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Most computational models of language development adopt a passive-learner view on language learning, and disregard the important role that motivation and affect play in the development of communication. In this paper, we present a motivation-grounded, active learning robot model of language acquisition that relies on social interaction with a caregiver. The robot learns multiple associations-between words and perceived objects, and with its internal states of the robot-allowing it to have a "meaning potential" of the acquired language, in line with the functionalist view of language theory. We evaluate the model experimentally in different environments and with different levels of caregiver's responsiveness to study the impact of external factors on language acquisition.

I. INTRODUCTION

Most of the computational models of language development adopt a passive-learner view on language learning, and disregard the important role that affect plays in the development of communication, intersubjectivity, and the (co-)construction and sharing of meaning. Typical solutions propose teaching the artificial agent (infant) an association between a sensory perception of an object (e.g. an image) and a label (i.e., the name of the object) given by a knowledgeable caregiver [START_REF] Steels | Aibo's first words: The social learning of language and meaning[END_REF], [START_REF] Morse | Why are there developmental stages in language learning? a developmental robotics model of language devel[END_REF]. In this view, commonly adopted in AI, learning language is a goal in itself during the course of development. We propose to adopt an alternative view: that communication has an extrinsic functionality, i.e., a goal to achieve in the world that lies outside of language itself and can be better described as a means to reach this goal. This idea is in line with typical observations of infants' development, who can convey functional meanings before they master the adults' language [START_REF] Halliday | Language of early childhood[END_REF]. For example, communication can be a way to obtain a desired object by requesting it from an adult, or a means to strengthen a social bond. Halliday argues that children initially develop "meaning potentials" to serve some functions that he identifies as instrumental, regulatory, interactional/social, personal, heuristic, imaginative and informative. We posit This research is funded by a EUTOPIA PhD Co-tutelle grant.

that endowing robots with the ability to learn language in this functional way is key towards bridging the gap between language and meaning in artificial agents, which remains one of the big challenges in artificial intelligence.

II. RELATED WORK

Computational models of language learning differs by the type of data input the language learner receives and the mechanisms that are used for processing the data [START_REF] Villavicencio | Cognitive aspects of computational language acquisition[END_REF]. Phonological models can learn speech either by imitation [START_REF] Lyon | Interactive language learning by robots: The transition from babbling to word forms[END_REF] or by only randomly exploring phonological possibilities [START_REF] Howard | Modeling the devel. of pronunciation in infant speech acquisition[END_REF] and then relying on a linguistic skilled partner to sort between natural and unnatural language tokens. Generally, the produced language units are not associated with any sensory representation from the external world. Phonological models focus primarily on speech production and can be viewed more as models of speech learning rather than language learning. Labeling models are another category of language learning approaches, for example in [START_REF] Morse | Why are there developmental stages in language learning? a developmental robotics model of language devel[END_REF] and [START_REF] Roy | Learning words from sights and sounds: A computational model[END_REF] the learning is considered as a classification problem, and the models aim to create an association between a perceived object and a label, either through statistical or machine learning approaches. These solutions do not meet the criteria of functionalism of language defined by Halliday [START_REF] Halliday | Language of early childhood[END_REF], since the acquired label does not serve the robot to achieve any goal in the external world. Other shortcomings of these models are the neglect of the active attitude of infants during language learning, since the agent learns new words passively, and the minimization (or absence) of interaction with a learned caregiver, this interaction is considered to be paramount and necessary in infant language development [START_REF] Goldstein | Social feedback to infants' babbling facilitates rapid phonological learning[END_REF], [START_REF] Tamis-Lemonda | Why is infant language learning facilitated by parental responsiveness?[END_REF]. Other models, such as [START_REF] Steels | Grounding adaptive language games in robotic agents[END_REF], rely on interaction between agents to develop a shared vocabulary that allows them to communicate about their environment. While this approach to learning through supportive social interaction by a more skilled collaborator is consistent with social learning theory on how human skills are developed [START_REF] Thornton | Understanding human devel[END_REF], the language acquired in [START_REF] Steels | Grounding adaptive language games in robotic agents[END_REF] is only associated with the sensory features of objects and not with a goal to be achieved through language.

