulation codes are
available at https://github.com/julien-gibaud/FactorSCGLR.

4.1 Simulation in a context of mixed distributions

4.1.1 Generation of the simulated data

The variables are simulated on N = 100 statistical units. Five latent dimensions
ξ1, ξ2, ξ3, ξ4 and ξ5 are simulated independently. The X matrix consists in two
themes: X = [X1,X2]. The first theme X1 = [X 1,X 2,M1] is made of three blocks:
X 1 ∈ RN×90 and X 2 ∈ RN×60 are bundles of variables distributed about ξ1 and
ξ2 respectively, and M1 contains fifty unstructured noise variables drawn from a
multivariate normal distribution. Likewise, the second themeX2 = [X 3,X 4,X 5,M2]
is made of four blocks: X 3 ∈ RN×100, X 4 ∈ RN×80 and X 5 ∈ RN×60 are bundles
of variables distributed about ξ3, ξ4 and ξ5 respectively, and M2 contains sixty
unstructured noise variables drawn from a multivariate normal distribution. More
formally, for all i = 1, . . . , 5, a variable xp within a bundle is simulated as xp = ξi+εp,
where εp ∼ NN (0, 0.1IN ). This generation leads to P = 500 explanatory variables.
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The N realizations of the J = 3 factors, simulated through gn ∼ NJ(0, IJ ), are stored
in matrix G ∈ RN×J . The matrix B ∈ RJ×K of factor loadings is generated so as to
exhibit a three-cluster pattern

∀k = 1, . . . , 5, bk ∼ NJ
(
µ1, σ

2
BIJ

)
∀k = 6, . . . , 10, bk ∼ NJ

(
−µ1, σ

2
BIJ

)
∀k = 11, . . . , 20, bk ∼ NJ

(
µ2, σ

2
BIJ

)
∀k = 21, . . . , 35, bk ∼ NJ

(
−µ2, σ

2
BIJ

)
∀k = 36, . . . , 50, bk ∼ NJ

(
µ3, σ

2
BIJ

)
,

where σ2
B = 0.1, µ1 = (2, 0, 0)T , µ2 = (0,−1, 0)T and µ3 = (0, 0, 1.5)T . Finally,

the response matrix Y is simulated as a mix of Gaussian, Poisson and Bernoulli
distributions, with

∀k = 1, . . . , 20, yk ∼ NN
(
µ = γ1kξ1 + γ2kξ2 +Gbk,Σ = σ2

kIN
)

∀k = 21, . . . , 40, yk ∼ P (λ = exp [0.5γ1kξ4 + 0.5γ2kξ3 +Gbk])

∀k = 41, . . . , 50, yk ∼ B
(
p = logit−1 [γ2kξ3 + γ3kξ2 +Gbk]

)
,

where for all k, σ2
k, γ1k, γ2k and γ3k are uniformly generated, with σ2

k ∈ [0.1, 0.2],
γ1k ∈ [−4, 4], γ2k ∈ [−2, 2] and γ3k ∈ [−0.5, 0.5]. In the linear predictors, we range the
latent dimensions following their regression parameters.

4.1.2 Identification of the true model

In this simulation, the hyper-parameters are first calibrated through the SCGLR
package (e.g. without factors) and set to s = 0.3 and l = 4. Appendix E sums up the
results on a cross-product grid. As expected, the combination which minimizes the
BIC is given by the true combination (H1, H2, J) = (2, 2, 3). However, several points
deserve mentioning. We observe, for all component combinations, that the values of
BIC decrease dramatically when factors are involved in the model. This shows that,
because mutual dependencies may generally exist, the residual covariance should be
modeled. When the model involves too many factors (when J = 4 and J = 5), the
number of useful components is underestimated. Indeed, the variability of the model
captured by the factors then contains a part of the variability otherwise captured by
the components. In the opposite situation, when J = 0 or J = 1, the BIC leads to
overestimate the number of components.

4.1.3 Varying the hyper-parameters and the variance within the
clusters

Henceforth, keeping the true combination found by the BIC, we focus on the influence
of the hyper-parameters s and l on the classification decision and latent dimension
recovery. In order to compare the results in a context of more or less distinct cluster
pattern, we vary the variance within the cluster by taking σ2

B ∈ {0.1, 0.2, 0.3}. Figure
1 shows the residual correlation matrices for the three values of σ2

B .
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−1 −0.5 0 0.5 1

(a) Residual correlation
matrix for σ2B = 0.1

−1 −0.5 0 0.5 1

(b) Residual correlation
matrix for σ2B = 0.2

−1 −0.5 0 0.5 1

(c) Residual correlation
matrix for σ2B = 0.3

Fig. 1: Residual correlation matrices for different values of σ2
B

Table 1 gives the results for σ2
B = 0.1. For the s = 0.3 and s = 0.5 cases, the values

of RI and ARI are slightly better than the s = 0.1 case. Moreover, for s = 0.3 and
s = 0.5, the maximum value for RI and ARI is reached for l = 4. This is in accordance
with the hyper-parameters calibrated through the SCGLR package. The Tables
summing up the results for σ2

B = 0.2 and σ2
B = 0.3 are presented in Appendix F. As

expected, the higher the variance within the cluster, the weaker the values of RI and
ARI for all the combinations of s and l. We may also note that the difference between
the values of RI and ARI across the hyper-parameters s and l tends to fade when σ2

B

increases. The main result about the square correlations is that the variance within
the cluster does not have a relevant influence on the quality of the latent dimensions
recovery. Indeed, the search for components is related to the deterministic part of the
model, while σ2

B is involved in the stochastic one. The square correlations, for s = 0.3
and s = 0.5 with l ≥ 2, are greater than for s = 0.1. This observation is consistent
with Chauvet et al (2019) who notice that the thinner the bundles, the greater the
value of s has to be to recover the latent dimensions correctly. Here, indeed, the
variance within the bundles is equal to 0.1 (thin bundles). However, the particular
case of l = 1 deserves mentioning. The components calculated with l = 1 being close
to the principal components, the two components of theme X2 are drawn between
the three bundles and so, produce low square correlations with the latent dimensions.
The interest of tuning the locality is shown by the gap between the results obtained
for l = 1 and l = 2: in the latter case, the square correlations are dramatically better.
Furthermore, ξ3 being the less explanatory latent dimension, ρ2(ξ3, .) is always lower
than the other square correlations.

