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Abstract

Zelda Rose is a command line interface for
pretraining transformer-based models. Its pur-
pose is to enable an easy start for users in-
terested in training these ubiquitous models,
but unable or unwilling to engage with more
comprehensive — but more complex — frame-
works and the complex interactions between
libraries for managing models, datasets and
computations. Training a model requires no
code on the user’s part and produce mod-
els directly compatible with the HuggingFace
ecosystem, allowing quick and easy distribu-
tion and reuse. A particular care is given to
lowering the cost of maintainability and future-
proofing, by making the code as modular as
possible and taking advantage of third-party li-
braries to limit ad-hoc code to the strict mini-
mum.

1 Introduction

Since their advent in machine translation (Vaswani
et al., 2017) and as a mean to obtain contextual
word representations (Devlin et al., 2019), trans-
former models have become ubiquitous in Natural
Language Processing. The latter use in particular
is almost impossible to avoid to develop state-of-
the-art NLP systems, the usual workflow being a
self-supervised pretraining step using unannotated
data, followed by a fine-tuning step for a down-
stream task, either as a module in a larger neural
architecture or as an end-to-end predictor.

Using these models and fine-tuning them on
downstream tasks has been made easier by li-
braries such as AllenNLP (Gardner et al., 2018),
FairSeq (Ott et al., 2019), MaChAmp (van der
Goot et al., 2021), Trankit (Nguyen et al., 2021). . .
and most of all Transformers (Wolf et al., 2020).
However, among these, only FairSeq and Trans-
formers provide interfaces to pretrain them.

While these libraries have considerably lowered
the barrier of entry for using these models, produc-

ing new ones remains an involved process. In par-
ticular training existing models on new data is not
trivial, making it hard to develop models for new
languages or specialty domains. This difficulty is
largely due to the number of moving pieces and op-
tions required for training these models with lim-
ited resources in a reasonable time.

Zelda Rose is meant to make pretraining trans-
formers models as simple as possible, in particu-
lar for users who would benefit from being able
to train or refine them on their own specialized
domains, but who are not necessarily interested
in controlling or customizing every possible as-
pect of the training process. This include among
researchers in domains other than NLP, software
engineers in the process of porting existing NLP
tools to new languages, and, generally speaking,
consumers of transformer models as opposed to
researchers interested in improving the models
themselves. It must therefore be a small tool, with
a limited and clearly defined purpose, as easy to
use and cheap to maintain as possible.

To this end, pretraining a transformer model us-
ing Zelda Rose does not require writing any code
(although it is easy to write code to extend its
capability or customize it), but running a simple
command. The configuration is done with entirely
with configuration files and command line options.
It can use any local datasets, models and configu-
rations as well as refer to HuggingFace Hub repos-
itory. It is also transparently compatible with the
SLURM scheduler to make it easier to run on com-
puting clusters.

2 Related works

To our knowledge, only two mainstream libraries
providing interfaces for pretraining transformer
models are FairSeq (Ott et al., 2019) and Trans-
formers (Wolf et al., 2020) (via its Trainer mod-
ule). Both of these are complete frameworks,
providing model implementations, data process-



ing tools and training interfaces. While this al-
lows for a complete customization of the architec-
ture of the models and of the training process, it
can makes it less straightforward to train a known
model on new data or to get a precise sense of
what is happening during training, since it requires
an extensive knowledge of their often convoluted
code bases. In other words, while they are essen-
tial tools to build on, they are not necessarily the
most ergonomic for the need of all users. The tight
coupling of their model training utilities with their
library code also makes it hard to extend them, for
instance to make them compatible with new hard-
ware platforms or training techniques.

To avoid these complications, some works (such
as He et al. (2020) for DeBERTa), chose to build
projects entirely around the purpose of training a
single model, writing ad-hoc code more or less
from scratch. This obviates the need for learning
all the details of a specific framework, but is much
more involved in terms of engineering to design
the model and training code, run them and ensure
the reusability of the resulting artifacts. Overall,
this model would not be suitable for the use cases
that we target with Zelda Rose.

