Herbert Susmann 
email: herbert.susmann@dauphine.psl.eu
  
Antoine Chambaz 
  
Quantile Super Learning for independent and online settings with application to solar power forecasting

Keywords: cross validation, online learning, quantile regression

come     Copyright Quantile Super Learning for independent and online settings with application to solar power forecasting Herbert Susmann, Antoine

Introduction

Estimating the quantiles of an outcome conditional on covariates is a foundational task in statistics. Many algorithms have been developed for that purpose, including versions of linear regression, generalized additive models, random forests, and neural networks, to name only a few [START_REF] Koenker | Quantile Regression[END_REF][START_REF] Athey | Generalized random forests[END_REF][START_REF] Cannon | Quantile regression neural networks: implementation in r and application to precipitation downscaling[END_REF][START_REF] Fasiolo | Fast calibrated additive quantile regression[END_REF]. On any particular dataset, however, it is almost never known a-priori which method will perform best. Ensemble algorithms combine the predictions of multiple candidate algorithms according to their empirical performance, obviating the need to choose between the available algorithms in advance. In particular, Super Learning combines the predictions of candidate algorithms according to their cross-validated risk with respect to a loss function chosen on a case by case basis depending on the task at hand (van der [START_REF] Mark | Super learner[END_REF].

In this work we present the Quantile Super Learner (QSL), a novel ensemble learning algorithm tailored to estimating conditional quantiles. To illustrate the main ideas, suppose we have n independent and identically distributed (i.i.d.) observations (O 1 , . . . , O n ) of a generic variable O = (X, Y ) drawn from a law P 0 , with X ∈ X a set of covariates and Y ∈ R a univariate outcome. Our goal is to estimate the α-conditional quantile of Y given X, denoted ψ α P 0 (X) where ψ α P 0 ∈ Ψ with Ψ the set of all functionals mapping X → R. At our disposal are a set of algorithms ψα k , k = 1, . . . , K that map a dataset to an estimator of the α-conditional quantile. No assumptions are necessary about how these algorithms work, and in our simulations and case studies we use a variety methods including quantile regression, gradient boosting machines, and neural networks, among others.

As we are not likely to know a-priori which algorithm will perform best for a particular dataset, we choose between them by evaluating their performance with respect to the quantile loss function L α , given for any ψ ∈ Ψ by

(x, y) → L α (ψ)(x, y) = α|y -ψ(x)|, if y > ψ(x) (1 -α)|y -ψ(x)|, if y ≤ ψ(x).
We choose this loss function because its expected value under P 0 is minimized by the true conditional quantile functional:

ψ α P 0 ∈ arg min ψ∈Ψ E P 0 [L α (ψ)(X, Y )] = arg min ψ∈Ψ R α P 0 (ψ),
where we have defined R α P 0 (ψ) to be the risk of the algorithm ψ with respect to P 0 . If we had oracular knowledge of the true data generating distribution P 0 we could evaluate the true risk R α P 0 directly for the output of each algorithm and choose the one with the lowest risk. In practice we do not have access to P 0 , so we must approximate the true risk. The strategy used in Super Learning is to use a cross-validated risk as an estimator of the true risk, and then select the algorithm that minimizes this cross-validated risk. Our main theoretical results are in the form of a bound on the difference between the risk of the algorithm selected using the cross-validated risk and the risk of the algorithm that minimizes the true risk, following the strategy of [START_REF] Wu | A huber loss-based super learner with applications to healthcare expenditures[END_REF]. Notably, these results are established without any regularity assumptions on the data generating distribution.

So far, we have discussed the case where the data are i.i.d. draws from a probability law. However, in many scenarios i.i.d. assumptions are not justified, such as for time-series data. The key difference between Super Learning in the i.i.d. and sequential cases is in the cross-validation scheme used to calculate the empirical risk of the candidate algorithms. In the i.i.d. case, V -fold cross-validation is typically used, in which the dataset is split uniformly at random into V couples of training and test sets. For the online setting, the collection of all previously observed data is used as a training set and the next observation (or set of observations) is used as a test set. Our main theoretical result for the online setting is similar to that of the i.i.d. result, providing bounds on the excess risk of the algorithm chosen based on minimizing the online cross-validated risk. However, for the online setting it is necessary to introduce mild regularity assumptions on the data-generating process. Using ideas from [START_REF] Steinwart | Estimating conditional quantiles with the help of the pinball loss[END_REF], we make a margin assumption concerning the behavior of the conditional law around the quantile being estimated, which allows us to establish excess risk bounds.

One of the potential use cases of the quantile Super Learner in both i.i.d. and online settings is to form prediction intervals by separately estimating a lower and upper quantile.

Intuitively, we would expect that if we can do a good job estimating each of these quantiles, then the prediction intervals will also perform well. However, there is no theoretical guarantee that such quantile estimates will yield prediction intervals with desired frequency characteristics in finite samples. We investigate this use case empirically in simulations and case studies.

Prior Work. Early proposals of combining predictions from multiple base learners include stacked generalization, described by [START_REF] David | Stacked generalization[END_REF] and [START_REF] Breiman | Stacked regressions[END_REF]. The theoretical foundations of the approach were formalized by van der [START_REF] Mark | Unified cross-validation methodology for selection among estimators and a general cross-validated adaptive epsilon-net estimator: Finite sample oracle inequalities and examples[END_REF], van der Laan et al. (2006), andvan der Vaart et al. (2006); the name "Super Learner" was subsequently coined by [START_REF] Mark | Super learner[END_REF]. Early development of Super Learning primarily focused on estimating conditional means using a squared-error loss function in the context of i.i.d. data. Since then, extensions to other loss functions have included the Area Under the Curve (AUC) loss function [START_REF] Ledell | Auc-maximizing ensembles through metalearning[END_REF] and the Huber loss function [START_REF] Wu | A huber loss-based super learner with applications to healthcare expenditures[END_REF], among others. Theory for online (sequential) ensemble learning within the Super Learning framework that incorporates the statistical dependence of the data was developed in [START_REF] Benkeser | Online cross-validationbased ensemble learning[END_REF] and [START_REF] Ecoto | One-step ahead sequential super learning from short times series of many slightly dependent data, and anticipating the cost of natural disasters[END_REF]. [START_REF] Fakoor | Flexible model aggregation for quantile regression[END_REF] provide a comprehensive account of ensemble methods for quantile estimation, including detailed empirical comparisons. Our work is in a similar vein, but provides formal theoretical guarantees for the proposed Super Learning based approach. [START_REF] Sun | Online renewable smooth quantile regression[END_REF] propose an online estimator for quantiles within a parametric model and using a smooth approximation of the quantile loss function. In this framework, they show that their "renewable estimator" is consistent, asymptotically normal, and that it enjoys an oracle property. In contrast, our approach is fully non-parametric.

Outline. The rest of the paper unfolds as follows. In Section 2 we develop the QSL for i.i.d. data and establish an oracle inequality showing that the estimator is asymptotically equivalent to the best performing candidate algorithm. In Section 3 we extend the QSL to the setting of sequential data and establish similar oracle inequalities as in the i.i.d. case. In Section 4 we investigate the finite-sample performance of the QSL in simulations. In Section 5 we present two case studies related to solar energy: predicting the physical properties of perovskite materials for photovoltaic applications and forecasting solar irradiance based on the output of deterministic numerical weather prediction models.