Figure 2 shows the correlation scatterplots in the component planes (1, 2) for the
first two themes. The components are almost perfectly aligned with the explanatory
bundles. However, as observed in Table 1, the bundle X 3 seems slightly less correlated
with the component f2

2 than the other bundles with their corresponding components.

4.2 Comparative study

To compare the different GLLVM implementations, we use the package gllvm (Niku
et al, 2019b). This package offers three ways to perform GLLVM: using a variational
approximation (VA, Hui et al, 2017), a Laplace approximation (LA, Niku et al, 2017,
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Table 1: Mean values of RI, ARI and square correlation over
a hundred samples with σ2

B = 0.1, s ∈ {0.1, 0.3, 0.5} and l ∈
{1, 2, 3, 4, 7, 10}.
s l RI ARI ρ2(ξ1, .) ρ2(ξ2, .) ρ2(ξ3, .) ρ2(ξ4, .)

0.1

1 0.926 0.839 0.938 0.906 0.759 0.838
2 0.927 0.839 0.980 0.959 0.810 0.935
3 0.920 0.816 0.981 0.962 0.805 0.942
4 0.928 0.837 0.979 0.966 0.816 0.945
7 0.926 0.830 0.966 0.954 0.798 0.946
10 0.927 0.835 0.967 0.955 0.792 0.945

0.3

1 0.944 0.876 0.973 0.936 0.735 0.753
2 0.944 0.877 0.993 0.972 0.934 0.950
3 0.946 0.881 0.987 0.974 0.938 0.965
4 0.947 0.882 0.985 0.974 0.927 0.962
7 0.943 0.875 0.984 0.974 0.911 0.964
10 0.945 0.878 0.984 0.974 0.911 0.964

0.5

1 0.942 0.871 0.974 0.937 0.697 0.659
2 0.944 0.875 0.994 0.972 0.943 0.946
3 0.947 0.882 0.988 0.975 0.948 0.961
4 0.948 0.884 0.986 0.975 0.946 0.967
7 0.945 0.879 0.985 0.975 0.917 0.975
10 0.944 0.877 0.985 0.975 0.911 0.969
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Fig. 2: Correlation scatterplot of plane (1,2) for the two themes with s = 0.3 and l = 4
obtained by the F-SCGLR algorithm. The red arrows represent the bundles X1 and X2

which explain the first theme. The blue ones represent the bundles X3 and X4 which
explain the second theme. The percentage of inertia captured by each component is
given in parentheses.

2019a) or an extended variational approximation (EVA, Korhonen et al, 2023). To deal
with the possibly high correlations among the predictors, the package gllvm also
proposes to shrink the regression parameters by performing a reduced rank regression
with random slopes (van der Veen et al, 2023). The performances of all the methods
are compared through the RI and ARI of the partitions output by the estimated resid-
ual correlation matrix, the Procrustes error between the true and estimated loading
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Fig. 3: Residual correlation matrices for different values of K

matrix B and between the true and estimated matrix of latent variables G, and the
computation time in seconds. Due to the excessive computation time of the Bayesian
MCMC methods, the packages boral (Hui, 2016) and Hmsc (Tikhonov et al, 2020)
are not tested in this article. Their performances are respectively discussed by Niku
et al (2019b) and Pichler and Hartig (2021).

4.2.1 Generation of the simulated data

The variables are simulated on N ∈ {100, 200, 300} statistical units. For the sake
of simplicity, a bundle X of ten variables distributed about the latent dimension ξ
is generated. One categorical variable with three levels is taken as only additional
covariate A. In this simulation, J = 2 factors are simulated to model the residual
covariance of the K ∈ {10, 30, 50} responses. The regression coefficients of the factors
are generated in order to get a two-cluster design

∀k = 1, . . . , 0.4K, bk ∼ NJ
(

(−1)
k
µ1, 0.1IJ

)
∀k = 0.4K + 1, . . . ,K, bk ∼ NJ

(
(−1)

k
µ2, 0.1IJ

)
,

where µ1 = (0, 2)T and µ2 = (1.5, 0)T . The comparable package not allowing to
consider different distribution families for the responses, we restricted the comparison
to binary outcomes

∀k = 1, . . . ,K, yk ∼ B
(
p = logit−1 [γkξ +Aδk +Gbk]

)
,

where for all k, γk and δk are uniformly generated, with γk ∈ [−4, 4] and δk ∈ [−1, 1].
Figure 3 shows the residual correlation matrices obtained for the three values of K.

4.2.2 Results of the comparison

In this simulation the package SCGLR calibrates the hyper-parameters to s =
0.5 and l = 1, while the BIC selects H1 = 1 and J = 2. Table 2 sums up the
RI, ARI, Procrustes error and computation time output by, on the one hand, our
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Table 2: Mean values of RI, ARI, Procrustes error of the latent variables
G and their loadings B and computation time over a hundred samples
with N ∈ {100, 200, 300} and K ∈ {10, 30, 50}.

