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Introduction

The present work deals with the mathematical modeling and the numerical simulation of active thin structures in a viscous fluid and its application to mucociliary clearance. The human lung is protected against dehydration and inhaled particles, like dust or allergens, by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of mucus, a visco-elastic fluid secreted by the respiratory epithelium [START_REF] Lai | Micro-and macrorheology of mucus[END_REF], and a thin fluid layer known as the periciliary liquid [START_REF] Knowles | Mucus clearance as a primary innate defense mechanism for mammalian airways[END_REF], commonly called PCL. Preserving the lung from inhaled impurities is necessary, since they could obstruct the bronchi and limit the exchange area for oxygen and carbon dioxide. Mucus traps aspirated particles and is then itself evacuated from the lung by the action of numerous cilia lining the lung bronchi. Other factors that help drain mucus in the bronchial tree are cough and forced breathing [START_REF] Basser | The mechanism of mucus clearance in cough[END_REF]. Under pathological conditions, mucus characteristics and mucociliary clearance efficiency can be altered. For example, due to a modification of the viscosity of the mucus or a degradation of cilia, ciliary motion can become ineffective, inducing mucus stasis that often leads to infections.

Active research has been devoted to the study of the motion of bronchial cilia since the pioneering work by Lucas [START_REF] Lucas | Principles underlying ciliary activity in the respiratory tract: II. A comparison of nasal clearance in man, monkey and other mammals[END_REF]. Cilia are very slender structures whose length is about 6 µm and radius is 0.1 µm, and they are fixed on the epithelial cells in the bronchi. They beat in the periciliary layer, where viscosity is much lower than in the mucus, at an average frequency of 15 Hz depending on the characteristics of the environment. A detailed description of the mechanism of motility has been given by Gibbons in [START_REF] Gibbons | Cilia and flagella of eukaryotes[END_REF] and more recently in [START_REF] Mitchell | The Evolution of Eukaryotic Cilia and Flagella as Motile and Sensory Organelles, chapter 11[END_REF][START_REF] Mizuno | Structural studies of ciliary components[END_REF][START_REF] Prevon | Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery[END_REF]. Each beat of a cilium can be divided into two phases, a recovery stroke and an effective stroke, during which the motion is not symmetric under time reversal. In fact, since mucus and PCL are viscous fluids at the scale of a cilium, a reversible movement of the cilium would not permit the mucus to be transported [START_REF] Purcell | Life at low Reynolds number[END_REF]. According to Sanderson and Dirksen [START_REF] Sanderson | A versatile and quantitative computer-assisted photoelectronic technique used for the analysis of ciliary beat cycles[END_REF], the effective stroke is two or three times faster than the recovery stroke, and cilia may penetrate the overlying mucus during the faster phase. Cilia that propel mucus coordinate into a metachronal wave, which wavelength is of the order of a hundred of cilia, that is around 30 µm, and that propagates in the opposite direction of mucus transport. It is believed that coordination of the beating into a metachronal wave arises during the recovery stroke and is due to hydrodynamic interactions between the cilia [START_REF] Brumley | Flagellar synchronization through direct hydrodynamic interactions[END_REF]. Changes in the viscosity of the medium, in the length or in the spacing of the cilia may therefore have a deep influence on the characteristics of the metachronal wave.

The complexity of the process is high (high amount of cilia, three layers if we consider air that is driven in the bronchus, several interfaces, several scales, etc) and only a few data are available. Although a wide variety of works can be found in the literature about mucociliary clearance, the numerical simulation remains at present time a challenge. Some authors have developed models in which the action of cilia is represented via a prescribed velocity at the bottom of the mucus layer, like for instance in [START_REF] Enault | Mucus dynamics subject to air and wall motion[END_REF], where a numerical investigation of the interaction between respiratory mucus motion and air circulation is presented. Using the same approach, Mitran proposes in [START_REF] Mitran | Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment[END_REF] a multiscale model to study the effect of airflow shear forces, as exerted by tidal breathing and cough, upon clearance, and Mauroy and coauthors investigate in [START_REF] Mauroy | Toward the modeling of mucus draining from the human lung: role of the geometry of the airway tree[END_REF] the role of the geometry of the airway tree on clearance. These works present interesting multiscale approaches of the process but they do not allow to investigate details of the role of ciliary motion.

Other authors use a continuum representation of the airway surface liquid as a traction layer, with a continuous distribution of forces. In [START_REF] Smith | A viscoelastic traction layer model of muco-ciliary transport[END_REF], for instance, Smith and coauthors replace the forest of cilia by an active porous medium in which the cilia are modeled by a volumic resistive force directly dependent on the local velocity of the cilia. They consider a three-layer fluid in dimension 2: a Maxwell fluid for the mucus, a Newtonian fluid for the periciliary layer and a layer of transition. Kurbatova and coauthors use the same model in [START_REF] Kurbatova | Model of mucociliary clearance in cystic fibrosis lungs[END_REF] in order to estimate mucociliary velocity in different generations of the lung, adding influx terms from previous generations and production of mucus. In [START_REF] Choudhury | On the role of viscoelasticity in mucociliary clearance: a hydrodynamic continuum approach[END_REF] Choudhury and coauthors replace the forest of cilia by a Navier-slip boundary condition derived in [START_REF] Bottier | A new index for characterizing micro-bead motion in a flow induced by ciliary beating: Part II, modeling[END_REF] which allows for a continuum description of the mucus film (considered as viscolelastic, not purely viscous).

A very different approach consists in representing the cilia individually, either by prescribing their beating or by modeling in some way their internal activity. Several authors have worked on models for the internal activity of cilia, in order for instance to investigate the emergence of ciliary metachronism [START_REF] Gueron | Ciliary motion modeling, and dynamic multicilia interactions[END_REF][START_REF] Gueron | Simulations of three-dimensional ciliary beats and cilia interactions[END_REF][START_REF] Gueron | A three-dimensional model for ciliary motion based on the internal 9 + 2 structure[END_REF][START_REF] Dillon | Fluid dynamic models of flagellar and ciliary beating[END_REF][START_REF] Decoene | A continuum active structure model for the interaction of cilia with a viscous fluid[END_REF]. In [START_REF] Dillon | Fluid dynamic models of flagellar and ciliary beating[END_REF] for instance, Dillon and coauthors used a discrete representation of the internal structures of cilia and a curvature control mechanism for their activity, and solved the interaction of these structures with the fluid (PCL and mucus) in 2D using the immersed boundary method. Sedaghat and coauthors use hybrid finite difference-lattice Boltzmann-method combined with immersed boundary method, in 2d, to investigate the additional effect of viscoelasticity in 2d [START_REF] Sedaghat | Effect of cilia beat frequency on muco-ciliary clearance[END_REF] and in 3d [START_REF] Sedaghat | Three-dimensional simulation of mucociliary clearance under the ciliary abnormalities[END_REF]. Mitran [START_REF] Mitran | Metachronal wave formation in a model of pulmonary cilia[END_REF] proposed the most complete model for the internal mechanism of bronchial cilia, with a detailed description of the internal microtubule structures in 3d using thin-wall beams and spring elements to model nexin links. Activity was modelled through a forces scenario exerted between adjacent microtubules. The fluid-structure interaction was solved using finite elements for the structure and finite volumes for fluid. He simulated the configuration of up to 256 cilia in a row, bringing evidence for a hydrodynamic origin to observed ciliary synchronization. However, the computational effort is such that no parametric study could be made. Recent works have proposed models based on a sliding regulation mechanism for dynein activity proposed in [START_REF] Oriola | Nonlinear amplitude dynamics in flagellar beating[END_REF]. Cilia movement is modeled with 1D elastic equations and the fluid-structure problem is solved using the slender body theory. These works have allowed to reproduce typical spontaneous oscillations observed in cilia [START_REF] Man | Cilia oscillations[END_REF] as well as synchronization resulting from hydrodynamical interactions [START_REF] Chakrabarti | Hydrodynamic synchronization of spontaneously beating filaments[END_REF][START_REF] Chakrabarti | A multiscale biophysical model gives quantized metachronal waves in a lattice of beating cilia[END_REF].

