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Abstract

Estimating quantiles of an outcome conditional on covariates is of fundamental interest in
statistics with broad application in probabilistic prediction and forecasting. We propose an
ensemble method for conditional quantile estimation, Quantile Super Learning, that com-
bines predictions from multiple candidate algorithms based on their empirical performance
measured with respect to a cross-validated empirical risk of the quantile loss function. We
present theoretical guarantees for both i.i.d. and online data scenarios. The performance of
our approach for quantile estimation and in forming prediction intervals is tested in simula-
tion studies. Two case studies related to solar energy are used to illustrate Quantile Super
Learning: in an i.i.d. setting, we predict the physical properties of perovskite materials for
photovoltaic cells, and in an online setting we forecast ground solar irradiance based on
output from dynamic weather ensemble models.

Keywords: cross validation, online learning, quantile regression

1. Introduction

Estimating the quantiles of an outcome conditional on covariates is a foundational task
in statistics. Many algorithms have been developed for that purpose, including versions
of linear regression, generalized additive models, random forests, and neural networks, to
name only a few (Koenker, 2005; Athey et al., 2019; Cannon, 2011; Fasiolo et al., 2020).
On any particular dataset, however, it is almost never known a-priori which method will
perform best. Ensemble algorithms combine the predictions of multiple candidate algorithms
according to their empirical performance, obviating the need to choose between the available
algorithms in advance. In particular, Super Learning combines the predictions of candidate
algorithms according to their cross-validated risk with respect to a loss function chosen on
a case by case basis depending on the task at hand (van der Laan et al., 2007).

In this work we present the Quantile Super Learner (QSL), a novel ensemble learning
algorithm tailored to estimating conditional quantiles. To illustrate the main ideas, suppose
we have n independent and identically distributed (i.i.d.) observations (O1, . . . , On) of a
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generic variable O = (X, Y ) drawn from a law P0, with X ∈ X a set of covariates and
Y ∈ R a univariate outcome. Our goal is to estimate the α-conditional quantile of Y given
X, denoted ψαP0

(X) where ψαP0
∈ Ψ with Ψ the set of all functionals mapping X → R. At our

disposal are a set of algorithms ψ̂αk , k = 1, . . . , K that map a dataset to an estimator of the
α-conditional quantile. No assumptions are necessary about how these algorithms work, and
in our simulations and case studies we use a variety methods including quantile regression,
gradient boosting machines, and neural networks, among others.

As we are not likely to know a-priori which algorithm will perform best for a particular
dataset, we choose between them by evaluating their performance with respect to the quantile
loss function Lα, given for any ψ ∈ Ψ by

(x, y) 7→ Lα(ψ)(x, y) =

{
α|y − ψ(x)|, if y > ψ(x)

(1− α)|y − ψ(x)|, if y ≤ ψ(x).

We choose this loss function because its expected value under P0 is minimized by the true
conditional quantile functional:

ψαP0
∈ arg min

ψ∈Ψ
EP0 [L

α(ψ)(X, Y )] = arg min
ψ∈Ψ

Rα
P0

(ψ),

where we have defined Rα
P0

(ψ) to be the risk of the algorithm ψ with respect to P0. If we had
oracular knowledge of the true data generating distribution P0 we could evaluate the true
risk Rα

P0
directly for the output of each algorithm and choose the one with the lowest risk. In

practice we do not have access to P0, so we must approximate the true risk. The strategy used
in Super Learning is to use a cross-validated risk as an estimator of the true risk, and then
select the algorithm that minimizes this cross-validated risk. Our main theoretical results
are in the form of a bound on the difference between the risk of the algorithm selected using
the cross-validated risk and the risk of the algorithm that minimizes the true risk, following
the strategy of (Wu and Benkeser, 2022). Notably, these results are established without any
regularity assumptions on the data generating distribution.

So far, we have discussed the case where the data are i.i.d. draws from a probability
law. However, in many scenarios i.i.d. assumptions are not justified, such as for time-series
data. The key difference between Super Learning in the i.i.d. and sequential cases is in the
cross-validation scheme used to calculate the empirical risk of the candidate algorithms. In
the i.i.d. case, V -fold cross-validation is typically used, in which the dataset is split uniformly
at random into V couples of training and test sets. For the online setting, the collection
of all previously observed data is used as a training set and the next observation (or set of
observations) is used as a test set. Our main theoretical result for the online setting is similar
to that of the i.i.d. result, providing bounds on the excess risk of the algorithm chosen based
on minimizing the online cross-validated risk. However, for the online setting it is necessary
to introduce mild regularity assumptions on the data-generating process. Using ideas from
Steinwart and Christmann (2011), we make a margin assumption concerning the behavior of
the conditional law around the quantile being estimated, which allows us to establish excess
risk bounds.

One of the potential use cases of the quantile Super Learner in both i.i.d. and online
settings is to form prediction intervals by separately estimating a lower and upper quantile.
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Intuitively, we would expect that if we can do a good job estimating each of these quan-
tiles, then the prediction intervals will also perform well. However, there is no theoretical
guarantee that such quantile estimates will yield prediction intervals with desired frequency
characteristics in finite samples. We investigate this use case empirically in simulations and
case studies.

Prior Work. Early proposals of combining predictions from multiple base learners include
stacked generalization, described by Wolpert (1992) and Breiman (1996). The theoretical
foundations of the approach were formalized by van der Laan and Dudoit (2003), van der
Laan et al. (2006), and van der Vaart et al. (2006); the name “Super Learner” was subse-
quently coined by van der Laan et al. (2007). Early development of Super Learning primarily
focused on estimating conditional means using a squared-error loss function in the context
of i.i.d. data. Since then, extensions to other loss functions have included the Area Under
the Curve (AUC) loss function (LeDell et al., 2016) and the Huber loss function (Wu and
Benkeser, 2022), among others. Theory for online (sequential) ensemble learning within
the Super Learning framework that incorporates the statistical dependence of the data was
developed in Benkeser et al. (2018) and Ecoto et al. (2021). Fakoor et al. (2023) provide
a comprehensive account of ensemble methods for quantile estimation, including detailed
empirical comparisons. Our work is in a similar vein, but provides formal theoretical guar-
antees for the proposed Super Learning based approach. Sun et al. (2023) propose an online
estimator for quantiles within a parametric model and using a smooth approximation of the
quantile loss function. In this framework, they show that their “renewable estimator” is
consistent, asymptotically normal, and that it enjoys an oracle property. In contrast, our
approach is fully non-parametric.

Outline. The rest of the paper unfolds as follows. In Section 2 we develop the QSL for
i.i.d. data and establish an oracle inequality showing that the estimator is asymptotically
equivalent to the best performing candidate algorithm. In Section 3 we extend the QSL to
the setting of sequential data and establish similar oracle inequalities as in the i.i.d. case. In
Section 4 we investigate the finite-sample performance of the QSL in simulations. In Section
5 we present two case studies related to solar energy: predicting the physical properties of
perovskite materials for photovoltaic applications and forecasting solar irradiance based on
the output of deterministic numerical weather prediction models.

2. Independent setting

Our initial results develop a QSL in a setting where the observed data represent i.i.d.
draws from an underlying distribution. Let (O1, . . . , On) be n i.i.d. observations of a generic
variable O = (X, Y ) from the law P0 on O = X × R, where X ∈ X is a set of covariates
and Y ∈ R is a univariate outcome. We assume that P0 falls in statistical modelM. For all
P ∈M and α ∈ (0, 1), define the α-quantile of Y conditional on X as the possibly set-valued
functional

ψαP (X) := {y ∈ R : P (Y < y | X) ≥ α, P (Y ≥ y | X) ≥ 1− α}.
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Our goal is to estimate x 7→ ψαP0
(x) for a given α, the conditional α-quantile under the

true data generating distribution P0. For the i.i.d. setting, we make two key simplifying
assumptions:

Assumption A1 (Unique Quantiles). The quantile function ψαP0
(x) is a singleton for PX-

almost all x ∈ X.