N 100 200 300
K 10 30 50 10 30 50 10 30 50

F-SCGLR
RI 0.845 0.869 0.895 0.922 0.951 0.980 0.950 0.976 0.986
ARI 0.679 0.740 0.792 0.839 0.903 0.960 0.898 0.952 0.973

Proc B 0.156 0.165 0.173 0.098 0.082 0.084 0.067 0.055 0.054
Proc G 0.429 0.216 0.156 0.429 0.202 0.138 0.422 0.196 0.133
Time 0.532 1.721 4.812 0.834 3.187 7.982 1.221 3.960 11.11

gllvm-EVA
RI 0.687 0.775 0.785 0.721 0.792 0.762 0.726 0.809 0.763
ARI 0.386 0.550 0.571 0.456 0.583 0.518 0.466 0.617 0.521

Proc B 0.982 0.670 0.615 1.021 0.713 0.664 0.948 0.635 0.621
Proc G 0.578 0.300 0.223 0.544 0.256 0.182 0.518 0.231 0.166
Time 1.436 5.182 11.02 4.167 18.20 44.76 8.995 36.86 88.99

gllvm-VA
RI 0.657 0.702 0.704 0.727 0.739 0.716 0.725 0.779 0.770
ARI 0.337 0.402 0.403 0.468 0.476 0.426 0.455 0.556 0.534

Proc B 0.737 0.633 0.635 0.677 0.618 0.668 0.624 0.614 0.618
Proc G 0.709 0.296 0.244 0.697 0.245 0.180 0.702 0.224 0.165
Time 1.384 8.80 20.18 3.645 22.78 47.58 8.665 38.34 79.65

gllvm-shrinkage
RI 0.606 0.700 0.765 0.648 0.735 0.698 0.65 0.697 0.685
ARI 0.238 0.405 0.532 0.331 0.475 0.393 0.327 0.398 0.369

Proc B 1.028 0.826 0.682 1.055 0.724 0.694 1.051 0.710 0.676
Proc G 0.622 0.311 0.209 0.638 0.249 0.170 0.615 0.241 0.145
Time 1.237 3.584 7.493 3.640 21.97 49.61 8.464 52.66 111.9

gllvm-LA
RI 0.598 0.699 0.689 0.652 0.720 0.734 0.710 0.749 0.761
ARI 0.231 0.398 0.375 0.323 0.440 0.461 0.433 0.496 0.516

Proc B 1.068 1.291 1.326 1.224 0.851 0.755 1.165 0.688 0.632
Proc G 0.650 0.352 0.292 0.557 0.257 0.186 0.501 0.230 0.168
Time 32.88 69.09 127.0 46.70 124.8 262.8 53.95 182.5 386.2

package FactorSCGLR performing the F-SCGLR method, and, on the other hand,
the package gllvm implementing the VA, LA and EVA approaches.

We observe that, for all combinations of N and K, F-SCGLR gives the best values
of RI and ARI, followed by EVA, VA, the shrinkage approach and then LA. Indeed,
the highest values obtained of the ARI are respectively: 0.973, 0.617, 0.556, 0.532 and
0.516. Unlike with our package, which performs better when the number of either
statistical units or responses increase, a higher number of responses may cause a
deterioration of the classification of the compared methods. Likewise for all cases,
the lowest Procrustes errors on B and G are reached by F-SCGLR. The ordination
performances are not ranked in the same order as those obtained for the classification.
The F-SCGLR, VA, EVA, LA and shrinkage methods respectively have an error on B
equal to 0.054, 0.614, 0.615, 0.632 and 0.676. However, we may note that all methods
could well predict the latent variables. In their best combinations, the values of the
Procrustes error on G are equal to 0.133 (F-SCGLR) and 0.168 (LA). When the
number of responses increases, the Procrustes error on B for the F-SCGLR, shrinkage
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and LA methods may get bigger while the Procrustes error on G decreases for all
methods. Across the simulations, F-SCGLR is the fastest of the compared methods.
The longest computation time (less than 12 seconds) occurred for N = 300 and K =
50, while EVA, VA, shrinkage and LA ran for 89, 80, 112 and 386 seconds respectively
in that case. However, contrary to Korhonen et al (2023), we did not observe that EVA
ran faster than VA: in the K = 10 and (N,K) = (300, 50) cases, the computation
time of VA was lower. The conclusions of our respective works agree nevertheless that
LA is relatively slow.

5 Analysis of an agricultural ecology dataset

5.1 Data description

We apply F-SCGLR to the dataset available following the link
https://doi.org/10.15454/AJZUQN. The sample we consider gives the observation
of K = 12 agrobiodiversity variables over N = 54 winter cereal fields in the French
Vallées et Coteaux de Gascogne. The agrobiodiversity is reported through three
carabid beetle variables (two abundances and one Shannon index), three vascular
plant variables (one richness, one relative cover and one Shannon index) and six
axes of correspondence analyses (CA) performed on presence-absence data of carabid
species and plant species respectively. The three abundance and richness responses
are assumed to be samples of Poisson random variables while the other responses
are considered normally distributed. To model the agrobiodiversity, we have P = 21
variables partitioned into four themes and Q = 1 additional covariable. The first
theme X1 characterizes the pest control through four variables. Six farming intensity
variables make up the second theme X2. The third and fourth themes X3 and X4

gather six and five variables representing the landscape heterogeneity related to semi-
natural covers and to the crop mosaic respectively. The binary categorical variable
coding the observation year (2016 or 2017) is considered as the additional covariate
put into matrix A. For more information about this dataset, we refer the reader to
Duflot et al (2022).