Nevertheless, how the internal ciliary engine affects the ciliary beat form is still not completely understood, and its modelling induces heavy additional computational effort. That is why many works focus on the flow fields produced by cilia with given beat pattern and frequency. Due to their slenderness, the action of individual cilia can be represented by a centerline distribution of forces, following the slender body theory (see for instance [START_REF] Cox | The motion of long slender bodies in a viscous fluid. Part 1. General theory[END_REF], or for a rigorous asymptotic analysis [START_REF] Mori | Theoretical justification and error analysis for slender body theory[END_REF]). This idea was initially developed in studies such as Liron and Mochon [START_REF] Liron | The discrete-cilia approach to propulsion of ciliated micro-organisms[END_REF] and Fulford and Blake [START_REF] Fulford | Force distribution along a slender body straddling an interface[END_REF], and then further developed in other works [START_REF] Gueron | Ciliary motion modeling, and dynamic multicilia interactions[END_REF]. The distribution of point forces is derived from the prescribed beat pattern either using an asymptotic formula, as in [START_REF] Fulford | Force distribution along a slender body straddling an interface[END_REF], or by prescribing the velocity at the surface of each cilium as in [START_REF] Liron | The discrete-cilia approach to propulsion of ciliated micro-organisms[END_REF] and [START_REF] Smith | Discrete cilia modelling with singularity distributions: application to the embryonic node and the airway surface liquid[END_REF], leading to the resolution of an integral equation. The different works based on this idea can be distinguished by the way the force distribution is computed, but also by the use of particular singular solutions adapted to the conditions at the boundaries of the domain. They have obtained estimates of the mean field velocity in both the periciliary layer and the mucous layer (both liquids being assumed to have Newtonian fluid properties), but the profiles are time-and space-averaged. Besides, no penetration of the cilia into the mucus layer is taken into account. They show that the mean field velocity is very small in the lower part of the periciliary layer and increases very quickly close to the mucus layer. In [START_REF] Lee | Muco-ciliary transport: effect of mucus viscosity, cilia beat frequency and cilia density[END_REF] the authors used a similar model in 2d allowing to investigate non-averaged velocity profiles both in the PCL and in the mucus; a parametric study was made, showing the impact of changing the viscosity ratio or the length of cilia. In particular, they show that the velocity of mucus decreases when its viscosity increases, what they explain via the fact that viscous forces between the mucus and the PCL increase. In [START_REF] Chateau | Transport efficiency of metachronal waves in 3d cilium arrays immersed in a two-phase flow[END_REF] cilia are also modeled by thin structures whose deformations are prescribed. However the computations are 3-dimensional and the numerical method is different : the equality of the fluid and solid velocities on the fluid-structure interface is imposed with the immersed boundary method. In addition, the action of the fluid on the structure is partially taken into account, modeled by a damping term that changes the intensity of the velocity of the structures. The authors investigate synchronization of cilia through hydrodynamic interactions, but the velocity profiles inside the layers are not analyzed. Some works consider a 3-dimensional representation of each cilium with prescribed movement. Chatelin and coauthors [START_REF] Chatelin | Méthodes numériques pour l'écoulement de Stokes 3d : fluides à viscosité variable en géométrie complexe mobile ; application aux fluides biologiques[END_REF], for instance, proposed a 3-dimensional model where the viscosity is the solution of a convectiondiffusion equation of mucin proteins. The movement of the cilia is prescribed and the effects of the cilia on the fluid are treated by an efficient fictitious domain method. However the amount of cilia in simulations remains limited, due to the high computational cost induced by the representation of the structure's thickness. In [START_REF] Matar | Dynamics of thin free films with reaction-driven density and viscosity variations[END_REF], the authors modeled in two-dimension the viscosity as the solution of a reaction-advection-diffusion equation depending on the temperature, but the model for the flow is very simplified. To the best of our knowledge, in the other works which consider a variable viscosity, the viscosity is defined constant by part.

This work focuses on a model that allows to efficiently simulate a large amount of active thin structures and perform a parametric study to investigate the impact of different parameters on mucus velocity. The complexity of the phenomenon leads us to consider several restrictive assumptions. On the one hand, we have chosen to work in the case of a prescribed movement of the structures, in the asymptotic limit of infinite slenderness: we thus represent the slender bodies as 1d curves immersed in a 3d viscous flow. The action of the structures on the fluid is represented through a Dirac distribution of forces along the 1d curve. Retroaction of the fluid on the structures is not taken into account. On the other hand, although mucus is a viscoelastic fluid, its relaxation time is long with respect to the cilia beating cycle. It is thus reasonable to model it as a Newtonian viscous fluid. And since both mucus and the PCL are viscous at the scale of the cilia, we solve the Stokes equations in both layers. The significant difference in viscosity is taken into account through a bi-fluid model with a fixed and flat interface, consistently to experimental observations. The presence of air above the mucus layer is taken into account through a boundary condition, airways are not represented in our simulations. A bottom-up approach is developped: i) at the cilia individual scale, we use equations of motion for 3d Stokes flow to which we associate the cilia individually and solve the action of each of them on the fluid. ii) at an averaged scale, we derive a 1d model that describes how the ciliary activity governs the mean axial velocity of the fluid (which is directly related to the efficiency of the mucociliary transport), with a computational cost that is considerably lowered. A rigorous mathematical framework is presented for both problems, including well-posedness in suitable functional spaces. Additionally, we use a finite element method to solve both problems: the method is still well-defined in the presence of the singular source term and the rigorous error analysis has been performed in [START_REF] Bertoluzza | Local error analysis for the Stokes equations with a punctual source term[END_REF] (the FEM is still proven to be converging, with a convergence rate that is locally slowed down). The models and numerical methods allow us to simulate the action of very large forests of cilia on the flow, and investigate the impact of some parameters on the mucociliary efficiency. They can contribute to a better understanding of mechanisms involved in mucociliary clearance, in the perspective of analyzing the collective dynamics arising in the flow, as well as their impact on the efficiency of the mucus transport.

This paper is organized as follows: in section 1 we describe the model developed for the fluid-cilia interaction, and in section 2 we discuss the mathematical properties of the resulting equations, i.e. a nonlocal Stokes system with a singular right-hand side. Section 3 is devoted to the numerical method developed in order to retrieve the optimal order of the finite element method applied to these equations. The last section concerns the application of this model to the simulation of the mucociliary transport and the presentation of numerical results in a reference configuration along with an investigation of critical parameters for the mucociliary efficiency.

Three-dimensional modelling

We are interested in modelling the interaction of active cilia with a viscous flow in the context of mucociliary transport. Bronchial cilia are attached to the bronchial walls and immersed in a bilayer composed of a first thin liquid layer called the periciliary liquid (PCL), adjacent to the walls, and a second layer composed of mucus (see Figure 1). They essentially beat inside the PCL, but eventually penetrate the mucus layer during a short part of their periodic movement. At the top of the bilayer, mucus is in contact with the air flowing inside the bronchi. Since the aim of this work is to simulate dense suspensions of active cilia, we are concerned with limiting the computational cost related to the problem, while trying to keep assumptions minimal.

An essential feature of our problem is that cilia are slender bodies that beat very quickly in the viscous fluid. In the case of bronchial cilia, the ratio between their cross-sectional radius and their length is r L ∼ 0.1 6 , and their beating frequency is about f = 15 Hz. Representing each cilium as a three-dimensional body immersed in the fluid domain involves a considerable computational effort to represent the fluid-body interface. An option in order to reduce this cost can be to use a fictitious domain approach (see for instance [START_REF] Chatelin | Méthodes numériques pour l'écoulement de Stokes 3d : fluides à viscosité variable en géométrie complexe mobile ; application aux fluides biologiques[END_REF]). However, we have chosen to take advantage of the geometry of the structure and work in the asymptotic of infinite slenderness, that is when the ratio between the thickness and the length of the structure ϵ = r L vanishes. Keeping the force exerted by each section of the body constant when ϵ vanishes allows to conserve the action of the cilium on the fluid, while the velocity of the fluid becomes infinite at the centerline of the slender body. Our model thus consists of the Stokes equations governing the dynamics of a viscous fluid, with in the source term a line distribution of forces along a 1d curve representing the thin structures. For an analysis of the convergence of the solution to the full problem, that means with a volumic distribution of the hydrodynamic force on the 3D structure, to the solution of the asymptotic model when ϵ vanishes, we refer the reader to [START_REF] Lacouture | Modélisation et simulation du mouvement de structures fines dans un fluide visqueux : application au transport mucociliaire[END_REF].

As for the activity of the cilia, a complete model would consist in a mechanical model for the structure coupled to the fluid equations, so that both the action of the structure on the fluid and the retroaction of the fluid on the structure are taken into account. However, modeling the mechanics of active thin structures like the bronchial cilia for instance is a difficult task, since the underlying internal dynamics are not well understood. Besides, since the solution of the Stokes problem with a line Dirac distribution is singular, our model does not allow to compute the velocity of the structure in a straightforward way in order to retrieve its movement. That is why in this work, we do not address the problem of the construction of the mechanical model, and we consider that the movement of each cilium is given. The resulting model is therefore "one-way", in the sense that it only aims at reproducing the effects of the active structures on the fluid and neglects the retroaction of the fluid on the structures.

On the other hand, experiments show that the pcl-mucus interface does not evolve in time, presumably due to surface tension. We will take into account surface tension and enforce the interface to be constant in time. In addition we will assume both the pcl-mucus and the mucus-air interfaces to be at all times parallel to the bronchial walls.

Parametrization of a cilium and of a forest of cilia

We use the parametrization established by Fulford and Blake in [START_REF] Fulford | Muco-ciliary transport in the lung[END_REF], based on the Fourier series decomposition of the beat of one cilium of cultured rabbit tracheal epithelium described in [START_REF] Sanderson | Ciliary activity of cultured rabbit tracheal epithelium: beat pattern and metachrony[END_REF]. The authors also proposed an extension of the parametrization to the movement of a whole forest of cilia, via two parameters that represent respectively the distance between two cilia and the wavelength of the metachronal wave. It is based on the assumption that the metachronal wave propagates in the direction of the cilia beat, although experiments show that some activity is also propagated in the transversal direction. However this approximation is classical and experiments [START_REF] Gheber | Effect of viscosity on metachrony in mucus propelling cilia[END_REF] show that increasing viscosity causes the metachronal wave to become more and more orthoplectic (i.e. in the direction of mucociliary transport). In the simulations presented in this paper, this assumption has also been made, but the model allows to prescribe a methachronal wave with arbitrary direction.