Independent setting

Our initial results develop a QSL in a setting where the observed data represent i.i.d. draws from an underlying distribution. Let (O 1 , . . . , O n ) be n i.i.d. observations of a generic variable O = (X, Y ) from the law P 0 on O = X × R, where X ∈ X is a set of covariates and Y ∈ R is a univariate outcome. We assume that P 0 falls in statistical model M. For all P ∈ M and α ∈ (0, 1), define the α-quantile of Y conditional on X as the possibly set-valued functional

ψ α P (X) := {y ∈ R : P (Y < y | X) ≥ α, P (Y ≥ y | X) ≥ 1 -α}.
Our goal is to estimate x → ψ α P 0 (x) for a given α, the conditional α-quantile under the true data generating distribution P 0 . For the i.i.d. setting, we make two key simplifying assumptions:

Assumption A1 (Unique Quantiles). The quantile function ψ α P 0 (x) is a singleton for P Xalmost all x ∈ X.

Assumption A2 (Outcome Boundedness). It holds P 0 almost surely that |Y | ≤ C 0 < ∞. Note that in practice, the value of C 0 does not need to be known.

Next, we establish that ψ α P is a minimizer of a particular loss function. Let Ψ be the set of all (measurable) functions mapping X to R. The quantile loss function L α for the α-quantile is given by

(x, y) → L α (ψ)(x, y) := α|y -ψ(x)|, if y > ψ(x) (1 -α)|y -ψ(x)|, if y ≤ ψ(x)
for any (x, y) ∈ O and ψ ∈ Ψ. The risk of ψ under the loss function L α relative to a distribution P ∈ M is defined as

R α P (ψ) := E P [L α (ψ)(O)] = P L α (ψ), (1) 
where we use the notation P f = E P [f (O)] = f dP . Note that the true conditional quantile function minimizes the quantile loss:

ψ α P 0 = arg min ψ∈Ψ R α P 0 (ψ).
This well-known fact serves as the basis of quantile regression [START_REF] Gneiting | Quantiles as optimal point forecasts[END_REF][START_REF] Koenker | Quantile Regression[END_REF].

Super Learning

An algorithm to learn ψ α P 0 is a function mapping any finite set {o 1 , . . . , o M } of M elements of O, viewed as the measure M -1 M m=1 Dirac(o m ), to an element of Ψ. Suppose we have K such algorithms ψ α 1 , . . . , ψ α K which seek to learn ψ α P 0 . Super Learning amounts to identifying which of the algorithms performs best.

Discrete Super Learner.. The discrete Super Learner identifies the best performing algorithm among the candidate algorithms as measured by their cross-validated risks. To formalize the cross-validation scheme, we introduce B n ∈ {0, 1} n , a random vector drawn independently of O 1 , . . . , O n such that n i=1 B n (i) ≈ np for some user-supplied proportion p. The observation O i falls in the training set if B n (i) = 0, and in the testing set if B n (i) = 1. The B n -specific training and testing datasets are represented by the empirical distributions P 0 n,Bn and P 1 n,Bn . For instance, to implement V -fold cross-validation, we draw B n from the uniform distribution on {b 1 , . . . , b V } ⊂ {0, 1} n where each b v satisfies n i=1 b v (i) ≈ n/V (a proportion (V -1)/V of data are used for training, and the rest for testing) and, for every 1 ≤ i ≤ n, V v=1 b v (i) = 1 (each observation is used once for testing).

The oracle cross-validated risk of algorithm ψ α k with respect to a distribution P ∈ M is then defined by

R α n,P ( ψ α k ) := E Bn P L α ( ψ α k (P 0 n,Bn )) . (2) 
The empirical version of the oracle cross-validated risk is simply obtained by substituting P 1 n,Bn for P in (2):

R α n ( ψ α k ) := E Bn P 1 n,Bn L α ( ψ α k (P 0 n,Bn )) .
The discrete Super Learner selector minimizes the empirical cross-validated risk:

κ n := arg min k∈ K R α n ( ψα k ),
using the notation K := {1, 2, . . . , K}. The corresponding algorithm ψ α κn is referred to as the discrete Super Learner.

Continuous Super Learner. The continuous Super Learner considers a richer class of algorithms taking the form of convex combinations of the original candidate algorithms. Let Π be the K-simplex: that is, the set of π ∈ (R + ) K such that K k=1 π k = 1. The new generic candidate algorithms take the form

ψ α π := K k=1 π k ψ α k (3)
for any π ∈ Π. Let Π n be a finite subset of Π such that the cardinality of Π n grows at most polynomially with n. The continuous Super Learner is found by finding the weights π ∈ Π n that minimize the empirical cross-validated risk:

π n ∈ arg min π∈Πn R α n ( ψ α π ).
The algorithm ψ α πn is referred to as the continuous Super Learner. Note that the continuous Super Learner is simply the discrete Super Learner when the collection of candidate algorithms is { ψ α π : π ∈ Π n }. As such, we focus on analyzing the properties of the discrete Super Learner, as the results carry over to the continuous Super Learner.

Oracle Inequalities

We compare the discrete Super Learner against an oracle selector which identifies the candidate algorithm that has the best oracle cross-validated risk with respect to the law P 0 :

κ n := arg min k∈ K R α n,P 0 ( ψ α k ).
The corresponding algorithm ψ α κn is referred to as the oracle Super Learner.

Let ψ α P 0 denote the oracle algorithm that constantly outputs the true conditional αquantile ψ α P 0 . Our theoretical results compare the excess risk of the discrete Super Learner to the excess risk of the oracle Super Learner, that is R α n,P 0 ( ψ α κn ) -R α n,P 0 ( ψ α P 0 ) vs. R α n,P 0 ( ψ α κn ) -R α n,P 0 ( ψ α P 0 ), where R α n,P 0 ( ψ α P 0 ) := E Bn P 1 n,Bn L α (ψ α P 0 ) .

We are now ready to state the main result of this section, an excess risk bound for the discrete Super Learner.

Theorem 1 (Excess risk bounds for discrete Super Learner). Assume that the number of candidate algorithms grows at most polynomially in n: that is, K = O(n a ) for some a > 0. Also assume that, for all k ∈ K , ψα k only outputs functions which are uniformly bounded by C 0 . Then

E P 0 R α n,P 0 ( ψ α κn ) -R α n,P 0 ( ψ α P 0 ) ≤ E P 0 R α n,P 0 ( ψ α κn ) -R α n,P 0 ( ψ α P 0 ) + O log(n) n 1/2 .

Sequential setting

In the sequential setting we gain access to the observations in batches. In particular, we are interested in the setting where, at each time point, we gain access to a new batch of observations, one for each element in an index set J . For example, we may have multiple time series corresponding to several locations, where each location generates a new observation at each timepoint. Note that if |J | = 1, then the problem reduces to the case where we observe a single time series.