III. PROPOSED APPROACH

To endow a robot with the ability to learn language in a functional way, we propose to learn this capacity initially by trial and error in the same way as goal-oriented actions. In human infants, this learning takes place in the context of typical infant-caregiver social interactions, such as the infant requesting objects out of her reach that we refer to as "social babbling" [START_REF] Cohen | Social babbling: The emergence of symbolic gestures and words[END_REF]. Previous results [START_REF] Cohen | Social babbling: The emergence of symbolic gestures and words[END_REF] demonstrate that the robot can learn both, symbolic words and gestures, to request objects by interacting with a caregiver. This corresponds to the instrumental function of language [START_REF] Halliday | Language of early childhood[END_REF]. We propose to extend this work to include elements that fall under more advanced functions of language described by Halliday [START_REF] Halliday | Language of early childhood[END_REF]. For this purpose, we propose to include a model of affect [START_REF] Canamero | Modeling motivations and emotions as a basis for intelligent behavior[END_REF], [START_REF] Lewis | Hedonic quality or reward? a study of basic pleasure in homeostasis and decision making of a motivated auton. robot[END_REF], [START_REF] Cos | Learning affordances of consummatory behaviors: Motivation-driven adaptive perception[END_REF] as a prerequisite to motivate the acquisition of these functions of language [START_REF] Trevarthen | Making sense of infants making sense[END_REF], and to ground the development of "meaning potentials" in emotional and affective internal states of a robot with interaction with its caregiver. In this paper, we focus on the caregiver's response strategy, particularly two aspects of responses: contingency and contiguity. In child language learning, parent responses are contingent when they are conceptually dependent on the child's exploratory and communicative actions, and contiguous when they are temporally related to the child's actions [START_REF] Tamis-Lemonda | Why is infant language learning facilitated by parental responsiveness?[END_REF]. Both aspects of parental responses facilitate early infant language development [START_REF] Tamis-Lemonda | Why is infant language learning facilitated by parental responsiveness?[END_REF]. We validate our model in experiments reproducing these strategies with a simulated caregiver.

IV. METHOD

The goal is to endow the robot with the ability to express its internal states by requesting an object from a human caregiver. We propose to extend the RL approach proposed by [START_REF] Cohen | Social babbling: The emergence of symbolic gestures and words[END_REF] dedicated to learning associations between internal needs and words in a robot. In the earlier model, the internal states of the robot were limited as they were modeled by binary variables and do not evolve with time. In the present work, we include a dynamic model of motivations [START_REF] Canamero | Modeling motivations and emotions as a basis for intelligent behavior[END_REF], [START_REF] Lewis | Hedonic quality or reward? a study of basic pleasure in homeostasis and decision making of a motivated auton. robot[END_REF], [START_REF] Cos | Learning affordances of consummatory behaviors: Motivation-driven adaptive perception[END_REF]. This allowed us to model the temporal contiguity of the caregiver behaviors, which was not possible with the previous architecture. Furthermore, the robot was not able to modulate the internal states depending on the visual perception of an object, as it does not have a vision module. We propose to also include a visual perception module to overcome this limitation. The present architecture is shown on Fig. 1. The formalism is related to the sensory-motor PerAc neural architecture [START_REF] Gaussier | Perac: A neural architecture to control artificial animals[END_REF].

A. The robot software architecture

The overall architecture consists of three modules: the motivation, visual perception, and phonological modules.

1) Motivation module:

We propose to endow the robot with a dynamic motivation model to modulate the robot's internal motivation over time.