Let us start with the parametrization of the movement of a single cilium. A cilium is assumed to evolve in a (x -z) plane: at each time t the cilium is represented by the truncated Fourier series of the parametric curve

ξ 2d (s, t) = ξ 2d x (s, t) ξ 2d z (s, t) = L 1 2 a 0 (s) + 6 n=1 a n (s) cos(2nπf t) + b n (s) sin(2nπf t) ,
where s ∈ [0, 1] measures arclength from the base of the cilium, L and f are respectively the length and the beat frequency of the cilium. The Fourier coefficients a n , b n are vector quantities, which are approximated by the following 3-degree polynomial functions

a n (s) = 3 k=1 a n,k s k and b n (s) = 3 k=1 b n,k s k
where a n,k and b n,k are constant vectors of R 2 , given in Table 1. 1: Fourier-least squares coefficients for the cilia beat pattern. The upper and lower numbers in each entry correspond to the x and z components respectively, the y component is always zero.

a n,k n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 k = 1 -0.
n,k n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 k = 1 -0.
Figure 1 shows the beat of a cilium obtained using this parametrization and allows to observe a good correspondance with the description made by Sanderson and Sleigh in [START_REF] Sanderson | Ciliary activity of cultured rabbit tracheal epithelium: beat pattern and metachrony[END_REF]. Let us note that the cilium crosses the interface between the mucus and the peryciliary layer (PCL) only during the effective stroke and not during the recovery stroke. This feature is known to be important in order to guarantee an efficient mucus transport. The extension to a 3d setting is natural: assume that the cilium evolves in the (x -z) plane at y = y (0) , we define

ξ(s, t) =   ξ 2d x (s, t) y (0) ξ 2d z (s, t)   .
The parametrisation of a whole forest of cilia given in [START_REF] Fulford | Muco-ciliary transport in the lung[END_REF] depends on two important parameters : the space ℓ 0 between two cilia (in each direction) and the wavelength λ of the metachronal wave. More precisely, in order to model a forest of n x × n y cilia, with n x (respectively n y ) the number of cilia in the direction x (respectively the direction y), the cilium (i, j), where i ∈ [[1, n x ]] and j ∈ [[1, n y ]], is parametrized by the curve

ξ (ij) (s, t) = iℓ 0 x e x + jℓ 0 y e y + ξ s, iℓ 0 x f λ + t ,
where s ∈ [0, 1]. Let us note the phase shift φ i = iℓ 0 x /f λ in x (and only in x, as there is no phase shift not in y) which the metachronal wave comes from. We have drawn in Figure 2 a section of the forest in the direction x. The propagation of the metachronal wave (to the left on the picture) is in the opposite direction of mucus transport (to the right). Figure 3 shows a forest in 3d as we model it in the simulations, with values of the cilia spacings ℓ 0

x and ℓ 0 y that have been voluntarily increased for the sake of clarity. Since we work with a given movement of the cilia, defined by the parametrization introduced previously, we need to deduce the distribution of forces induced by this movement on the fluid. For that purpose, we use the so-called slender-body theory, based on asymptotic expansions when the ratio ϵ between the thickness and the length of the body vanishes. Cox [START_REF] Cox | The motion of long slender bodies in a viscous fluid. Part 1. General theory[END_REF] established an asymptotic expansion of the force at each point of the slender-body. If

s → ξ(s, t)
is a parametrization of the position of the body at time t in curvilinear coordinates, the expression of the force at the point of curvilinear abscissa s is

f (s, t) := 2πµ ln(L/r) 2I 3 - ∂ s ξ(s, t) ⊗ ∂ s ξ(s, t) ∥∂ s ξ(s, t)∥ 2 (û cil. (s, t) -u bg ) + O 1 (ln(L/r)) 2 ,
where ûcil. (s, t) := ∂ t ξ(s, t) denotes the local velocity of the slender body at curvilinear abscissa s and time t, and u bg denotes the background flow (i.e. the velocity of the fluid in the absence of the structure). This relation has been established in [START_REF] Cox | The motion of long slender bodies in a viscous fluid. Part 1. General theory[END_REF] by confronting two different approaches:

1. the inner expansion consists in studying the fluid velocity near the slender body, which is thus seen as an infinite cylinder. The corresponding regime is L tends to infinity while a remains constant.

2. the outer expansion considers the flow far from the slender body seen as a zero-thickness body, which corresponds to the regime a goes to zero while L remains constant.

We apply the slender body theory as presented previously to compute the distribution of forces applied by each cilium on the fluid, and for the sake of more simple notations, we define

M(s, t) := 2πµ ln(L/r) 2I 3 - ∂ s ξ(s, t) ⊗ ∂ s ξ(s, t) ∥∂ s ξ(s, t)∥ 2 ,
so that the slender body theory at main order relates the hydrodynamical force exerted by a single cilium to the ciliary dynamics by f

(s, t) = M(s, t) • (û cil. (s, t) -ûbg (s, t)) , (1) 
Remark 1. In the presence of several cilia, the background flow u bg takes into account the disturbance flow caused by adjacent cilia. The term involving the background flow then models how the collective dynamics due to all cilia damps/increases the action of each cilium over the fluid.

Remark 2. In order to fix ideas, it may be convenient to change the curvilinear coordinates into the 3d coordinates describing the cilia. Therefore we may use the following change of variables:

f (ξ(s, t); t) = f (s, t).
Remark 3. It is worthwhile noticing that assumptions on the cilia patterns (which evolve in the (x -z) plane) lead to some simplifications: in particular ∂ s ξ y = 0 so that

∂ s ξ ⊗ ∂ s ξ =   |∂ s ξ x | 2 0 ∂ s ξ x ∂ s ξ z 0 0 0 ∂ s ξ x ∂ s ξ z 0 |∂ s ξ z | 2   .
As a consequence, if we assume that ûbg,y = 0 (which is a reasonable assumption, that will be discussed in Assumption 1) and since ûcil.,y = ∂ t ξ y = 0, the second component of the force field is null, namely fy (s, t) = 0.

Fundamental equations in 3d

We consider (e x , e y , e z ) an orthonormal basis in R 3 and a domain Ω ⊂ R 3 defined as

Ω = {x = (x, y, z) ∈ R 3 , x/L x ∈ T, y/L y ∈ T, z ∈ (0, L z )}.
In order to capture the main phenomenological aspects, we set L x = λ corresponding to the length of the metachronal wave: this ensures the periodicity of the ciliary beat patterns in Ω. Moreover as the cilia evolve in the (x -z) plane, most phenomena in the y direction can be neglected. Thus the domain is L x -periodic in x, L y -periodic in y and we denote the boundaries: Γ ↓ = {z = 0} is the lower boundary to which the cilia are fixed. Γ ↑ = {z = L z } is the upper boundary that corresponds to the top of the mucus layer. The fluid domain divides into two areas: the PCL, occupied by a fluid of viscosity µ 1 , is the subdomain {z < H}; the mucus, occupied by a fluid of viscosity µ 2 > µ 1 is the subdomain {z > H}. In this context, we define

µ(z) = µ 1 if z < H, µ 2 if z > H.
The interface between the PCL and the mucus is located at Γ * = {z = H}. We consider a list of thin structures (i, j),

where i ∈ [[1, n x ]] and j ∈ [[1, n y ]],
immersed in Ω and fixed to the bottom of the domain Γ ↓ . We denote by s → ξ (ij) (s, t) the parametrization of their motion at time t. Note that in the context of a viscous flow governed by Stokes equations, the system is instantaneous and time only plays the role of a parameter (therefore it will be regularly omitted when no ambiguity emerges from the equations). The resulting mathematical problem consists in finding a velocity field x → u(x), a pressure field x → p(x), and a surface tension (x, y) → γ(x, y) such that (u, p, γ) are periodic in x and y and

                         -div(µ∇u) + ∇p + γe z δ Γ * = i,j f ij [u] δ Γij in Ω, div(u) = 0 in Ω, [(µ∇u -pI) • n] • t = 0 on Γ ↑ , u • n = 0 on Γ ↑ ∪ Γ * , u = 0 on Γ ↓ . (2) 
Here Γ ij denotes the 1d curve describing the centerline of the (i, j)-th structure, and f ij [u](•, t) is the force distribution it exerts by the structure at time t on the fluid (it has been partially described previously, through the slender body theory and we recall that it may depend on the solution u because of the influence of the background flow -as this will be detailed further). Let us argue on the condition u z = 0 on the PCL-mucus interface Γ * : it is noticed in experiments that the interface does not evolve in time, presumably due to surface tension. From the mathematical point of view, this constraint is imposed by duality: for that purpose we introduce the surface tension γ (to be determined) located at the interface, which serves as a Lagrange multiplier for the constraint u z = 0 on Γ * . At the bottom we impose a no-slip boundary condition (u = 0) on Γ ↓ , while at the top of the box we prescribe so-called free-slip conditions on Γ ↑ : u • n = 0 is the kinematic condition, whereas [(µ∇u -pI) • n] • t = 0 is the dynamic condition. Here n is the normal outward unit vector, t the tangential unit vector associated to the interface. Prescribing this kinematic condition means that we assume that the particles of fluid do not cross the mucus/air interface, so that this interface remains flat and constant during the whole simulation, which is a reasonable assumption with regard to the experimental results available. The dynamic condition implies that we neglect friction of the air layer. More complex boundary conditions could be considered in order to take into account the effect of the airflow on the mucus layer, as for instance a prescribed shear stress (see for instance [START_REF] Mauroy | Toward the modeling of mucus draining from the human lung: role of the geometry of the airway tree[END_REF] and [START_REF] Mitran | Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment[END_REF]). Finally, the box we consider is seen as a window focused on a part of a bronchus, and mucociliary transport goes on outside this box. Therefore it is natural to impose biperiodic boundary conditions in both directions (this requires that the computation domain extends so that a full metachronal wavelength is taken into account).

