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Abstract

We propose a hierarchy of mathematical models for the numerical simulation of active thin structures in a
viscous fluid and its application to mucociliary clearance. Our aim is to simulate large forests of cilia and analyze
the collective dynamics arising in the flow, as well as their impact on the efficiency of the mucus transport. In a
3d model we describe the cilia individually and study their joint actions on the fluid. The model is built upon a
3d Stokes problem with singular source terms that represent the action of the 1d cilia on the fluid, including the
influence of the background flow (making the problem nonlocal). Surface tension between the periciliary layer
and the mucus is taken into account. From the 3d model we also derive a 1d space averaged model, describing
the dynamics of the mean velocity of the mucus that is propelled by the cilia, hence allowing lower computational
costs and still providing useful characterization of the efficiency of the transport. Mathematical properties of the
models (existence and uniqueness of solutions in suitable functional spaces) are analyzed. Numerical simulations
highlight the influence of critical parameters on the efficiency of the mucociliary transport in the case of dense
forests of cilia.
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†Université Paris Cité, Laboratoire MAP5 (CNRS-UMR 8145), 45 rue des Saints-Pères, 75270 Paris cedex 06, France,
sebastien.martin@parisdescartes.fr
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1 Introduction

The present work deals with the mathematical modeling and the numerical simulation of active thin structures in
a viscous fluid and its application to mucociliary clearance. The human lung is protected against dehydration and
inhaled particles, like dust or allergens, by a thin liquid layer lining the interior of the airways. This airway surface
liquid is a bilayer composed of mucus, a visco-elastic fluid secreted by the respiratory epithelium [26], and a thin
fluid layer known as the periciliary liquid [23], commonly called PCL. Preserving the lung from inhaled impurities
is necessary, since they could obstruct the bronchi and limit the exchange area for oxygen and carbon dioxide.
Mucus traps aspirated particles and is then itself evacuated from the lung by the action of numerous cilia lining the
lung bronchi. Other factors that help drain mucus in the bronchial tree are cough and forced breathing [1]. Under
pathological conditions, mucus characteristics and mucociliary clearance efficiency can be altered. For example,
due to a modification of the viscosity of the mucus or a degradation of cilia, ciliary motion can become ineffective,
inducing mucus stasis that often leads to infections.

Active research has been devoted to the study of the motion of bronchial cilia since the pioneering work by Lucas
[29]. Cilia are very slender structures whose length is about 6 µm and radius is 0.1µm, and they are fixed on the
epithelial cells in the bronchi. They beat in the periciliary layer, where viscosity is much lower than in the mucus,
at an average frequency of 15 Hz depending on the characteristics of the environment. A detailed description of the
mechanism of motility has been given by Gibbons in [18] and more recently in [33, 36, 39]. Each beat of a cilium
can be divided into two phases, a recovery stroke and an effective stroke, during which the motion is not symmetric
under time reversal. In fact, since mucus and PCL are viscous fluids at the scale of a cilium, a reversible movement
of the cilium would not permit the mucus to be transported [40]. According to Sanderson and Dirksen [41], the
effective stroke is two or three times faster than the recovery stroke, and cilia may penetrate the overlying mucus
during the faster phase. Cilia that propel mucus coordinate into a metachronal wave, which wavelength is of the
order of a hundred of cilia, that is around 30µm, and that propagates in the opposite direction of mucus transport.
It is believed that coordination of the beating into a metachronal wave arises during the recovery stroke and is due
to hydrodynamic interactions between the cilia [4]. Changes in the viscosity of the medium, in the length or in the
spacing of the cilia may therefore have a deep influence on the characteristics of the metachronal wave.

The complexity of the process is high (high amount of cilia, three layers if we consider air that is driven in
the bronchus, several interfaces, several scales, etc) and only a few data are available. Although a wide variety of
works can be found in the literature about mucociliary clearance, the numerical simulation remains at present time
a challenge.

Some authors have developed models in which the action of cilia is represented via a prescribed velocity at the
bottom of the mucus layer, like for instance in [14], where a numerical investigation of the interaction between
respiratory mucus motion and air circulation is presented. Using the same approach, Mitran proposes in [35] a
multiscale model to study the effect of airflow shear forces, as exerted by tidal breathing and cough, upon clearance,
and Mauroy and coauthors investigate in [32] the role of the geometry of the airway tree on clearance. These works
present interesting multiscale approaches of the process but they do not allow to investigate details of the role of
ciliary motion.

Other authors use a continuum representation of the airway surface liquid as a traction layer, with a continuous
distribution of forces. In [47], for instance, Smith and coauthors replace the forest of cilia by an active porous
medium in which the cilia are modeled by a volumic resistive force directly dependent on the local velocity of
the cilia. They consider a three-layer fluid in dimension 2: a Maxwell fluid for the mucus, a Newtonian fluid for
the periciliary layer and a layer of transition. Kurbatova and coauthors use the same model in [24] in order to
estimate mucociliary velocity in different generations of the lung, adding influx terms from previous generations
and production of mucus. In [9] Choudhury and coauthors replace the forest of cilia by a Navier-slip boundary
condition derived in [3] which allows for a continuum description of the mucus film (considered as viscolelastic, not
purely viscous).

A very different approach consists in representing the cilia individually, either by prescribing their beating or
by modeling in some way their internal activity. Several authors have worked on models for the internal activity
of cilia, in order for instance to investigate the emergence of ciliary metachronism [20, 21, 19, 13, 12]. In [13] for
instance, Dillon and coauthors used a discrete representation of the internal structures of cilia and a curvature
control mechanism for their activity, and solved the interaction of these structures with the fluid (PCL and mucus)
in 2D using the immersed boundary method. Sedaghat and coauthors use hybrid finite difference-lattice Boltzmann-
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method combined with immersed boundary method, in 2d, to investigate the additional effect of viscoelasticity in
2d [44] and in 3d [43]. Mitran [34] proposed the most complete model for the internal mechanism of bronchial cilia,
with a detailed description of the internal microtubule structures in 3d using thin-wall beams and spring elements
to model nexin links. Activity was modelled through a forces scenario exerted between adjacent microtubules.
The fluid-structure interaction was solved using finite elements for the structure and finite volumes for fluid. He
simulated the configuration of up to 256 cilia in a row, bringing evidence for a hydrodynamic origin to observed
ciliary synchronization. However, the computational effort is such that no parametric study could be made. Recent
works have proposed models based on a sliding regulation mechanism for dynein activity proposed in [38]. Cilia
movement is modeled with 1D elastic equations and the fluid-structure problem is solved using the slender body
theory. These works have allowed to reproduce typical spontaneous oscillations observed in cilia [30] as well as
synchronization resulting from hydrodynamical interactions [5, 6].

Nevertheless, how the internal ciliary engine affects the ciliary beat form is still not completely understood,
and its modelling induces heavy additional computational effort. That is why many works focus on the flow fields
produced by cilia with given beat pattern and frequency. Due to their slenderness, the action of individual cilia can
be represented by a centerline distribution of forces, following the slender body theory (see for instance [10], or for
a rigorous asymptotic analysis [37]). This idea was initially developed in studies such as Liron and Mochon [28] and
Fulford and Blake [15], and then further developed in other works [20]. The distribution of point forces is derived
from the prescribed beat pattern either using an asymptotic formula, as in [15], or by prescribing the velocity at the
surface of each cilium as in [28] and [46], leading to the resolution of an integral equation. The different works based
on this idea can be distinguished by the way the force distribution is computed, but also by the use of particular
singular solutions adapted to the conditions at the boundaries of the domain. They have obtained estimates of
the mean field velocity in both the periciliary layer and the mucous layer (both liquids being assumed to have
Newtonian fluid properties), but the profiles are time- and space-averaged. Besides, no penetration of the cilia into
the mucus layer is taken into account. They show that the mean field velocity is very small in the lower part of the
periciliary layer and increases very quickly close to the mucus layer. In [27] the authors used a similar model in 2d
allowing to investigate non-averaged velocity profiles both in the PCL and in the mucus; a parametric study was
made, showing the impact of changing the viscosity ratio or the length of cilia. In particular, they show that the
velocity of mucus decreases when its viscosity increases, what they explain via the fact that viscous forces between
the mucus and the PCL increase. In [7] cilia are also modeled by thin structures whose deformations are prescribed.
However the computations are 3-dimensional and the numerical method is different : the equality of the fluid and
solid velocities on the fluid-structure interface is imposed with the immersed boundary method. In addition, the
action of the fluid on the structure is partially taken into account, modeled by a damping term that changes the
intensity of the velocity of the structures. The authors investigate synchronization of cilia through hydrodynamic
interactions, but the velocity profiles inside the layers are not analyzed.

Some works consider a 3-dimensional representation of each cilium with prescribed movement. Chatelin and
coauthors [8], for instance, proposed a 3-dimensional model where the viscosity is the solution of a convection-
diffusion equation of mucin proteins. The movement of the cilia is prescribed and the effects of the cilia on the fluid
are treated by an efficient fictitious domain method. However the amount of cilia in simulations remains limited,
due to the high computational cost induced by the representation of the structure’s thickness. In [31], the authors
modeled in two-dimension the viscosity as the solution of a reaction-advection-diffusion equation depending on the
temperature, but the model for the flow is very simplified. To the best of our knowledge, in the other works which
consider a variable viscosity, the viscosity is defined constant by part.