Assumption A2 (Outcome Boundedness). It holds P0 almost surely that |Y | ≤ C0 < ∞.
Note that in practice, the value of C0 does not need to be known.

Next, we establish that ψαP is a minimizer of a particular loss function. Let Ψ be the
set of all (measurable) functions mapping X to R. The quantile loss function Lα for the
α-quantile is given by

(x, y) 7→ Lα(ψ)(x, y) :=

{
α|y − ψ(x)|, if y > ψ(x)

(1− α)|y − ψ(x)|, if y ≤ ψ(x)

for any (x, y) ∈ O and ψ ∈ Ψ. The risk of ψ under the loss function Lα relative to a
distribution P ∈M is defined as

Rα
P (ψ) := EP [Lα(ψ)(O)] = PLα(ψ), (1)

where we use the notation Pf = EP [f(O)] =
∫
fdP . Note that the true conditional quantile

function minimizes the quantile loss:

ψαP0
= arg min

ψ∈Ψ
Rα
P0

(ψ).

This well-known fact serves as the basis of quantile regression (Gneiting, 2011; Koenker,
2005).

2.1. Super Learning

An algorithm to learn ψαP0
is a function mapping any finite set {o1, . . . , oM} of M elements

of O, viewed as the measure M−1
∑M

m=1 Dirac(om), to an element of Ψ. Suppose we have K

such algorithms ψ̂α1 , . . . , ψ̂
α
K which seek to learn ψαP0

. Super Learning amounts to identifying
which of the algorithms performs best.

Discrete Super Learner.. The discrete Super Learner identifies the best performing algorithm
among the candidate algorithms as measured by their cross-validated risks. To formalize the
cross-validation scheme, we introduce Bn ∈ {0, 1}n, a random vector drawn independently of
O1, . . . , On such that

∑n
i=1Bn(i) ≈ np for some user-supplied proportion p. The observation

Oi falls in the training set if Bn(i) = 0, and in the testing set if Bn(i) = 1. The Bn-specific
training and testing datasets are represented by the empirical distributions P 0

n,Bn
and P 1

n,Bn
.

For instance, to implement V -fold cross-validation, we draw Bn from the uniform distribution
on {b1, . . . , bV } ⊂ {0, 1}n where each bv satisfies

∑n
i=1 bv(i) ≈ n/V (a proportion (V −1)/V of

data are used for training, and the rest for testing) and, for every 1 ≤ i ≤ n,
∑V

v=1 bv(i) = 1
(each observation is used once for testing).
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The oracle cross-validated risk of algorithm ψ̂αk with respect to a distribution P ∈ M is
then defined by

R̃α
n,P (ψ̂αk ) := EBn

[
PLα(ψ̂αk (P 0

n,Bn))
]
. (2)

The empirical version of the oracle cross-validated risk is simply obtained by substituting
P 1
n,Bn

for P in (2):

R̂α
n(ψ̂αk ) := EBn

[
P 1
n,BnL

α(ψ̂αk (P 0
n,Bn))

]
.

The discrete Super Learner selector minimizes the empirical cross-validated risk:

κ̂n := arg min
k∈JKK

R̂α
n(ψ̂αk ),

using the notation JKK := {1, 2, . . . , K}. The corresponding algorithm ψ̂ακ̂n is referred to as
the discrete Super Learner.

Continuous Super Learner. The continuous Super Learner considers a richer class of algo-
rithms taking the form of convex combinations of the original candidate algorithms. Let Π
be the K-simplex: that is, the set of π ∈ (R+)K such that

∑K
k=1 πk = 1. The new generic

candidate algorithms take the form

ψ̂απ :=
K∑
k=1

πkψ̂
α
k (3)

for any π ∈ Π. Let Πn be a finite subset of Π such that the cardinality of Πn grows at most
polynomially with n. The continuous Super Learner is found by finding the weights π ∈ Πn

that minimize the empirical cross-validated risk:

π̂n ∈ arg min
π∈Πn

R̂α
n(ψ̂απ ).

The algorithm ψ̂απ̂n is referred to as the continuous Super Learner. Note that the continuous
Super Learner is simply the discrete Super Learner when the collection of candidate algo-
rithms is {ψ̂απ : π ∈ Πn}. As such, we focus on analyzing the properties of the discrete Super
Learner, as the results carry over to the continuous Super Learner.

2.2. Oracle Inequalities

We compare the discrete Super Learner against an oracle selector which identifies the
candidate algorithm that has the best oracle cross-validated risk with respect to the law P0:

κ̃n := arg min
k∈JKK

R̃α
n,P0

(ψ̂αk ).

The corresponding algorithm ψ̂ακ̃n is referred to as the oracle Super Learner.
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Let ψ̃αP0
denote the oracle algorithm that constantly outputs the true conditional α-

quantile ψαP0
. Our theoretical results compare the excess risk of the discrete Super Learner

to the excess risk of the oracle Super Learner, that is

R̃α
n,P0

(ψ̂ακ̂n)− R̃α
n,P0

(ψ̃αP0
) vs. R̃α

n,P0
(ψ̂ακ̃n)− R̃α

n,P0
(ψ̃αP0

),

where

R̂α
n,P0

(ψ̃αP0
) := EBn

[
P 1
n,BnL

α(ψαP0
)
]
.

We are now ready to state the main result of this section, an excess risk bound for the
discrete Super Learner.

Theorem 1 (Excess risk bounds for discrete Super Learner). Assume that the number of
candidate algorithms grows at most polynomially in n: that is, K = O(na) for some a > 0.
Also assume that, for all k ∈ JKK, ψ̂αk only outputs functions which are uniformly bounded
by C0. Then

EP0

[
R̃α
n,P0

(ψ̂ακ̂n)− R̃α
n,P0

(ψ̃αP0
)
]
≤ EP0

[
R̃α
n,P0

(ψ̂ακ̃n)− R̃α
n,P0

(ψ̃αP0
)
]

+O

(
log(n)

n1/2

)
.

3. Sequential setting

In the sequential setting we gain access to the observations in batches. In particular,
we are interested in the setting where, at each time point, we gain access to a new batch of
observations, one for each element in an index set J . For example, we may have multiple time
series corresponding to several locations, where each location generates a new observation
at each timepoint. Note that if |J | = 1, then the problem reduces to the case where we
observe a single time series.

Let (Ōt)t≥1 be a time-ordered sequence where t indexes time. Each Ōt is the set of
observations Ōt = (Oj,t : j ∈ J ). The observations then decompose as Oj,t = (Xj,t, Yj,t)
for j ∈ J , t ≥ 1. Let P0 be the joint law of the observed data, which we assume falls in a
statistical model M. For all t ≥ 2, introduce the σ-field Ft−1 := σ (Oj,t′ : j ∈ J , 1 ≤ τ < t)
generated by past observations (with F0 := ∅ by convention). For all P ∈ M and (j, τ) ∈
J ×N∗ define the α-quantile of Y conditional on X at location j and time τ as the possibly
set-valued

ψαP,j,t(Xj,t) := {y ∈ R : P (Yj,t < y | Xj,t) ≥ α, P (Yj,t ≥ y | Xj,t) ≥ 1− α},

where α ∈ (0, 1) is taken as fixed. The sequential setting requires several more assumptions
in addition to those adopted in the i.i.d. case. First, we make the simplifying assumption of
common support of the covariates across all locations and time points.