Source terms

Let us come back to the term f ij [u] that describes the force distribution the cilium exerts on the fluid. As previously mentioned, the definition relies on Eq. ( 1) but the background flow velocity needs to be specified. Because of the configuration of the cilia forest, we assume the following: Assumption 1. We denote the fluid flow by u = (u x , u y , u z ) and we approximate the background flow velocity defined over Ω by

u bg (x, y, z) =   u x x,y (z) 0 0   ,
where • x,y denotes the classical averaging process with respect to to x and y. As a consequence the background flow in the slender body theory follows:

ûbg (s, t) = u bg (ξ(s, t)) =   u x x,y (ξ z (s, t)) 0 0   . Remark 4. From Assumption 1, denoting M(ij) =    m(ij) xx m(ij) xy m(ij) xz m(ij) yx m(ij) yy m(ij) yz m(ij) zx m(ij) zy m(ij) zz    , û(ij) cil. = (û (ij) cil.,x , û(ij) cil.,y , û(ij) cil.,z ), û(ij) bg = (û (ij)
bg.,x , 0, 0),

and recalling that û(ij) cil.,y = 0 and m(ij) xy = m(ij) yx = m(ij) yz = m(ij) zy = 0 (see Remark 3), we can write: fij [u] =    m(ij) xx û(ij) cil.,x + m(ij) xz û(ij) cil.,z 0 m(ij) zx û(ij) cil.,x + m(ij) zz û(ij) cil.,z    f 0 ij -    m(ij) xx 0 m(ij) zx    m(ij) û(ij) bg,x .
This allows us to consider the force as the summation of the contribution due to isolated cilia and a contribution due to the background flow, namely,

fij [u](s, t) = f 0 ij (s, t) -u x x,y (ξ (ij) z (s, t)) m(ij) (s, t).
As a straightforward consequence, the momentum equation in System (2) writes:

-div(µ∇u)

+ i,j u x,y x m (ij) δ Γij + ∇p + γe z δ Γ * = i,j f 0 ij δ Γij .
It is worthwhile noticing that, due to the background flow:

• the system is linear but...

• the system is nonlocal.

Remark 5. Note that in the 3d model the punctual value of u x is not defined on Γ ij because of the loss of regularity induced by the lineic Dirac mass. However the averaging process over the velocity field does not suffer the same drawback: u x x,y is well defined on (0, L z ) and, by extension, on Γ ij .

Variational formulation

Because of the singularity induced by the lineic Dirac source term, the functional framework requires some adaptation with respect to the classical one. Let us temporarily omit time t (which plays the role of a parameter) for the sake of simplicity, we aim at writing the variational formulation of the 3d problem (restoring time t in the notations does not raise any difficulty). The source term

δ Γij satisfies δ Γij ∈ (W 1,r * (Ω)) ′ with r * > 2. Let V r * := {v = (v x , v y , v z ) ∈ (W 1,r * (Ω)) 3 , v |Γ ↓ = 0 in (L r * (Γ ↓ )) 3 , v z |Γ ↑ = 0 in L r * (Γ ↑ ), v z |Γ * = 0 in L r * (Γ * )}
and (V r * ) ′ its dual space. The variational formulation requires some precision on the source term. Let v ∈ V r * . We have

f ij [u]δ Γij , v (V r * ) ′ ,V r * = Γ (ij) (t) f ij [u](x, y, z) • v(x, y, z) dx dy dz = L 0 f ij [u](ξ (ij) (s)) • v(ξ (ij) (s)) |∇ξ (ij) (s)| ds = L 0 f 0 ij (s) -u x x,y (ξ (ij) z (s)) m(ij) (s) • v(ξ (ij) (s)) |∇ξ (ij) (s)| ds.
The source term thus contains two contributions:

• a classical contribution due to the action of each isolated cilium :

L 0 f 0 ij (s) • v(ξ (ij) (s)) |∇ξ (ij) (s)| ds
• a nonlocal contribution due to the background flow :

L 0 u x x,y (ξ (ij) z (s)) m(ij) (s) • v(ξ (ij) (s)) |∇ξ (ij) (s)| ds. Let r = r * r * -1 , so that 1 ≤ r < 2.
The variational formulation writes:

   find u ∈ V r , p ∈ L r 0 (Ω) such that a(u, v) + nl(u, v) -b(p, v) = ℓ(v), ∀v ∈ V r * , b(q, u) = 0, ∀q ∈ L r * 0 (Ω), (3) 
with the following bilinear forms

a(u, v) := Ω µ∇u • ∇v, nl(u, v) := i,j L 0 u x x,y (ξ (ij) z (s)) m(ij) (s) • v(ξ (ij) (s)) |∇ξ (ij) (s)| ds, b(p, v) := Ω p div(v),
and the following linear form

ℓ(v) := i,j L 0 f 0 ij (s) • v(ξ (ij) (s)) |∇ξ (ij) (s)| ds.
The well-posedness of this problem will be proved in the next section.

3 Derivation of a one-dimensional average model

We propose a way to deal with the averaged velocity term in the 3d model ( 3) and avoid the difficult numerical treatment of the non-local term. It consists in averaging the 3d equations in the x and y directions, taking advantage of the periodic conditions, in order to obtain a 1d equation on u x x,y . The numerical solution of this equation can then be injected into the 3d problem. Besides, the existence and uniqueness of the solution to this 1d equation allows to prove the well-posedness of the 3d problem (3).

Averaged equations

The averaging process is detailed in Appendix and leads to the following reduced model:

         -∂ z (µ∂ z u x x,y ) = i,j f ij,x [u x x,y ]δ Γ x,y in D ′ (0, L z ), u x x,y (0) = 0, ∂ z u x x,y (L z ) = 0. (4) 
Each source term in the sum over i and j is a distribution in D ′ (0, L z ) that needs to be defined properly, since its derivation follows from the averaging process with respect to x and y of the 3d singular source terms, which is not straightforward. Choosing v := v(z), we define

f x δ x,y , v D ′ (0,Lz),D(0,Lz) = 1 L x L y ⟨f x δ, ṽ⟩ D ′ (Ω),D(Ω)
by considering the natural extension from (0, L z ) to Ω (we recall that Ω is periodic in x and y):

• : D(0, L z ) → D(Ω) [z → v(z)] → [(x, y, z) → ṽ(x, y, z) = v(z)].
As a consequence, using the parametrization s → ξ(s, t) of the cilium, each source term reads :

f ij,x (•, t)δ Γ(t) x,y , v D ′ (0,Lz),D(0,Lz) = 1 L x L y Γ(t) f ij,x ((x, y, z); t) v(z) dx dy dz = 1 L x L y L 0 f ij,x (ξ (ij) (s, t); t) v(ξ (ij) z (s, t)) |∇ξ (ij) (s, t)| ds.
In the context of mucociliary transport,

f(ij) [u](s, t) = M(ij) (s, t) •   û(ij) cil. (s, t) -   u x x,y (ξ (ij) z (s, t)) 0 0     .
Thus

f ij,x [u x x,y ](•, t)δ Γ(t)
x,y , v

D ′ (0,Lz),D(0,Lz) = 1 L x L y L 0 [ m(ij) xx û(ij) cil.,x + m(ij) xz û(ij) cil.,z ](s, t) v(ξ (ij) z (s, t)) |∇ξ (ij) (s, t)| ds - 1 L x L y L 0 m(ij) xx (s, t)u x x,y (ξ (ij) z (s, t)) v(ξ (ij) z (s, t)) |∇ξ (ij) (s, t)| ds.
Let us now introduce the variational formulation associated to the 1d problem. Defining V = {v ∈ H 1 (0, L z ), v(0) = 0}, the variational formulation of the reduced problem (including the summation over all the cilia) reads:

                       find u x x,y (•, t) ∈ V such that, for all v ∈ V , Lz 0 µ(z) ∂ z u x x,y (z, t) • ∂ z v(z) dz + 1 L x L y i,j L 0 m(ij) xx (s, t) u x x,y (ξ (ij) z (s, t); t) v(ξ (ij) z (s, t)) |∇ξ (ij) (s, t)| ds = 1 L x L y i,j L 0 m(ij) xx û(ij) cil.,x + m(ij) xz û(ij) cil.,z (s, t) v(ξ (ij) z (s, t)) |∇ξ (ij) (s, t)| ds. (5) 
It is worthwhile noticing that the variational formulation of the 1d reduced problem can be derived from the variational formulation of the 3d problem: up to a constant related to the averaging process, it is then sufficient to use a test function v ∈ D(Ω) which does not depend on x and y, then use the periodicity arguments.

We emphasize that the model is rich and simple: the unknown of the reduced model is z → u x x,y (z, t) i. e. the first component of the mean velocity. This is exactly the observable quantity which allows for the quantification of the mucociliary efficiency. Then the 1d problem divides into three contributions:

• a classical second-order 1d operator, modelling a bifluid description of the medium:

Lz 0 µ(z) ∂ z u x x,y (z, t) • ∂ z v(z) dz
• a source term modelling the action of each cilium over the fluid

1 L x L y ij L 0 m(ij) xx û(ij) cil.,x + m(ij) xz û(ij) cil.,z (s, t) v(ξ (ij) z (s, t)) |∇ξ (ij) (s)| ds.
• a counter-part contribution due to the collective transport:

1 L x L y i,j L 0 m(ij) xx (s, t) u x x,y (ξ (ij) z (s, t)) v(ξ (ij) z (s)) |∇ξ (ij) (s, t)| ds.
Remark 6. We point out the fact that if the averaging process is performed over a domain that fits the metachronal wave in the x-direction (recall that cilia only evolve in the x -z plane) then the solution of the reduced problem does not depend on time anymore (by invariance of the setting with respect to time), highlighting the notion of mucociliary elevator.

Let us conclude this section with the mathematical properties of the 1d problem:

Theorem 1. The 1d problem (5) admits a unique solution.

Proof. Well-posedness of the 1d problem is a consequence of Lax-Milgram theorem, noticing (as in the proof of Theorem 2) that

m(ij) xx = 2πµ ln(L/r) 2 - |∂ s ξ x | 2 ∥∂ s ξ(s, t)∥ 2 ≥ 2πµ ln(L/r) > 0.
Thus the bilinear form

a 1d : (u, v) → Lz 0 µ(z) ∂ z u(z) • ∂ z v(z) dz + 1 L x L y i,j L 0 m(ij) xx (s, t) u(ξ (ij) z (s, t)) v(ξ (ij) z (s)) |∇ξ (ij) (s, t)| ds satisfies a 1d (u, u) ≥ min(µ 1 , µ 2 )∥u∥ 2 V
as V may be equipped with the norm v → ∥v∥ V := ∥∂ z v∥ L 2 (0,Lz) .