Let ( Ōt ) t≥1 be a time-ordered sequence where t indexes time. Each Ōt is the set of observations Ōt = (O j,t : j ∈ J ). The observations then decompose as O j,t = (X j,t , Y j,t ) for j ∈ J , t ≥ 1. Let P 0 be the joint law of the observed data, which we assume falls in a statistical model M. For all t ≥ 2, introduce the σ-field F t-1 := σ (O j,t : j ∈ J , 1 ≤ τ < t) generated by past observations (with F 0 := ∅ by convention). For all P ∈ M and (j, τ ) ∈ J × N * define the α-quantile of Y conditional on X at location j and time τ as the possibly set-valued

ψ α P,j,t (X j,t ) := {y ∈ R : P (Y j,t < y | X j,t ) ≥ α, P (Y j,t ≥ y | X j,t ) ≥ 1 -α},
where α ∈ (0, 1) is taken as fixed. The sequential setting requires several more assumptions in addition to those adopted in the i.i.d. case. First, we make the simplifying assumption of common support of the covariates across all locations and time points.

Assumption B1 (Common Support). For all P ∈ M there exists S such that, for all

(j, τ ) ∈ J × N * , Supp P X j,τ = S,
where P X j,τ is the marginal law of X under P at location j and time τ .

As in the i.i.d. setting, we will also assume the existence of unique quantiles and that the outcomes are uniformly bounded.

Assumption B2 (Unique Quantiles). For all (j, τ ) ∈ J × N * , the α-quantile ψ α P 0 (x) is a singleton for all x ∈ S.

Assumption B3 (Outcome Boundedness). It holds P 0 -almost surely that, for all (j, τ

) ∈ J × N * , |Y j,t | ≤ C 0 < ∞.
We also make a Markovian assumption that all information about the outcome at a particular location and time point is encoded in prior observations and the covariates for that location and time point.

Assumption B4 (Markov). For every (j, τ ) ∈ J × N * , it holds P 0 -almost surely that

P 0 (Y j,τ |(X j,τ : j ∈ J )) = P 0 (Y j,τ |X j,τ ) .
Finally, the next assumption guarantees that we can learn the quantile function based on the observed time series Ō1 , . . . , Ōt .

Assumption B5 (Stationarity).

There exists

Ψ α P 0 ∈ Ψ such that, for every (j, τ ) ∈ J × N * , arg min ψ∈Ψ E P 0 [L α (ψ)(O j,τ )] = ψ α P 0 .
(Informally, the assumption states that Ψ α P 0 ,j,τ = Ψ α P 0 for all (j, τ ) ∈ J × N * .) We prove the oracle inequalities for Super Learning in the sequential setting by making a regularity assumption on the P 0 -conditional laws given F t . In order to state the assumption, we need the following two definitions drawn from [START_REF] Steinwart | Estimating conditional quantiles with the help of the pinball loss[END_REF].

Definition 1 (Quantiles of type q [START_REF] Steinwart | Estimating conditional quantiles with the help of the pinball loss[END_REF]

). Let Q be a distribution with Supp(Q) ⊂ [-1, 1]. Set arbitrarily α ∈ (0, 1), let ψ α Q := {t ∈ R : Q((-∞, t]) ≥ α, Q([t, ∞)) ≥ 1 -α} be the α-quantile of Q, and assume that ψ α Q is a singleton. The distribution Q is said to have an α-quantile of type q ∈ (1, ∞) if there exist constants α Q ∈ (0, 2] and b Q > 0 such that Q((ψ α Q -s, ψ α Q )) ≥ b Q s q-1 , Q((ψ α Q , ψ α Q + s)) ≥ b Q s q-1 for all s ∈ [0, α Q ]. We also define γ Q = b Q α q-1
Q . Definition 1 applies to a distribution with support on a subset of R. The next definition is an extension to distributions defined on a subset of X × R.

Definition 2 (Quantiles of p-average type q [START_REF] Steinwart | Estimating conditional quantiles with the help of the pinball loss[END_REF]

). Let p ∈ (0, ∞], q ∈ [1, ∞), and Q be a distribution on X × R with marginal distribution Q X of X . Assume that Supp(Q(• | X = x)) ⊂ [-1, 1] for Q X -almost all x ∈ X. Then Q is said to have an α-quantile of p-average type q if Q(• | X = x) has an α-quantile of type q for Q X -almost all x ∈ X , and if the function γ : X → [0, ∞] given for Q X -almost all x ∈ X by γ(x) := γ Q(•|X=x) := b Q(•|X=x) α q-1 Q(•|X=x) (as defined in Definition 1) is such that γ -1 admits a finite moment γ -1 p,Q X of order p under Q X .
Now we are ready to state the final assumption we use for the oracle inequality in the sequential setting.

Assumption B6 (Regularity). For every (j, τ ) ∈ J × N * , the P 0 -conditional law of O j,τ given F τ -1 has an α-quantile of p-average type q. Moreover, the collection of γ -1 p,Q X , where Q ranges over the P 0 -conditional laws of O j,τ given F τ -1 , is uniformly bounded by a constant Γ > 0.

3.1. Super Learner Discrete Super Learner. Suppose as in the i.i.d. setting that we have K algorithms ψ α 1 , . . . , ψ α K to learn ψ α P 0 . Each ψ α k is a function mapping any finite sequence ō1 , . . . , ōt to an element of Ψ. Let P t := t τ =1 Dirac(ō τ ) be the empirical distribution of the data up to time t. Define the L α -loss of ψ ∈ Ψ with respect to a batch of observations ōt as:

Lα (ψ)(ō t ) := 1 |J | j∈J L α (ψ)(o j,t ).
The oracle risk of an algorithm ψ α k up to time t ≥ 1 with respect to a distribution P ∈ M is defined as:

R α t,P ( ψ α k ) := 1 t t τ =1 E P Lα ( ψ α k (P τ -1 ))( Ōτ ) F τ -1 ,
where by convention ψα k (P t-1 ) produces an arbitrary constant function (e.g. always zero) for the case t = 1. The empirical risk up to time t of ψα k is defined as the empirical counterpart of its oracle risk:

R α t ( ψ α k ) := 1 t t τ =1 Lα ( ψ α k (P τ -1 ))( Ōτ ) (4) = 1 t|J | t τ =1 j∈J L α ( ψ α k (P τ -1 ))(O j,τ ).
At each t ≥ 1, the discrete online Super Learner selector is formed by finding the algorithm that minimizes the empirical risk up to time t:

κ t = arg min k∈ K R α t ( ψ α k ).
The algorithm ψα κt is referred to as the online discrete Super Learner. Continuous Super Learner. Convex combinations of the candidate algorithms are formed as in the i.i.d. setting (3), yielding new candidate algorithms ψ α π (for any π ∈ Π n ). The continuous online Super Learner selector is then formed by finding weights that minimize the empirical risk in hindsight:

π t ∈ arg min π∈Πn R α t ( ψ α π ).
The algorithm ψα πt is referred to as the online continuous Super Learner. 

Oracle Inequalities

In this section we establish oracle inequalities for the discrete online Super Learner, based on results for online Super Learner established in [START_REF] Ecoto | One-step ahead sequential super learning from short times series of many slightly dependent data, and anticipating the cost of natural disasters[END_REF]. The main result is presented below, with the proof to be found in the appendix.

