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Living tissues display fluctuations – random spatial and temporal variations of tissue properties
around their reference values – at multiple scales. It is believed that such fluctuations may enable
tissues to sense their state or their size. Recent theoretical studies developed specific models of fluc-
tuations in growing tissues and predicted that fluctuations of growth show long-range correlations.
Here we elaborated upon these predictions and we tested them using experimental data. We first
introduced a minimal model for the fluctuations of any quantity that has some level of temporal per-
sistence or memory, such as concentration of a molecule, local growth rate, or mechanical property.
We found that long-range correlations are generic, applying to any such quantity, and that growth
couples temporal and spatial fluctuations, through a mechanism that we call ‘fluctuation stretching’
— growth enlarges the lengthscale of variation of this quantity. We then analysed growth data from
sepals of the model plant Arabidopsis and we quantified spatial and temporal fluctuations of cell
growth using the previously developed Cellular Fourier Transform. Growth appears to have long-
range correlations. We compared different genotypes and growth conditions: mutants with lower
or higher response to mechanical stress have lower temporal correlations and longer-range spatial
correlations than wild-type plants. Finally, we used theoretical predictions to merge experimental
data from all conditions and developmental stages into an unifying curve, validating the notion that
temporal and spatial fluctuations are coupled by growth. Altogether, our work reveals kinematic
constraints on spatiotemporal fluctuations that have an impact on the robustness of morphogenesis.

Significance Statement

How do organs and organisms grow and achieve robust shapes in the face of subcellular and
cellular variability? In order to address this outstanding mystery, we investigated the variability
of growth at multiple scales and we analysed experimental data from growing plant tissues. Our
results support the prediction that tissue expansion couples temporal memory of growth with spatial
variability of growth. Our work reveals a constraint on the spatial and temporal variability of growth
that may impact the robustness of morphogenesis.

∗ antoine.fruleux@universite-paris-saclay.fr
† arezki.boudaoud@polytechnique.edu

INTRODUCTION

The impact of noisy perturbations on organism devel-
opment is the subject of active research [1]. Fluctua-
tions – the random spatial and temporal variations of
tissue properties around their reference values – have
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been observed at multiple scales, from cytoskeleton [2]
to cell [3] and tissue [4]. In the fruit fly, for example,
actomyosin pulses were shown to cause fluctuations of
cell shape [5–7], while fluctuations of the position of cell
junctions were found to favor cell rearrangements during
tissue extension [8, 9]. It was proposed that fluctu-
ations are required for symmetry breaking and pattern
formation during development [10, 11] or for cells and
tissues to sense their neighbourhood [12] . Fluctuations
in gene expression or morphogens seems particularly im-
portant for cell differentiation. Fluctuations in gene tran-
scription seem required for the maintenance of pluripo-
tency [13, 14], and specific properties of fluctuations are
a signature of cell differentiation [15–18]. Nevertheless,
the robustness of tissue patterning appears sensitive to
fluctuations in molecule concentrations [19, 20]. Fluc-
tuations in growth induce mechanical stress [12, 21–23]
because, for instance, cells with higher growth rate exert
forces on neighbouring cells, which may sense and re-
spond to such mechanical stress. Robust development of
the fruit fly wing partially relies on cell competition, i.e.
on mismatch of growth rates between cells, and on the en-
suing modulation of proliferation and apoptosis [24, 25].
In this context, it is important to understand whether
fluctuations of a cell affect its local neighbourhood or the
whole tissue. Here, we analysed the spatial structure of
fluctuations in experimental data from growing tissues.

Recent models of tissue mechanics and growth ac-
counted for temporal and spatial fluctuations of growth
and investigated their role in robustness of morphogen-
esis [26–28]. Temporal fluctuations are characterised by
their degree of persistence, quantified with the persis-
tence time (or correlation time), the characteristic time
over which memory of previous fluctuations is lost. It
could be the time needed for remodelling of the cytoskele-
ton or of the extra-cellular matrix (in animals) / the cell
wall (in plants). Spatial fluctuations are characterised
by their degree of spatial consistency, quantified by the
correlation length, the characteristic length over which
cells (or subcellular domains) behave similarly, or by cell-
to-cell variability over a small neighbourhood. For in-
stance, the shape of a plant organ was found to be less
robust in a mutant with lower cell-to-cell variability [26].
However, spatial fluctuations may have a more complex
structure. Indeed, theoretical models of the expanding
universe [29, 30] and of growing tissues [27, 28] predicted
long-range spatial correlations, i.e. a significant level of
correlations between fluctuations of two distant parts of
the system; accordingly, growing systems are expected
to exhibit fluctuations at multiple scales. Here we focus
on the underlying mechanism, which we call fluctuation
stretching – the increase in the lengthscale of fluctuations
of a tissue property or of the concentration of a molecule,
due to tissue expansion.