Strong formulation

The easiest way to implement the reduced 1d model relies on the above variational formulation. However it is possible to rewrite the reduced problem in a strong formulation: this requires to interpret the source term. Let us recall that the description of a cilium Γ(t) is performed with a parametrization of the form (subscripts (i, j) have been skipped): s → ξ(s, t) = (ξ x (s, t), ξ y (s, t), ξ z (s, t)).

For a function f (•, t), we have used the identity

Γ(t) f ((x, y, z); t) v(z) dx dy dz = L 0 f (ξ(s, t); t)v(ξ z (s, t))(z) |∇ξ(s, t)| ds.
Now we propose a parametrization that allow us to recover a classical formulation. Instead of using the "natural" parametrization of the cilium, we may use the third component as the leading parameter and describe Γ(t) by

z → Φ(z, t) = (X(z, t), Y (z, t), z).
Now defining h(t) := max s (ξ z (s, t)) we have

Γ(t) f ((x, y, z); t) v(z) dx dy dz = h(t) 0 f (Φ(z, t); t) v(z) |∇Φ(z, t)| dz = Lz 0 f (Φ(z, t); t) |∇Φ(z, t)| 1 (0,h(t)) (z) v(z) dz
which allows us to rewrite the 1d variational formulation (5):

                           find u x x,y (•, t) ∈ V such that, for all v ∈ V , Lz 0 µ(z) ∂ z u x x,y (z, t) • ∂ z v(z) dz + 1 L x L y Lz 0   i,j m (ij) xx (Φ (ij) (z, t); t) • |∇Φ (ij) (z, t)| • 1 (0,h (ij) (t)) (z)   • u x x,y (z, t) • v(z) dz = 1 L x L y Lz 0   i,j m(ij) xx û(ij) cil.,x + m(ij) xz û(ij) cil.,z (Φ (ij) (z, t); t) • |∇Φ (ij) (z, t)| • 1 (0,h (ij) (t)) (z)   • v(z) dz
with subsequent notations adapted to each cilium, in particular h (i,j) (t) = max s (ξ (i,j) z (s, t)). Thus the strong formulation of this problem reads:

     -∂ z (µ(z)∂ z u x x,y (z, •)) + c 1 (z, •) • u x x,y (z, •) = c 2 (z, •), ∀z ∈ (0, L z ), u x x,y (0, •) = 0, ∂ z u x x,y (L z , •) = 0. ( 6 
) with c 1 (z, t) = 1 L x L y i,j m (ij) xx (Φ (ij) (z, t); t) • |∇Φ (ij) (z, t)| • 1 (0,h (ij) (t)) (z), c 2 (z, t) = 1 L x L y i,j m(ij) xx û(ij) cil.,x + m(ij) xz û(ij) cil.,z (Φ (ij) (z, t); t) • |∇Φ (ij) (z, t)| • 1 (0,h (ij) (t)) (z).
The use of the strong formulation ( 6) is quite limited in terms of numerical computations as the evaluation of c 1 and c 2 may be intricate. However numerical computations may be easily led with the variational formulation (5) whereas the strong formulation ( 6) is helpful for understanding the mathematical structure of the reduced problem.

In particular:

• coefficients c 1 and c 2 concentrate all the effects of the active cilia, by a summation process;

• the average velocity u x x,y is continuous with respect to z;

• it is worthwhile noticing that

c 1 (z, •) = c 2 (z, •) = 0 if z > h := max i,j h (ij) .
Here h denotes the altitude above which no cilium emerges: in this passive area, the average velocity u x x,y is constant (because of the homogeneous Neumann boundary condition).

Well-posedness of the 3d problem

We can now prove the well-posedness of the 3d problem (3).

Theorem 2. The 3d problem (3) admits a unique solution.

Proof. Let u x x,y be the unique solution of the 1d problem, and define W r

* := {v = (v x , v y , v z ) ∈ V r * , div(v) = 0}. It is straightforward that problem (3) is equivalent to find u ∈ W r such that a(u, v) = l[u x x,y ](v), ∀v ∈ W r * , (7) 
where

l[u x x,y ](v) := ℓ(v) -i,j L 0 u x x,y (ξ (ij) z (s)) m(ij) (s) • v(ξ (ij) (s)) |∇ξ (ij) (s)| ds,
Well-posedness of ( 7) follows from a representation theorem in reflexive Banach spaces (see Theorem 1 in [START_REF] Hayden | Representation theorems in reflexive Banach spaces[END_REF]), which we apply to the Sobolev spaces W r and W r * . The bilinear form a(, .) is continuous on W r × W r * , and non-degenerate with respect to the second variable (this follows from the coercivity of a(•, •) on H 1 0 × H 1 0 ). Then, a necessary and sufficient condition for [START_REF] Chateau | Transport efficiency of metachronal waves in 3d cilium arrays immersed in a two-phase flow[END_REF] to admit a unique solution is that there exists a positive number α > 0 such that for each u ∈ W r : sup

∥v∥ W r * =1 a(u, v) ≥ α∥u∥ Wr .
This property is proven in [START_REF] Simader | On Dirichlet's Boundary value Problem. An L p -theory based on a generalization of Garding's inequality[END_REF] for a general class of elliptic bilinear operators which are strongly uniformly elliptic and include the case of the bilinear form a(•, •).

Application to mucociliary transport in the lung

The 3d and 1d models presented in the previous sections to simulate many thin structures in a viscous fluid may be investigated through the simulation of mucociliary transport.

Numerical methods

Unless otherwise stated, the parameters are the ones used in all the simulations. Data related to the fluid domain Ω = (0, L x ) × (0, L y ) × (0, L z ) are the following ones:

L x = 30 µm, L y = 4.8 µm, L z = 10 µm.
The airway surface liquid is composed of two overlayed layers: the periciliary layer (located in the region {(x, y, z) ∈ Ω, 0 < z < H}) and the mucus (located in the region {(x, y, z) ∈ Ω, H < z < L z }). Viscosity of the periciliary layer is µ 1 = 1 • 10 +0 mPa • s and viscosity of the mucus is µ 2 = 1 • 10 +4 mPa • s. Moreover the interface between the two layers is defined as {(x, y, z) ∈ Ω, z = H} with H = 4.8 µm. Table 2 summarizes the data related to the cilia, as given in [START_REF] Fulford | Muco-ciliary transport in the lung[END_REF]. Those default parameter values lead us to consider a forest of 100 × 16 cilia in the computational domain Ω. The simulations should present the time evolution of the flow field. In our model the movement of the cilia is prescribed, and it is periodic (the period T is 1/f ). We recall that we need to retrieve the distribution of forces exerted by the cilia on the fluid from their prescribed movement, and for that purpose we use relation [START_REF] Basser | The mechanism of mucus clearance in cough[END_REF]. Now in the case of a two-viscosity fluid this relation, based on the slender-body theory described by Cox [START_REF] Cox | The motion of long slender bodies in a viscous fluid. Part 1. General theory[END_REF], is no longer valid. However Fulford and Blake [START_REF] Fulford | Force distribution along a slender body straddling an interface[END_REF] established the expression of the distribution of forces along a slender body which straddles an interface. At the first order (in the regime ln(L/r) -1 tends to zero) and far from the interface, the expression of the force is the same as for constant viscosity. Close to the interface, more precisely at a distance smaller than the radius a of the body, relation ( 1) is no more valid and should be corrected. In our case, we neglect this correction and we consider expression (1) for the forces along the whole cilium with a variable viscosity.

Solving the 1d reduced model

The 1d reduced model is solved using the variational formulation [START_REF] Chakrabarti | Hydrodynamic synchronization of spontaneously beating filaments[END_REF]. More precisely we solve a finite-element approximation of [START_REF] Chakrabarti | Hydrodynamic synchronization of spontaneously beating filaments[END_REF]. Define a regular triangulation of [0, L z ], denoted T hz , that involves N z nodes (set h z = Lz Nz ) and

V hz := {v ∈ C 0 ([0, L z ]), v |T ∈ P 1 [T ], ∀T ∈ T hz and v(0) = 0}.
In the numerical approximation of problem ( 5), we substitute functional space V by the subspace V hz .

Solving the 3d model

The 3d model is solved using the variational formulation [START_REF] Chateau | Transport efficiency of metachronal waves in 3d cilium arrays immersed in a two-phase flow[END_REF] once the averaged solution (u x x,y ) h has been determined.and the resolution is based on a finite-element approximation of the problem. Define a regular triangulation of Ω, denoted T h , that involves N x × N y × N z nodes and the following approximation spaces:

• for the velocity field:

V h := {v ∈ (C 0 (Ω)) 3 , v |T ∈ (P 1 [T ] ⊕ span(b T )) 3 , ∀T ∈ T h and v |Γ ↓ = 0, v z |Γ ↑ = 0 and v z |Γ * = 0},
where the so-called bubble-function b T is defined by

b T (x) = λ T 1 (x) • λ T 2 (x) • λ T 3 (x), if x ∈ T , 0, otherwise,
and λ T 1 , λ T 2 , λ T 3 are the barycentric coordinates of x in relation to the mesh element T . • for the pressure field:

W h := {q ∈ C 0 (Ω), q |T ∈ P 1 [T ], ∀T ∈ T h }.
In the discrete setting, we now consider the variational problem:

   find u h ∈ V h , p h ∈ W h such that a(u h , v h ) -b(p h , v h ) + εd(p h , q h ) = l[(u x x,y ) h ](v h ), ∀v h ∈ V h , b(q h , u h ) = 0, ∀q h ∈ W h . (8) 
Notice that a small perturbative term d(p h , q h ) := Ω p h q h with factor ε ≪ 1 has been introduced in order to fix the constant associated to the pressure field which is determined up to a constant in the initial problem.