This work focuses on a model that allows to efficiently simulate a large amount of active thin structures and
perform a parametric study to investigate the impact of different parameters on mucus velocity. The complexity
of the phenomenon leads us to consider several restrictive assumptions. On the one hand, we have chosen to work
in the case of a prescribed movement of the structures, in the asymptotic limit of infinite slenderness: we thus
represent the slender bodies as 1d curves immersed in a 3d viscous flow. The action of the structures on the fluid
is represented through a Dirac distribution of forces along the 1d curve. Retroaction of the fluid on the structures
is not taken into account. On the other hand, although mucus is a viscoelastic fluid, its relaxation time is long
with respect to the cilia beating cycle. It is thus reasonable to model it as a Newtonian viscous fluid. And since
both mucus and the PCL are viscous at the scale of the cilia, we solve the Stokes equations in both layers. The
significant difference in viscosity is taken into account through a bi-fluid model with a fixed and flat interface,
consistently to experimental observations. The presence of air above the mucus layer is taken into account through
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a boundary condition, airways are not represented in our simulations. A bottom-up approach is developped: i) at
the cilia individual scale, we use equations of motion for 3d Stokes flow to which we associate the cilia individually
and solve the action of each of them on the fluid. ii) at an averaged scale, we derive a 1d model that describes
how the ciliary activity governs the mean axial velocity of the fluid (which is directly related to the efficiency
of the mucociliary transport), with a computational cost that is considerably lowered. A rigorous mathematical
framework is presented for both problems, including well-posedness in suitable functional spaces. Additionally, we
use a finite element method to solve both problems: the method is still well-defined in the presence of the singular
source term and the rigorous error analysis has been performed in [2] (the FEM is still proven to be converging,
with a convergence rate that is locally slowed down). The models and numerical methods allow us to simulate the
action of very large forests of cilia on the flow, and investigate the impact of some parameters on the mucociliary
efficiency. They can contribute to a better understanding of mechanisms involved in mucociliary clearance, in the
perspective of analyzing the collective dynamics arising in the flow, as well as their impact on the efficiency of the
mucus transport.

This paper is organized as follows: in section 1 we describe the model developed for the fluid-cilia interaction,
and in section 2 we discuss the mathematical properties of the resulting equations, i.e. a nonlocal Stokes system
with a singular right-hand side. Section 3 is devoted to the numerical method developed in order to retrieve the
optimal order of the finite element method applied to these equations. The last section concerns the application of
this model to the simulation of the mucociliary transport and the presentation of numerical results in a reference
configuration along with an investigation of critical parameters for the mucociliary efficiency.

2 Three-dimensional modelling

We are interested in modelling the interaction of active cilia with a viscous flow in the context of mucociliary
transport. Bronchial cilia are attached to the bronchial walls and immersed in a bilayer composed of a first thin
liquid layer called the periciliary liquid (PCL), adjacent to the walls, and a second layer composed of mucus (see
Figure 1). They essentially beat inside the PCL, but eventually penetrate the mucus layer during a short part of
their periodic movement. At the top of the bilayer, mucus is in contact with the air flowing inside the bronchi.
Since the aim of this work is to simulate dense suspensions of active cilia, we are concerned with limiting the
computational cost related to the problem, while trying to keep assumptions minimal.

An essential feature of our problem is that cilia are slender bodies that beat very quickly in the viscous fluid.
In the case of bronchial cilia, the ratio between their cross-sectional radius and their length is r

L ∼ 0.1
6 , and their

beating frequency is about f = 15 Hz. Representing each cilium as a three-dimensional body immersed in the fluid
domain involves a considerable computational effort to represent the fluid-body interface. An option in order to
reduce this cost can be to use a fictitious domain approach (see for instance [8]). However, we have chosen to take
advantage of the geometry of the structure and work in the asymptotic of infinite slenderness, that is when the ratio
between the thickness and the length of the structure ϵ = r

L vanishes. Keeping the force exerted by each section
of the body constant when ϵ vanishes allows to conserve the action of the cilium on the fluid, while the velocity of
the fluid becomes infinite at the centerline of the slender body. Our model thus consists of the Stokes equations
governing the dynamics of a viscous fluid, with in the source term a line distribution of forces along a 1d curve
representing the thin structures. For an analysis of the convergence of the solution to the full problem, that means
with a volumic distribution of the hydrodynamic force on the 3D structure, to the solution of the asymptotic model
when ϵ vanishes, we refer the reader to [25].

As for the activity of the cilia, a complete model would consist in a mechanical model for the structure coupled
to the fluid equations, so that both the action of the structure on the fluid and the retroaction of the fluid on the
structure are taken into account. However, modeling the mechanics of active thin structures like the bronchial cilia
for instance is a difficult task, since the underlying internal dynamics are not well understood. Besides, since the
solution of the Stokes problem with a line Dirac distribution is singular, our model does not allow to compute the
velocity of the structure in a straightforward way in order to retrieve its movement. That is why in this work, we
do not address the problem of the construction of the mechanical model, and we consider that the movement of
each cilium is given. The resulting model is therefore “one-way”, in the sense that it only aims at reproducing the
effects of the active structures on the fluid and neglects the retroaction of the fluid on the structures.

On the other hand, experiments show that the pcl-mucus interface does not evolve in time, presumably due
to surface tension. We will take into account surface tension and enforce the interface to be constant in time. In

4



addition we will assume both the pcl-mucus and the mucus-air interfaces to be at all times parallel to the bronchial
walls.

Parametrization of a cilium and of a forest of cilia

We use the parametrization established by Fulford and Blake in [16], based on the Fourier series decomposition of the
beat of one cilium of cultured rabbit tracheal epithelium described in [42]. The authors also proposed an extension
of the parametrization to the movement of a whole forest of cilia, via two parameters that represent respectively
the distance between two cilia and the wavelength of the metachronal wave. It is based on the assumption that
the metachronal wave propagates in the direction of the cilia beat, although experiments show that some activity
is also propagated in the transversal direction. However this approximation is classical and experiments [17] show
that increasing viscosity causes the metachronal wave to become more and more orthoplectic (i.e. in the direction
of mucociliary transport). In the simulations presented in this paper, this assumption has also been made, but the
model allows to prescribe a methachronal wave with arbitrary direction.

Let us start with the parametrization of the movement of a single cilium. A cilium is assumed to evolve in a
(x− z) plane: at each time t the cilium is represented by the truncated Fourier series of the parametric curve

ξ2d(s, t) =

(
ξ2dx (s, t)
ξ2dz (s, t)

)
= L

[
1

2
a0(s) +

6∑
n=1

an(s) cos(2nπft) + bn(s) sin(2nπft)

]
,

where s ∈ [0, 1] measures arclength from the base of the cilium, L and f are respectively the length and the beat
frequency of the cilium. The Fourier coefficients an, bn are vector quantities, which are approximated by the
following 3-degree polynomial functions

an(s) =

3∑
k=1

an,ks
k and bn(s) =

3∑
k=1

bn,ks
k

where an,k and bn,k are constant vectors of R2, given in Table 1.

an,k
n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

k = 1
−0.449 0.130 −0.169 0.063 −0.050 −0.040 −0.068
2.076 −0.003 0.054 0.007 0.026 0.022 0.010

k = 2
−0.072 −1.502 0.260 −0.123 0.011 −0.009 0.196
−1.074 −0.230 −0.305 −0.180 −0.069 0.001 −0.080

k = 3
0.658 0.793 −0.251 0.049 0.009 0.023 −0.111
0.381 0.331 0.193 0.082 0.029 0.002 0.048

bn,k

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

k = 1
−0.030 −0.093 0.037 0.062 0.016 −0.065
0.080 −0.044 −0.017 0.052 0.007 0.051

k = 2
1.285 −0.036 −0.244 −0.093 −0.137 0.095

−0.298 0.513 0.004 −0.222 0.035 −0.128

k = 3
−1.034 0.050 0.143 0.043 0.098 −0.054
0.210 −0.367 0.009 0.120 −0.024 0.102

Table 1: Fourier-least squares coefficients for the cilia beat pattern. The upper and lower numbers in each entry
correspond to the x and z components respectively, the y component is always zero.

Figure 1 shows the beat of a cilium obtained using this parametrization and allows to observe a good correspon-
dance with the description made by Sanderson and Sleigh in [42]. Let us note that the cilium crosses the interface
between the mucus and the peryciliary layer (PCL) only during the effective stroke and not during the recovery
stroke. This feature is known to be important in order to guarantee an efficient mucus transport.
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Figure 1: Traces of a cilium during one period of its beat with a PCL-mucus interface at z = 4.8µm. Description
made by Sanderson and Sleigh [42, 16].

The extension to a 3d setting is natural: assume that the cilium evolves in the (x − z) plane at y = y(0), we
define

ξ(s, t) =

 ξ2dx (s, t)
y(0)

ξ2dz (s, t)

 .

The parametrisation of a whole forest of cilia given in [16] depends on two important parameters : the space
ℓ0 between two cilia (in each direction) and the wavelength λ of the metachronal wave. More precisely, in order to
model a forest of nx × ny cilia, with nx (respectively ny) the number of cilia in the direction x (respectively the
direction y), the cilium (i, j), where i ∈ [[1, nx]] and j ∈ [[1, ny]], is parametrized by the curve

ξ(ij)(s, t) = iℓ0xex + jℓ0yey + ξ

(
s,

iℓ0x
fλ

+ t

)
,

where s ∈ [0, 1]. Let us note the phase shift φi = iℓ0x/fλ in x (and only in x, as there is no phase shift not in y)
which the metachronal wave comes from. We have drawn in Figure 2 a section of the forest in the direction x. The
propagation of the metachronal wave (to the left on the picture) is in the opposite direction of mucus transport (to
the right). Figure 3 shows a forest in 3d as we model it in the simulations, with values of the cilia spacings ℓ0x and
ℓ0y that have been voluntarily increased for the sake of clarity.