Theorem 2. Assume that the number of candidate algorithms grows at most polynomially in t, that is, K = O(t a ) for some a > 0. Also assume that, for all k ∈ K , ψα k only outputs functions which are uniformly bounded by C 0 . Then, for t large enough,

E P 0 R α t,P 0 ( ψ α κt ) -R α t,P 0 (ψ α P 0 ) ≤ E P 0 R α t,P 0 ( ψ α κt ) -R α t,P 0 ( ψ α P 0 ) + O log(log(t)) t 1/2 .
Note that the number of locations |J | is hidden in the "large enough" t (and not in the order term). Specifically, the larger is the number of locations |J |, the smaller t needs to be for the inequality to hold.

Simulation Studies

In this section we investigate the finite sample performance of the QSL in the i.i.d. and sequential settings. A natural application of quantile estimation is in forming prediction intervals from estimates of a lower and upper quantile, which we investigate in both settings. We used the sl3 R package (Coyle et al., 2021) to implement the i.i.d. QSL algorithm. For the sequential setting, we compare the online quantile Super Learner to two algorithms from the online aggregation of experts literature: Exponentially Weighted Average (EWA; Cesa-Bianchi and Lugosi ( 2006)) and Bernstein Online Aggregation (BOA; [START_REF] Wintenberger | Optimal learning with Bernstein online aggregation[END_REF]). Both algorithms are implemented in the opera R package [START_REF] Gaillard | opera: Online Prediction by Expert Aggregation[END_REF], which uses an adaptive procedure to fine tune their learning rates. We added the QSL as an additional method to the opera package to facilitate its use and comparison with other methods. Code for the simulations and case studies can be found at https://github.com/ herbps10/QuantileSuperLearner.

Independent setting

Simulated datasets consisted of N 1 ∈ {250, 500, 1000} i.i.d. draws (X i , Y i ), i = 1, . . . , N 1 , of a generic variable (X, Y ). The covariates forming X = (X 1 , X 2 , X 3 , X 4 , X 5 ) were drawn independently from the uniform distribution on [0, 1]. Conditional on X, the outcome Y was chosen to be a linear combination of smooth and non-smooth functions of the covariates:

Y = sin(2X 1 ) + |X 2 | -0.5X 1 X 3 + X 4 + ,
where ∼ N (0, 0.1). An additional N 2 = 1000 observations (X i , Y i ), i = N 1 + 1, . . . , N 1 + N 2 , were drawn from the same data generating process and used as a validation set to evaluate the performance of the Super Learner in predictions of unseen data. Overall, 50 learning and testing datasets were generated for each sample size N 1 .

We estimated the α-quantile with α ∈ {0.025, 0.05, 0.1, 0.5, 0.9, 0.95, 0.975} for each simulated dataset using separate QSLs. The candidate algorithms included gradient boosting machines, quantile regression, quantile neural networks, quantile random forests, and quantile generalized additive models (see Table 1 for references). We compared the QSL against the candidate algorithms by calculating their empirical risks with respect to the testing dataset. To do so, we defined the empirical risk of an algorithm ψ α as

EmpRisk(α) := 1 N 2 N 1 +N 2 i=N 1 +1 L α ( ψ α (P N 1 ))(X i , Y i ). (5) 
In addition, 80%, 90%, and 95% prediction intervals were formed using the 10%, 5%, and 2.5% and 90%, 95%, and 97.5% quantile estimates as the lower and upper interval bounds, respectively. The empirical coverage of a (1 -β) × 100% prediction interval built using algorithms ψ β/2 and ψ1-β/2 was defined as

EmpCov(β) := 1 N 2 N 1 +N 2 i=N 1 +1 I ψ β/2 (P N 1 )(X i ) ≤ Y i ≤ ψ 1-β/2 (P N 1 )(X i ) . (6) 
Results. The empirical risk (5) results are shown in Table 2. QSL achieved the best (or tied for best) quantile risk for all quantiles and sample sizes. However, the empirical coverage prediction intervals formed using QSL estimates, as shown in Table 3, did not necessarily perform as well compared to the candidate algorithms.

Sequential setting

For the sequential setting we augmented the data generating process from the i.i.d. simulation study to induce temporal dependence. We simulated Y t , t = 1, . . . , T = 2000 following

Y t = sin(2X 1 ) + |X 2 | -0.5X 1 X 3 + X 4 + t ,
where ( t ) t≤T is now drawn from an AR(1) process: EmpCov(β) We estimated the same set of α-quantiles as before for each simulated dataset using separate online QSLs. The candidate algorithms included gradient boosting machines, quantile regression, quantile neural networks, quantile random forests, and quantile generalized additive models (see Table 1). To save computational time, each of the candidate algorithms was fit once using a single training set of all observations from t = 1 to t = T /2 = 1000. This amounts to substituting P T /2 for P τ -1 in (4).

EmpRisk(α) N 1 Algorithm α = 0.025 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.
N 1 Algorithm (1 -β) = 0.8 (1 -β) = 0.9 (1 -β) = 0.
The empirical risk and coverage of the candidate algorithms are defined as in ( 5) and ( 6), substituting T /2 for N 1 and N 2 . The empirical risk and coverage of the online algorithms (QSL, EWA, and BOA) is defined differently as they are updated for each t. For an online algorithm ψ α the final empirical risk is defined as

EmpRisk(α) := 1 T /2 T t=T /2+1 L α ( ψ α t )(X t , Y t ), (7) 
where ψ α t is the output of the algorithm using all data before time t. Similarly, the final empirical coverage for (1 -β) × 100% prediction intervals formed from algorithms ψ β/2 and ψ 1-β/2 is defined as

EmpCov(β) := 1 T /2 T t=T /2+1 I ψ β/2 t (X t , Y t ) ≤ Y t ≤ ψ 1-β/2 t (X t , Y t ) , (8) 
where ψ

β/2 t and ψ

1-β/2 t are the output of the algorithms ψ β/2 and ψ 1-β/2 using data before time t, respectively.

Results. The online empirical risk (7) results are shown in Table 4. The algorithms yielded similar empirical risks, with QSL having slightly lower risks for most quantiles and settings of ρ. The prediction intervals formed using the quantile estimates from each algorithm tended to undercover (see Table 5), especially for QSL.

Case Studies

In this section we present two case studies based on solar energy applications, one for the i.i.d. setting and one for the online setting.

Perovskite energy formation and bandgap prediction

A critical component of photovoltaic (PV) cells is the material used for the light-absorbing semiconductor layer. The use of materials with perovskite crystal structures has been the subject of significant recent research, leading to the energy efficiency of perovskite-based PV cells increasing rapidly from 3.8% in 2009 to 26.08% in 2023 [START_REF] Kojima | Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[END_REF][START_REF] Park | Controlled growth of perovskite layers with volatile alkylammonium chlorides[END_REF]. While an immense number of compounds exhibit the perovskite crystal structure, not all are useful for solar applications. As experimentally determining the relevant properties of a perovskite compound is resource-intensive, there is significant interest in developing methods to screen for compounds that are likely to have desirable qualities. One method is to use density functional theory (DFT), a method for estimating the physical properties of a compound [START_REF] Hohenberg | Inhomogeneous electron gas[END_REF][START_REF] Kohn | Self-consistent equations including exchange and correlation effects[END_REF][START_REF] Jones | Density functional theory: Its origins, rise to prominence, and future[END_REF]. However, the computational intensity of DFT makes it scale poorly to large numbers of candidate perovskites, motivating research into the use of machine learning techniques to approximate DFT outputs as an initial screening step [START_REF] Tetteh | Comparative analysis of machine learning approaches on the prediction of the electronic properties of perovskites: A case study of abx3 and a2bb'x6[END_REF].