Remark 7. The main difficulty of the 3d problem relies on its nonlocal property, due to the background flow. It means that the direct resolution of the problem is associated to a linear system involving matrix which is not sparse. In our case, we took advantage of the 1d reduced model to overcome this difficulty, reducing the complexity to the one of a classical Stokes problem (up to the resolution of a 1d problem that provides the mean velocity that is used as a source term in the subsequent 3d problem). An alternative way to solve the 3d problem consists in using the linearity of the problem to avoid the resolution of the linear system with a full matrix: for this, let us recall that the finite element approximation of the background flow velocity u x

x,y is decomposed on a P 1 finite element basis {ϕ k } k=1,...,Nz with ϕ k (z i ) = δ ik , {z k } k=1,...,Nz being the nodes of the 1d mesh. Then define the following problem

             find u [0] h ∈ V h , p [0] h ∈ W h , γ [0] h ∈ M h such that a u [0] h , v h -b p [0] h , v h + c γ [0] h , v h + εd p [0] h , q h = ℓ (v h ) , ∀v h ∈ V h , b q h , u [0] h = 0, ∀q h ∈ W h , c β h , u [0] h = 0, ∀β h ∈ M h , (9) 
and also the following N z auxiliary problems:

             find u [k] h ∈ V h , p [k] h ∈ W h , γ [k] h ∈ M h such that a u [k] h , v h -b p [k] h , v h + c γ [k] h , v h + εd p [k] h , q h = ℓ [k] (v h ) , ∀v h ∈ V h , b q h , u [k] h = 0, ∀q h ∈ W h , c β h , u [k] h = 0, ∀β h ∈ M h , (10) 
with

ℓ [k] (v h ) = - i,j L 0 ϕ k (ξ (ij) z (s)) m(ij) (s) • v(ξ (ij) (s)) |∇ξ (ij) (s)| ds.
By linearity, the solution (u h , p h , γ h ) is a linear combination of the auxiliary solutions {(u

[k] h , p [k] h , γ [k]
h )} k=0,...,Nz , namely

u h = u [0] h + Nz k=1 λ k u [k] h , p h = p [0] h + Nz k=1 λ k p [k] h , γ h = γ [0] h + Nz k=1 λ k γ [k] h . ( 11 
)
It remains to determine {λ k } k . Using Eq. [START_REF] Decoene | Direct simulation of rigid particles in a viscoelastic fluid[END_REF] in problem [START_REF] Chatelin | Méthodes numériques pour l'écoulement de Stokes 3d : fluides à viscosité variable en géométrie complexe mobile ; application aux fluides biologiques[END_REF] shows that the linear combination solves the initial problem if

ℓ + Nz k=1 λ k ℓ [k] = ℓ[(u h ) x x,y ] that is to say Nz k=1 λ k ϕ k = (u h ) x x,y = (u [0] h ) x x,y + Nz k=1 λ k (u [k] h ) x x,y .
In order to determine {λ k } k , we proceed to the evaluation of the above expression in each 1d node z i . Denoting

U [0] i := (u [0] h ) x x,y (z i ) and U [k] i := (u [k] h ) x x,y (z i ) we get λ i = U [0] i + Nz k=1 λ k U [k] i , i = 1, ..., N z .
The resolution of the linear system

      I Nz×Nz -       U [1] 1 U [2] 1 • • • U [Nz] 1 U [1] 2 U [2] 2 • • • U [Nz] 2 . . . . . . . . . . . . U [1] Nz U [2] Nz • • • U [Nz] Nz             •      λ 1 λ 2 . . . λ Nz      =       U [0] 1 U [0] 2 . . . U [0] Nz      
determines the solution of the 3d nonlocal problem. However one should notice that this requires, at a preliminary step, the resolution of N z + 1 Stokes problems in 3d, which is much more costly than the approach based upon the resolution of the 1d reduced problem attached to the 3d problem.

Numerical results

3d velocity distribution in the reference situation

We have computed the flow produced by a whole forest of cilia, with data given by Table 2: we consider a three dimensional box, with an axial length equivalent to the length of one metachronal wave, L x = 30 µm, a radial depth of L z = 10 µm (which is the average depth of the mucus layer in the human trachea), and an azimuthal width of L y = 4.8 µm. A 100 × 16 array of cilia is attached to the bottom of this box and biperiodic boundary conditions on the solution of the Stokes equations are imposed in the axial and azimuthal directions, in order to represent the configuration of an "infinite" array of cilia. The box is filled with a Newtonian fluid with piecewise constant viscosity µ: µ = µ 1 in the PCL layer and µ = µ 2 in the mucus layer. The interface between the two layers is located at z = H which is set to 4.8 µm, so that cilia penetrate the mucus layer during the effective stroke, but not during the recovery stroke. Figure 4 illustrates the results obtained in the reference configuration. The density of cilia is high enough for the flow to be independent on time, up to a translation at the velocity of the metachronal wave. As a consequence, drawing one time step only is sufficient. We observe important recirculations in the PCL, with high magnitude variations, while in the mucus layer the flow is rather homogeneous. Actually, mucus is transported at an almost constant velocity, like a block "sliding" over the PCL.

Figures 5 and6 present the velocity profile for the very same situation as in Figure 4 except that the forest is sparse (50 × 8 and 25 × 4 cilia respectively instead of 100 × 16). We still observe the "block property" of the mucus: this is due to the high viscosity of the mucus, the surface tension at the interface with PCL and the fact that cilia hardly penetrate the mucus. We also observe that in the PCL recirculations are limited when sparsity is enough.

Figure 7 presents the velocity profile for the very same situation as in Figure 4 up to two (major) differences: on the one hand, the viscosity ratio is µ 2 /µ 1 = 10 +0 (instead of 10 +4 ) as µ 2 has been set to µ 2 = 10 +0 mPa • s; on the other hand, the surface tension constraint has been relaxed (so that the normal velocity at the PCL-mucus interface is not 0). Therefore the situation corresponds to an isoviscous fluid moved by a dense forest of cilia. It can be observed that the "block property" of the mucus is not preserved, as velocity variations are significant in the mucus because of the standard viscosity in the whole domain (not only in the PCL) and recirculations are not limited by the surface tension at the interface. 2 except for the viscosity ratio:

µ 2 = 1 • 10 +0 mPa • s
The conclusion is that both high viscosity in the mucus and surface tension allow for a homogeneous flow in the mucus, whereas ciliary density allows for a more efficient mucociliary transport. The impact of these parameters will be investigated in the following subsections.

Influence of the viscosity ratio

Figure 8 presents the influence of the viscosity ratio over the mean axial velocity z → u(z) := u x x,y (z), resulting from the averaged model (which is also identified as the background flow). This profile is important as it allows for the quantification of the mucociliary efficiency. Data are taken from Table 2, except for the viscosity of the fluid: µ 1 is set to 1 • 10 +0 mPa • s, whereas µ 2 may vary from 1 • 10 +0 to 1 • 10 +4 mPa • s. We observe that the high viscosity ratio regime is already nearly achieved for µ 2 /µ 1 = 50, showing some robustness of the mucus transport with respect to µ 2 , when sufficiently high. x,y (z) in the radial direction, for different viscosity ratios. Data from Table 2, except for mucus viscosity µ 2 (that takes the following values: 1 • 10 +0 , 5 • 10 +1 and 1 • 10 +4 ).

Influence of the surface tension

Figures 9 and 10 present the numerical results obtained with/without surface tension (all data are taken from Table 2). Let us recall that, in Eq. ( 2), the surface tension γ is the Lagrange multiplier associated to the constraint u • n = 0 on Γ * and it ensures the stability of the interface between the PCL and the mucus. The influence of the surface tension is investigated in terms of velocity distribution. As already outlined, it has no influence on the averaged 1d model: the mean axial velocity does not depend on the surface tension. However surface tension has great influence on the 3d velocity distribution, especially when the viscosity ratio is around 1 (monofluid case); the influence of the surface tension tends to be damped for both axial and radial velocities when the viscosity ratio increases.

Influence of the position of the ASL

Figure 11 investigates the influence of the position of the PCL-mucus interface on the mucociliary transport, for different viscosity ratios. Actually H = 4.8 µm is a near-maximizer of the mean mucus velocity. Note that for H > 6 µm, the cilia are completely immersed in the PCL only and do not reach the mucus: as a consequence, the mean axial velocity does not depend on the position of the interface in this regime. But for H < 6 µm, cilia are partially immersed in the mucus, providing energy to the highly viscous fluid in a more direct way. Note that this behaviour quantitatively depends on the viscosity contrast.

Figure 12 investigates the influence of the position of the PCL-mucus interface on the mucociliary transport. Figure 12 a) only depends on the parametrization of the cilia movement (see Table 1). The mucus velocity profile The velocity is averaged in the azimuthal direction y (note that the velocity little varies in this direction) so that we show the following profiles: z → u x y (x (j) , z)( * ) refers to the standard model with surface tension (hence u z = 0 is imposed at the PCL-mucus interface) whereas ( * * ) refers to the model in which no surface tension is taken into account (hence u z is not constrained at the PCL-mucus interface). The velocity is averaged in the azimuthal direction y so that we show the following profiles: z → u z y (x (j) , z)( * ) refers to the standard model with surface tension (hence u z = 0 is imposed at the PCL-mucus interface) whereas ( * * ) refers to the model in which no surface tension is taken into account (hence u z is not constrained at the PCL-mucus interface). 