Figure 2: Parametrization of a dense forest of cilia: section of a forest with the parametrization established by
Fulford and Blake [16] over two metachronal waves length.
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Figure 3: Dense forest of cilia with the parametrization established by Fulford and Blake [16] over two metachronal
waves length. Ciliary spacing is 0.3µm in both axial and azimuthal directions (hence 200× 32 cilia are represented
here).

Distribution of the forces exerted by the cilia on the fluid: the slender body theory

Since we work with a given movement of the cilia, defined by the parametrization introduced previously, we need
to deduce the distribution of forces induced by this movement on the fluid. For that purpose, we use the so-called
slender-body theory, based on asymptotic expansions when the ratio ϵ between the thickness and the length of the
body vanishes. Cox [10] established an asymptotic expansion of the force at each point of the slender-body. If

s 7→ ξ(s, t)

is a parametrization of the position of the body at time t in curvilinear coordinates, the expression of the force at
the point of curvilinear abscissa s is

f̂(s, t) :=
2πµ

ln(L/r)

(
2I3 −

∂sξ(s, t)⊗ ∂sξ(s, t)

∥∂sξ(s, t)∥2

)
(ûcil.(s, t)− ubg) +O

(
1

(ln(L/r))2

)
,

where ûcil.(s, t) := ∂tξ(s, t) denotes the local velocity of the slender body at curvilinear abscissa s and time t, and
ubg denotes the background flow (i.e. the velocity of the fluid in the absence of the structure). This relation has
been established in [10] by confronting two different approaches:

1. the inner expansion consists in studying the fluid velocity near the slender body, which is thus seen as an
infinite cylinder. The corresponding regime is L tends to infinity while a remains constant.

2. the outer expansion considers the flow far from the slender body seen as a zero-thickness body, which corre-
sponds to the regime a goes to zero while L remains constant.

We apply the slender body theory as presented previously to compute the distribution of forces applied by each
cilium on the fluid, and for the sake of more simple notations, we define

M̂(s, t) :=
2πµ

ln(L/r)

(
2I3 −

∂sξ(s, t)⊗ ∂sξ(s, t)

∥∂sξ(s, t)∥2

)
,
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so that the slender body theory at main order relates the hydrodynamical force exerted by a single cilium to the
ciliary dynamics by

f̂(s, t) = M̂(s, t) · (ûcil.(s, t)− ûbg(s, t)) , (1)

Remark 1. In the presence of several cilia, the background flow ubg takes into account the disturbance flow caused
by adjacent cilia. The term involving the background flow then models how the collective dynamics due to all cilia
damps/increases the action of each cilium over the fluid.

Remark 2. In order to fix ideas, it may be convenient to change the curvilinear coordinates into the 3d coordinates
describing the cilia. Therefore we may use the following change of variables:

f(ξ(s, t); t) = f̂(s, t).

Remark 3. It is worthwhile noticing that assumptions on the cilia patterns (which evolve in the (x− z) plane) lead
to some simplifications: in particular ∂sξy = 0 so that

∂sξ ⊗ ∂sξ =

 |∂sξx|2 0 ∂sξx∂sξz
0 0 0

∂sξx∂sξz 0 |∂sξz|2

 .

As a consequence, if we assume that ûbg,y = 0 (which is a reasonable assumption, that will be discussed in Assump-
tion 1) and since ûcil.,y = ∂tξy = 0, the second component of the force field is null, namely

f̂y(s, t) = 0.

Fundamental equations in 3d

We consider (ex, ey, ez) an orthonormal basis in R3 and a domain Ω ⊂ R3 defined as

Ω = {x = (x, y, z) ∈ R3, x/Lx ∈ T, y/Ly ∈ T, z ∈ (0, Lz)}.

In order to capture the main phenomenological aspects, we set Lx = λ corresponding to the length of the metachronal
wave: this ensures the periodicity of the ciliary beat patterns in Ω. Moreover as the cilia evolve in the (x−z) plane,
most phenomena in the y direction can be neglected. Thus the domain is Lx−periodic in x, Ly−periodic in y and
we denote the boundaries: Γ↓ = {z = 0} is the lower boundary to which the cilia are fixed. Γ↑ = {z = Lz} is the
upper boundary that corresponds to the top of the mucus layer. The fluid domain divides into two areas: the PCL,
occupied by a fluid of viscosity µ1, is the subdomain {z < H}; the mucus, occupied by a fluid of viscosity µ2 > µ1

is the subdomain {z > H}. In this context, we define

µ(z) =

{
µ1 if z < H,
µ2 if z > H.

The interface between the PCL and the mucus is located at Γ∗ = {z = H}. We consider a list of thin structures
(i, j), where i ∈ [[1, nx]] and j ∈ [[1, ny]], immersed in Ω and fixed to the bottom of the domain Γ↓. We denote by
s 7→ ξ(ij)(s, t) the parametrization of their motion at time t. Note that in the context of a viscous flow governed
by Stokes equations, the system is instantaneous and time only plays the role of a parameter (therefore it will be
regularly omitted when no ambiguity emerges from the equations). The resulting mathematical problem consists
in finding a velocity field x 7→ u(x), a pressure field x 7→ p(x), and a surface tension (x, y) 7→ γ(x, y) such that
(u, p, γ) are periodic in x and y and

−div(µ∇u) +∇p+ γezδΓ∗ =
∑
i,j

fij [u] δΓij in Ω,

div(u) = 0 in Ω,

[(µ∇u− pI) · n] · t = 0 on Γ↑,

u · n = 0 on Γ↑ ∪ Γ∗,

u = 0 on Γ↓.

(2)
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Here Γij denotes the 1d curve describing the centerline of the (i, j)-th structure, and fij [u](·, t) is the force distribu-
tion it exerts by the structure at time t on the fluid (it has been partially described previously, through the slender
body theory and we recall that it may depend on the solution u because of the influence of the background flow - as
this will be detailed further). Let us argue on the condition uz = 0 on the PCL-mucus interface Γ∗: it is noticed in
experiments that the interface does not evolve in time, presumably due to surface tension. From the mathematical
point of view, this constraint is imposed by duality: for that purpose we introduce the surface tension γ (to be
determined) located at the interface, which serves as a Lagrange multiplier for the constraint uz = 0 on Γ∗.

At the bottom we impose a no-slip boundary condition (u = 0) on Γ↓, while at the top of the box we prescribe
so-called free-slip conditions on Γ↑: u · n = 0 is the kinematic condition, whereas [(µ∇u − pI) · n] · t = 0 is
the dynamic condition. Here n is the normal outward unit vector, t the tangential unit vector associated to
the interface. Prescribing this kinematic condition means that we assume that the particles of fluid do not cross
the mucus/air interface, so that this interface remains flat and constant during the whole simulation, which is a
reasonable assumption with regard to the experimental results available. The dynamic condition implies that we
neglect friction of the air layer. More complex boundary conditions could be considered in order to take into account
the effect of the airflow on the mucus layer, as for instance a prescribed shear stress (see for instance [32] and [35]).
Finally, the box we consider is seen as a window focused on a part of a bronchus, and mucociliary transport goes on
outside this box. Therefore it is natural to impose biperiodic boundary conditions in both directions (this requires
that the computation domain extends so that a full metachronal wavelength is taken into account).

Source terms

Let us come back to the term fij [u] that describes the force distribution the cilium exerts on the fluid. As previously
mentioned, the definition relies on Eq. (1) but the background flow velocity needs to be specified. Because of the
configuration of the cilia forest, we assume the following:

Assumption 1. We denote the fluid flow by u = (ux, uy, uz) and we approximate the background flow velocity
defined over Ω by

ubg(x, y, z) =

 ux
x,y(z)
0
0

 ,

where ·x,y denotes the classical averaging process with respect to to x and y. As a consequence the background flow
in the slender body theory follows:

ûbg(s, t) = ubg(ξ(s, t)) =

 ux
x,y(ξz(s, t))

0
0

 .

Remark 4. From Assumption 1, denoting

M̂(ij) =

 m̂
(ij)
xx m̂

(ij)
xy m̂

(ij)
xz

m̂
(ij)
yx m̂

(ij)
yy m̂

(ij)
yz

m̂
(ij)
zx m̂

(ij)
zy m̂

(ij)
zz

 , û
(ij)
cil. = (û

(ij)
cil.,x, û

(ij)
cil.,y, û

(ij)
cil.,z), û

(ij)
bg = (û

(ij)
bg.,x, 0, 0),

and recalling that û
(ij)
cil.,y = 0 and m̂

(ij)
xy = m̂

(ij)
yx = m̂

(ij)
yz = m̂

(ij)
zy = 0 (see Remark 3), we can write:

f̂ij [u] =

 m̂
(ij)
xx û

(ij)
cil.,x + m̂

(ij)
xz û

(ij)
cil.,z

0

m̂
(ij)
zx û

(ij)
cil.,x + m̂

(ij)
zz û

(ij)
cil.,z


︸ ︷︷ ︸

f̂0ij

−

 m̂
(ij)
xx

0

m̂
(ij)
zx


︸ ︷︷ ︸

m̂(ij)

û
(ij)
bg,x.