Assumption B1 (Common Support). For all P ∈ M there exists S such that, for all
(j, τ) ∈ J × N∗,

Supp
(
PXj,τ

)
= S,

where PXj,τ is the marginal law of X under P at location j and time τ .
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As in the i.i.d. setting, we will also assume the existence of unique quantiles and that the
outcomes are uniformly bounded.

Assumption B2 (Unique Quantiles). For all (j, τ) ∈ J × N∗, the α-quantile ψαP0
(x) is a

singleton for all x ∈ S.

Assumption B3 (Outcome Boundedness). It holds P0-almost surely that, for all (j, τ) ∈
J × N∗, |Yj,t| ≤ C0 <∞.

We also make a Markovian assumption that all information about the outcome at a
particular location and time point is encoded in prior observations and the covariates for
that location and time point.

Assumption B4 (Markov). For every (j, τ) ∈ J × N∗, it holds P0-almost surely that

P0 (Yj,τ |(Xj,τ : j ∈ J )) = P0 (Yj,τ |Xj,τ ) .

Finally, the next assumption guarantees that we can learn the quantile function based
on the observed time series Ō1, . . . , Ōt.

Assumption B5 (Stationarity). There exists Ψα
P0
∈ Ψ such that, for every (j, τ) ∈ J ×N∗,

arg min
ψ∈Ψ

EP0 [L
α(ψ)(Oj,τ )] = ψαP0

.

(Informally, the assumption states that Ψα
P0,j,τ

= Ψα
P0

for all (j, τ) ∈ J × N∗.)
We prove the oracle inequalities for Super Learning in the sequential setting by making a

regularity assumption on the P0-conditional laws given Ft. In order to state the assumption,
we need the following two definitions drawn from (Steinwart and Christmann, 2011).

Definition 1 (Quantiles of type q (Steinwart and Christmann, 2011)). Let Q be a distribution
with Supp(Q) ⊂ [−1, 1]. Set arbitrarily α ∈ (0, 1), let ψαQ := {t ∈ R : Q((−∞, t]) ≥
α,Q([t,∞)) ≥ 1 − α} be the α-quantile of Q, and assume that ψαQ is a singleton. The
distribution Q is said to have an α-quantile of type q ∈ (1,∞) if there exist constants
αQ ∈ (0, 2] and bQ > 0 such that

Q((ψαQ − s, ψαQ)) ≥ bQs
q−1,

Q((ψαQ, ψ
α
Q + s)) ≥ bQs

q−1

for all s ∈ [0, αQ]. We also define γQ = bQα
q−1
Q .

Definition 1 applies to a distribution with support on a subset of R. The next definition
is an extension to distributions defined on a subset of X × R.

Definition 2 (Quantiles of p-average type q (Steinwart and Christmann, 2011)). Let p ∈
(0,∞], q ∈ [1,∞), and Q be a distribution on X × R with marginal distribution QX of X .
Assume that Supp(Q(· | X = x)) ⊂ [−1, 1] for QX-almost all x ∈ X. Then Q is said to have
an α-quantile of p-average type q if Q(· | X = x) has an α-quantile of type q for QX-almost
all x ∈ X , and if the function γ : X → [0,∞] given for QX-almost all x ∈ X by

γ(x) := γQ(·|X=x) := bQ(·|X=x)α
q−1
Q(·|X=x)

(as defined in Definition 1) is such that γ−1 admits a finite moment ‖γ−1‖p,QX of order p
under QX .
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Now we are ready to state the final assumption we use for the oracle inequality in the
sequential setting.

Assumption B6 (Regularity). For every (j, τ) ∈ J × N∗, the P0-conditional law of Oj,τ

given Fτ−1 has an α-quantile of p-average type q. Moreover, the collection of ‖γ−1‖p,QX ,
where Q ranges over the P0-conditional laws of Oj,τ given Fτ−1, is uniformly bounded by a
constant Γ > 0.

3.1. Super Learner

Discrete Super Learner. Suppose as in the i.i.d. setting that we haveK algorithms ψ̂α1 , . . . , ψ̂
α
K

to learn ψαP0
. Each ψ̂αk is a function mapping any finite sequence ō1, . . . , ōt to an element of

Ψ. Let Pt :=
∑t

τ=1 Dirac(ōτ ) be the empirical distribution of the data up to time t. Define
the Lα-loss of ψ ∈ Ψ with respect to a batch of observations ōt as:

L̄α(ψ)(ōt) :=
1

|J |
∑
j∈J

Lα(ψ)(oj,t).

The oracle risk of an algorithm ψ̂αk up to time t ≥ 1 with respect to a distribution P ∈ M
is defined as:

R̃α
t,P (ψ̂αk ) :=

1

t

t∑
τ=1

EP
[
L̄α(ψ̂αk (Pτ−1))(Ōτ )

∣∣∣Fτ−1

]
,

where by convention ψ̂αk (Pt−1) produces an arbitrary constant function (e.g. always zero) for

the case t = 1. The empirical risk up to time t of ψ̂αk is defined as the empirical counterpart
of its oracle risk:

R̂α
t (ψ̂αk ) :=

1

t

t∑
τ=1

L̄α(ψ̂αk (Pτ−1))(Ōτ ) (4)

=
1

t|J |

t∑
τ=1

∑
j∈J

Lα(ψ̂αk (Pτ−1))(Oj,τ ).

At each t ≥ 1, the discrete online Super Learner selector is formed by finding the algorithm
that minimizes the empirical risk up to time t:

κ̂t = arg min
k∈JKK

R̂α
t (ψ̂αk ).

The algorithm ψ̂ακ̂t is referred to as the online discrete Super Learner.

Continuous Super Learner. Convex combinations of the candidate algorithms are formed
as in the i.i.d. setting (3), yielding new candidate algorithms ψ̂απ (for any π ∈ Πn). The
continuous online Super Learner selector is then formed by finding weights that minimize
the empirical risk in hindsight:

π̂t ∈ arg min
π∈Πn

R̂α
t (ψ̂απ ).

The algorithm ψ̂απ̂t is referred to as the online continuous Super Learner.
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Algorithm R package Citations

Distributional Random Forest (DRF) drf Michel and Cevid
(2021); Ćevid et al.
(2022)

Gradient Boosting Machine (GBM) lightgbm Shi et al. (2023)
Quantile Generalized Additive Models (QGAM) qgam Fasiolo et al. (2020,

2021)
Quantile Random Forest (QRF) grf Athey et al. (2019)
Quantile Regression (QReg) quantreg Koenker (2005);

Koenker et al. (2017)
Quantile Regression Neural Network (QRNN) qrnn Cannon (2011, 2018)

Table 1: Example library of candidate algorithms for i.i.d. conditional quantile estimation.

3.2. Oracle Inequalities

In this section we establish oracle inequalities for the discrete online Super Learner, based
on results for online Super Learner established in (Ecoto et al., 2021). The main result is
presented below, with the proof to be found in the appendix.

Theorem 2. Assume that the number of candidate algorithms grows at most polynomially
in t, that is, K = O(ta) for some a > 0. Also assume that, for all k ∈ JKK, ψ̂αk only outputs
functions which are uniformly bounded by C0. Then, for t large enough,

EP0

[
R̃α
t,P0

(ψ̂ακ̂t)− R̃
α
t,P0

(ψαP0
)
]
≤ EP0

[
R̃α
t,P0

(ψ̂ακ̃t)− R̃
α
t,P0

(ψ̂αP0
)
]

+O

(
log(log(t))

t1/2

)
.

Note that the number of locations |J | is hidden in the “large enough” t (and not in the
order term). Specifically, the larger is the number of locations |J |, the smaller t needs to be
for the inequality to hold.