µ 2 = 5 • 10 +0 mPa • s, c) µ 2 = 1 • 10 +1 mPa • s, d) µ 2 = 1 • 10 +4 mPa • s.
exhibits three zones. Range (III) corresponds to H > 5.9038 µm for which the cilia are completely immersed in the PCL in both effective and recovery strokes: the velocity is constant with respect to H. Range (III) is characterized by the fact that the cilia partially penetrate the mucus in the effective stroke but do not in the recovery stroke: this corresponds to some optimal situation in terms of mucociliary efficiency. In Section (I), cilia penetrate the mucus in the effective stroke but also in the recovery stroke, which explains the decrease of the mucus velocity when compared to the one obtained in Range (II). Note that the mean velocity profile exhibits some discontinuity at the transition between (II) and (III), for high viscosity ratios (actually this trend emerges when the viscosity ratio increases (between 10 and 100) and is stabilized for high viscosity ratios). This is due to some model artefact: in Range (III) the cilia are all immersed in the PCL only; but when we get into Range (II), the head of some cilia penetrate the highly viscous mucus: this leads to local forces that become extremely high (recall that in the slender body theory the force is proportional to the viscosity) with no transition. Thus in this model governed by the slender body theory the energy transferred to the fluid by the cilia is not continuous with respect to H, even if the background flow term stabilizes the solution profiles with respect to high viscosity ratios. 2, except for the position of the PCL-mucus interface which varies from 2 to 8 µm and the viscosity µ 2 that takes the following values: i. • For H < 6 µm, the cilia penetrate the mucus during the effective stroke;

µ 2 = 1 • 10 +0 mPa • s, ii. µ 2 = 2 • 10 +0 mPa • s, iii. µ 2 = 5 • 10 +0 mPa • s, iv. µ 2 = 1 • 10 +4 mPa • s).

Influence of the ciliary density

• For H > 6 µm, the cilia are completely immersed in the PCL only and do not penetrate the mucus.

Other data are taken from Table 2, except for the cilia densities ℓ 0

x and ℓ 0 y (or the number of cilia in each direction, n x and n y , as n x ℓ 0 x = L x and n y ℓ 0 y = L y ). The reference density of cilia is 11.11 µm -2 , which corresponds to a forest of n x × n y cilia with n x = 100 and n y = 16, placed on surface whose area is L x × L y with L x = 30.0 µm and L y = 4.8 µm.

Figure 13 investigates the influence of the ciliary density over the mucociliary transport with H = 4.8 µm. In Figure 13 a), we let d x vary (whereas the density of cilia in the azimuthal direction is fixed to its reference value). In Figure 13 b), we let d y vary (whereas the density of cilia in the axial direction is fixed to its reference value). In Figure 13 c), we investigate the crossed influence of the axial/azimuthal densities. We observe that the mucus velocity becomes stable when n x or n y increase: these results are due to the background flow term in the 3d model or, equivalently, the counter-part contribution due to the collective transport in the 1d model. Indeed the source term (without background flow) is proportional to n x and n y but so does the damping term coefficient due to the background flow. The latter argument prevents the model from being linear with respect to n x and n y and it provides some remarkable robustness of the mucus transport with respect to the cilia density, when reaching a sufficiently high value.

Figure 14 investigates the influence of the ciliary density over the mucociliary transport with H = 6.2 µm (instead of H = 4.8 µm). In this case, the cilia do not penetrate the mucus. The mean axial velocity profile does not depend on the position of the interface: this results from the fact that, as long as the cilia do not penetrate the mucus, the mucus area is passive (i.e. source term is null) which, combined with homogeneous Neumann condition, leads to a constant velocity profile in the mucus. Noteworthily the robustness of the ciliary transport with respect to the cilia density is achieved when it reaches a sufficiently high value.

Figures 15 and16 exhibit the axial velocity profiles with low density for H = 4.8 µm and H = 6.2 µm respectively. When the cilia penetrate the mucus during the effective stroke (see Figure 15, corresponding to H = 4.8 µm), we notice that low ciliary density does not modify the magnitude of the mean axial velocity, but it damps the dispersion of velocity profiles around the mean profile: the loss of activity makes the velocity distribution more homogeneous, in particular in the PCL. When the cilia do not penetrate the mucus (see Figure 16, corresponding to H = 6.2 µm), not only dispersion of velocity profiles around the mean profile tends to be damped, but also the magnitude of the mean velocity decreases.

Conclusion

In this article we modelled the mucociliary transport through a 3d model connecting all the main features of the process: 1) (dense) forests of cilia immersed in a fluid, with an individual description of the cilia; 2) the fluid is a two-layer fluid (PCL+mucus with a sharp viscosity ratio) separated by an interface which is made stable due to surface tension. The main limitation lies in the fact that the ciliary movement is prescribed and the forces exerted by the cilia on the fluid are evaluated using an approximated formula provided by the slender body theory. Beyond these limitations, the model is based upon fundamental equations of dynamics and results in a nonlocal Stokes system with singular source terms; from the mathematical point of view, the model is well-posed (in suitable functional spaces) and, from the numerical point of view, the computation of the 3d velocity profiles is performed using numerical methods characterized by rigorous error analysis (even in the singular case). Numerical results allow us to describe the 3d velocity distribution in a non-pathological situation and to highlight, by comparison, the influence of critical parameters (beating frequency of the cilia, mucus viscosity, surface tension, ciliary density in the forest, position of the PCL/mucus interface etc.) on the velocity distribution and, finally, on the efficiency of the mucociliary transport. Note that several extensions can be made:

• Influence of the airflow on the mucociliary efficiency. In a bronchus, the bronchial wall is lined with a bifluid made of two layers (the PCL and mucus) and the center of the bronchus is filled with air. Thus mucus has an interface not only with PCL (at {z = H}) but also with air (at {z = L z }). In this article, the influence of air has been neglected (hence we impose a free-slip boundary condition at {z = L z }) but the influence of air cycles combined with the ciliary activity can be done as follows: because the airflow goes through the bronchus, the shear effect at the air-mucus interface imposed by the respiratory cycle can alternatively increase (at expiration) or decrease (at expiration) the mucus velocity; this phenomenon can be taken into account by introducing a pressure drop in the fluid flow and replacing the free-slip boundary conditions at {z = L z } by boundary conditions that model the shear effect of the air flow in the bronchus, which can be represented by a Poiseuille flow.

• Viscoelasticity of the mucus. Viscoelastic properties of the mucus may have an impact on the mucociliary transport, in particular in pathological situations [START_REF] Choudhury | On the role of viscoelasticity in mucociliary clearance: a hydrodynamic continuum approach[END_REF][START_REF] Sedaghat | Three-dimensional simulation of mucociliary clearance under the ciliary abnormalities[END_REF]. We could extend our 3d model to take into account viscoelasticity: for instance, using an Oldroyd-type model, under the assumption that cilia do not penetrate the mucus, the constitutive equations relating the elastic tensor to the velocity field can be computed using a splitting scheme combined with a characteristics method as in [START_REF] Decoene | Direct simulation of rigid particles in a viscoelastic fluid[END_REF]. If cilia penetrate the mucus, the lack of regularity of the velocity field, due to the singular source term in the active part of the mucus, would certainly lead to mathematical and numerical difficulties: indeed, to the best of our knowledge, the regularity of the 2 except for the density of cilia. The axial velocity is averaged in the azimuthal direction y (note that the velocity little varies in this direction) so that we show the following profiles: z → u x y (x (j) , z) for different axial positions x = x (j) = j∆ (with ∆ = 5 µm). Index (I, J) relates to the following density: 2 except for the density of cilia. The axial velocity is averaged in the azimuthal direction y (note that the velocity little varies in this direction) so that we show the following profiles: z → u x y (x (j) , z) for different axial positions x = x (j) = j∆ (with ∆ = 5 µm). Index (I, J) relates to the following density: solution for the Stokes-Oldroyd problem with singular source term is an open question and, thus, it requires a suitable functional framework in order to derive a rigorous mathematical formulation and error analysis for the finite element method in this case.

Appendix

Let us describe the derivation of the reduced model.

Averaging process

We denote by • x (resp. • y ; • x,y ) the (classical) averaging process with respect to x (resp. y ; x and y). For instance, for a regular function (x, y, z) → f (x, y, z) we denote f x,y : (0, L z ) → R the function defined by Let us average the momentum equation. Note that the source terms involved by the ciliary beat are not regular but we first derive the average model by skipping this difficulty which will be treated thereafter. Therefore assume that F x , F y and F z are regular source terms (e.g. in L 2 (Ω)), we have Averaging in x and y, using the fact that µ only depends on z and using the periodicity of u and p we obtain Next as the cilia movement only occurs in the (x -z) plane (see the parametrization of the ciliary beat patterns), then F y = 0 and the second equation of the system writes:

           -∂ x (
           -∂ z (µ∂ z u x x,y ) = F x
-∂ z (µ∂ z u y x,y ) = 0 on (0, L z ), which, by the homogeneous boundary condition on Γ ↓ , gives: u y x,y = 0.

Besides, as previously shown, u z x,y = 0 so that the third equation of the system writes ∂ z p x,y + γ x,y δ Γ * = F z x,y on (0, L z ).

The reduced system (with regular source term) writes

                   -∂ z (µ∂ z u x x,y ) = F x
x,y on (0, L z ), u y

x,y = 0 on (0, L z ), u z

x,y = 0 on (0, L z ), ∂ z p x,y + γ x,y δ z=H = F z x,y on (0, L z ).

(

) 12 
Notice that the last equation relates the average pressure p x,y and the surface tension γ x,y to the force exerted by the cilia onto the fluid. Hower this equation is not required when one aims at determining the average velocity field, in particular z → u x x,y (z) which describes the average velocity profile of the PCL+mucus system. Additionally let us deal with the boundary conditions. In a straightforward way, the Dirichlet condition readily adapts into:

u x
x,y (0) = u y x,y (0) = u z x,y (0) = 0.

The kinematic and dynamic conditions on Γ ↑ read u z = 0 and ∂ z u x = 0 on Γ ↑ which, after averaging in x and y, yields: u z x,y (L z ) = 0, ∂ z u x x,y (L z ) = 0.

As a consequence, the reduced model (with regular source term) reads:

• First component of the velocity:

    
-∂ z (µ(z)∂ z u x x,y (z)) = F x x,y (z), ∀z ∈ (0, L z ), u x x,y (0) = 0, ∂ z u x x,y (L z ) = 0.