Between these two extremes of being com-
pletely integrated in an end-to-end framework or
to build from ad-hoc code, the choice we made
for Zelda Rose is a loose coupling with frame-
works. In practice, this means that users can train
new models by providing a configuration and a
dataset to a command line tool, which trains a
model using only high-level interfaces of third-
party libraries, each specialized in a specific as-
pect. For instance we use Pytorch-Lightning (Fal-
con and The PyTorch Lightning team, 2019) to
manage the training process, while the models im-
plementations come from Transformers, which al-
lows to benefits from all their respective innova-
tions while avoiding being restricted by their limi-
tations.

3 Design

3.1 User interface

From the point of view of a user, Zelda Rose
mainly consists of a command line interface,
which takes parameters related to the model archi-
tecture, task and training configurations and train-
ing platform. In its most basic form, it trains a
model on a masked language task using the same
hyperparameters as Liu et al. (2019):

zeldarose transformer \
--tokenizer roberta_base \
--model-config roberta_base \
--val-text dev_corpus.txt \
train_corpus.txt

The training parameters can be customized by
passing a configuration file in the TOML format.
For instance the default configuration would be

type = "mlm"

[task]
change_ratio = 0.15
mask_ratio = 0.8
switch_ratio = 0.1

[tuning]
batch_size = 64
betas = [0.9, 0.98]
epsilon = 1e-8
learning_rate = 1e-4
lr_decay_steps = 1048567
warmup_steps = 1024
weight_decay = 1e-5

The use of configuration files rather than com-
mand line flags or environment variables help
keeping track of the settings used (they can be di-
rectly redistributed with the models) for documen-
tation and reproduction. They are also easier to
version and to validate (in our case via Pydantic
(Colvin et al., 2023)).

On the other hands, parameters related to the
training platform are given as command line op-
tiuons, since they are specific to each invocation.
For instance --num-devices specifies the number
of devices (GPU, CPU cores. . . ) used for a train-
ing run. Other options include the type of devices
to use, the number of nodes to use when running
in SLURM. . .

So far, the tasks implemented are masked lan-
guage modeling (inspired by BERT Devlin et al.
(2019)), replaced token detection (from ELEC-
TRA (Clark et al., 2019) and DeBERTa v3 (He
et al., 2021)) and span-masking denoising (from
mBART (Liu et al., 2020)). Not all hyper-
parameters are configurable and some opinion-
ated choices are made (for instance at this point
the gradient descent algorithm used is AdamW
(Loshchilov and Hutter, 2019)) in order to keep
the configuration space manageable, which sim-



plify the choice of a setting for user and reduces
the maintainability burden.

The model configurations given in input refer to
Transformers models, which can be loaded either
from a local file or from a repository on Hugging-
Face Hub1. This allow an easy reference to most
popular models. Users can also ask for the ini-
tialization of their model with already pretrained
weights for post-training (Zhuang et al., 2021),
which has been shown to significantly improve
model performances on domain-specific tasks. Fi-
nally, the outputs of Zelda Rose are Transformers-
compatible models, ready to be loaded in this li-
brary or uploaded to HuggingFace Hub for imme-
diate distribution.

3.2 Internal organization

The library is organized around two main building
blocks: tasks and datasets.

Datasets are managers for collections of sam-
ples, e.g. raw sentences or parallel sentences. They
contain the logic to load (from local files or re-
mote repositories), preprocess (including at least
tokenization, digitization and batching) and serve
batch of samples to the training modules. In or-
der to process large datasets with a limited mem-
ory footprint and enable caching, the data manage-
ment and processing parts currently use of Hug-
gingFace’s Datasets library (Lhoest et al., 2021),
wrapped in regular Pytorch and Pytorch-Lightning
objects to make this transparent to the rest of the
code and reduce the cost of changing this in future
extensions of Zelda Rose.

Tasks are abstractions for the process of —
given a model architecture and a configuration
—, providing an object (in practice a Pytorch-
Lightning training module) that implement the ac-
tual training process: generating targets from the
inputs (for self-supervised tasks), obtain parame-
ters for the optimization algorithm, run training
steps, compute losses and metrics. . . In practice,
since the models used are those implemented in
HuggingFace’s Transformers library (Wolf et al.,
2020), which handles the forward pass and the
loss computations, most tasks only have to spec-
ify target generation, optimization and monitoring-
related parts.