5.2 Results and interpretation

As in Section 4, we need to calibrate the hyper-parameters. We first tune s and l
through the SCGLR package, then we find the best combination of number of
components and factors according to the BIC. However, due to the small number of
explanatory variables in each theme, we only allow the number of components to reach
Hr = 3. We thus minimize the BIC on the cross-product grid (H1, H2, H3, H4, J) ∈
{0, . . . , 3}4 × {0, . . . , 5} with the s and l values previously found.

The SCGLR package recommends tuning hyper-parameters to s = 0.5 and
l = 1 for this agricultural ecology dataset. Henceforth, the component combination
minimizing the BIC is (H1, H2, H3, H4) = (0, 3, 0, 0) meaning that only the farming
intensity theme was found relevant for the prediction of the agrobiodiversity. Duflot
et al (2022) make the assumption that agrobiodiversity is predictable from the farming
intensity (theme X2) and the landscape heterogeneity (themes X3 and X4). The
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combination found by the BIC validates this hypothesis as to the effect of the farming
intensity and the non-effect of the pest control in the prediction of the agrobiodiversity.
However the landscape heterogeneity themes proved here useless to this prediction.

We henceforth try to interpret the components of the second theme. The first com-
ponent f1

2 is correlated (ρ = −0.924, ρ = −0.794 and ρ = −0.738) with a bundle
of three variables, of which “TFI.total” and “TFI.h” represent a treatment frequency
index of herbicides, and “nb.op” is the total number of operations conducted by
the farmers. The second component f2

2 is correlated (ρ = 0.779) with the variable
“cum.till.depth” measuring the cumulative tillage depth. The quantity of nitrogen
denoted “qtyN.kg” is the most correlated explanatory variable (ρ = −0.781) with the
last component f3

2 . Figure 4 represents the correlation plots of the second theme.
In this agricultural ecology dataset, three factors are recommended, according to

the BIC, to model the residual variance-covariance matrix. By applying the clustering
steps given in Section 3.4, four groups of responses are identified. The first group is
composed by the three measures of the carabids. The second group gathers the first
axis of the CA of the carabids, the plant richness and the plant Shannon diversity
index. The carabids’ second CA axis, the plant cover and the first and third plants’
CA axes make up the third group. Finally, the fourth group contains the carabids’
third CA axis and the plants’ second CA axis. Figure 5 shows the residual correlation
values alongside the Euclidean representation of the responses output by the MDS.
The carabids’ measure group having very high residual correlations, the distances
between the responses composing it are close to 0 leading to a very compact group
(in red) on the first principal plane of the MDS. On the contrary on the graph, the
weaker the residual correlations, the wider the groups are scattered.

6 Conclusion and discussion

The original SCGLR was designed to regularize GLM estimation and reduce the
explanatory dimension through components, so as to decompose the linear predictor
in an interpretable way. It allowed to find strong and interpretable supervised compo-
nents common to response variables, by achieving a trade-off between Goodness-of-Fit
and a Structural Relevance measure. THEME-SCGLR extends SCGLR to a thematic
partition of the explanatory variables, allowing to make better use of the complemen-
tary between the explanatory themes, both statistically when fitting the model, and
conceptually when interpreting the components. F-SCGLR refines THEME-SCGLR
in a major way: through a factor model, it models the residual variance-covariance
matrix of the responses using a small number of latent factors. This matrix can be
used as a basis for clustering, enabling to identify groups of linked responses.

In our simulation study, F-SCGLR proved to behave as expected regarding
response clusters. Whenever the clusters were reasonably distinct, the original parti-
tions were recovered. Whatever the dispersion of the regression coefficients within the
clusters, it provided components aligned with the simulated latent dimensions. Our
package outperforms the package gllvm in three ways: (i) The thematic model allows
to find supervised components, thus reducing the dimension in a context of possibly
numerous explanatory variables. (ii) Responses with different distribution families are
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Fig. 4: Correlation plots of F-SCGLR plane (1,2), (2,3) and (1,3) of the second theme
(farming intensity). The black arrows represent the covariates while the red ones
are the linear predictors of the responses. The plot displays only variables having a
cosine greater than 0.75 with the plane. The percentage of inertia captured by each
component is given in parentheses.

allowed. (iii) The performances of our package are better in terms of computation time
and of cluster detection. On the agricultural ecology dataset, we found four groups of
responses. Due to very high residual correlations, the first one gathers the measures
of the carabids. The other groups are composed by a mix between the plant variables
and the axes of the correspondence analyses. However, even though a strong resid-
ual covariance between responses may hint at a biological interaction between species
(Pollock et al, 2014), Poggiato et al (2021) recall that the residual correlations cannot
distinguish the biotic from the abiotic effects. Moreover, performing F-SCGLR, we
revealed that the treatment by herbicides, the operations conducted by the farmers,
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the tillage depth and the quantity of nitrogen are the most involved variables in the
prediction of the agrobidiversity.

In this research, some limitations have been reached. The use of EM algorithm on
each step of the overall algorithm involves a high number of iterations. Due to the
absence of consensus about the maximization of the log-likelihood, we think that more
researches in this topics need to be effected. SCGLR and its extensions suffer of a
high number of hyper-parameters involving the use of heuristics to well calibrate the
latter. Only Bernoulli, Binomial, Gaussian and Poisson distributions can currently be
handled in the FactorSCGLR package. The package should be improved by adding
different distributions as Negative Binomial, Zero Inflated Poisson, Tweedie, Gamma,
Beta or Exponential, which are allowed in the gllvm package.
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Appendix A Analytical expression of the
SCGLR–specific criterion and its
derivative

The specific criteria which SCGLR needs to maximize for computing the (h + 1)-th
loading-vector write

φ(u) =

(
p∑
j=1

ωj(u
TNju)l

)1/l

and

ψAh
(u) =

K∑
k=1

‖wk‖2Wk
cos2Wk

(
wk, span[Xu,Ah]

)
.