In this case study, we focus on predicting the DFT-output formation energy and energy bandgap of a perovskite material using data made available by [START_REF] Tetteh | Comparative analysis of machine learning approaches on the prediction of the electronic properties of perovskites: A case study of abx3 and a2bb'x6[END_REF]. Finding the formation energy of a material is useful as it is related to its stability, and determining the energy bandgap is useful as it has a direct relationship with PV efficiency. Chenebuah et al. ( 2021) applied multiple machine learning algorithms to predict formation energy and energy bandgap using data from 1,453 perovskite materials gathered from the Materials Project database [START_REF] Jain | Commentary: The Materials Project: A materials genome approach to accelerating materials innovation[END_REF]. Predictors include element-based features, stability features, and crystallographic features; we refer to (Chenebuah et al., 2021, Table 2) for a full description. Their methods focus on point predictions of formation energy and bandgap; in this case study, we extend their results by forming both point and interval predictions based on quantile estimation.

Formally, let Y i , i = 1, . . . , N be the DFT formation energy or energy bandgap and X i a set of 56 covariates (two of the original covariates from Chenebuah et al. ( 2021) were removed as they were almost perfectly collinear with other covariates). We assume that the couples (X i , Y i ), i = 1, . . . , N are drawn i.i.d. from a probability law. Our goal is to estimate the conditional median and conditional α-quantiles (with α ∈ {0.025, 0.05, 0.1, 0.5, 0.9, 0.95, 0.975}) of the outcome conditional on covariates. Four candidate algorithms for the Super Learner ensemble were included in the ensemble: generalized random forests (GRF), directional random forests (DRF), gradient boosting machines (GBM), quantile neural networks (QRNN, with 2 hidden layers), and quantile regression (see Table 1).

Results. The case study results are presented in Table 6. For the formation energy and energy bandgap the QSL achieved the lowest cross-validated quantile risk for all quantiles. In addition, the cross-validated empirical coverage of the QSL prediction intervals were the closest to the nominal level. For the energy bandgap, the QSL had the lowest or tied for the lowest empirical risk for 6 out of the 7 estimated quantiles. The QSL 90% and 95% prediction intervals were the closest to having the optimal empirical coverage, although the 80% prediction interval undercovered relative to other methods.

Post-processing solar irradiance forecats

Solar irradiance is one of the principal variables influencing photovoltaic power output [START_REF] Ahmed | A review and evaluation of the stateof-the-art in pv solar power forecasting: Techniques and optimization[END_REF]. Short-term forecasts of solar irradiance are used to predict solar output, which aids electrical grid integration of solar power [START_REF] Lorenz | Regional pv power prediction for improved grid integration[END_REF]. As a case study, we apply online quantile Super Learning to generate point predictions and well-calibrated prediction intervals for global horizontal irradiance (GHI) one day in advance, following the case study and data made available by [START_REF] Wang | An archived dataset from the ecmwf ensemble prediction system for probabilistic solar power forecasting[END_REF].

As solar irradiance is mainly determined by local meteorological conditions, an important input for GHI forecasts are the outputs of weather prediction models. Numerical Weather Prediction (NWP) is typically based on highly complex deterministic models that output forecasts for a set of meteorological variables over a grid covering a geographical region (or the entire world). Multiple versions of a model are run with slightly perturbed initial conditions EmpRisk(α) Algorithm α = 0.025 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.975 5) results from the perovskite case study (see Section 5.1). The lowest empirical risk for each task and quantile is bolded. In the case of a tie, all tied algorithms are bolded. to yield a range of plausible weather trajectories which, taken together, are referred to as a dynamic ensemble [START_REF] Du | Ensemble Methods for Meteorological Predictions[END_REF]. While dynamic ensemble predictions cover a range of possible scenarios, they are not necessarily well-calibrated in a probabilistic sense [START_REF] Schulz | Post-processing numerical weather prediction ensembles for probabilistic solar irradiance forecasting[END_REF]. For example, in the solar forecasting context, the dispersion of GHI forecasts across the members of a dynamic ensemble may not accurately reflect the variability in the eventually observed GHI. This mismatch motivates post-processing the dynamic ensemble forecasts with an algorithm that produces well-calibrated density or prediction intervals based on the forecasts. If it is not known a-priori which algorithm will perform best for this task, as is almost always the case, then forming ensembles is warranted. It may also be advantageous to regularly update the parameters of the post-processing algorithm with new data as they become available, which leads naturally to the use of online Super Learning.

EmpCov(β) Algorithm (1 -β) = 0.8 (1 -β) = 0.9 (1 -β) = 0.
For this case study, ground truth observations of GHI are taken from satellite measurements available from the National Solar Radiation Data Base (NSRDB; [START_REF] Sengupta | The national solar radiation data base (nsrdb)[END_REF]). As NWP input, we use archived forecasts produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System. [START_REF] Wang | An archived dataset from the ecmwf ensemble prediction system for probabilistic solar power forecasting[END_REF] released a subset of historical forecasts covering much of North America and Europe from 2017-2020 at horizons from 0h-90h in advance. Following their case study, and using the case study dataset they released, we focus on predicting GHI at 7 locations in the continental United States using one-day ahead ECMWF forecasts.

Formally, let Y t , t = 1, . . . , T be the observed satellite measurement of GHI at 13:00 local time on day t at a single location. Let X t,i be the one-day ahead NWP forecasts of GHI covering the same location, where i = 1, . . . , 50 indexes the NWP ensemble members. We use as additional covariates the solar zenith angle Z t and the one-day lagged GHI observation Y t-1 . Our goal is to estimate conditional 10%, 50%, and 90% quantiles of GHI separately for each location using quantile Super Learning. To ensure that each of the candidate learners have enough data to produce reasonable predictions, the online learning procedure is started on January 1, 2020, with data from 2017-2019 used as initial training data. Subsequently, each of the candidate algorithms is re-trained after each data point becomes available. The candidate algorithms are as follows (see Table 1 for the R packages we relied on):

• Quantile regression 1: Quantile regression with covariates X t,i , i = 1, . . . , 50.

• Quantile regression 2: Quantile regression with covariates X t,i , i = 1, . . . , 50, Z t , and Y t-1 .

• GBM: Gradient Boosting Machines with covariates X t,i , i = 1, . . . , 50, Z t , and Y t-1 trained with 500 trees.

• GRF: Generalized Random Forests with covariates X t,i , i = 1, . . . , 50, Z t , and Y t-1 .

• QGAM: Quantile Generalized Additive Models with covariates X t,i , i = 1, . . . , 50, Z t , and Y t-1 . Spline smooths were used to estimate the association between Z t and Y t-1 and the outcome. The performance of the methods are compared by their empirical risk at time T (4). We also evaluate the empirical coverage of the prediction intervals formed from the 10% and 90% quantile forecasts of each method.