4. Simulation Studies

In this section we investigate the finite sample performance of the QSL in the i.i.d. and
sequential settings. A natural application of quantile estimation is in forming prediction
intervals from estimates of a lower and upper quantile, which we investigate in both settings.
We used the sl3 R package (Coyle et al., 2021) to implement the i.i.d. QSL algorithm.
For the sequential setting, we compare the online quantile Super Learner to two algorithms
from the online aggregation of experts literature: Exponentially Weighted Average (EWA;
Cesa-Bianchi and Lugosi (2006)) and Bernstein Online Aggregation (BOA; Wintenberger
(2017)). Both algorithms are implemented in the opera R package (Gaillard et al., 2023),
which uses an adaptive procedure to fine tune their learning rates. We added the QSL as
an additional method to the opera package to facilitate its use and comparison with other
methods. Code for the simulations and case studies can be found at https://github.com/
herbps10/QuantileSuperLearner.
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4.1. Independent setting

Simulated datasets consisted of N1 ∈ {250, 500, 1000} i.i.d. draws (Xi, Yi), i = 1, . . . , N1,
of a generic variable (X, Y ). The covariates forming X = (X1, X2, X3, X4, X5) were drawn
independently from the uniform distribution on [0, 1]. Conditional on X, the outcome Y was
chosen to be a linear combination of smooth and non-smooth functions of the covariates:

Y = sin(2X1) + |X2| − 0.5X1X3 + bX4c+ ε,

where ε ∼ N(0, 0.1). An additional N2 = 1000 observations (Xi, Yi), i = N1 +1, . . . , N1 +N2,
were drawn from the same data generating process and used as a validation set to evaluate
the performance of the Super Learner in predictions of unseen data. Overall, 50 learning
and testing datasets were generated for each sample size N1.

We estimated the α-quantile with α ∈ {0.025, 0.05, 0.1, 0.5, 0.9, 0.95, 0.975} for each sim-
ulated dataset using separate QSLs. The candidate algorithms included gradient boosting
machines, quantile regression, quantile neural networks, quantile random forests, and quan-
tile generalized additive models (see Table 1 for references). We compared the QSL against
the candidate algorithms by calculating their empirical risks with respect to the testing
dataset. To do so, we defined the empirical risk of an algorithm ψ̂α as

EmpRisk(α) :=
1

N2

N1+N2∑
i=N1+1

Lα(ψ̂α(PN1))(Xi, Yi). (5)

In addition, 80%, 90%, and 95% prediction intervals were formed using the 10%, 5%, and
2.5% and 90%, 95%, and 97.5% quantile estimates as the lower and upper interval bounds,
respectively. The empirical coverage of a (1 − β) × 100% prediction interval built using

algorithms ψ̂β/2 and ψ̂1−β/2 was defined as

EmpCov(β) :=
1

N2

N1+N2∑
i=N1+1

I
[
ψ̂β/2(PN1)(Xi) ≤ Yi ≤ ψ̂1−β/2(PN1)(Xi)

]
. (6)

Results. The empirical risk (5) results are shown in Table 2. QSL achieved the best (or tied
for best) quantile risk for all quantiles and sample sizes. However, the empirical coverage
prediction intervals formed using QSL estimates, as shown in Table 3, did not necessarily
perform as well compared to the candidate algorithms.

4.2. Sequential setting

For the sequential setting we augmented the data generating process from the i.i.d. simu-
lation study to induce temporal dependence. We simulated Yt, t = 1, . . . , T = 2000 following

Yt = sin(2X1) + |X2| − 0.5X1X3 + bX4c+ εt,

where (εt)t≤T is now drawn from an AR(1) process:

ε1 ∼ N(0, σ2/(1− ρ2)) and, for 1 < t ≤ T , εt ∼ N(ρ · εt−1, σ
2),

with ρ ∈ (0, 1) an autoregressive parameter and σ > 0 a scale parameter.
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EmpRisk(α)
N1 Algorithm α = 0.025 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.975

250 GRF 0.063 0.11 0.17 0.33 0.17 0.11 0.069
GBM 0.06 0.084 0.11 0.16 0.1 0.079 0.058
QGAM 0.034 0.057 0.098 0.29 0.1 0.058 0.035
QRNN 0.052 0.083 0.13 0.32 0.13 0.083 0.052
QReg 0.057 0.1 0.17 0.41 0.18 0.1 0.058
QSL 0.033 0.053 0.088 0.16 0.09 0.057 0.035

500 GRF 0.058 0.095 0.15 0.27 0.16 0.098 0.061
GBM 0.05 0.065 0.083 0.12 0.084 0.067 0.051
QGAM 0.032 0.053 0.092 0.27 0.092 0.053 0.032
QRNN 0.041 0.072 0.12 0.32 0.12 0.073 0.042
QReg 0.056 0.1 0.17 0.4 0.17 0.1 0.056
QSL 0.028 0.045 0.07 0.12 0.074 0.049 0.031

1000 GRF 0.051 0.084 0.13 0.2 0.14 0.088 0.054
GBM 0.038 0.051 0.064 0.092 0.063 0.051 0.04
QGAM 0.029 0.05 0.088 0.27 0.088 0.05 0.029
QRNN 0.039 0.068 0.12 0.31 0.12 0.07 0.038
QReg 0.055 0.099 0.17 0.4 0.17 0.099 0.054
QSL 0.024 0.038 0.057 0.092 0.058 0.041 0.027

Table 2: Results for the i.i.d. simulation study. The QSL and candidate algorithms were trained on a
learning dataset of N1 observations and evaluated (5) on a testing dataset of N2 = 1000 observations.

EmpCov(β)
N1 Algorithm (1− β) = 0.8 (1− β) = 0.9 (1− β) = 0.95

250 GRF 88.2% 94.9% 97.2%
GBM 56.1% 70.7% 81.7%
QGAM 87.9% 96.9% 99.3%
QRNN 75.1% 83.7% 87.2%
QReg 78.8% 88.4% 93.2%
QSL 82.7% 94.8% 98.3%

500 GRF 89.3% 95.3% 97.6%
GBM 53% 67.1% 79.3%
QGAM 89.8% 97.8% 99.7%
QRNN 77.6% 86.8% 91.5%
QReg 79.1% 89.1% 93.8%
QSL 77.2% 92.8% 98.1%

1000 GRF 92% 96.7% 98.5%
GBM 53.1% 66.5% 78.6%
QGAM 89.2% 97.6% 99.7%
QRNN 79.1% 88.6% 93.6%
QReg 79.9% 89.5% 94.4%
QSL 73% 89.7% 97.4%

Table 3: Results for the i.i.d. simulation study. The QSL and candidate algorithms were trained on a
learning dataset of N1 observations and evaluated (6) on a testing dataset of N2 = 1000 observations.
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We estimated the same set of α-quantiles as before for each simulated dataset using sep-
arate online QSLs. The candidate algorithms included gradient boosting machines, quantile
regression, quantile neural networks, quantile random forests, and quantile generalized ad-
ditive models (see Table 1). To save computational time, each of the candidate algorithms
was fit once using a single training set of all observations from t = 1 to t = T/2 = 1000.
This amounts to substituting PT/2 for Pτ−1 in (4).

The empirical risk and coverage of the candidate algorithms are defined as in (5) and (6),
substituting T/2 for N1 and N2. The empirical risk and coverage of the online algorithms
(QSL, EWA, and BOA) is defined differently as they are updated for each t. For an online

algorithm ψ̂α the final empirical risk is defined as

EmpRisk(α) :=
1

T/2

T∑
t=T/2+1

Lα(ψ̂αt )(Xt, Yt), (7)

where ψ̂αt is the output of the algorithm using all data before time t. Similarly, the final

empirical coverage for (1− β)× 100% prediction intervals formed from algorithms ψ̂β/2 and

ψ̂1−β/2 is defined as

EmpCov(β) :=
1

T/2

T∑
t=T/2+1

I
[
ψ̂
β/2
t (Xt, Yt) ≤ Yt ≤ ψ̂

1−β/2
t (Xt, Yt)

]
, (8)

where ψ̂
β/2
t and ψ̂

1−β/2
t are the output of the algorithms ψ̂β/2 and ψ̂1−β/2 using data before

time t, respectively.