This allows us to consider the force as the summation of the contribution due to isolated cilia and a contribution
due to the background flow, namely,

f̂ij [u](s, t) = f̂0ij(s, t)− ux
x,y(ξ(ij)z (s, t)) m̂(ij)(s, t).
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As a straightforward consequence, the momentum equation in System (2) writes:

−div(µ∇u) +
∑
i,j

ux,y
x m(ij)δΓij +∇p+ γezδΓ∗ =

∑
i,j

f0ijδΓij .

It is worthwhile noticing that, due to the background flow:

• the system is linear but...

• the system is nonlocal.

Remark 5. Note that in the 3d model the punctual value of ux is not defined on Γij because of the loss of regularity
induced by the lineic Dirac mass. However the averaging process over the velocity field does not suffer the same
drawback: ux

x,y is well defined on (0, Lz) and, by extension, on Γij.

Variational formulation

Because of the singularity induced by the lineic Dirac source term, the functional framework requires some adapta-
tion with respect to the classical one. Let us temporarily omit time t (which plays the role of a parameter) for the
sake of simplicity, we aim at writing the variational formulation of the 3d problem (restoring time t in the notations
does not raise any difficulty). The source term δΓij

satisfies δΓij
∈ (W 1,r∗(Ω))′ with r∗ > 2. Let

Vr∗ := {v = (vx, vy, vz) ∈ (W 1,r∗(Ω))3, v|Γ↓ = 0 in (Lr∗(Γ↓))
3, vz |Γ↑ = 0 in Lr∗(Γ↑), vz |Γ∗ = 0 in Lr∗(Γ∗)}

and (Vr∗)
′ its dual space. The variational formulation requires some precision on the source term. Let v ∈ Vr∗ . We

have 〈
fij [u]δΓij ,v

〉
(Vr∗ )′,Vr∗

=

∫
Γ(ij)(t)

fij [u](x, y, z) · v(x, y, z) dx dy dz

=

∫ L

0

fij [u](ξ
(ij)(s)) · v(ξ(ij)(s)) |∇ξ(ij)(s)|ds

=

∫ L

0

[
f̂0ij(s)− ux

x,y(ξ(ij)z (s)) m̂(ij)(s)
]
· v(ξ(ij)(s)) |∇ξ(ij)(s)|ds.

The source term thus contains two contributions:

• a classical contribution due to the action of each isolated cilium :∫ L

0

f̂0ij(s) · v(ξ(ij)(s)) |∇ξ(ij)(s)|ds

• a nonlocal contribution due to the background flow :∫ L

0

[
ux

x,y(ξ(ij)z (s)) m̂(ij)(s)
]
· v(ξ(ij)(s)) |∇ξ(ij)(s)|ds.

Let r = r∗

r∗−1 , so that 1 ≤ r < 2. The variational formulation writes:
find u ∈ Vr, p ∈ Lr

0(Ω) such that
a(u,v) + nl(u,v)− b(p,v) = ℓ(v), ∀v ∈ Vr∗ ,

b(q,u) = 0, ∀q ∈ Lr∗

0 (Ω),
(3)

with the following bilinear forms

a(u,v) :=

∫
Ω

µ∇u · ∇v,

nl(u,v) :=
∑

i,j

∫ L

0

ux
x,y(ξ(ij)z (s)) m̂(ij)(s) · v(ξ(ij)(s)) |∇ξ(ij)(s)|ds,

b(p,v) :=

∫
Ω

p div(v),
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and the following linear form

ℓ(v) :=
∑
i,j

∫ L

0

f̂0ij(s) · v(ξ(ij)(s)) |∇ξ(ij)(s)|ds.

The well-posedness of this problem will be proved in the next section.

3 Derivation of a one-dimensional average model

We propose a way to deal with the averaged velocity term in the 3d model (3) and avoid the difficult numerical
treatment of the non-local term. It consists in averaging the 3d equations in the x and y directions, taking advantage
of the periodic conditions, in order to obtain a 1d equation on ux

x,y. The numerical solution of this equation can
then be injected into the 3d problem. Besides, the existence and uniqueness of the solution to this 1d equation
allows to prove the well-posedness of the 3d problem (3).

Averaged equations

The averaging process is detailed in Appendix and leads to the following reduced model:
−∂z(µ∂zux

x,y) =
∑
i,j

fij,x[ux
x,y]δΓ

x,y
in D′(0, Lz),

ux
x,y(0) = 0,

∂zux
x,y(Lz) = 0.

(4)

Each source term in the sum over i and j is a distribution in D′(0, Lz) that needs to be defined properly, since
its derivation follows from the averaging process with respect to x and y of the 3d singular source terms, which is
not straightforward. Choosing v := v(z), we define〈

fxδ
x,y

, v
〉
D′(0,Lz),D(0,Lz)

=
1

LxLy
⟨fxδ, ṽ⟩D′(Ω),D(Ω)

by considering the natural extension from (0, Lz) to Ω (we recall that Ω is periodic in x and y):

·̃ : D(0, Lz) 7→ D(Ω)
[z 7→ v(z)] → [(x, y, z) 7→ ṽ(x, y, z) = v(z)].

As a consequence, using the parametrization s 7→ ξ(s, t) of the cilium, each source term reads :〈
fij,x(·, t)δΓ(t)

x,y
, v
〉
D′(0,Lz),D(0,Lz)

=
1

LxLy

∫
Γ(t)

fij,x((x, y, z); t) v(z) dxdy dz

=
1

LxLy

∫ L

0

fij,x(ξ
(ij)(s, t); t) v(ξ(ij)z (s, t)) |∇ξ(ij)(s, t)|ds.

In the context of mucociliary transport,

f̂(ij)[u](s, t) = M̂(ij)(s, t) ·

û
(ij)
cil. (s, t)−

 ux
x,y(ξ

(ij)
z (s, t))
0
0

 .

Thus〈
fij,x[ux

x,y](·, t)δΓ(t)
x,y

, v
〉
D′(0,Lz),D(0,Lz)

=
1

LxLy

∫ L

0

[m̂(ij)
xx û

(ij)
cil.,x + m̂(ij)

xz û
(ij)
cil.,z](s, t) v(ξ

(ij)
z (s, t)) |∇ξ(ij)(s, t)|ds

− 1

LxLy

∫ L

0

m̂(ij)
xx (s, t)ux

x,y(ξ(ij)z (s, t)) v(ξ(ij)z (s, t)) |∇ξ(ij)(s, t)|ds.
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Let us now introduce the variational formulation associated to the 1d problem. Defining V = {v ∈ H1(0, Lz), v(0) =
0}, the variational formulation of the reduced problem (including the summation over all the cilia) reads:

find ux
x,y(·, t) ∈ V such that, for all v ∈ V ,∫ Lz

0

µ(z) ∂zux
x,y(z, t) · ∂zv(z) dz

+
1

LxLy

∑
i,j

∫ L

0

m̂(ij)
xx (s, t)ux

x,y(ξ(ij)z (s, t); t) v(ξ(ij)z (s, t)) |∇ξ(ij)(s, t)|ds

=
1

LxLy

∑
i,j

∫ L

0

(
m̂(ij)

xx û
(ij)
cil.,x + m̂(ij)

xz û
(ij)
cil.,z

)
(s, t) v(ξ(ij)z (s, t)) |∇ξ(ij)(s, t)|ds.

(5)

It is worthwhile noticing that the variational formulation of the 1d reduced problem can be derived from the
variational formulation of the 3d problem: up to a constant related to the averaging process, it is then sufficient to
use a test function v ∈ D(Ω) which does not depend on x and y, then use the periodicity arguments.

We emphasize that the model is rich and simple: the unknown of the reduced model is z 7→ ux
x,y(z, t) i. e. the

first component of the mean velocity. This is exactly the observable quantity which allows for the quantification of
the mucociliary efficiency. Then the 1d problem divides into three contributions:

• a classical second-order 1d operator, modelling a bifluid description of the medium:∫ Lz

0

µ(z) ∂zux
x,y(z, t) · ∂zv(z) dz

• a source term modelling the action of each cilium over the fluid

1

LxLy

∑
ij

∫ L

0

(
m̂(ij)

xx û
(ij)
cil.,x + m̂(ij)

xz û
(ij)
cil.,z

)
(s, t) v(ξ(ij)z (s, t)) |∇ξ(ij)(s)|ds.

• a counter-part contribution due to the collective transport:

1

LxLy

∑
i,j

∫ L

0

m̂(ij)
xx (s, t)ux

x,y(ξ(ij)z (s, t)) v(ξ(ij)z (s)) |∇ξ(ij)(s, t)|ds.

Remark 6. We point out the fact that if the averaging process is performed over a domain that fits the metachronal
wave in the x−direction (recall that cilia only evolve in the x − z plane) then the solution of the reduced problem
does not depend on time anymore (by invariance of the setting with respect to time), highlighting the notion of
mucociliary elevator.

Let us conclude this section with the mathematical properties of the 1d problem:

Theorem 1. The 1d problem (5) admits a unique solution.

Proof. Well-posedness of the 1d problem is a consequence of Lax-Milgram theorem, noticing (as in the proof of
Theorem 2) that

m̂(ij)
xx =

2πµ

ln(L/r)

(
2− |∂sξx|2

∥∂sξ(s, t)∥2

)
≥ 2πµ

ln(L/r)
> 0.