To facilitate the computation of the loading-vector, we give below an analytical
expression of each sub-criterion and its gradient.

A.1 The structural relevance measure

In practice, we take either the variance component or the variable power inertia (VPI).
In the first case, the SR and its gradient are easily given by

φ(u) = ‖Xu‖2W and ∇uφ(u) = 2XTWXu.

The explicit expression of VPI is

φ(u) =

(
1

p

p∑
j=1

〈Xu,xj〉2lW

)1/l

.

To calculate the gradient we use the classical rules of derivation

∇uφ(u) =
1

l

[
∇u

(
1

p

p∑
j=1

〈Xu,xj〉2lW

)][
1

p

p∑
j=1

〈Xu,xj〉2lW

]1/l−1

=
1

l

[
1

p

p∑
j=1

2lXTWxj 〈Xu,xj〉2l−1W

]
φ(u)1−l

=
2

p
φ(u)1−lXTW

p∑
j=1

〈Xu,xj〉2l−1W xj .

A.2 The goodness of fit measure

We aim at expressing ψAh
(u) as a function of quadratic forms. To achieve that, we

decompose the projection on the regression space as follows

span[Xu,Ah] = span[Xh
ku,Ah] with Xh

k = ΠWk

span[Ah]⊥
X.
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Since span[Xh
k ] is orthogonal to span[Ah],

ΠWk

span[Xu,Ah] = ΠWk

span[Xh
k u,Ah]

= ΠWk

span[Xh
k u]

+ ΠWk

span[Ah].

Consequently, by classical Euclidean statistical concepts, we have

cos2Wk
(wk, span[Xu,Ah])

= cosWk
(wk, span[Xu,Ah]) cosWk

(wk, span[Xu,Ah])

=


∥∥∥ΠWk

span[Xu,Ah]wk

∥∥∥
Wk

‖wk‖Wk




〈
wk,Π

Wk

span[Xu,Ah]wk

〉
Wk

‖wk‖Wk

∥∥∥ΠWk

span[Xu,Ah]wk

∥∥∥
Wk


=

〈
wk,

(
ΠWk

span[Xh
k u]

+ ΠWk

span[Ah]

)
wk

〉
Wk

‖wk‖2Wk

=

〈
wk,Π

Wk

span[Xh
k u]
wk

〉
Wk

‖wk‖2Wk

+

〈
wk,Π

Wk

span[Ah]wk

〉
Wk

‖wk‖2Wk

.

The goodness of fit measure ψAh
(u) then writes more explicitly

ψAh
(u) =

K∑
k=1

‖wk‖2Wk
cos2Wk

(wk, span[Xu,Ah])

=

K∑
k=1

(〈
wk,Π

Wk

span[Xh
k u]
wk

〉
Wk

+
〈
wk,Π

Wk

span[Ah]wk

〉
Wk

)
.

Now, 〈
wk,Π

Wk

span[Xh
k u]
wk

〉
Wk

= wTkWkΠ
Wk

span[Xh
k u]
wk

= wTkWkXh
ku
(
uTXhT

k WkXh
ku
)−1

uTXhT
k Wkwk

=
uTXhT

k Wkwkw
T
kWkXh

ku

uTXhT
k WkXh

ku
.

Let,
ak := XhT

k Wkwkw
T
kWkXh

k , bk := XhT
k WkXh

k

and
ck :=

〈
wk,Π

Wk

span[Ah]wk

〉
Wk

.

20



Finally, we have

ψAh
(u) =

K∑
k=1

(
uTaku

uT bku
+ ck

)
and

∇uψAh
(u) = 2

K∑
k=1

(
uT bku

)
aku−

(
uTaku

)
bku

(uT bku)
2 .

Appendix B The PING algorithm

The Projected Iterated Normed Gradient (PING) algorithm is an extension of the
Power Iteration algorithm. To find the hth component, we use the PING algorithm
which aims at solving any optimization program of the form{

max
u

Jh(u),

s.t. uTM−1u = 1 and ∆T
hu = 0,

(B1)

where Jh is a function of u to maximize and ∆h an additional constraint matrix. In
the SCGLR context, Jh(u) is the specific criterion and ∆h the orthogonal constraint
matrix. We rewrite this optimization program by posing v = M−1/2u, Gh(v) =
Jh(M1/2v) and Eh = M1/2∆h.{

max
v

Gh(v),

s.t. vT v = 1 and ETh v = 0.
(B2)

To solve (B2), we must equate to zero the gradient of the following Lagrangian

L(v, λ,η) = Gh(v)− λ(vT v − 1)− ηTETh v.

Setting Γh(v) = ∇vGh(v), we have

∇vL(v, λ,η) = 0⇔ Γh(v)− 2λv −Ehη = 0 (B3)

⇔ v =
1

2λ
(Γh(v)−Ehη) . (B4)

Multiplying (B3) by ETh

2λETh v︸ ︷︷ ︸
=0

= ETh Γh(v)−EThEhη ⇔ ETh Γh(v) = EThEhη

⇔ η =
(
EThEh

)−1
ETh Γh(v). (B5)

Substituting (B5) in (B4), we get

v =
1

2λ

(
Γh(v)−Eh

(
EThEh

)−1
ETh Γh(v)

)
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=
1

2λ

(
I −Eh

(
EThEh

)−1
ETh

)
Γh(v)

=
1

2λ
Πspan[Eh]⊥Γh(v),

where Πspan[Eh]⊥ = I −Eh
(
EThEh

)−1
ETh . Finally, the constraint ‖v‖2 = 1 gives

v =

1
2λΠspan[Eh]⊥Γh(v)∥∥∥ 1
2λΠspan[Eh]⊥Γh(v)

∥∥∥ =
Πspan[Eh]⊥Γh(v)∥∥∥Πspan[Eh]⊥Γh(v)

∥∥∥ ,
which suggests the basic iteration of the PING algorithm

v(t+1) =
Πspan[Eh]⊥Γh(v(t))∥∥∥Πspan[Eh]⊥Γh(v(t))

∥∥∥ . (B6)

Let us show that the basic iteration of the PING algorithm follows a direction of
ascent. One way to do this is to show that the direction given by the arc (v(t),v(t+1))
is a direction of ascent. In other words, show that〈

v(t+1) − v(t),Γh
(
v(t)
)〉
≥ 0.