Results. The online empirical risk (7) results are shown in Table 4. The algorithms yielded
similar empirical risks, with QSL having slightly lower risks for most quantiles and settings of
ρ. The prediction intervals formed using the quantile estimates from each algorithm tended
to undercover (see Table 5), especially for QSL.

5. Case Studies

In this section we present two case studies based on solar energy applications, one for the
i.i.d. setting and one for the online setting.

5.1. Perovskite energy formation and bandgap prediction

A critical component of photovoltaic (PV) cells is the material used for the light-absorbing
semiconductor layer. The use of materials with perovskite crystal structures has been the
subject of significant recent research, leading to the energy efficiency of perovskite-based PV
cells increasing rapidly from 3.8% in 2009 to 26.08% in 2023 (Kojima et al., 2009; Park et al.,
2023). While an immense number of compounds exhibit the perovskite crystal structure, not
all are useful for solar applications. As experimentally determining the relevant properties
of a perovskite compound is resource-intensive, there is significant interest in developing
methods to screen for compounds that are likely to have desirable qualities. One method is
to use density functional theory (DFT), a method for estimating the physical properties of
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EmpRisk(α)
ρ Algorithm α = 0.025 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.975

0 BOA 0.024 0.038 0.056 0.3 0.055 0.04 0.028
EWA 0.024 0.038 0.057 0.29 0.056 0.04 0.027
QSL 0.023 0.036 0.055 0.27 0.054 0.038 0.026

0.5 BOA 0.024 0.038 0.058 0.3 0.058 0.041 0.028
EWA 0.024 0.038 0.059 0.3 0.059 0.041 0.028
QSL 0.023 0.036 0.056 0.28 0.056 0.039 0.026

0.9 BOA 0.03 0.047 0.073 0.38 0.072 0.048 0.031
EWA 0.03 0.046 0.072 0.36 0.072 0.048 0.03
QSL 0.03 0.045 0.072 0.34 0.071 0.047 0.029

0.99 BOA 0.068 0.084 0.14 0.61 0.14 0.082 0.048
EWA 0.067 0.078 0.13 0.56 0.13 0.078 0.047
QSL 0.069 0.086 0.14 0.58 0.14 0.083 0.049

Table 4: Results for the online simulation study in terms of empirical risk (7).

EmpCov(β)
ρ Algorithm (1− β) = 0.8 (1− β) = 0.9 (1− β) = 0.95
0 BOA 71.8% 88.2% 93.5%

EWA 71.7% 86.9% 92.1%
QSL 70.9% 86.4% 91.7%

0.5 BOA 72.1% 88.4% 93.6%
EWA 71.9% 87% 92.1%
QSL 70.9% 86.5% 92%

0.9 BOA 73.1% 88.7% 92.9%
EWA 72.8% 87.1% 91.9%
QSL 71.7% 86.5% 91.5%

0.99 BOA 73.3% 86.3% 87.3%
EWA 73.9% 86.5% 87.4%
QSL 71.2% 83.8% 86%

Table 5: Results for the online simulation study in terms of empirical coverage (8).
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a compound (Hohenberg and Kohn, 1964; Kohn and Sham, 1965; Jones, 2015). However,
the computational intensity of DFT makes it scale poorly to large numbers of candidate
perovskites, motivating research into the use of machine learning techniques to approximate
DFT outputs as an initial screening step (Chenebuah et al., 2021).

In this case study, we focus on predicting the DFT-output formation energy and energy
bandgap of a perovskite material using data made available by Chenebuah et al. (2021).
Finding the formation energy of a material is useful as it is related to its stability, and
determining the energy bandgap is useful as it has a direct relationship with PV efficiency.
Chenebuah et al. (2021) applied multiple machine learning algorithms to predict formation
energy and energy bandgap using data from 1,453 perovskite materials gathered from the
Materials Project database (Jain et al., 2013). Predictors include element-based features,
stability features, and crystallographic features; we refer to (Chenebuah et al., 2021, Table 2)
for a full description. Their methods focus on point predictions of formation energy and
bandgap; in this case study, we extend their results by forming both point and interval
predictions based on quantile estimation.

Formally, let Yi, i = 1, . . . , N be the DFT formation energy or energy bandgap and Xi a
set of 56 covariates (two of the original covariates from Chenebuah et al. (2021) were removed
as they were almost perfectly collinear with other covariates). We assume that the couples
(Xi, Yi), i = 1, . . . , N are drawn i.i.d. from a probability law. Our goal is to estimate the con-
ditional median and conditional α-quantiles (with α ∈ {0.025, 0.05, 0.1, 0.5, 0.9, 0.95, 0.975})
of the outcome conditional on covariates. Four candidate algorithms for the Super Learner
ensemble were included in the ensemble: generalized random forests (GRF), directional ran-
dom forests (DRF), gradient boosting machines (GBM), quantile neural networks (QRNN,
with 2 hidden layers), and quantile regression (see Table 1).

Results. The case study results are presented in Table 6. For the formation energy and
energy bandgap the QSL achieved the lowest cross-validated quantile risk for all quantiles.
In addition, the cross-validated empirical coverage of the QSL prediction intervals were the
closest to the nominal level. For the energy bandgap, the QSL had the lowest or tied for
the lowest empirical risk for 6 out of the 7 estimated quantiles. The QSL 90% and 95%
prediction intervals were the closest to having the optimal empirical coverage, although the
80% prediction interval undercovered relative to other methods.

5.2. Post-processing solar irradiance forecats

Solar irradiance is one of the principal variables influencing photovoltaic power output
(Ahmed et al., 2020). Short-term forecasts of solar irradiance are used to predict solar output,
which aids electrical grid integration of solar power (Lorenz et al., 2011). As a case study,
we apply online quantile Super Learning to generate point predictions and well-calibrated
prediction intervals for global horizontal irradiance (GHI) one day in advance, following the
case study and data made available by Wang et al. (2022).

As solar irradiance is mainly determined by local meteorological conditions, an important
input for GHI forecasts are the outputs of weather prediction models. Numerical Weather
Prediction (NWP) is typically based on highly complex deterministic models that output
forecasts for a set of meteorological variables over a grid covering a geographical region (or the
entire world). Multiple versions of a model are run with slightly perturbed initial conditions
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EmpRisk(α)
Algorithm α = 0.025 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.975
Formation Energy
DRF 0.026 0.044 0.068 0.13 0.079 0.053 0.035
GBM 0.024 0.037 0.049 0.078 0.055 0.042 0.029
GRF 0.029 0.048 0.07 0.12 0.073 0.051 0.032
QRNN 0.02 0.024 0.035 0.079 0.036 0.026 0.015
QReg 0.017 0.026 0.042 0.094 0.044 0.027 0.017
QSL 0.012 0.021 0.034 0.065 0.035 0.021 0.015

Energy Bandgap
DRF 0.043 0.086 0.17 0.4 0.2 0.13 0.077
GBM 0.047 0.095 0.17 0.3 0.16 0.1 0.067
GRF 0.043 0.086 0.17 0.38 0.19 0.12 0.072
QRNN 0.051 0.089 0.17 0.39 0.18 0.12 0.082
QReg 0.045 0.091 0.18 0.46 0.2 0.12 0.063
QSL 0.043 0.088 0.16 0.3 0.14 0.089 0.054

Table 6: Empirical risk (5) results from the perovskite case study (see Section 5.1). The lowest empirical
risk for each task and quantile is bolded. In the case of a tie, all tied algorithms are bolded.