The motivation module is shown on (fig. 1.A), each internal need is modeled by a homeostatic variable h(t) [START_REF] Cos | Hedonic value: Enhancing adaptation for motivated agents[END_REF] that decreases over time and increases when the need is fulfilled (fig. 2a):

h i (t) = h 0 e -t/τi + k α ki j k u(t -t jk )e -(t-t jk )/τi (1)
τ i is the variable decay and u(t) is the Heaviside-step function ,α ki indicates the amount by which the homeostatic variable increases when the need is fulfilled by an object k at time t jk . The robot drive, representing the urge to act, is defined as the difference between the current homeostatic variable and its optimal value h op (fig. 2b):

d i (t) = h op -h i (t) (2) 
The robot's motivation to satisfy a need depends on the related drive and the intensity of the stimulus that can satisfy it [START_REF] Avila-Garcıa | Using hormonal feedback to modulate action selection in a competitive scenario[END_REF]:

m i (t) = d i (t) + d i (t).s i (3) 
The intensity of the stimulus s is estimated by the visual perception module, for this purpose, we used the estimated activation of each class as the intensity of the stimulus corresponding to each object.

2) Visual perception module:

We have included a vision module to enrich the capacity of the robot to perceive its environment and to modulate its motivation system as a function of the object that it perceives in its environment. Motivational states change in a particular way depending on internal and external factors [START_REF] Toates | Motivational sys. No. 4[END_REF]. The internal factor in our case is modeled by the equation 2 and the external factor is estimated by the visual perception module. With the equation 3 [START_REF] Avila-Garcıa | Using hormonal feedback to modulate action selection in a competitive scenario[END_REF], the corresponding motivation increases when an object is perceived.

We used an online incremental learning method, similar to Kohonen's map [START_REF] Kohonen | Self-organization and associative memory[END_REF], called SAW (Self Adaptive Winner). In this method, a matrix of visual features VF, composed of key point descriptors, is defined as:

V F j = net j .H max(γ,net+σnet) (net j ) (4) 
with :

net j = 1 - 1 N . N i=1 |W ij -I i | (5) 
net j : is a measure of the similarity between the features bank VF and the new visual input I, this latter is a size N descriptor calculated around an extracted key points. W : the synaptic weight of the connection between the visual input I and the visual features bank VF. H : the Heaviside function that allow the recruitment of a new neuron,i.e. adding the new visual input to VF, when the similarity is below the threshold of recognition γ:

H θ (x) = 1 if θ < x 0 otherwise (6)
The modification of the weights W is computed as: 

∆W ij = a j (t)I i + µ(1 -δ k j ).(I i -W ij )(1 -V F j ) (7)
a j = 1 if a new neuron is recruited 0 otherwise (9) (8) 
δ k j Kronecker symbol :

δ k j = 1 if j=k 0 otherwise (10)
3) Phonological module:

The robot vocabulary is composed of two-syllable words corresponding to 10 of the most frequent syllables of an 8month-old infant [START_REF] Levitt | From babbling towards the sound sys. of english and french: A longitudinal two-case study[END_REF].The phonological module also contains a text-to-speech unit that allows the robot to vocalize its words.

B. Learning the associations between modules

Our model learns the associations between all these modules, so there are three types of learning in parallel. The goal is that the robot is able to say a word when it is in a given internal state, but also that it is able to learn to name the objects present in its visual field and to know which internal need these objects are able to fill.

1) Association visual perception-motivation modules: The VF bank is used for training a neural network to predict the internal need that can be satisfied with the detected object. The synaptic weights update of this neural network follows the least mean square rule:

∆ω ij = ϵV F i (RIS j -ISP j ) (11) 
with : ϵ the learning rate, RIS the robot internal state and ISP internal state prediction.

2) Association motivation-phonological modules: The association between the robot vocabulary and internal state (fig. 1.A) follows the reinforcement learning approach in [START_REF] Cohen | Social babbling: The emergence of symbolic gestures and words[END_REF]. Our robot has three internal needs that can be satisfied with specific objects. The robot starts by randomly producing a word when one need outweighs the others, the caregiver/human partner does not have access to the internal need of the robot. He/she reacts to the robot's vocalization by selecting an object and handing it to the robot. If the given object satisfies the robot's need, the motivation related to this need decreases, a reward of +1 is given to the robot which expresses its satisfaction with a happy gesture, otherwise the word receives a reward of -1, which decrease the probability of reusing the word in this context, and the robot expresses its dissatisfaction.