• Second component of the velocity: u y x,y (z) = 0, ∀z ∈ (0, L z ).

• Third component of the velocity: u z x,y (z) = 0, ∀z ∈ (0, L z ).

• Pressure field: ∂ z p x,y (z) + γ x,y (z)δ z=H = F z x,y (z) ∀z ∈ (0, L z ).

Remark 8. Partial derivatives with respect to z have been maintained because the functions may depend on time, even if it plays the role of a parameter. In particular, if the source terms F x , F y and F z do depend on time, so do the solution u and its subsequent average first component u x x,y .

Reduction of the source term

Let us now provide some details about the derivation of the source terms F x x,y and F z x,y in the context of the ciliary study. More precisely we need to define in a rigorous way the averaging process of the source term defined in Problem (2), namely:

F :=   F x F y F z   = i,j f ij (•, t)δ Γij (t) .
In order to define the averaging process for the singular source term, let us deal with one single Dirac term (the extension to an arbitrary number of singular source terms follows from linearity). For any (i, j), i ∈ [[1, n x ]] and j ∈ [[1, n y ]], consider the (i, j)-th cilium associated with the source term f ij δ Γij (we omit in this subsection the subscript (i, j), for the sake of simplicity). In the variational formulation of the source term, using a test function v ∈ (D(Ω)) 3 , the source term would be

f (•, t)δ Γ(t) , v (D ′ (Ω)) 3 ,(D(Ω)) 3 = Γ(t) f (•, t) • v dx dy dz.
Aiming at studying the first component of the system, namely choosing v = (v, 0, 0), we focus on by considering the natural extension from (0, L z ) to Ω (we recall that Ω is periodic in x and y):

• : D(0, L z ) → D(Ω) [z → v(z)] → [z → ṽ(x, y, z) = v(z)].
This process actually defines the averaging process with respect to x and y in the treatment of the source term. As a consequence, using the parametrization s → ξ(s, t) of the cilium 
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 1 Figure 1: Traces of a cilium during one period of its beat with a PCL-mucus interface at z = 4.8 µm. Description made by Sanderson and Sleigh [42, 16].

Figure 2 :

 2 Figure 2: Parametrization of a dense forest of cilia: section of a forest with the parametrization established by Fulford and Blake [16] over two metachronal waves length.
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 3 Figure 3: Dense forest of cilia with the parametrization established by Fulford and Blake [16] over two metachronal waves length. Ciliary spacing is 0.3 µm in both axial and azimuthal directions (hence 200 × 32 cilia are represented here).
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 4567 Figure 4: Velocity distribution associated to a dense forest of cilia. All data from Table2.

Figure 8 :

 8 Figure 8: Mean axial velocity z → u(z) := u xx,y (z) in the radial direction, for different viscosity ratios. Data from Table2, except for mucus viscosity µ 2 (that takes the following values: 1 • 10 +0 , 5 • 10 +1 and 1 • 10 +4 ).

Figure 9 :

 9 Figure 9: Axial velocity profiles in the radial direction, for different axial positions x = x (j) = j∆ (with ∆ = 5 µm).The velocity is averaged in the azimuthal direction y (note that the velocity little varies in this direction) so that we show the following profiles: z → u x y (x (j) , z)( * ) refers to the standard model with surface tension (hence u z = 0 is imposed at the PCL-mucus interface) whereas ( * * ) refers to the model in which no surface tension is taken into account (hence u z is not constrained at the PCL-mucus interface).

Figure 10 :

 10 Figure 10: Radial velocity profiles in the radial direction, for different axial positions x = x (j) = j∆ (with ∆ = 5 µm).The velocity is averaged in the azimuthal direction y so that we show the following profiles: z → u z y (x (j) , z)( * ) refers to the standard model with surface tension (hence u z = 0 is imposed at the PCL-mucus interface) whereas ( * * ) refers to the model in which no surface tension is taken into account (hence u z is not constrained at the PCL-mucus interface).
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 11 Figure 11: Influence of the position of the ASL (H) on the mean axial velocity z → u xx,y (z) in the radial direction (through PCL and mucus). a)µ 2 = 2 • 10 +0 mPa • s, b) µ 2 = 5 • 10 +0 mPa • s, c) µ 2 = 1 • 10 +1 mPa • s, d) µ 2 = 1 • 10 +4 mPa • s.

Figure 12 :

 12 Figure 12: Influence of the position of the ASL (H). a) The percentage (%) of time spent by cilia in the mucus and PCL is shown for both phases: effective stroke (eff.) and recovery stroke (rec.). b) Influence of the position of the ASL on mucus velocity u m = (L z -H) -1 Lz H u x x,y (z) dz for different viscosity ratios (data from Table 2, except for the position of the PCL-mucus interface which varies from 2 to 8 µm and the viscosity µ 2 that takes the following values: i. µ 2 = 1 • 10 +0 mPa • s, ii. µ 2 = 2 • 10 +0 mPa • s, iii. µ 2 = 5 • 10 +0 mPa • s, iv. µ 2 = 1 • 10 +4 mPa • s).

Figures 13 and 14

 14 Figures 13 and 14 investigate the influence of the ciliary density over the mucociliary transport for H = 4.8 µm and H = 6.2 µm. Note that
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 131415 Figure 13: Influence of the density of cilia on the mean axial velocity z → u(z) := u x x,y (z), for H = 4.8 µm. All data from Table 2 except for the density of cilia. Index (I, J) relates to the following density: d x = 2 I d 0 x (axial direction), d y = 2 J d 0 y (azimuthal direction), with reference values: d 0 x = d 0 y := 3.33 µm -1 .

Figure 16 :

 16 Figure 15: Influence of the density of cilia on the axial velocity, for H = 4.8 µm. All data from Table2except for the density of cilia. The axial velocity is averaged in the azimuthal direction y (note that the velocity little varies in this direction) so that we show the following profiles: z → u x y (x (j) , z) for different axial positions x = x (j) = j∆ (with ∆ = 5 µm). Index (I, J) relates to the following density: d x = 2 I d 0 x (axial direction), d y = 2 J d 0 y (azimuthal direction), with reference values: d 0 x = d 0 y := 3.33 µm -1 .

  Figure 16: Influence of the density of cilia on the axial velocity, for H = 6.2 µm. All data from Table2except for the density of cilia. The axial velocity is averaged in the azimuthal direction y (note that the velocity little varies in this direction) so that we show the following profiles: z → u x y (x (j) , z) for different axial positions x = x (j) = j∆ (with ∆ = 5 µm). Index (I, J) relates to the following density: d x = 2 I d 0 x (axial direction), d y = 2 J d 0 y (azimuthal direction), with reference values: d 0 x = d 0 y := 3.33 µm -1 .
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  (x, y, z) dx dy.Averaging the continuity equation ∂ x u x + ∂ y u y + ∂ z u z = 0 combined with the periodicity of the velocity field u yields ∂ z u z x,y = 0 which, combined with the homogeneous Dirichlet condition at Γ ↓ , gives: u z x,y = 0.

  µ∂ x u x ) -∂ y (µ∂ y u x ) -∂ z (µ∂ z u x ) + ∂ x p = F x on Ω, -∂ x (µ∂ x u y ) -∂ y (µ∂ y u y ) -∂ z (µ∂ z u y ) + ∂ y p = F y on Ω, -∂ x (µ∂ x u z ) -∂ y (µ∂ y u z ) -∂ z (µ∂ z u z ) + ∂ z p + γδ Γ * = F z on Ω.

  x,y on (0, L z ),-∂ z (µ∂ z u y x,y ) = F y x,y on (0, L z ), -∂ z (µ∂ z u z x,y ) + ∂ z p x,y + γ x,y δ z=H = F z x,yon (0, L z ).

  f x (•, t)δ Γ(t) , v D ′ (Ω),D(Ω) = Γ(t) f x (•, t) v dx dy dz. Next choosing v := v(z), we define f x (•, t)δ Γ(t) x,y , v D ′ (0,Lz),D(0,Lz) = 1 L x L y f x (•, t)δ Γ(t) , ṽ D ′ (Ω),D(Ω)

  f x (•, t)δ Γ(t) x,y , v D ′ (0,Lz),D(0,Lz) = 1 L x L y Γ(t) f x ((x, y, z); t) v(z) dx dy dz = 1 L x L y L 0 f x (ξ(s, t); t) v(ξ z (s, t)) |∇ξ(s, t)| ds = 1 L x L y L 0 fx (s, t) v(ξ z (s, t)) |∇ξ(s, t)| ds.

Table 2 :

 2 Summary of data for fluid cilia in the lung, from[START_REF] Fulford | Muco-ciliary transport in the lung[END_REF].

	Fluid		
	Domain dimensions:		
	-in axial direction	L x	30.0 µm
	-in azimuthal direction	L y	4.8 µm
	-in radial direction	L z	10.0 µm
	Fluid viscosity in PCL	µ 1	1 • 10 +0 mPa • s
	Fluid viscosity in mucus	µ 2	1 • 10 +4 mPa • s
	Airway surface liquid (ASL)	H	4.8 µm
	Cilia		
	Length of a cilium	L	6.0 µm
	Cross-sectional radius of a cilium	a	0.1 µm
	Beat frequency of a cilium	f	15.0 Hz
	In axial direction:		
	-Number of cilia in the computational domain	n x	100
	-Cilia spacing -Number of cilia per unit length	ℓ 0 x d x	0.3 µm 3.33 µm -1
	In azimuthal direction:		
	-Number of cilia in the computational domain	n y	16
	-Cilia spacing -Number of cilia per unit length	ℓ 0 y d y	0.3 µm 3.33 µm -1
	Density of cilia	D cil.	11.11 µm -2
	Metachronal wavelength	λ	30.0 µm