Thus the bilinear form

a1d : (u, v) 7→
∫ Lz

0

µ(z) ∂zu(z) · ∂zv(z) dz +
1

LxLy

∑
i,j

∫ L

0

m̂(ij)
xx (s, t)u(ξ(ij)z (s, t)) v(ξ(ij)z (s)) |∇ξ(ij)(s, t)|ds

satisfies
a1d(u, u) ≥ min(µ1, µ2)∥u∥2V

as V may be equipped with the norm v 7→ ∥v∥V := ∥∂zv∥L2(0,Lz).
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Strong formulation

The easiest way to implement the reduced 1d model relies on the above variational formulation. However it is
possible to rewrite the reduced problem in a strong formulation: this requires to interpret the source term. Let us
recall that the description of a cilium Γ(t) is performed with a parametrization of the form (subscripts (i, j) have
been skipped):

s 7→ ξ(s, t) = (ξx(s, t), ξy(s, t), ξz(s, t)).

For a function f(·, t), we have used the identity∫
Γ(t)

f((x, y, z); t) v(z) dxdy dz =

∫ L

0

f(ξ(s, t); t)v(ξz(s, t))(z) |∇ξ(s, t)|ds.

Now we propose a parametrization that allow us to recover a classical formulation. Instead of using the “natural”
parametrization of the cilium, we may use the third component as the leading parameter and describe Γ(t) by

z 7→ Φ(z, t) = (X(z, t), Y (z, t), z).

Now defining h(t) := maxs(ξz(s, t)) we have∫
Γ(t)

f((x, y, z); t) v(z) dx dy dz =

∫ h(t)

0

f(Φ(z, t); t) v(z) |∇Φ(z, t)|dz

=

∫ Lz

0

f(Φ(z, t); t) |∇Φ(z, t)|1(0,h(t))(z) v(z) dz

which allows us to rewrite the 1d variational formulation (5):

find ux
x,y(·, t) ∈ V such that, for all v ∈ V ,∫ Lz

0

µ(z) ∂zux
x,y(z, t) · ∂zv(z) dz

+
1

LxLy

∫ Lz

0

∑
i,j

m(ij)
xx (Φ(ij)(z, t); t) · |∇Φ(ij)(z, t)| · 1(0,h(ij)(t))(z)

 · ux
x,y(z, t) · v(z) dz

=
1

LxLy

∫ Lz

0

∑
i,j

[
m̂(ij)

xx û
(ij)
cil.,x + m̂(ij)

xz û
(ij)
cil.,z

]
(Φ(ij)(z, t); t) · |∇Φ(ij)(z, t)| · 1(0,h(ij)(t))(z)

 · v(z) dz

with subsequent notations adapted to each cilium, in particular h(i,j)(t) = maxs(ξ
(i,j)
z (s, t)). Thus the strong

formulation of this problem reads:
−∂z(µ(z)∂zux

x,y(z, ·)) + c1(z, ·) · ux
x,y(z, ·) = c2(z, ·), ∀z ∈ (0, Lz),

ux
x,y(0, ·) = 0,

∂zux
x,y(Lz, ·) = 0.

(6)

with

c1(z, t) =
1

LxLy

∑
i,j

m(ij)
xx (Φ(ij)(z, t); t) · |∇Φ(ij)(z, t)| · 1(0,h(ij)(t))(z),

c2(z, t) =
1

LxLy

∑
i,j

[
m̂(ij)

xx û
(ij)
cil.,x + m̂(ij)

xz û
(ij)
cil.,z

]
(Φ(ij)(z, t); t) · |∇Φ(ij)(z, t)| · 1(0,h(ij)(t))(z).

The use of the strong formulation (6) is quite limited in terms of numerical computations as the evaluation of c1
and c2 may be intricate. However numerical computations may be easily led with the variational formulation (5)
whereas the strong formulation (6) is helpful for understanding the mathematical structure of the reduced problem.
In particular:

• coefficients c1 and c2 concentrate all the effects of the active cilia, by a summation process;
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• the average velocity ux
x,y is continuous with respect to z;

• it is worthwhile noticing that

c1(z, ·) = c2(z, ·) = 0 if z > h := max
i,j

h(ij).

Here h denotes the altitude above which no cilium emerges: in this passive area, the average velocity ux
x,y is

constant (because of the homogeneous Neumann boundary condition).

Well-posedness of the 3d problem

We can now prove the well-posedness of the 3d problem (3).

Theorem 2. The 3d problem (3) admits a unique solution.

Proof. Let ux
x,y be the unique solution of the 1d problem, and define Wr∗ := {v = (vx, vy, vz) ∈ Vr∗ , div(v) = 0}.

It is straightforward that problem (3) is equivalent to{
find u ∈ Wr such that

a(u,v) = ℓ̃[ux
x,y](v), ∀v ∈ Wr∗ ,

(7)

where

ℓ̃[ux
x,y](v) := ℓ(v)−

∑
i,j

∫ L

0

ux
x,y(ξ(ij)z (s)) m̂(ij)(s) · v(ξ(ij)(s)) |∇ξ(ij)(s)|ds,

Well-posedness of (7) follows from a representation theorem in reflexive Banach spaces (see Theorem 1 in [22]),
which we apply to the Sobolev spaces Wr and Wr∗ . The bilinear form a(, .) is continuous on Wr × Wr∗ , and
non-degenerate with respect to the second variable (this follows from the coercivity of a(·, ·) on H1

0 ×H1
0 ). Then,

a necessary and sufficient condition for (7) to admit a unique solution is that there exists a positive number α > 0
such that for each u ∈ Wr :

sup
∥v∥Wr∗ =1

a(u,v) ≥ α∥u∥Wr .

This property is proven in [45] for a general class of elliptic bilinear operators which are strongly uniformly elliptic
and include the case of the bilinear form a(·, ·).

4 Application to mucociliary transport in the lung

The 3d and 1d models presented in the previous sections to simulate many thin structures in a viscous fluid may
be investigated through the simulation of mucociliary transport.

4.1 Numerical methods

Unless otherwise stated, the parameters are the ones used in all the simulations. Data related to the fluid domain
Ω = (0, Lx)× (0, Ly)× (0, Lz) are the following ones:

Lx = 30µm, Ly = 4.8µm, Lz = 10µm.

The airway surface liquid is composed of two overlayed layers: the periciliary layer (located in the region {(x, y, z) ∈
Ω, 0 < z < H}) and the mucus (located in the region {(x, y, z) ∈ Ω, H < z < Lz}). Viscosity of the periciliary
layer is µ1 = 1 · 10+0 mPa · s and viscosity of the mucus is µ2 = 1 · 10+4 mPa · s. Moreover the interface between the
two layers is defined as {(x, y, z) ∈ Ω, z = H} with H = 4.8µm.

Table 2 summarizes the data related to the cilia, as given in [16]. Those default parameter values lead us to
consider a forest of 100×16 cilia in the computational domain Ω. The simulations should present the time evolution
of the flow field. In our model the movement of the cilia is prescribed, and it is periodic (the period T is 1/f).
We recall that we need to retrieve the distribution of forces exerted by the cilia on the fluid from their prescribed
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Fluid
Domain dimensions:
− in axial direction Lx 30.0 µm
− in azimuthal direction Ly 4.8 µm
− in radial direction Lz 10.0 µm
Fluid viscosity in PCL µ1 1 · 10+0 mPa · s
Fluid viscosity in mucus µ2 1 · 10+4 mPa · s
Airway surface liquid (ASL) H 4.8 µm

Cilia
Length of a cilium L 6.0 µm
Cross-sectional radius of a cilium a 0.1 µm
Beat frequency of a cilium f 15.0 Hz
In axial direction:
− Number of cilia in the computational domain nx 100
− Cilia spacing ℓ0x 0.3 µm
− Number of cilia per unit length dx 3.33 µm−1

In azimuthal direction:
− Number of cilia in the computational domain ny 16
− Cilia spacing ℓ0y 0.3 µm
− Number of cilia per unit length dy 3.33 µm−1

Density of cilia Dcil. 11.11 µm−2

Metachronal wavelength λ 30.0 µm

Table 2: Summary of data for fluid cilia in the lung, from [16].

movement, and for that purpose we use relation (1). Now in the case of a two-viscosity fluid this relation, based on
the slender-body theory described by Cox [10], is no longer valid. However Fulford and Blake [15] established the
expression of the distribution of forces along a slender body which straddles an interface. At the first order (in the
regime ln(L/r)−1 tends to zero) and far from the interface, the expression of the force is the same as for constant
viscosity. Close to the interface, more precisely at a distance smaller than the radius a of the body, relation (1) is
no more valid and should be corrected. In our case, we neglect this correction and we consider expression (1) for
the forces along the whole cilium with a variable viscosity.

Solving the 1d reduced model

The 1d reduced model is solved using the variational formulation (5). More precisely we solve a finite-element
approximation of (5). Define a regular triangulation of [0, Lz], denoted Thz , that involves Nz nodes (set hz = Lz

Nz
)

and
Vhz

:= {v ∈ C0([0, Lz]), v|T ∈ P1[T ], ∀T ∈ Thz
and v(0) = 0}.

In the numerical approximation of problem (5), we substitute functional space V by the subspace Vhz
.

Solving the 3d model

The 3d model is solved using the variational formulation (7) once the averaged solution (ux
x,y)h has been deter-

mined.and the resolution is based on a finite-element approximation of the problem. Define a regular triangulation
of Ω, denoted Th, that involves Nx ×Ny ×Nz nodes and the following approximation spaces:

• for the velocity field:

Vh := {v ∈ (C0(Ω))3, v|T ∈ (P1[T ]⊕ span(bT ))
3, ∀T ∈ Th and v|Γ↓ = 0, vz |Γ↑ = 0 and vz |Γ∗ = 0},

where the so-called bubble-function bT is defined by

bT (x) =

{
λT
1 (x) · λT

2 (x) · λT
3 (x), if x ∈ T ,

0, otherwise,
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and λT
1 , λ

T
2 , λ

T
3 are the barycentric coordinates of x in relation to the mesh element T .