In RL, this problem is formulated as a contextual multiarmed bandit problem, in which the action space consists of the words that the robot can vocalize and the contexts correspond to the internal needs. In each context, the Q-value of each action a is estimated with the equations:

Q n+1 (a) = h -1 h Q n (a) + R n ( 12 
)
with h, a parameter used to avoid the Q-value divergence, and R n the reward received at time step n. The robot uses a greedy policy (eq. 13) to select a word according to its internal needs.

A n = argmax a Q n (a) (13) 
The robot also uses an ϵ-greedy policy (equation 14) to choose a word. since with a purely greedy policy the robot can only learn one object per motivation, but sometimes in more realistic scenarios it is possible to have several objects that respond to the same motivation, this aspect will be explored in a scenario with 2 objects for a same motivation.

A n =      argmax a Q n (a)
with probability 1-ϵ

Random action with probability ϵ

ϵ refers to the probability of choosing to explore, we used an exponential decay strategy. The learning algorithm is:

Algorithm 1 Learning algorithm

Require: N, h

Initialize action value function Q(s, a) for n = 1, 2, . . . , N do wait for an internal state s to trigger while The internal state is not satisfied do Choose action a (word) from s using policy derived from Q Take action a, observe R(s, a) r ← R(s, a) Update Q(s, a) ← h-1 h Q(s, a) + r end while end for V. EXPERIMENTAL SETUP To test our model, we used the humanoid robot Reachy with the Unity simulation environment, the robot has three internal needs: hunger, thirst and curiosity, these needs can be satisfied by objects present in the scene. when the robot expresses its need, a human caregiver gives it one of the objects. The robot's vocabulary consists in 10 words, when a need is triggered, the robot pronounces a word and the corresponding text is displayed (fig. 3). Fig. 3: Experimental setup. Reachy is in front of a table with objects that can satisfy its internal needs-curiosity, hunger and thirst. In a given internal state, Reacgy says a word from its repertoire to get the corresponding object. The caregiver tries to guess which object is desired and clicks on it. The robot then expresses its satisfaction or frustration with its antennae.

The moving average of the rewards received by the robot is used as an evaluation metric, the convergence time is defined as the number of iterations needed to reach 90% convergence.

Virtual caregiver To be able to repeat the experiment many times and with a high number of iterations, we used a virtual caregiver that simulates different caregiving strategies. This caregiver does not know the internal states of the robot, he can only choose and give an object to the robot and observe its feedback.

This problem is also formulated as a multi-armed bandit problem [START_REF] Sutton | Reinforcement learning: An introduction[END_REF], the states correspond to the words heard by the virtual caregiver and the action space corresponds to the choices of objects she/he will give, an action receives a reward if the robot expresses its happiness (using its antennae) after obtaining the desired object, otherwise the action is penalized. The choice of the object to be given follows a greedy approach (the action with the greatest value of Q).

Contingency and contiguity modeling Caregiver responses can be characterized by two important aspects that facilitate children's language learning [START_REF] Tamis-Lemonda | Why is infant language learning facilitated by parental responsiveness?[END_REF]: contingency and contiguity. Responses are contingent when they are conceptually dependent on the child's exploratory and communicative actions. We model this by a caregiver that chooses objects at random, regardless the robot feedback and the pronounced word. Contiguous responses that are temporally related to the child's actions are modeled by a caregiver who takes into account the temporal evolution of motivations when making a guess, e.g., if the robot previously asked for a drink, the caregiver will now choose an object that satisfies the other two motivations, exploiting the dynamics of previous interactions to modulate her/his behavior.

VI. RESULTS

These results were calculated on the average of 100 repetitions of each experiment. The moving average reward at each time step n is computed on the previous M = 50 values. The model was evaluated in two different environments and with different types of caregiver response. In this experimental setup, each need of the robot is satisfied by one of the three objects present in the scene (fig. 3). The caregiver tries to guess the requested object and respond each time the robot babbles, if the robot shows its satisfaction, the choice made by the caregiver is rewarded. in this case the objects will be named during the interaction. The results show the convergence of the moving average reward (fig. 4a). Reaching convergence means that the robot has learned to choose consistent words that depend on its internal states, and that the robot is understood by the caregiver, which allows it to obtain the desired objects. Table I shows the association between the robot's vocabulary and the internal needs; after learning, each need has only one word with a max Q-value which confirms the convergence. Object recognition was tested "wada" "naba" "maba" "daba" "paba" "bada" "bama" "babe" "waba" "wama"