EmpCov(β)
Algorithm (1 - β) = 0.8 (1− β) = 0.9 (1− β) = 0.95
Formation Energy
DRF 94.2% 97.8% 99%
GBM 57.9% 71.6% 84.4%
GRF 94.6% 97.4% 98.7%
QRNN 70.5% 78.2% 82%
QReg 76.1% 86% 89.5%
QSL 79.9% 90.7% 96.4%

Energy Bandgap
DRF 96.5% 98.5% 99.4%
GBM 59.9% 74.9% 83.7%
GRF 95.6% 98.4% 99.5%
QRNN 74.7% 82% 83.7%
QReg 76.4% 86.2% 88.4%
QSL 68.8% 90.1% 97.2%

Table 7: Empirical coverage (6) results for (1 − β) × 100% prediction intervals from the perovskite case
study (see Section 5.1). The empirical coverage for each task and β value are in bold. In the case of a tie,
all tied algorithms are bolded.
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to yield a range of plausible weather trajectories which, taken together, are referred to as
a dynamic ensemble (Du et al., 2019). While dynamic ensemble predictions cover a range
of possible scenarios, they are not necessarily well-calibrated in a probabilistic sense (Schulz
et al., 2021). For example, in the solar forecasting context, the dispersion of GHI forecasts
across the members of a dynamic ensemble may not accurately reflect the variability in the
eventually observed GHI. This mismatch motivates post-processing the dynamic ensemble
forecasts with an algorithm that produces well-calibrated density estimates or prediction
intervals based on the forecasts. If it is not known a-priori which algorithm will perform
best for this task, as is almost always the case, then forming ensembles is warranted. It may
also be advantageous to regularly update the parameters of the post-processing algorithm
with new data as they become available, which leads naturally to the use of online Super
Learning.

For this case study, ground truth observations of GHI are taken from satellite measure-
ments available from the National Solar Radiation Data Base (NSRDB; Sengupta et al.
(2018)). As NWP input, we use archived forecasts produced by the European Centre for
Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System. Wang et al.
(2022) released a subset of historical forecasts covering much of North America and Europe
from 2017-2020 at horizons from 0h-90h in advance. Following their case study, and us-
ing the case study dataset they released, we focus on predicting GHI at 7 locations in the
continental United States using one-day ahead ECMWF forecasts.

Formally, let Yt, t = 1, . . . , T be the observed satellite measurement of GHI at 13:00 local
time on day t at a single location. Let Xt,i be the one-day ahead NWP forecasts of GHI
covering the same location, where i = 1, . . . , 50 indexes the NWP ensemble members. We
use as additional covariates the solar zenith angle Zt and the one-day lagged GHI observation
Yt−1. Our goal is to estimate conditional 10%, 50%, and 90% quantiles of GHI separately for
each location using quantile Super Learning. To ensure that each of the candidate learners
have enough data to produce reasonable predictions, the online learning procedure is started
on January 1, 2020, with data from 2017-2019 used as initial training data. Subsequently,
each of the candidate algorithms is re-trained after each data point becomes available. The
candidate algorithms are as follows (see Table 1 for the R packages we relied on):

• Quantile regression 1: Quantile regression with covariates Xt,i, i = 1, . . . , 50.

• Quantile regression 2: Quantile regression with covariates Xt,i, i = 1, . . . , 50, Zt, and
Yt−1.

• GBM: Gradient Boosting Machines with covariates Xt,i, i = 1, . . . , 50, Zt, and Yt−1

trained with 500 trees.

• GRF: Generalized Random Forests with covariates Xt,i, i = 1, . . . , 50, Zt, and Yt−1.

• QGAM: Quantile Generalized Additive Models with covariates Xt,i, i = 1, . . . , 50, Zt,
and Yt−1. Spline smooths were used to estimate the association between Zt and Yt−1

and the outcome.

• QRNN: Quantile recurrent neural networks with covariates Xt,i, i = 1, . . . , 50, Zt, and
Yt−1.
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EmpRisk(α) by location
α-quantile Method BON DRA FPK GWN PSU SXF TBL
0.025 BOA 8.66 5.44 7.27 6.53 6.79 6.28 7.87

EWA 7.83 5.38 7.82 6.91 7.34 6.77 8.04
QSL 8.04 5.46 7.83 6.88 6.26 6.21 7.24

0.05 BOA 12.7 7.82 11.7 10.9 10.2 10.9 12.1
EWA 12.7 7.97 12.2 11.3 11.9 11 12.3
QSL 12.5 7.6 12.3 10.9 9.95 10.2 12.2

0.1 BOA 18.7 10.3 17.5 17.2 16.8 16.3 18.2
EWA 19 10.6 17.5 17.2 17.1 16 18.2
QSL 18.5 9.84 17 16.9 16.3 15.6 18.3

0.5 BOA 31.2 13.5 28.5 32.2 31.9 30.5 28
EWA 31.4 13.5 28.9 32.2 32.1 30.8 28.7
QSL 31.3 13.5 28.4 32.1 32.1 30.9 28.4

0.9 BOA 15.2 5.34 12.5 14.3 14.2 13.2 11.7
EWA 15.1 5.57 12.8 14.3 14.3 13.6 12.4
QSL 14.8 5.47 12.6 13.9 13.9 12.9 11.2

0.95 BOA 9.11 3.36 7.74 8.3 8.44 8.39 7.39
EWA 9.36 3.11 8.12 8.14 8.16 8.17 7.01
QSL 8.9 3.06 7.72 8.19 8.1 8.39 7.29

0.975 BOA 5.4 2.39 4.58 5.79 4.54 5.4 4.29
EWA 5.12 2.4 4.6 5.54 4.9 4.98 4.43
QSL 5.98 2.14 4.96 5.11 4.38 5.52 4.25

Table 8: Empirical risk of the quantile Super Learner (QSL), Exponentially Weighted Average (EWA),
and Bernstein Online Aggregation (BOA) algorithms applied to point forecasting the α-quantiles of ground
horizontal irradiance at seven locations in the continental United States (see Section 5.2). The lowest
empirical risks for each location are in bold. In the case of a tie, all tied algorithms are bolded. The locations
are BON, Bondville, Illinois; DRA, Desert Rock, Nevada; FPK, Fort Peck, Montana; GWN, Goodwin Creek,
Mississippi; PSU, Pennsylvania State University, Pennsylvania; SXF, Sioux Falls, South Dakota; and TBL,
Table Mountain, Boulder, Colorado.

The performance of the methods are compared by their empirical risk at time T (4). We
also evaluate the empirical coverage of the prediction intervals formed from the 10% and
90% quantile forecasts of each method.

Results. The results of applying the quantile Super Learner to the case study dataset are
shown in Table 8. The QSL had the lowest empirical risks in most cases for all but the 50%
quantile. For the 50% quantile, the QSL tied or had slightly larger empirical risks than the
EWA and BOA algorithms. All of the algorithms yielded prediction intervals that were close
to the nominal level, with quantile Super Learner having the best-performing intervals (or
tied for best) for five of the seven locations.