• for the pressure field:
Wh := {q ∈ C0(Ω), q|T ∈ P1[T ], ∀T ∈ Th}.

In the discrete setting, we now consider the variational problem:
find uh ∈ Vh, ph ∈ Wh such that

a(uh,vh)− b(ph,vh) + εd(ph, qh) = ℓ̃[(ux
x,y)h](vh), ∀vh ∈ Vh,

b(qh,uh) = 0, ∀qh ∈ Wh.
(8)

Notice that a small perturbative term d(ph, qh) :=
∫
Ω
phqh with factor ε ≪ 1 has been introduced in order to fix

the constant associated to the pressure field which is determined up to a constant in the initial problem.

Remark 7. The main difficulty of the 3d problem relies on its nonlocal property, due to the background flow. It
means that the direct resolution of the problem is associated to a linear system involving matrix which is not sparse.
In our case, we took advantage of the 1d reduced model to overcome this difficulty, reducing the complexity to the
one of a classical Stokes problem (up to the resolution of a 1d problem that provides the mean velocity that is used
as a source term in the subsequent 3d problem). An alternative way to solve the 3d problem consists in using the
linearity of the problem to avoid the resolution of the linear system with a full matrix: for this, let us recall that
the finite element approximation of the background flow velocity ux

x,y is decomposed on a P1 finite element basis
{ϕk}k=1,...,Nz

with ϕk(zi) = δik, {zk}k=1,...,Nz
being the nodes of the 1d mesh. Then define the following problem

find u
[0]
h ∈ Vh, p

[0]
h ∈ Wh, γ

[0]
h ∈ Mh such that

a
(
u
[0]
h ,vh

)
− b

(
p
[0]
h ,vh

)
+ c

(
γ
[0]
h ,vh

)
+ εd

(
p
[0]
h , qh

)
= ℓ (vh) , ∀vh ∈ Vh,

b
(
qh,u

[0]
h

)
= 0, ∀qh ∈ Wh,

c
(
βh,u

[0]
h

)
= 0, ∀βh ∈ Mh,

(9)

and also the following Nz auxiliary problems:

find u
[k]
h ∈ Vh, p

[k]
h ∈ Wh, γ

[k]
h ∈ Mh such that

a
(
u
[k]
h ,vh

)
− b

(
p
[k]
h ,vh

)
+ c

(
γ
[k]
h ,vh

)
+ εd

(
p
[k]
h , qh

)
= ℓ[k] (vh) , ∀vh ∈ Vh,

b
(
qh,u

[k]
h

)
= 0, ∀qh ∈ Wh,

c
(
βh,u

[k]
h

)
= 0, ∀βh ∈ Mh,

(10)

with

ℓ[k](vh) = −
∑
i,j

∫ L

0

ϕk(ξ
(ij)
z (s)) m̂(ij)(s) · v(ξ(ij)(s)) |∇ξ(ij)(s)|ds.

By linearity, the solution (uh, ph, γh) is a linear combination of the auxiliary solutions {(u[k]
h , p

[k]
h , γ

[k]
h )}k=0,...,Nz ,

namely

uh = u
[0]
h +

Nz∑
k=1

λku
[k]
h ,

ph = p
[0]
h +

Nz∑
k=1

λkp
[k]
h ,

γh = γ
[0]
h +

Nz∑
k=1

λkγ
[k]
h .

(11)

It remains to determine {λk}k. Using Eq. (11) in problem (8) shows that the linear combination solves the initial
problem if

ℓ+

Nz∑
k=1

λkℓ
[k] = ℓ̃[(uh)x

x,y
]
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that is to say
Nz∑
k=1

λkϕk = (uh)x
x,y

= (u
[0]
h )x

x,y

+

Nz∑
k=1

λk(u
[k]
h )x

x,y

.

In order to determine {λk}k, we proceed to the evaluation of the above expression in each 1d node zi. Denoting

U
[0]
i := (u

[0]
h )x

x,y

(zi) and U
[k]
i := (u

[k]
h )x

x,y

(zi) we get

λi = U
[0]
i +

Nz∑
k=1

λkU
[k]
i , i = 1, ..., Nz.

The resolution of the linear systemINz×Nz −


U

[1]
1 U

[2]
1 · · · U

[Nz ]
1

U
[1]
2 U

[2]
2 · · · U

[Nz ]
2

...
...

. . .
...

U
[1]
Nz

U
[2]
Nz

· · · U
[Nz ]
Nz


 ·


λ1

λ2

...
λNz

 =


U

[0]
1

U
[0]
2
...

U
[0]
Nz


determines the solution of the 3d nonlocal problem. However one should notice that this requires, at a preliminary
step, the resolution of Nz + 1 Stokes problems in 3d, which is much more costly than the approach based upon the
resolution of the 1d reduced problem attached to the 3d problem.

4.2 Numerical results

4.2.1 3d velocity distribution in the reference situation

We have computed the flow produced by a whole forest of cilia, with data given by Table 2: we consider a three
dimensional box, with an axial length equivalent to the length of one metachronal wave, Lx = 30µm, a radial depth
of Lz = 10µm (which is the average depth of the mucus layer in the human trachea), and an azimuthal width of
Ly = 4.8µm. A 100 × 16 array of cilia is attached to the bottom of this box and biperiodic boundary conditions
on the solution of the Stokes equations are imposed in the axial and azimuthal directions, in order to represent
the configuration of an “infinite” array of cilia. The box is filled with a Newtonian fluid with piecewise constant
viscosity µ: µ = µ1 in the PCL layer and µ = µ2 in the mucus layer. The interface between the two layers is located
at z = H which is set to 4.8µm, so that cilia penetrate the mucus layer during the effective stroke, but not during
the recovery stroke.

Figure 4 illustrates the results obtained in the reference configuration. The density of cilia is high enough for
the flow to be independent on time, up to a translation at the velocity of the metachronal wave. As a consequence,
drawing one time step only is sufficient. We observe important recirculations in the PCL, with high magnitude
variations, while in the mucus layer the flow is rather homogeneous. Actually, mucus is transported at an almost
constant velocity, like a block “sliding” over the PCL.

Figures 5 and 6 present the velocity profile for the very same situation as in Figure 4 except that the forest is
sparse (50× 8 and 25× 4 cilia respectively instead of 100× 16). We still observe the “block property” of the mucus:
this is due to the high viscosity of the mucus, the surface tension at the interface with PCL and the fact that cilia
hardly penetrate the mucus. We also observe that in the PCL recirculations are limited when sparsity is enough.

Figure 7 presents the velocity profile for the very same situation as in Figure 4 up to two (major) differences:
on the one hand, the viscosity ratio is µ2/µ1 = 10+0 (instead of 10+4) as µ2 has been set to µ2 = 10+0 mPa · s;
on the other hand, the surface tension constraint has been relaxed (so that the normal velocity at the PCL-mucus
interface is not 0). Therefore the situation corresponds to an isoviscous fluid moved by a dense forest of cilia. It
can be observed that the “block property” of the mucus is not preserved, as velocity variations are significant in
the mucus because of the standard viscosity in the whole domain (not only in the PCL) and recirculations are not
limited by the surface tension at the interface.
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a) b)

c) d)

Figure 4: Velocity distribution associated to a dense forest of cilia. All data from Table 2.

a) b)

c) d)

Figure 5: Velocity distribution associated to a sparse forest of cilia. Data from Table 2 except for the cilia spacing:
ℓ0x = ℓ0y = 0.6µm (instead of 0.3µm) and, as a consequence, the number of cilia has become nx = 50 (instead of
100) and ny = 8 (instead of 16).
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a) b)

c) d)

Figure 6: Velocity distribution associated to a sparse forest of cilia. Data from Table 2 except for the cilia spacing:
ℓ0x = ℓ0y = 0.6µm (instead of 0.3µm) and, as a consequence, the number of cilia has become nx = 25 (instead of
100) and ny = 4 (instead of 16).

a) b)

c) d)

Figure 7: Velocity distribution associated to a dense forest of cilia in the monofluid case and relaxing the surface
tension constraint. Data from Table 2 except for the viscosity ratio: µ2 = 1 · 10+0 mPa · s
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The conclusion is that both high viscosity in the mucus and surface tension allow for a homogeneous flow in the
mucus, whereas ciliary density allows for a more efficient mucociliary transport. The impact of these parameters
will be investigated in the following subsections.

4.2.2 Influence of the viscosity ratio

Figure 8 presents the influence of the viscosity ratio over the mean axial velocity z 7→ u(z) := ux
x,y(z), resulting

from the averaged model (which is also identified as the background flow). This profile is important as it allows
for the quantification of the mucociliary efficiency. Data are taken from Table 2, except for the viscosity of the
fluid: µ1 is set to 1 · 10+0 mPa · s, whereas µ2 may vary from 1 · 10+0 to 1 · 10+4 mPa · s. We observe that the high
viscosity ratio regime is already nearly achieved for µ2/µ1 = 50, showing some robustness of the mucus transport
with respect to µ2, when sufficiently high.

Figure 8: Mean axial velocity z 7→ u(z) := ux
x,y(z) in the radial direction, for different viscosity ratios. Data from

Table 2, except for mucus viscosity µ2 (that takes the following values: 1 · 10+0, 5 · 10+1 and 1 · 10+4).