"Hunger" -1 -1 2 0 -0.5 0 0 0 0 -1 "Thirst" 0 -1 -1 0 0 -1 0 0 2 0 "Curiosity" -1 -1 -1 -1 -1 -1.25 -1 2 -1 -1
TABLE I: Q-table of the association between the robot vocabulary and its internal states by showing the robot a dataset of 30 images of the three objects-one per image. We evaluated whether the robot could predict the internal state satisfied by the object. The prediction accuracy was 100%; this result can be explained by the limited number of objects in the robot's environment and the optimal experimental conditions of the simulation.

B. Four-object environment

In the second experiment, we study the effect of the number of objects in the environment on the language learning. We used the same experimental setup as in the previous environment but we added an additional object that can also satisfy the need "curiosity". Figure 4a illustrates the evolution of the average reward in the four objects environment. The convergence time is equal in both environments, since the robot only learns to associate one word with the "curiosity" state, even though there are two objects that can satisfy this need. These can be explained by the greedy approach (equation. 13) used by the robot to select a word (action) according to its internal need. To avoid this limitation, we replaced the previous policy by a combination between greedy and exploratory actions to select a word ( ϵ-greedy policy), this allows the robot to ground two words to its internal state "curiosity" (table. II) which correspond to the number of objects that can satisfy this need. Compared to the greedy policy used previously, this approach increases the convergence time (fig. 4b).

C. Effects of the caregiver's responses on language learning 1) Caregiver contingency:

We consider a caregiver who switches between contingent and non-contingent responses in a time interval, Fig 4c shows "wada" "naba" "maba" "daba" "paba" "bada" "bama" "babe" "waba" "wama" "Hunger" In the non-contingent interval [150:200], the robot starts to lose the language already learned. Once the caregiver becomes contingent again (from n=200), the robot starts learning and convergence is reached after 197 time steps. The difference in convergence time can be explained by the difference in the initialization of parameters at the beginning of each interval.

2) Caregiver contiguity: Figure 4d shows a comparison between two caregivers : with contiguous responses (temporally related to the child's motivation) and non-contiguous responses. Convergence was reached more faster with a contiguous strategy. With a non-contiguous caregiver, the robot had to perform 13 more interactions with the caregiver to reach convergence.

VII. DISCUSSION

The robot was able to associate words from its vocabulary with its internal states as demonstrated by the convergence of the moving average reward. The prediction accuracy of the object recognition module confirms that the robot was able to create the second association between its internal states and the perceived objects. In the four-object environment, the robot was capable to associate more words with its internal states only by exploration. Without the latter, it would continue to reuse the first word that enabled it to satisfy its need, and would always associate a number of words equal to the number of its internal states. Changing the policy allows grounding a number of words equal to the number of objects, but will increase the learning time.

The caregiver's response can have a positive impact on language learning by accelerating it, or a negative one by disabling learning or losing what has already been learned. These findings are consistent with infant studies on the influence of parental responsiveness on language acquisition [START_REF] Tamis-Lemonda | Why is infant language learning facilitated by parental responsiveness?[END_REF].

VIII. CONCLUSION

We have presented a robot model of language learning inspired by how children learn language through natural interactions with a human caregiver. The model has three modules: motivational, visual and phonological module. Learning the associations between these modules creates a double association between words and internal states and internal states and objects. The association of each word with a need gives the acquired language a pragmatic aspect rather than being a simple label paired with an object. Learning language in this functional way is consistent with the functionalist view of language acquisition. Our model was validated in experiments testing the effect of a caregiver's responsiveness-particularly contingency and contiguity of the parental response-on the robot's language learning. Our results show that both contingency and contiguity can contribute to the stabilization and acceleration of the learning. In future work, we envisage to extend the motivational module with new emotional and affective internal states, in order to increase the number of meaningful words in the robot's vocabulary, and to ground the modeling of the more advanced functions of language.
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