By construction, we know that on every iteration t of the algorithm, v(t) is orthogonal
to span[Eh]. Thus, since for all t, v(t) = Πspan[Eh]⊥v

(t), we have〈
v(t+1) − v(t),Γh

(
v(t)
)〉

=
〈
Πspan[Eh]⊥

(
v(t+1) − v(t)

)
,Γh

(
v(t)
)〉

=
〈
v(t+1) − v(t),Πspan[Eh]⊥Γh

(
v(t)
)〉

.

Now, Equation (B6) implies that

Πspan[Eh]⊥Γh(v(t)) = v(t+1)
∥∥∥Πspan[Eh]⊥Γh(v(t))

∥∥∥ .
So,

sgn
(〈
v(t+1) − v(t),Γh

(
v(t)
)〉)

= sgn
(〈
v(t+1) − v(t),v(t+1)

〉)
= sgn

(∥∥∥v(t+1)
∥∥∥2 − 〈v(t),v(t+1)

〉)
= sgn

(
1− cos

(
v(t),v(t+1)

))
.

Finally, 〈
v(t+1) − v(t),Γh

(
v(t)
)〉
≥ 0.
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Although iteration (B6) follows a direction of ascent, it does not guarantee that
function Gh actually increases on every step. Indeed, we may go too far in such a
direction, and overshoot the maximum. However, let us consider

κ(t) =
Πspan[Eh]⊥Γh(v(t))∥∥∥Πspan[Eh]⊥Γh(v(t))

∥∥∥ .
Staying close enough to the current starting point on the arc (v(t),κ(t)) ensures that
function Gh increases on every iteration. Indeed, let $ be the plane tangent to the
unit sphere on v(t) and let w denote the unit–vector tangent to arc (v(t),κ(t)) on v(t).
Then, there exists τ > 0 such that, w = τΠ$κ

(t), and〈
w,κ(t)

〉
= τ

〈
Π$κ

(t),κ(t)
〉

= τ cos2(κ(t),$) > 0.

However, staying too close to the current starting point can impact the conver-
gence speed of the algorithm to reach the maximum. We avoid that by using a one
dimensional maximization function (e.g. Gauss-Newton type) to find the maximum of
Gh on the arc (v(t),κ(t)), and take it as v(t+1). Therefore, we propose two possible
generic iterations for the PING algorithm, which deal with this problem. Algorithm 1
and Algorithm 2 present these alternatives. The first one should be preferred, but is
less easy to program.

Algorithm 1 PING algorithm

1: while not convergence do

2: κ(t) ←
Πspan[Eh]⊥Γh(v(t))∥∥∥Πspan[Eh]⊥Γh(v(t))

∥∥∥
3: Use a Newton-Raphson unidimensional maximization procedure to find the

maximum of Gh(v) on the arc (v(t),κ(t)) and take it as v(t+1)

4: t← t+ 1
5: end while

Appendix C The EM algorithm

We are now dealing with the linearized model, where the factors are latent. So, we
shall use the EM algorithm to estimate the parameters. The previous developments
lead to the conditional linearized model

wk = Fγk +Aδk +Gbk + ζk,

where E[wk | G] = Fγk +Aδk +Gbk and

V[wk | G] = V[ζk] = W−1
k = diag

(
υ−1nk

)
n=1,...,N

,
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Algorithm 2 Alternative PING algorithm

1: m←
Πspan[Eh]⊥Γh(v(t))∥∥∥Πspan[Eh]⊥Γh(v(t))

∥∥∥
2: while Gh(m) < Gh(v(t)) do

3: m← v(t) +m∥∥v(t) +m
∥∥

4: end while
5: v(t+1) ←m
6: t← t+ 1

with υ−1nk := ank(φk)vk (µnk)h′k (µnk)
2
, where ank and vk are known functions and φk

is the dispersion parameter related to yk. The linearized model expressed row-wise
thus writes

wn = ΓT fn + ∆Tan +BT gn + ζn,

where Γ = [γ1, . . . ,γK ], ∆ = [δ1, . . . , δK ], B = [b1, . . . , bK ], and where wn, fn,
an and gn are the vectors composed of the nth rows of matrices W , F , A and G
respectively. The expectation and the variance are given by E[wn] = ΓT fn + ∆Tan
and V[wn] = BTB + Υ−1

n , where

Υ−1
n = diag

(
υ−1nk

)
k=1,...,K

.

Denoting Θ = {Γ,∆,B} the set of parameters, the complete log-likelihood writes

l(Θ;W ,G)

= ln (L(W ,G; Θ))

=

N∑
n=1

ln (L(wn | gn; Θ)) + ln (L(gn; Θ))

=

N∑
n=1

[
− ln

(
(2π)K/2det

(
Υ−1
n

)1/2)
− 1

2

(
wn − ΓT fn −∆Tan −BT gn

)T
Υn

(
wn − ΓT fn −∆Tan −BT gn

)
− ln

(
(2π)J/2

)
− 1

2
gTngn

]
= −1

2

N∑
n=1

[
K∑
k=1

ln
(
υ−1nk

)
+ gTngn + (K + J) ln(2π)

+

K∑
k=1

υnk
(
wnk − fTn γk − aTnδk − gTnbk

)2]
.
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C.1 The expectation (E) step

We first calculate the expectation of the complete log-likelihood conditional on the
data W

E[l (Θ;W ,G) |W ; Θ′] =

N∑
n=1

∫
ln (L (wn | gn; Θ)L (gn; Θ))L (gn | wn; Θ′) dgn.