Results. The results of applying the quantile Super Learner to the case study dataset are shown in Table 8. The QSL had the lowest empirical risks in most cases for all but the 50% quantile. For the 50% quantile, the QSL tied or had slightly larger empirical risks than the EWA and BOA algorithms. All of the algorithms yielded prediction intervals that were close to the nominal level, with quantile Super Learner having the best-performing intervals (or tied for best) for five of the seven locations.

One way of understanding the empirical performance of each of the candidate algorithms is to examine how they are weighted in the quantile Super Learner ensemble. Figure 1 shows the weights assigned to each candidate algorithm on the final day (t = T ) for each of the seven locations. Interestingly, the algorithms were weighted differently depending on the quantile being estimated. For the 10% and 90% quantiles, for example, gradient boosting machines received generally higher weights as compared to the 50% quantile. In general, no single algorithm dominated across all locations and quantiles, illustrating the utility of ensemble based predictions.

EmpCov(β) Location Method (1 -β) = 0.8 (1 -β) = 0.9 (1 -β) = 0.

Discussion

We have proposed a method for conditional quantile estimation, Quantile Super Learning, that combines predictions from multiple candidate algorithms based on their performance measured with respect to a cross-validated empirical risk of the quantile loss function. The approach is theoretically grounded by excess risk bounds that hold with mild assumptions on the data generating distributions in both i.i.d. and sequential data scenarios.

Empirically, in simulation studies the QSL consistently achieved the lowest empirical quantile risk compared to the candidate algorithms in an i.i.d. setup, showing the possible benefit of using ensemble methods. In the sequential setting, we found that online QSL outperformed Exponentially Weighted Average and Bernstein Online Aggregation algorithms in some settings. In the solar irradiance case study (see Section 5.2), QSL tended to achieve lower empirical risk for all but the 50% quantile. Practically QSL is also easy to use as it does not require specifying any tuning parameters, as opposed to EWA and BOA. However, the computational cost of QSL is significantly higher, as an optimization problem must be solved at each time step, as opposed to EWA and BOA in which the weights are updated by simple closed-form equations.

One possible use case for the QSL is to form prediction intervals by separately estimating lower and upper quantiles. However, in both the simulations and the case studies, while Super Learner consistently performed as well as or better than the candidate algorithms in terms of quantile risk, the prediction intervals formed via Super Learning did not always have the best empirical coverage. This reflects the fact that minimizing the quantile loss function does not necessarily lead to optimal coverage. Thus, Super Learner based prediction intervals based on minimizing quantile losses do not enjoy any performance guarantees. A natural extension of this work would be to post-process Super Learner prediction intervals using techniques from conformal inference, which have strong finite sample results. In the i.i.d. case, conformalized quantile regression or the CV+ method could be used [START_REF] Romano | Conformalized quantile regression[END_REF][START_REF] Barber | Predictive inference with the jackknife+[END_REF]. [START_REF] Fakoor | Flexible model aggregation for quantile regression[END_REF] provide a comprehensive empirical comparison of post-processing ensemble quantile estimators, and find conformal inference techniques performed well. In the online case, Adaptive Conformal Inference techniques can be used to endow quantile based prediction intervals with finite sample coverage guarantees (Gibbs and Candes, 2021;[START_REF] Gibbs | Conformal inference for online prediction with arbitrary distribution shifts[END_REF][START_REF] Zaffran | Adaptive conformal predictions for time series[END_REF][START_REF] Bhatnagar | Improved online conformal prediction via strongly adaptive online learning[END_REF]. For all of these conformalization approaches it is advantageous to have good underlying estimates of the conditional quantile function, suggesting the use of ensemble methods to hedge against model misspecification.

We note that the goal and implementation of online Super Learning is similar to that of online aggregation of experts approaches in the online learning literature (see the comprehensive overview by Cesa-Bianchi and Lugosi ( 2006)). Indeed, the online Super Learner functions identically to the Follow the Leader algorithm known to the online learning community. For both approaches, a convex combination of predictions of candidate algorithms is found that minimizes the empirical risk of the ensemble in hindsight. What differentiates them is their theoretical contexts and analyses. Follow the Leader is based on an online learning paradigm which makes no assumptions about how the observed data are generated, including even the possibility of data generated adversarially. It is known to fail in such adversarial settings, and is not favored in the online learning community as there are other algorithms that have better worst-case properties (Cesa-Bianchi and Lugosi, 2006, Chapter 3.2). In the case of i.i.d. data, a now standard online-to-batch argument can be used to translate results about the performance of online learning algorithms, such as regret bounds, to a statistical context. However, these arguments do not apply when the data are dependent, as is expected in many time-series settings. In contrast, the typical analysis of Super Learning is based on a statistical point of view in which the data are posited to follow a probability law for which we assume a stationarity condition, implying that the feature of interest of the conditional law can be learned. Crucially, this rules out the adversarial settings for which Follow the Leader is lacking.

In the above statement, Q X j,τ is the marginal law of X j,τ under Q. Next, we present several necessary lemmas that follow from Assumptions B1-B6.

Lemma 3. There exists b 1 > 0 such that sup ψ∈Ψ ∆L α (ψ)) ∞ < b 1 . In addition, there exists b 2 ∈ (0, 2b 1 ] such that for all j ∈ J , t ≥ 1, and ψ ∈ Ψ, it holds P 0 -almost surely that

|∆L α (ψ)(O j,t ) -E P 0 [∆L α (ψ)(O j,t ) | F t-1 ]| ≤ b 2 .
Proof. The existence of b 1 and b 2 follows directly from Assumption B3.

Lemma 4. There exist β ∈ (0, 1] and ν > 0 such that for all j ∈ J , t ≥ 1 and ψ ∈ Ψ, it holds P 0 -almost surely that

E P 0 (∆L α (ψ)(O j,t )) 2 F t-1 ≤ ν (E P 0 [∆L α (ψ)(O j,t ) | F t-1 ]) β .
Proof. By Assumption B6, the P 0 -conditional laws of O j,t given F t-1 have α-quantiles of p-average type q for all t ≥ 1. Let ϑ := min 2 q , p p+1 . By (Theorem 2.8, [START_REF] Steinwart | Estimating conditional quantiles with the help of the pinball loss[END_REF], restated in the Appendix as Theorem 4),

E P 0 (∆L α (ψ)(O j,t )) 2 F t-1 ≤ 2 2-ϑ q ϑ γ -1 0 ϑ p (E P 0 [∆L α (ψ)(O j,t )|F t-1 ]) ϑ ,
where γ 0 is defined as γ in Definition 2 with the choice Q equal to the conditional law of O j,t given F t-1 , and γ -1 0 p is the p-norm of γ -1 0 with respect to the marginal law of X j,t under Q. In view of the definition of Γ in Assumption B6, setting ν = 2 2-θ q ϑ Γ ϑ > 0 and β = ϑ and noting that 0 < β < 1 complete the proof.

Lemma 5. There exists v 1 > 0 such that, for all j ∈ J , t ≥ 1, and ψ ∈ Ψ, it holds P 0 -almost surely that

Var[∆L α (ψ)(O j,t ) | F t-1 ] ≤ v 1 .
Proof. The result follows from Lemma 3.