Finally, given a configuration, the main module
loads the appropriate task and dataset, to which it
delegates all task- and data-related aspects, while

1https://huggingface.co/models

taking care of the platform considerations, such
as how many training processes to spawn, which
devices to use and how many sample should they
each process at once, etc. according to the con-
figuration. This architecture allows for a clear
separation of concerns, making adding new tasks
and datasets quite easy. In practice, this is im-
plemented by having the main module build a
Pytorch-Lightning Trainer, which natively deals
with a large number of hardware and training
strategies and is actively maintained to follow the
state of the art, in turn allowing us to benefits from
the latest innovations at a relatively low mainte-
nance cost.

4 Challenges

The main challenge with such a library is its main-
tainability given a limited time budget. Indeed,
while the systematic reliance on third-party li-
braries rather than ad-hoc code as often as possi-
ble lets us benefit from their latest improvement
with very little engineering code a priori, it also
makes Zelda Rose dependent upon them for cor-
rectness and backward compatibility. This means
that every new release of a dependency has to be
checked with great care, as it could be introduc-
ing new bugs and it is often the case that slight
but significant behavior changes go unnoticed or
undocumented.

Undocumented behavior and implementation
details in the dependencies were also a burden for
the initial engineering effort and for subsequent ex-
tension of Zelda Rose (for instance when adding
new tasks). Indeed, for libraries of these sizes and
providing so many functionality, the documenta-
tion does not always follow the speed of bleeding
edge evolutions, and checking their source code di-
rectly is often necessary to ensure that we use their
interfaces correctly.

In other cases it was the lack of support for cer-
tain features required for the reproduction of exist-
ing work (such as embedding tying in the ELEC-
TRA and DeBERTa models) that made reaching
into private interfaces and monkey-patching neces-
sary. While the dynamic nature of these libraries
allow this, it makes part of our code much more
brittle than we would hope for and these parts have
to be checked for correctness with each new re-
lease.

This regular checking of non-regressions is
made harder by the nature of the tool. Since train-

https://huggingface.co/models


ing neural networks is not in general deterministic
and since bugs tend to manifest not as outright er-
rors but as degradation in performances, ensuring
that a modification did not introduce a bug can be
challenging. Indeed, it is often the case that such
a degradation would not be observed on toy ex-
amples but only on the larger scale of real world
examples. However, continuously running auto-
mated tests (in a continuous integration pipeline
for instance) at these scales is not realistic, reduc-
ing the safety provided by tests.

Moreover, the complexity of the dependencies
makes unit testing challenging, since it would of-
ten require mocking internals of these libraries.
Automated tests ran as part of the continuous in-
tegration pipeline of Zelda Rose are therefore lim-
ited to so-called smoke tests, which verify if the
tool runs, is able to train model in a variety of
configuration and produces viable output. Non-
regression tests, in contrast, are run manually, by
training a few select models in realistic conditions.
Since these are much more costly, they are only
ran before a new version of Zelda Rose is released.

5 Conclusion

Zelda Rose makes possible it to pretrain trans-
former models with very little effort, even in com-
plex environments. No custom code is needed
to train a model on new data, which should al-
low more people to participate in resource devel-
opment efforts. However, the modular design of
this tool also makes it easy to extend and to inte-
grate future developments in transformer models.

Building upon high level state-of-the-art frame-
works rather than custom engineering allows to
benefit from the latest innovations without too
much maintenance work. It is not without down-
sides as it still requires some work to ensure that
new releases of these dependencies do not intro-
duce bugs and it makes the parts of Zelda Rose
more complex to test individually. Overall, how-
ever, this design choice is still a net gain.

Planned future development in Zelda Rose will
focus on adding more tasks, which will be the oc-
casion to make the design even more modular by
allowing tasks to be external plugins. More efforts
will also be made on the instrumentation and test-
ing, to make the testing process more cumbersome
and add as many checks as possible of the repro-
ducibility of training results. Finally, since the aim
of this tool is to be useful beyond its developers,

future improvements will also in a large part be
guided by the requests of users, which we hope
will be numerous and relevant!
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