Thus, we need to first find the law of gn | wn. Since the random vector (wTn , g
T
n )T

is Gaussian, we have(
wn
gn

)
∼ N

((
ΓT fn + ∆Tan

0

)
,

(
BTB + Υ−1

n BT

B IJ

))
.

Thanks to the conditioning rule of the multivariate Gaussian , we get

gn | wn ∼ N
(
αn
(
wn − ΓT fn −∆Tan

)
, IJ −αnBT

)
,

where αn = B(BTB + Υ−1
n )−1. The moments of the random variable gn | wn are

given by

g̃n := E [gn | wn; Θ]

= αn
(
wn − ΓT fn −∆Tan

)
and

R̃n := E
[
gng

T
n | wn; Θ

]
= V [gn | wn; Θ] + E [gn | wn; Θ]E [gn | wn; Θ]

T

= IJ −αnBT + g̃ng̃
T
n .

Finally, we have the explicit form of the expectation of the complete log-likelihood

E[l (Θ;W ,G) |W ,Θ′]

= −1

2

N∑
n=1

{
(K + J) ln(2π) +

K∑
k=1

ln
(
υ−1nk

)
+

E

[
gTngn +

K∑
k=1

υnk
(
wnk − fTn γk − aTnδk − gTnbk

)2 | wn; Θ′

]}

= −1

2

N∑
n=1

{
(K + J) ln(2π) +

K∑
k=1

ln
(
υ−1nk

)
+ E

[
gTngn | wn; Θ′

]
+
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E

[
K∑
k=1

υnk

((
wnk − fTn γk − aTnδk

)2
+ bTk

(
gng

T
n

)
bk−

2
(
wnk − fTn γk − aTnδk

)
gTnbk

)
| wn; Θ′

]}
= −1

2

N∑
n=1

{
(K + J) ln(2π) +

K∑
k=1

ln
(
υ−1nk

)
+ E

[
gTngn | wn; Θ′

]
+

K∑
k=1

υnk

[(
wnk − fTn γk − aTnδk

)2
+ bTk R̃nbk−

2
(
wnk − fTn γk − aTnδk

)
g̃Tnbk

]}
= −1

2

{
N(K + J) ln(2π) +

N∑
n=1

K∑
k=1

ln
(
υ−1nk

)
+

N∑
n=1

E
[
gTngn | wn; Θ′

]
+

K∑
k=1

[
‖wk − Fγk −Aδk‖2Wk

+ bTk

(
N∑
n=1

υnkR̃n

)
bk−

2
(
G̃bk

)T
Wk (wk − Fγk −Aδk)

]}
,

where the rows of the matrix G̃ are composed by g̃Tn ’s.

C.2 The maximization (M) step

The maximization step maximizes the conditional expectation of the complete log-
likelihood with respect to Θ, subject to the upper triangular constraint on matrix
B. However, for all k, the parameters γk and δk are not concerned by the con-
straint. Denoting βTk = (γTk , δ

T
k ) and X̃ = [F ,A], the first order conditions of the

maximization yield

∇βk
E[l(Θ;W ,G) |W ,Θ′] = 0

⇔ ∇βk

{∥∥∥wk − X̃βk∥∥∥2
Wk

− 2
(
G̃bk

)T
Wk

(
wk − X̃βk

)}
= 0

⇔ X̃TWk

(
wk − X̃βk

)
− X̃TWkG̃bk = 0

⇔ X̃TWkX̃βk = X̃TWk

(
wk − G̃bk

)
⇔ βk =

(
X̃TWkX̃

)−1
X̃TWk

(
wk − G̃bk

)
.

If a response is drawn from a Gaussian law yk ∼ NN
(
X̃βk, σ

2
kIN

)
, the residual

variance σ2
k must be estimated. Besides,

∇σ2
k
E[l(Θ;W ,G) |W ,Θ′] = 0
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⇔ ∇σ2
k

{
N ln

(
σ2
k

)
+

1

σ2
k

[∥∥∥wk − X̃βk∥∥∥2 + bTk

(
N∑
n=1

R̃n

)
bk

−2
(
G̃bk

)T (
wk − X̃βk

)]}
= 0

⇔ N − 1

σ2
k

{∥∥∥wk − X̃βk∥∥∥2 + bTk

(
N∑
n=1

R̃n

)
bk

−2
(
G̃bk

)T (
wk − X̃βk

)}
= 0

⇔ σ2
k =

1

N

{∥∥∥wk − X̃βk∥∥∥2 + bTk

(
N∑
n=1

R̃n

)
bk

−2
(
G̃bk

)T (
wk − X̃βk

)}
.

Now, we need to estimate the vector bk under the upper triangular constraint.
For each k = 1, . . . , J , let bTk = (bT1:k,k,0

T ) be the regression parameters, where

bT1:k,k = (b1k, . . . , bkk) is a vector of length k to be estimated and 0 is a null vector of

length (J − k) a priori fixed. In this case, we define (R̃n)1:k,1:k as the sub-matrix of

size k × k of R̃n and G̃1:k as the matrix composed by the first k columns of G̃. The
maximization yields

∇b1:k,k
E[l(Θ;W ,G) |W ,Θ′] = 0

⇔ ∇b1:k,k

{
bT1:k,k

[
N∑
n=1

υnk

(
R̃n

)
1:k,1:k

]
b1:k,k

−2
(
G̃1:kb1:k,k

)T
Wk

(
wk − X̃βk

)}
= 0

⇔
(
G̃1:k

)T
Wk

(
wk − X̃βk

)
−

[
N∑
n=1

υnk

(
R̃n

)
1:k,1:k

]
b1:k,k = 0

⇔ b1:k,k =

[
N∑
n=1

υnk

(
R̃n

)
1:k,1:k

]−1 (
G̃1:k

)T
Wk

(
wk − X̃βk

)
.