Theorem 5 (Oracle Inequality for Online Super Learning [START_REF] Ecoto | One-step ahead sequential super learning from short times series of many slightly dependent data, and anticipating the cost of natural disasters[END_REF]). Define For any δ ∈ (0, 1], it holds that E P 0 R α t,P 0 ( ψ α κt ) -R α t,P 0 (ψ α P 0 ) -(1 + 2δ) R α t,P 0 ( ψ α κt ) -R α t,P 0 ( ψ α P 0 ) Proof. It suffices to check each of the 5 conditions of (Ecoto et al., 2021, Corollary 2).

≤ 3 C 1 (δ) t log ( 
• Assumption 1 is satisfied by our Assumption B4.

• Assumption 2 is satisfied by our Assumption B5.

• Assumption 3 is satisfied according to our Lemma 3.

• Assumption 4 is satisfied according to our Lemma 4.

• Assumption 5 is satisfied because Assumption 3 is satisfied.

Proof of Theorem 2.

Proof. To simplify the exposition, let ER κ := R α t,P 0 ( ψ α κt ) -R α t,P 0 ( ψ α P 0 ). By Theorem 5, 

E P 0 R α

  Algorithm α = 0.025 α = 0.05 α = 0.1 α = 0.5 α = 0.9 α = 0.95 α = 0.975

Figure 1 :

 1 Figure1: Final weights at time t = T assigned to each of the candidate algorithms by the quantile Super Learner in the solar irradiance forecasting case study (see Section 5.2).

  whereC 1 (δ) := 2 5-β (1 + δ) 2 γ/δ β , C 2 (δ) := 8(1 + δ)b 2 /3, and N ≥ 2 is chosen such that N ≥ β 2 -β log(t) + log(C 3 ) log(2) ,with C 3 := (v 2 /γ) (2-β)/β /(2 5-β γ).

Table 1 :

 1 Example library of candidate algorithms for i.i.d. conditional quantile estimation.

	Algorithm	R package Citations		
	Distributional Random Forest (DRF)	drf	Michel	and	Cevid
			(2021); Ćevid et al.
			(2022)		
	Gradient Boosting Machine (GBM)	lightgbm Shi et al. (2023)	
	Quantile Generalized Additive Models (QGAM) qgam	Fasiolo et al. (2020,
			2021)		
	Quantile Random Forest (QRF)	grf	Athey et al. (2019)
	Quantile Regression (QReg)	quantreg Koenker		(2005);
			Koenker et al. (2017)
	Quantile Regression Neural Network (QRNN)	qrnn	Cannon (2011, 2018)

Table 2 :

 2 Results for the i.i.d. simulation study. The QSL and candidate algorithms were trained on a learning dataset of N 1 observations and evaluated (5) on a testing dataset of N 2 = 1000 observations.

	975

Table 3 :
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Results for the i.i.d. simulation study. The QSL and candidate algorithms were trained on a learning dataset of N 1 observations and evaluated (6) on a testing dataset of N 2 = 1000 observations.

Table 4 :

 4 Results for the online simulation study in terms of empirical risk (7).

	0	BOA	0.024	0.038	0.056	0.3	0.055	0.04	0.028
		EWA	0.024	0.038	0.057	0.29	0.056	0.04	0.027
		QSL	0.023	0.036	0.055	0.27	0.054	0.038	0.026
	0.5	BOA	0.024	0.038	0.058	0.3	0.058	0.041	0.028
		EWA	0.024	0.038	0.059	0.3	0.059	0.041	0.028
		QSL	0.023	0.036	0.056	0.28	0.056	0.039	0.026
	0.9	BOA	0.03	0.047	0.073	0.38	0.072	0.048	0.031
		EWA	0.03	0.046	0.072	0.36	0.072	0.048	0.03
		QSL	0.03	0.045	0.072	0.34	0.071	0.047	0.029
	0.99 BOA	0.068	0.084	0.14	0.61	0.14	0.082	0.048
		EWA	0.067	0.078	0.13	0.56	0.13	0.078	0.047
		QSL	0.069	0.086	0.14	0.58	0.14	0.083	0.049
						EmpCov(β)			
		ρ	Algorithm (1 -β) = 0.8 (1 -β) = 0.9 (1 -β) = 0.95	
		0	BOA	71.8%	88.2%		93.5%	
			EWA		71.7%	86.9%		92.1%	
			QSL		70.9%	86.4%		91.7%	
		0.5 BOA	72.1%	88.4%		93.6%	
			EWA		71.9%	87%		92.1%	
			QSL		70.9%	86.5%		92%	
		0.9 BOA	73.1%	88.7%		92.9%	
			EWA		72.8%	87.1%		91.9%	
			QSL		71.7%	86.5%		91.5%	
		0.99 BOA		73.3%	86.3%		87.3%	
			EWA	73.9%	86.5%		87.4%	
			QSL		71.2%	83.8%		86%	

Table 5 :

 5 Results for the online simulation study in terms of empirical coverage (8).

Table 6 :

 6 Empirical risk (

	Formation Energy						
	DRF	0.026	0.044	0.068	0.13	0.079	0.053	0.035
	GBM	0.024	0.037	0.049	0.078	0.055	0.042	0.029
	GRF	0.029	0.048	0.07	0.12	0.073	0.051	0.032
	QRNN	0.02	0.024	0.035	0.079	0.036	0.026	0.015
	QReg	0.017	0.026	0.042	0.094	0.044	0.027	0.017
	QSL	0.012	0.021	0.034	0.065	0.035	0.021	0.015
	Energy Bandgap						
	DRF	0.043	0.086	0.17	0.4	0.2	0.13	0.077
	GBM	0.047	0.095	0.17	0.3	0.16	0.1	0.067
	GRF	0.043	0.086	0.17	0.38	0.19	0.12	0.072
	QRNN	0.051	0.089	0.17	0.39	0.18	0.12	0.082
	QReg	0.045	0.091	0.18	0.46	0.2	0.12	0.063
	QSL	0.043	0.088	0.16	0.3	0.14	0.089	0.054

Table 7 :
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Empirical coverage (6) results for (1 -β) × 100% prediction intervals from the perovskite case study (see Section 5.1). The empirical coverage for each task and β value are in bold. In the case of a tie, all tied algorithms are bolded.

•

  QRNN: Quantile recurrent neural networks with covariates X t,i , i = 1, . . . , 50, Z t , and Y t-1 .