One way of understanding the empirical performance of each of the candidate algorithms
is to examine how they are weighted in the quantile Super Learner ensemble. Figure 1 shows
the weights assigned to each candidate algorithm on the final day (t = T ) for each of the
seven locations. Interestingly, the algorithms were weighted differently depending on the
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EmpCov(β)
Location Method (1− β) = 0.8 (1− β) = 0.9 (1− β) = 0.95
BON BOA 82.8% 91% 95.6%

EWA 79.2% 89.6% 94.3%
QSL 80.1% 88.5% 93.2%

DRA BOA 85.8% 91.8% 95.1%
EWA 83.1% 90.7% 95.1%
QSL 81.4% 87.4% 95.1%

FPK BOA 84.7% 91.3% 93.7%
EWA 82.8% 89.9% 92.3%
QSL 80.9% 88.8% 90.7%

GWN BOA 84.4% 91.3% 95.4%
EWA 82.8% 89.1% 94.3%
QSL 81.7% 87.7% 94.8%

PSU BOA 83.9% 91.3% 93.7%
EWA 80.3% 88% 92.9%
QSL 77.3% 86.3% 91.5%

SXF BOA 84.2% 91.5% 94.3%
EWA 80.9% 89.6% 92.3%
QSL 80.6% 88.5% 91%

TBL BOA 85.2% 91.8% 95.6%
EWA 80.1% 90.4% 92.6%
QSL 80.9% 90.7% 92.6%

Table 9: Empirical coverage of the (1−β)×100% prediction intervals of ground horizontal irradiance formed
from quantile estimates based on quantile Super Learner (QSL), Exponentially Weighted Average (EWA),
and Bernstein Online Aggregation (BOA) at seven locations in the continental United States (see Section
5.2). The empirical coverage closest to the desired level for each location are in bold. In the case of a tie, all
tied algorithms are bolded. The locations are BON, Bondville, Illinois; DRA, Desert Rock, Nevada; FPK,
Fort Peck, Montana; GWN, Goodwin Creek, Mississippi; PSU, Pennsylvania State University, Pennsylvania;
SXF, Sioux Falls, South Dakota; and TBL, Table Mountain, Boulder, Colorado.
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10% Quantile 50% Quantile 90% Quantile

0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

Quantile Regression 1

Quantile Regression 2

QGAM

GRF

GBM

Final SuperLearner Weight

Figure 1: Final weights at time t = T assigned to each of the candidate algorithms by the quantile Super
Learner in the solar irradiance forecasting case study (see Section 5.2).

quantile being estimated. For the 10% and 90% quantiles, for example, gradient boosting
machines received generally higher weights as compared to the 50% quantile. In general,
no single algorithm dominated across all locations and quantiles, illustrating the utility of
ensemble based predictions.

6. Discussion

We have proposed a method for conditional quantile estimation, Quantile Super Learning,
that combines predictions from multiple candidate algorithms based on their performance
measured with respect to a cross-validated empirical risk of the quantile loss function. The
approach is theoretically grounded by excess risk bounds that hold with mild assumptions
on the data generating distributions in both i.i.d. and sequential data scenarios.

Empirically, in simulation studies the QSL consistently achieved the lowest empirical
quantile risk compared to the candidate algorithms in an i.i.d. setup, showing the possible
benefit of using ensemble methods. In the sequential setting, we found that online QSL
outperformed Exponentially Weighted Average and Bernstein Online Aggregation algorithms
in some settings. In the solar irradiance case study (see Section 5.2), QSL tended to achieve
lower empirical risk for all but the 50% quantile. Practically QSL is also easy to use as it
does not require specifying any tuning parameters, as opposed to EWA and BOA. However,
the computational cost of QSL is significantly higher, as an optimization problem must be
solved at each time step, as opposed to EWA and BOA in which the weights are updated
by simple closed-form equations.

One possible use case for the QSL is to form prediction intervals by separately estimating
lower and upper quantiles. However, in both the simulations and the case studies, while
Super Learner consistently performed as well as or better than the candidate algorithms in
terms of quantile risk, the prediction intervals formed via Super Learning did not always have
the best empirical coverage. This reflects the fact that minimizing the quantile loss function
does not necessarily lead to optimal coverage. Thus, Super Learner based prediction intervals
based on minimizing quantile losses do not enjoy any performance guarantees. A natural
extension of this work would be to post-process Super Learner prediction intervals using
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techniques from conformal inference, which have strong finite sample results. In the i.i.d.
case, conformalized quantile regression or the CV+ method could be used (Romano et al.,
2019; Barber et al., 2021). Fakoor et al. (2023) provide a comprehensive empirical comparison
of post-processing ensemble quantile estimators, and find conformal inference techniques
performed well. In the online case, Adaptive Conformal Inference techniques can be used to
endow quantile based prediction intervals with finite sample coverage guarantees (Gibbs and
Candes, 2021; Gibbs and Candès, 2022; Zaffran et al., 2022; Bhatnagar et al., 2023). For all
of these conformalization approaches it is advantageous to have good underlying estimates of
the conditional quantile function, suggesting the use of ensemble methods to hedge against
model misspecification.

We note that the goal and implementation of online Super Learning is similar to that
of online aggregation of experts approaches in the online learning literature (see the com-
prehensive overview by Cesa-Bianchi and Lugosi (2006)). Indeed, the online Super Learner
functions identically to the Follow the Leader algorithm known to the online learning com-
munity. For both approaches, a convex combination of predictions of candidate algorithms
is found that minimizes the empirical risk of the ensemble in hindsight. What differentiates
them is their theoretical contexts and analyses. Follow the Leader is based on an online
learning paradigm which makes no assumptions about how the observed data are generated,
including even the possibility of data generated adversarially. It is known to fail in such
adversarial settings, and is not favored in the online learning community as there are other
algorithms that have better worst-case properties (Cesa-Bianchi and Lugosi, 2006, Chapter
3.2). In the case of i.i.d. data, a now standard online-to-batch argument can be used to trans-
late results about the performance of online learning algorithms, such as regret bounds, to a
statistical context. However, these arguments do not apply when the data are dependent, as
is expected in many time-series settings. In contrast, the typical analysis of Super Learning
is based on a statistical point of view in which the data are posited to follow a probability
law for which we assume a stationarity condition, implying that the feature of interest of the
conditional law can be learned. Crucially, this rules out the adversarial settings for which
Follow the Leader is lacking.
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Appendix A. Theoretical Background

In this appendix we present additional theoretical context and proofs of the theorems
appearing in the main paper.

Appendix A.1. Independent setting

Our theoretical treatment of the QSL in the i.i.d. setting follows that of Wu and Benkeser
(2022), who use results from van der Vaart et al. (2006) and van der Laan et al. (2007).
First, we require the definition of a pair of Bernstein numbers, on which rests the theoretical
analysis.

Definition 3 (van der Vaart et al. (2006)). Given a measurable f : X × R → R, and for
any P ∈M, call (M(f), v(f)) a P -pair of Bernstein numbers of f if

M(f)2P

(
e|f |/M(f) − 1− |f |

M(f)

)
≤ 1

2
v(f).

From the following result we see that, for f uniformly bounded, the pair of Bernstein
numbers is related to the supremum and variance of f :

Lemma 1 (van der Vaart et al. (2006)). If f is uniformly bounded then, for any P ∈ M,
(‖f‖∞, 1.5Pf 2) is a P -pair of Bernstein numbers of f .

The following result establishes a Bernstein pair for the quantile loss function.

Lemma 2. Let ψ ∈ Ψ be uniformly bounded. For any P ∈M let Rα
P (ψ) be the risk of ψ as

defined in (1). Under assumptions A1 and A2, the pair (M(ψ), v(ψ)) given by

M(ψ) = max{α, 1− α}(‖ψ‖∞ + C0) and v(ψ) = 1.5×M(ψ)×Rα
P (ψ)

is a P -pair of Bernstein numbers of Lα(ψ).
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Proof. The proof follows closely that of Wu and Benkeser (2022, Lemma 1); therefore, we
only summarize the proof by pointing out the relevant places where it differs. First, see that
for all o = (x, y) ∈ X × [−C0, C0],

0 ≤ Lα(ψ)(o) = α |y − ψ(x)| I [y > ψ(x)] + (1− α) |y − ψ(x)| I [y ≤ ψ(x)]

≤ max{α, 1− α}(‖ψ‖∞ + C0) =: M(ψ),

which is the first Bernstein number. Next, we compute PLα(ψ)2. Following Wu and Benkeser
(2022, Lemma 1), we arrive at

PLα(ψ)2 = M(ψ)×Rα
P (ψ) =: v(ψ),

which is the second Bernstein number. This completes the proof.