4.2.3 Influence of the surface tension

Figures 9 and 10 present the numerical results obtained with/without surface tension (all data are taken from
Table 2). Let us recall that, in Eq. (2), the surface tension γ is the Lagrange multiplier associated to the constraint
u · n = 0 on Γ∗ and it ensures the stability of the interface between the PCL and the mucus. The influence of
the surface tension is investigated in terms of velocity distribution. As already outlined, it has no influence on the
averaged 1d model: the mean axial velocity does not depend on the surface tension. However surface tension has
great influence on the 3d velocity distribution, especially when the viscosity ratio is around 1 (monofluid case); the
influence of the surface tension tends to be damped for both axial and radial velocities when the viscosity ratio
increases.

4.2.4 Influence of the position of the ASL

Figure 11 investigates the influence of the position of the PCL-mucus interface on the mucociliary transport, for
different viscosity ratios. Actually H = 4.8µm is a near-maximizer of the mean mucus velocity. Note that for
H > 6µm, the cilia are completely immersed in the PCL only and do not reach the mucus: as a consequence, the
mean axial velocity does not depend on the position of the interface in this regime. But for H < 6µm, cilia are
partially immersed in the mucus, providing energy to the highly viscous fluid in a more direct way. Note that this
behaviour quantitatively depends on the viscosity contrast.

Figure 12 investigates the influence of the position of the PCL-mucus interface on the mucociliary transport.
Figure 12 a) only depends on the parametrization of the cilia movement (see Table 1). The mucus velocity profile
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Figure 9: Axial velocity profiles in the radial direction, for different axial positions x = x(j) = j∆ (with ∆ = 5µm).
The velocity is averaged in the azimuthal direction y (note that the velocity little varies in this direction) so that
we show the following profiles: z 7→ ux

y(x(j), z)(∗) refers to the standard model with surface tension (hence uz = 0
is imposed at the PCL-mucus interface) whereas (∗∗) refers to the model in which no surface tension is taken into
account (hence uz is not constrained at the PCL-mucus interface).
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Figure 10: Radial velocity profiles in the radial direction, for different axial positions x = x(j) = j∆ (with ∆ = 5µm).
The velocity is averaged in the azimuthal direction y so that we show the following profiles: z 7→ uz

y(x(j), z)(∗)
refers to the standard model with surface tension (hence uz = 0 is imposed at the PCL-mucus interface) whereas
(∗∗) refers to the model in which no surface tension is taken into account (hence uz is not constrained at the
PCL-mucus interface).
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a) b)

c) d)

Figure 11: Influence of the position of the ASL (H) on the mean axial velocity z 7→ ux
x,y(z) in the radial direction

(through PCL and mucus). a) µ2 = 2 · 10+0 mPa · s, b) µ2 = 5 · 10+0 mPa · s, c) µ2 = 1 · 10+1 mPa · s, d) µ2 =
1 · 10+4 mPa · s.
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exhibits three zones. Range (III) corresponds to H > 5.9038µm for which the cilia are completely immersed in the
PCL in both effective and recovery strokes: the velocity is constant with respect to H. Range (III) is characterized
by the fact that the cilia partially penetrate the mucus in the effective stroke but do not in the recovery stroke:
this corresponds to some optimal situation in terms of mucociliary efficiency. In Section (I), cilia penetrate the
mucus in the effective stroke but also in the recovery stroke, which explains the decrease of the mucus velocity
when compared to the one obtained in Range (II). Note that the mean velocity profile exhibits some discontinuity
at the transition between (II) and (III), for high viscosity ratios (actually this trend emerges when the viscosity
ratio increases (between 10 and 100) and is stabilized for high viscosity ratios). This is due to some model artefact:
in Range (III) the cilia are all immersed in the PCL only; but when we get into Range (II), the head of some cilia
penetrate the highly viscous mucus: this leads to local forces that become extremely high (recall that in the slender
body theory the force is proportional to the viscosity) with no transition. Thus in this model governed by the
slender body theory the energy transferred to the fluid by the cilia is not continuous with respect to H, even if the
background flow term stabilizes the solution profiles with respect to high viscosity ratios.

a) b)

Figure 12: Influence of the position of the ASL (H). a) The percentage (%) of time spent by cilia in the mucus
and PCL is shown for both phases: effective stroke (eff.) and recovery stroke (rec.). b) Influence of the position

of the ASL on mucus velocity um = (Lz − H)−1
∫ Lz

H
ux

x,y(z) dz for different viscosity ratios (data from Table 2,
except for the position of the PCL-mucus interface which varies from 2 to 8µm and the viscosity µ2 that takes the
following values: i. µ2 = 1 · 10+0 mPa · s, ii. µ2 = 2 · 10+0 mPa · s, iii. µ2 = 5 · 10+0 mPa · s, iv. µ2 = 1 · 10+4 mPa · s).

4.2.5 Influence of the ciliary density

Figures 13 and 14 investigate the influence of the ciliary density over the mucociliary transport for H = 4.8µm and
H = 6.2µm. Note that

• For H < 6µm, the cilia penetrate the mucus during the effective stroke;

• For H > 6µm, the cilia are completely immersed in the PCL only and do not penetrate the mucus.

Other data are taken from Table 2, except for the cilia densities ℓ0x and ℓ0y (or the number of cilia in each direction,
nx and ny, as nxℓ

0
x = Lx and nyℓ

0
y = Ly). The reference density of cilia is 11.11 µm−2, which corresponds to a

forest of nx × ny cilia with nx = 100 and ny = 16, placed on surface whose area is Lx ×Ly with Lx = 30.0µm and
Ly = 4.8µm.

Figure 13 investigates the influence of the ciliary density over the mucociliary transport with H = 4.8µm. In
Figure 13 a), we let dx vary (whereas the density of cilia in the azimuthal direction is fixed to its reference value).
In Figure 13 b), we let dy vary (whereas the density of cilia in the axial direction is fixed to its reference value).
In Figure 13 c), we investigate the crossed influence of the axial/azimuthal densities. We observe that the mucus
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velocity becomes stable when nx or ny increase: these results are due to the background flow term in the 3d model
or, equivalently, the counter-part contribution due to the collective transport in the 1d model. Indeed the source
term (without background flow) is proportional to nx and ny but so does the damping term coefficient due to
the background flow. The latter argument prevents the model from being linear with respect to nx and ny and
it provides some remarkable robustness of the mucus transport with respect to the cilia density, when reaching a
sufficiently high value.

Figure 14 investigates the influence of the ciliary density over the mucociliary transport with H = 6.2µm
(instead of H = 4.8µm). In this case, the cilia do not penetrate the mucus. The mean axial velocity profile does
not depend on the position of the interface: this results from the fact that, as long as the cilia do not penetrate the
mucus, the mucus area is passive (i.e. source term is null) which, combined with homogeneous Neumann condition,
leads to a constant velocity profile in the mucus. Noteworthily the robustness of the ciliary transport with respect
to the cilia density is achieved when it reaches a sufficiently high value.

Figures 15 and 16 exhibit the axial velocity profiles with low density forH = 4.8µm andH = 6.2µm respectively.
When the cilia penetrate the mucus during the effective stroke (see Figure 15, corresponding to H = 4.8µm), we
notice that low ciliary density does not modify the magnitude of the mean axial velocity, but it damps the dispersion
of velocity profiles around the mean profile: the loss of activity makes the velocity distribution more homogeneous,
in particular in the PCL. When the cilia do not penetrate the mucus (see Figure 16, corresponding to H = 6.2µm),
not only dispersion of velocity profiles around the mean profile tends to be damped, but also the magnitude of the
mean velocity decreases.

5 Conclusion

In this article we modelled the mucociliary transport through a 3d model connecting all the main features of the
process: 1) (dense) forests of cilia immersed in a fluid, with an individual description of the cilia; 2) the fluid is
a two-layer fluid (PCL+mucus with a sharp viscosity ratio) separated by an interface which is made stable due
to surface tension. The main limitation lies in the fact that the ciliary movement is prescribed and the forces
exerted by the cilia on the fluid are evaluated using an approximated formula provided by the slender body theory.
Beyond these limitations, the model is based upon fundamental equations of dynamics and results in a nonlocal
Stokes system with singular source terms; from the mathematical point of view, the model is well-posed (in suitable
functional spaces) and, from the numerical point of view, the computation of the 3d velocity profiles is performed
using numerical methods characterized by rigorous error analysis (even in the singular case). Numerical results
allow us to describe the 3d velocity distribution in a non-pathological situation and to highlight, by comparison,
the influence of critical parameters (beating frequency of the cilia, mucus viscosity, surface tension, ciliary density
in the forest, position of the PCL/mucus interface etc.) on the velocity distribution and, finally, on the efficiency
of the mucociliary transport. Note that several extensions can be made:

• Influence of the airflow on the mucociliary efficiency. In a bronchus, the bronchial wall is lined with a bifluid
made of two layers (the PCL and mucus) and the center of the bronchus is filled with air. Thus mucus has
an interface not only with PCL (at {z = H}) but also with air (at {z = Lz}). In this article, the influence
of air has been neglected (hence we impose a free-slip boundary condition at {z = Lz}) but the influence
of air cycles combined with the ciliary activity can be done as follows: because the airflow goes through
the bronchus, the shear effect at the air-mucus interface imposed by the respiratory cycle can alternatively
increase (at expiration) or decrease (at expiration) the mucus velocity; this phenomenon can be taken into
account by introducing a pressure drop in the fluid flow and replacing the free-slip boundary conditions at
{z = Lz} by boundary conditions that model the shear effect of the air flow in the bronchus, which can be
represented by a Poiseuille flow.