				EmpRisk(α) by location
	α-quantile Method BON DRA FPK GWN PSU SXF TBL
	0.025	BOA	8.66 5.44 7.27 6.53 6.79 6.28 7.87
		EWA	7.83 5.38 7.82	6.91	7.34 6.77 8.04
		QSL	8.04 5.46 7.83	6.88 6.26 6.21 7.24
	0.05	BOA	12.7 7.82 11.7 10.9 10.2 10.9 12.1
		EWA	12.7 7.97 12.2	11.3	11.9	11	12.3
		QSL	12.5 7.6	12.3 10.9 9.95 10.2 12.2
	0.1	BOA	18.7 10.3 17.5	17.2	16.8 16.3 18.2
		EWA	19	10.6 17.5	17.2	17.1	16	18.2
		QSL	18.5 9.84	17	16.9 16.3 15.6 18.3
	0.5	BOA	31.2 13.5 28.5	32.2 31.9 30.5 28
		EWA	31.4 13.5 28.9	32.2	32.1 30.8 28.7
		QSL	31.3 13.5 28.4 32.1 32.1 30.9 28.4
	0.9	BOA	15.2 5.34 12.5 14.3	14.2 13.2 11.7
		EWA	15.1 5.57 12.8	14.3	14.3 13.6 12.4
		QSL	14.8 5.47 12.6 13.9 13.9 12.9 11.2
	0.95	BOA	9.11 3.36 7.74	8.3	8.44 8.39 7.39
		EWA	9.36 3.11 8.12 8.14 8.16 8.17 7.01
		QSL	8.9 3.06 7.72 8.19	8.1 8.39 7.29
	0.975	BOA	5.4	2.39 4.58 5.79	4.54	5.4	4.29
		EWA	5.12	2.4	4.6	5.54	4.9 4.98 4.43
		QSL	5.98 2.14 4.96 5.11 4.38 5.52 4.25

Table 8 :

 8 Empirical risk of the quantile Super Learner (QSL), Exponentially Weighted Average (EWA), and Bernstein Online Aggregation (BOA) algorithms applied to point forecasting the α-quantiles of ground horizontal irradiance at seven locations in the continental United States (see Section 5.2). The lowest empirical risks for each location are in bold. In the case of a tie, all tied algorithms are bolded. The locations areBON, Bondville, Illinois; DRA, Desert Rock, Nevada; FPK, Fort Peck, Montana; GWN, Goodwin Creek, Mississippi; PSU, Pennsylvania State University, Pennsylvania; SXF, Sioux Falls, South Dakota; and TBL, Table Mountain, Boulder, Colorado. 

Table 9 :

 9 Empirical coverage of the (1 -β) × 100% prediction intervals of ground horizontal irradiance formed from quantile estimates based on quantile Super Learner (QSL), Exponentially Weighted Average (EWA), and Bernstein Online Aggregation (BOA) at seven locations in the continental United States (see Section 5.2). The empirical coverage closest to the desired level for each location are in bold. In the case of a tie, all tied algorithms are bolded. The locations are BON, Bondville, Illinois; DRA, Desert Rock, Nevada; FPK, Fort Peck, Montana; GWN, Goodwin Creek, Mississippi; PSU, Pennsylvania State University, Pennsylvania;SXF, Sioux Falls, South Dakota; and TBL, Table Mountain, Boulder, Colorado. 

		10% Quantile			50% Quantile			90% Quantile	
	GBM											
	GRF											
	QGAM											
	Quantile Regression 2											
	Quantile Regression 1											
	0.0	0.2	0.4	0.6	0.0	0.2	0.4	0.6	0.0	0.2	0.4	0.6
					Final SuperLearner Weight				

  t,P 0 ( ψ α κt ) -R α t,P 0 (ψ α P 0 ) ≤E P 0 [ER κ] + 2δE P 0 [ER κ] + Rem(δ)

	where						
								1
	Rem(δ) := 3	C 1 (δ) t	log(2KN )	2-β	+	2C 2 (δ) t	log(2KN ).
		N ≥	β 2 -β	log(t) + log(C 3 ) log(2)
								β 2 .
	Therefore, for t large enough,						
								1
	Rem(δ) C 1 (t -1/2 )	1 2-β			log(2KN t	2-β	+	log(2KN ) t
								1
	C 1 (t -1/2 )	1 2-β			log(8K log(t) t	2-β	+	log(8K log(t)) t
								1
	C 1 (t -1/2 )	t log(8K log(t))	2-β
							1
	log(8K log(t))	2-β
		t 1-β 2				
	log(8K log(t)) t 1/2	.	

Choose an integer N ∈ [3 log(t), 4 log(t)], which will necessarily satisfy

provided that t ≥ max{2, C 3 }. Fix δ = t -1/2 . Then C 2 (δ) ≤ 16b 2 /3 and 2 5-β γt β 2 ≤ C 1 (δ) ≤ 2 7-β γt

∼ N (0, σ

/(1 -ρ 2 )) and, for 1< t ≤ T , t ∼ N (ρ • t-1 , σ 2 ),with ρ ∈ (0, 1) an autoregressive parameter and σ > 0 a scale parameter.
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Appendix A. Theoretical Background

In this appendix we present additional theoretical context and proofs of the theorems appearing in the main paper.

Appendix A.1. Independent setting Our theoretical treatment of the QSL in the i.i.d. setting follows that of [START_REF] Wu | A huber loss-based super learner with applications to healthcare expenditures[END_REF], who use results from van der Vaart et al. (2006) and [START_REF] Mark | Super learner[END_REF]. First, we require the definition of a pair of Bernstein numbers, on which rests the theoretical analysis.

Definition 3 (van der Vaart et al. (2006)). Given a measurable f : X × R → R, and for any P ∈ M, call (M (f ), v(f )) a P -pair of Bernstein numbers of f if

From the following result we see that, for f uniformly bounded, the pair of Bernstein numbers is related to the supremum and variance of f : Lemma 1 (van der Vaart et al. (2006)). If f is uniformly bounded then, for any

The following result establishes a Bernstein pair for the quantile loss function.

Lemma 2. Let ψ ∈ Ψ be uniformly bounded. For any P ∈ M let R α P (ψ) be the risk of ψ as defined in (1). Under assumptions A1 and A2, the pair (M (ψ), v(ψ)) given by

is a P -pair of Bernstein numbers of L α (ψ).

Proof. The proof follows closely that of Wu and Benkeser (2022, Lemma 1); therefore, we only summarize the proof by pointing out the relevant places where it differs. First, see that for all o = (x, y)

which is the first Bernstein number. Next, we compute P L α (ψ) 2 . Following Wu and Benkeser (2022, Lemma 1), we arrive at

which is the second Bernstein number. This completes the proof.

Next, we state an inequality bounding the difference between the cross-validated risk and the oracle risk.

Theorem 3 (Theorem 2.3, van der Vaart et al. (2006)). For any P ∈ M, for any ψ ∈ Ψ uniformly bounded, let (M (ψ), v(ψ)) be a P -pair of Bernstein numbers of the function L α (ψ). Then for any δ > 0 and 1 ≤ p ≤ 2,

where n 1 := n i=1 B n (i).

Proof of Theorem 1..

Proof. The proof follows that of Wu and Benkeser (2022, Theorem 2), with the substitution of max{2αC 0 , 2(1 -α)C 0 } for C.

Appendix A.2. Online setting First, we present the following result that is key to the later analysis.

Theorem 4 (Variance bound for the quantile loss [START_REF] Steinwart | Estimating conditional quantiles with the help of the pinball loss[END_REF]). Let p ∈ (0, ∞], q ∈ [0, ∞), and ϑ = min 2 q , p p + 1 .

Let Q be a distribution for O j,τ , (j, τ ) ∈ J × N * , that has an α-quantile of p-average type q. For all ψ ∈ Ψ, define ∆L α (ψ) := L α (ψ) -L α (ψ α P 0 ). Then, for all ψ ∈ Ψ, it holds that Q∆L α (ψ) 2 ≤ 2 2-ϑ q ϑ γ -1 p,Q X j,τ (Q∆L α (ψ)) ϑ .

Next, note that for large enough t and using the boundedness assumption, 2δE[ER κ] = 2t