Likewise, for k = J + 1, . . . ,K, bk is given by

bk =

[
N∑
n=1

υnkR̃n

]−1
G̃TWk

(
wk − X̃βk

)
.

C.3 The algorithm

As a result of the aforementioned developments, we shall use Algorithm 3 to estimate
the parameters of the factor model.
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Algorithm 3 The EM algorithm applied to factor models with GLM

1: while not convergence do
2: Expectation step
3: for n = 1, . . . , N do

4: α
(t+1)
n = B(t)

(
B(t) TB(t) + Υ−1

n

)−1
5: g̃

(t+1)
n = α

(t+1)
n

(
wn − Γ(t) T fn −∆(t) Tan

)
6: R̃

(t+1)
n = IJ −α(t+1)

n B(t) T + g̃
(t+1)
n g̃

(t+1) T
n

7: end for
8: Maximization step
9: for k = 1, . . . ,K do

10: β
(t+1)
k =

(
X̃TWkX̃

)−1
X̃TWk

(
wk − G̃(t+1)b

(t)
k

)
11: end for
12: if Gaussian then

13: σ
2 (t+1)
k =

1

N

{∥∥∥wk − X̃β(t+1)
k

∥∥∥2 + b
(t) T
k

(∑N
n=1 R̃

(t+1)
n

)
b

(t)
k −

14: 2
(
G̃(t+1)b

(t)
k

)T (
wk − X̃β(t+1)

k

)}
15: end if
16: if k ≤ J then
17: b

(t+1)
1:k,k =

18:

[∑N
n=1 υnk

(
R̃

(t+1)
n

)
1:k,1:k

]−1 (
G̃

(t+1)
1:k

)T
Wk

(
wk − X̃β(t+1)

k

)
19: else

20: b
(t+1)
k =

[∑N
n=1 υnkR̃

(t+1)
n

]−1
G̃(t+1) TWk

(
wk − X̃β(t+1)

k

)
21: end if
22: t← t+ 1
23: end while

Appendix D The overall F-SCGLR algorithm

Algorithm 4 consists in alternating the following steps: (i) Given the current set of
parameters, calculate all the components of all the themes iteratively through the
PING algorithm. (ii) Given the current components, calculate the working variables
of the linearized model and their variance matrix. (iii) Given the working variables,
estimate the factor model parameters through the EM algorithm.

Appendix E Identification of the true model

Table E1 sums up the results on a cross-product grid.

Appendix F Additional simulation studies

The Tables summing up the results for σ2
B = 0.2 and σ2

B = 0.3 are presented in Table
F2 and Table F3.
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Algorithm 4 The F-SCGLR algorithm

1: while not convergence do
2: Compute the components through the PING algorithm

3: ∀r = 1, . . . , R,∀h = 1, . . . ,Hr, f
h (t+1)
r = Xru

h (t+1)
r

4: Compute the working variables through the IRLS algorithm

5: η
(t+1)
k = F (t+1)γ

(t)
k +Aδ

(t)
k +Gb

(t)
k

6: µ
(t+1)
nk = h−1k

(
η
(t+1)
nk

)
, ∀n = 1, . . . , N

7: w
(t+1)
nk = η

(t+1)
nk + h′k

(
µ
(t+1)
nk

)(
ynk − µ(t+1)

nk

)
, ∀n = 1, . . . , N

8: W
(t+1)
k = diag

([
ank(φk)vk

(
µ
(t+1)
nk

)
h′k

(
µ
(t+1)
nk

)2]−1)
n=1,...,N

9: Compute the model parameter through the EM algorithm
10: Θ(t+1) = argmax

Θ
l(Θ(t);W)

11: Increment
12: t← t+ 1
13: end while

Table E1: Mean values of BIC over a hundred samples for (H1, H2) ∈ {1, 2, 3, 4}2
and J ranging from 0 to 5. The lowest values are in bold font.

J = 0 J = 1
H2/H1 1 2 3 4 H2/H1 1 2 3 4

1 79051 74909 63621 70120 1 34205 54295 28680 30613
2 57546 55794 46597 45896 2 29705 30369 26841 25463
3 54710 53330 43731 41406 3 31065 26012 24542 25592
4 44658 43938 42169 39733 4 34943 26930 24520 25369

J = 2 J = 3
H2/H1 1 2 3 4 H2/H1 1 2 3 4

1 21265 19833 19907 21087 1 25655 17235 17474 17673
2 20303 18678 21227 20157 2 19150 15915 16197 16378
3 20601 20361 22026 20565 3 19050 16059 16341 16588
4 20774 19022 19309 19496 4 19329 16308 16640 16808

J = 4 J = 5
H2/H1 1 2 3 4 H2/H1 1 2 3 4

1 18356 16025 16237 16556 1 16584 16212 16462 16706
2 16364 16058 16287 16651 2 16647 16387 16628 16911
3 16534 16242 16484 16919 3 16852 16661 17020 17167
4 16835 16424 16761 17103 4 17211 16849 17279 17412
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Table F2: Mean values of RI, ARI and square correlation over
a hundred samples with σ2
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Table F3: Mean values of RI, ARI and square correlation over
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