• Viscoelasticity of the mucus. Viscoelastic properties of the mucus may have an impact on the mucociliary
transport, in particular in pathological situations [9, 43]. We could extend our 3d model to take into account
viscoelasticity: for instance, using an Oldroyd-type model, under the assumption that cilia do not penetrate
the mucus, the constitutive equations relating the elastic tensor to the velocity field can be computed using a
splitting scheme combined with a characteristics method as in [11]. If cilia penetrate the mucus, the lack of
regularity of the velocity field, due to the singular source term in the active part of the mucus, would certainly
lead to mathematical and numerical difficulties: indeed, to the best of our knowledge, the regularity of the
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a)

b)

c)

Figure 13: Influence of the density of cilia on the mean axial velocity z 7→ u(z) := ux
x,y(z), for H = 4.8µm. All

data from Table 2 except for the density of cilia. Index (I, J) relates to the following density: dx = 2Id0x (axial
direction), dy = 2Jd0y (azimuthal direction), with reference values: d0x = d0y := 3.33µm−1.
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a)

b)

c)

Figure 14: Influence of the density of cilia on the mean axial velocity z 7→ u(z) := ux
x,y(z), for H = 6.2µm. All data

from Table 2 except for the density of cilia and the position of the interface. Index (I, J) relates to the following
density: dx = 2Id0x (axial direction), dy = 2Jd0y (azimuthal direction), with reference values: d0x = d0y := 3.33µm−1.
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a) b) c)

Figure 15: Influence of the density of cilia on the axial velocity, for H = 4.8µm. All data from Table 2 except for
the density of cilia. The axial velocity is averaged in the azimuthal direction y (note that the velocity little varies
in this direction) so that we show the following profiles: z 7→ ux

y(x(j), z) for different axial positions x = x(j) = j∆
(with ∆ = 5µm). Index (I, J) relates to the following density: dx = 2Id0x (axial direction), dy = 2Jd0y (azimuthal
direction), with reference values: d0x = d0y := 3.33µm−1.

a) b) c)

Figure 16: Influence of the density of cilia on the axial velocity, for H = 6.2µm. All data from Table 2 except for
the density of cilia. The axial velocity is averaged in the azimuthal direction y (note that the velocity little varies
in this direction) so that we show the following profiles: z 7→ ux

y(x(j), z) for different axial positions x = x(j) = j∆
(with ∆ = 5µm). Index (I, J) relates to the following density: dx = 2Id0x (axial direction), dy = 2Jd0y (azimuthal
direction), with reference values: d0x = d0y := 3.33µm−1.

28



solution for the Stokes-Oldroyd problem with singular source term is an open question and, thus, it requires
a suitable functional framework in order to derive a rigorous mathematical formulation and error analysis for
the finite element method in this case.
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6 Appendix

Let us describe the derivation of the reduced model.

Averaging process

We denote by ·x (resp. ·y ; ·x,y) the (classical) averaging process with respect to x (resp. y ; x and y). For instance,
for a regular function (x, y, z) 7→ f(x, y, z) we denote f

x,y
: (0, Lz) 7→ R the function defined by

f
x,y

(z) =
1

LxLy

∫ Lx

0

∫ Ly

0

f(x, y, z) dxdy.

Averaging the continuity equation ∂xux + ∂yuy + ∂zuz = 0 combined with the periodicity of the velocity field u
yields

∂zuz
x,y = 0

which, combined with the homogeneous Dirichlet condition at Γ↓, gives:

uz
x,y = 0.

Let us average the momentum equation. Note that the source terms involved by the ciliary beat are not regular
but we first derive the average model by skipping this difficulty which will be treated thereafter. Therefore assume
that Fx, Fy and Fz are regular source terms (e.g. in L2(Ω)), we have

−∂x(µ∂xux)− ∂y(µ∂yux)− ∂z(µ∂zux) + ∂xp = Fx on Ω,

−∂x(µ∂xuy)− ∂y(µ∂yuy)− ∂z(µ∂zuy) + ∂yp = Fy on Ω,

−∂x(µ∂xuz)− ∂y(µ∂yuz)− ∂z(µ∂zuz) + ∂zp + γδΓ∗ = Fz on Ω.

Averaging in x and y, using the fact that µ only depends on z and using the periodicity of u and p we obtain
−∂z(µ∂zux

x,y) = Fx
x,y

on (0, Lz),

−∂z(µ∂zuy
x,y) = Fy

x,y
on (0, Lz),

−∂z(µ∂zuz
x,y) + ∂zp

x,y + γx,yδz=H = Fz
x,y

on (0, Lz).
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Next as the cilia movement only occurs in the (x− z) plane (see the parametrization of the ciliary beat patterns),
then Fy = 0 and the second equation of the system writes:

−∂z(µ∂zuy
x,y) = 0 on (0, Lz),

which, by the homogeneous boundary condition on Γ↓, gives:

uy
x,y = 0.

Besides, as previously shown, uz
x,y = 0 so that the third equation of the system writes

∂zp
x,y + γx,yδΓ∗ = Fz

x,y
on (0, Lz).

The reduced system (with regular source term) writes

−∂z(µ∂zux
x,y) = Fx

x,y
on (0, Lz),

uy
x,y = 0 on (0, Lz),

uz
x,y = 0 on (0, Lz),

∂zp
x,y + γx,yδz=H = Fz

x,y
on (0, Lz).

(12)

Notice that the last equation relates the average pressure px,y and the surface tension γx,y to the force exerted by
the cilia onto the fluid. Hower this equation is not required when one aims at determining the average velocity field,
in particular z 7→ ux

x,y(z) which describes the average velocity profile of the PCL+mucus system. Additionally let
us deal with the boundary conditions. In a straightforward way, the Dirichlet condition readily adapts into:

ux
x,y(0) = uy

x,y(0) = uz
x,y(0) = 0.

The kinematic and dynamic conditions on Γ↑ read uz = 0 and ∂zux = 0 on Γ↑ which, after averaging in x and y,
yields: {

uz
x,y(Lz) = 0,

∂zux
x,y(Lz) = 0.

As a consequence, the reduced model (with regular source term) reads:

• First component of the velocity:
−∂z(µ(z)∂zux

x,y(z)) = Fx
x,y

(z), ∀z ∈ (0, Lz),
ux

x,y(0) = 0,
∂zux

x,y(Lz) = 0.
(13)

• Second component of the velocity:
uy

x,y(z) = 0, ∀z ∈ (0, Lz).

• Third component of the velocity:
uz

x,y(z) = 0, ∀z ∈ (0, Lz).

• Pressure field:
∂zp

x,y(z) + γx,y(z)δz=H = Fz
x,y

(z) ∀z ∈ (0, Lz).

Remark 8. Partial derivatives with respect to z have been maintained because the functions may depend on time,
even if it plays the role of a parameter. In particular, if the source terms Fx, Fy and Fz do depend on time, so do
the solution u and its subsequent average first component ux

x,y.
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Reduction of the source term

Let us now provide some details about the derivation of the source terms Fx
x,y

and Fz
x,y

in the context of the
ciliary study. More precisely we need to define in a rigorous way the averaging process of the source term defined
in Problem (2), namely:

F :=

 Fx

Fy

Fz

 =
∑
i,j

fij(·, t)δΓij(t).

In order to define the averaging process for the singular source term, let us deal with one single Dirac term (the
extension to an arbitrary number of singular source terms follows from linearity).

For any (i, j), i ∈ [[1, nx]] and j ∈ [[1, ny]], consider the (i, j)−th cilium associated with the source term fijδΓij

(we omit in this subsection the subscript (i, j), for the sake of simplicity). In the variational formulation of the
source term, using a test function v ∈ (D(Ω))3, the source term would be

〈
f(·, t)δΓ(t),v

〉
(D′(Ω))3,(D(Ω))3

=

∫
Γ(t)

f(·, t) · v dxdy dz.

Aiming at studying the first component of the system, namely choosing v = (v, 0, 0), we focus on

〈
fx(·, t)δΓ(t), v

〉
D′(Ω),D(Ω)

=

∫
Γ(t)

fx(·, t) v dxdy dz.

Next choosing v := v(z), we define〈
fx(·, t)δΓ(t)

x,y
, v
〉
D′(0,Lz),D(0,Lz)

=
1

LxLy

〈
fx(·, t)δΓ(t), ṽ

〉
D′(Ω),D(Ω)

by considering the natural extension from (0, Lz) to Ω (we recall that Ω is periodic in x and y):

·̃ : D(0, Lz) 7→ D(Ω)
[z 7→ v(z)] → [z 7→ ṽ(x, y, z) = v(z)].

This process actually defines the averaging process with respect to x and y in the treatment of the source term. As
a consequence, using the parametrization s 7→ ξ(s, t) of the cilium〈

fx(·, t)δΓ(t)
x,y

, v
〉
D′(0,Lz),D(0,Lz)

=
1

LxLy

∫
Γ(t)

fx((x, y, z); t) v(z) dxdy dz

=
1

LxLy

∫ L

0

fx(ξ(s, t); t) v(ξz(s, t)) |∇ξ(s, t)|ds

=
1

LxLy

∫ L

0

f̂x(s, t) v(ξz(s, t)) |∇ξ(s, t)|ds.

33