Next, we state an inequality bounding the difference between the cross-validated risk and
the oracle risk.

Theorem 3 (Theorem 2.3, van der Vaart et al. (2006)). For any P ∈ M, for any ψ ∈ Ψ
uniformly bounded, let (M(ψ), v(ψ)) be a P -pair of Bernstein numbers of the function Lα(ψ).
Then for any δ > 0 and 1 ≤ p ≤ 2,

EP0

[
R̃α
n,P (ψ̂ακ̂n)

]
≤(1 + 2δ)EP0

[
R̃α
n,P (ψ̂ακ̃n)

]
+ 16(1 + δ) log(1 +K)

× EBn

[
sup
ψ∈Ψ

(
M(ψ)

n1

+

(
v(ψ)

n1Rα
P (ψ)2−p

)1/p(
1 + δ

δ

)2/p−1
)]

,

where n1 :=
∑n

i=1Bn(i).

Proof of Theorem 1..

Proof. The proof follows that of Wu and Benkeser (2022, Theorem 2), with the substitution
of max{2αC0, 2(1− α)C0} for C.

Appendix A.2. Online setting

First, we present the following result that is key to the later analysis.

Theorem 4 (Variance bound for the quantile loss (Steinwart and Christmann, 2011)). Let
p ∈ (0,∞], q ∈ [0,∞), and

ϑ = min

{
2

q
,

p

p+ 1

}
.

Let Q be a distribution for Oj,τ , (j, τ) ∈ J ×N∗, that has an α-quantile of p-average type q.
For all ψ ∈ Ψ, define ∆Lα(ψ) := Lα(ψ)− Lα(ψαP0

). Then, for all ψ ∈ Ψ, it holds that

Q∆Lα(ψ)2 ≤ 22−ϑqϑ‖γ−1‖p,QXj,τ (Q∆Lα(ψ))ϑ .
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In the above statement, QXj,τ is the marginal law of Xj,τ under Q. Next, we present
several necessary lemmas that follow from Assumptions B1-B6.

Lemma 3. There exists b1 > 0 such that supψ∈Ψ ‖∆Lα(ψ))‖∞ < b1. In addition, there exists
b2 ∈ (0, 2b1] such that for all j ∈ J , t ≥ 1, and ψ ∈ Ψ, it holds P0-almost surely that

|∆Lα(ψ)(Oj,t)− EP0 [∆Lα(ψ)(Oj,t) | Ft−1]| ≤ b2.

Proof. The existence of b1 and b2 follows directly from Assumption B3.

Lemma 4. There exist β ∈ (0, 1] and ν > 0 such that for all j ∈ J , t ≥ 1 and ψ ∈ Ψ, it
holds P0-almost surely that

EP0

[
(∆Lα(ψ)(Oj,t))

2
∣∣Ft−1

]
≤ ν (EP0 [∆L

α(ψ)(Oj,t) | Ft−1])β .

Proof. By Assumption B6, the P0-conditional laws of Oj,t given Ft−1 have α-quantiles of

p-average type q for all t ≥ 1. Let ϑ := min
{

2
q
, p
p+1

}
. By (Theorem 2.8, Steinwart and

Christmann, 2011, restated in the Appendix as Theorem 4),

EP0

[
(∆Lα(ψ)(Oj,t))

2
∣∣Ft−1

]
≤ 22−ϑqϑ‖γ−1

0 ‖ϑp (EP0 [∆L
α(ψ)(Oj,t)|Ft−1])ϑ ,

where γ0 is defined as γ in Definition 2 with the choice Q equal to the conditional law of Oj,t

given Ft−1, and ‖γ−1
0 ‖p is the p-norm of γ−1

0 with respect to the marginal law of Xj,t under
Q. In view of the definition of Γ in Assumption B6, setting ν = 22−θqϑΓϑ > 0 and β = ϑ
and noting that 0 < β < 1 complete the proof.

Lemma 5. There exists v1 > 0 such that, for all j ∈ J , t ≥ 1, and ψ ∈ Ψ, it holds P0-almost
surely that

Var[∆Lα(ψ)(Oj,t) | Ft−1] ≤ v1.

Proof. The result follows from Lemma 3.

Theorem 5 (Oracle Inequality for Online Super Learning (Ecoto et al., 2021)). Define

v2 :=
3π

2

[(
15b2

|J |

)2

+
64v1

|J |

]
.

For any δ ∈ (0, 1], it holds that

EP0

[
R̃α
t,P0

(ψ̂ακ̂t)− R̃
α
t,P0

(ψαP0
)− (1 + 2δ)

(
R̃α
t,P0

(ψ̂ακ̃t)− R̃
α
t,P0

(ψ̂αP0
)
)]

≤ 3

(
C1(δ)

t
log(2KN)

)1/(2−β)

+
2C2(δ)

t
log(2KN),

where C1(δ) := 25−β(1 + δ)2γ/δβ, C2(δ) := 8(1 + δ)b2/3, and N ≥ 2 is chosen such that

N ≥ β

2− β
log(t) + log(C3)

log(2)
,

with C3 := (v2/γ)(2−β)/β/(25−βγ).
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Proof. It suffices to check each of the 5 conditions of (Ecoto et al., 2021, Corollary 2).

• Assumption 1 is satisfied by our Assumption B4.

• Assumption 2 is satisfied by our Assumption B5.

• Assumption 3 is satisfied according to our Lemma 3.

• Assumption 4 is satisfied according to our Lemma 4.

• Assumption 5 is satisfied because Assumption 3 is satisfied.

Proof of Theorem 2.

Proof. To simplify the exposition, let ERκ̃ := R̃α
t,P0

(ψ̂ακ̃t)− R̃
α
t,P0

(ψ̂αP0
). By Theorem 5,

EP0

[
R̃α
t,P0

(ψ̂ακ̂t)− R̃
α
t,P0

(ψαP0
)
]
≤EP0 [ERκ̃] + 2δEP0 [ERκ̃] + Rem(δ)

where

Rem(δ) := 3

(
C1(δ)

t
log(2KN)

) 1
2−β

+
2C2(δ)

t
log(2KN).

Choose an integer N ∈ [3 log(t), 4 log(t)], which will necessarily satisfy

N ≥ β

2− β
log(t) + log(C3)

log(2)

provided that t ≥ max{2, C3}. Fix δ = t−1/2. Then

C2(δ) ≤ 16b2/3 and 25−βγt
β
2 ≤ C1(δ) ≤ 27−βγt

β
2 .

Therefore, for t large enough,

Rem(δ) . C1(t−1/2)
1

2−β

[(
log(2KN

t

) 1
2−β

+
log(2KN)

t

]

. C1(t−1/2)
1

2−β

[(
log(8K log(t)

t

) 1
2−β

+
log(8K log(t))

t

]

.

[
C1(t−1/2)

log(8K log(t))

t

] 1
2−β

.

[
log(8K log(t))

t1−
β
2

] 1
2−β

.
log(8K log(t))

t1/2
.
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Next, note that for large enough t and using the boundedness assumption,

2δE[ERκ̃] = 2t−1/2E[ERκ̃] ≤ 2t−1/2C0 .
log(8K log(t))

t1/2
.

Therefore

2δE[ERκ̃] + Rem(δ) = O

(
log(8K log(t))

t1/2

)
,

which completes the proof.
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