To assess the experimental relevance of this mech-
anism, we analyzed growth fluctuations in the model
plant Arabidopsis thaliana. We considered the sepal,
the green leaf-like organ that protects a flower prior to
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FIG. 1. Distinct effects of tissue expansion, time re-
laxation (loss of memory), and noise source on the
spatial pattern of a tissue property. The figure shows
initial spatial patterns and their temporal evolution under the
three mechanisms. The variable property Φ(x) is plotted as a
function of position x and shown in colorscale (blue and yellow
for low and high values, respectively) along a strip standing
for the growing tissue. A Tissue expansion induces fluctu-
ation stretching, defined as the enlargement of the length-
scales of fluctuations. B Relaxation associated with loss of
memory induces a decay in the amplitude of fluctuations (de-
picted by green arrows). C Noise causes the superimposition
of new fluctuations on the preceding pattern (represented by
a dashed line in the lower panel). We schematically repre-
sent stretching, relaxation, and noise superimposition by func-
tion block diagrams containing horizontal red arrows, vertical
green arrows, and a noisy signal, respectively. These block
diagrams are used in Fig. 2.

its opening. We characterised sepals from wild-type in-
dividuals in different culture conditions as well as mu-
tant plants. We considered spiral2 and katanin mutant
plants since they were found to be less robust to vari-
ability in the number of trichomes (epidermal hair-like
cells) than wild type plants [31], suggesting a greater
impact of cellular scales on organ ones. The lack of
SPIRAL2 and KATANIN function led respectively to
stronger [31–33] and weaker [31, 32, 34] cortical micro-
tubule co-alignment and reorientation in response to me-
chanical stress [35, 36]. Microtubules guide the deposi-
tion of cellulose fibers in the cell wall (the plant extra-
cellular matrix) [37]. Cellulose fibers being the main
load-bearing component of the cell wall, the response
of microtubules to mechanical stress is generally consid-
ered as a mechanical feedback on growth and spiral2 and
katanin as mutants with altered feedback.

In this Article, we first present a simple model for fluc-
tuation stretching. We estimate spatial and temporal
correlations of tissue growth fluctuations in Arabidopsis
sepals using previous live imaging data [31, 32] and the
Cellular Fourier Transform (CFT) [38]. We investigate
how correlations vary within and between datasets and
we test the relevance of fluctuation stretching.
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RESULTS

A minimal models predicts the stretching of
fluctuations in growing tissues

Fluctuation stretching, the enlargement of the length-
scales of fluctuations by medium expansion, was pre-
dicted by different models of expanding media, the early
universe [29, 30] and living tissues [27, 28]. Here we in-
troduce a minimal model for fluctuation stretching. For a
primarily mostly interested in experimental data, Eq. 2 is
the main theoretical result that we test in growing sepals.

We consider a variable property Φ that is defined on
a tissue growing isotropically at average rate G and that
depends on position vector x and time t. This variable
Φ could reflect gene expression, signalling, metabolism,
cell size, or cell growth, for instance. We assume that
(i) Φ is inherited through tissue growth, so that it is
advected (transported) by the average growth velocity
Gx/D (D is the space dimension: D=1 in Figures 1-2
and D = 2 for a thin organ like the sepal), (ii) Φ relaxes
to its average value 〈Φ〉 with a characteristic memory
(persistence/correlation) time τ , and (iii) Φ is subject to
a source of noise ξ(x, t) that is random in space and time.
As a consequence,

∂Φ

∂t
+

Gx

D
· ∂Φ
∂x

= − 1

τ
(Φ(x, t)− 〈Φ〉) + ξ(x, t). (1)

In this equation, the first term is the temporal derivative
of Φ(x, t). The second term (in right-hand side) rep-
resents the effect of tissue expansion, i.e. advection by
growth, and contains the spatial derivative of Φ (the dot ·
stands for the vectorial product, which reduces to a mul-
tiplication for D = 1). The third term (left-hand side)
describes relaxation (loss of memory) of Φ.

The consequences of tissue expansion, loss of memory
(time persistence), and noise on the variations of Φ are
schematized in Fig. 1, for one time step. Tissue expansion
induce ‘fluctuation stretching’, i.e. enlarges the length-
scales of spatial variations (panel A). Time persistence
determines how fast fluctuations relax toward their ref-
erence level (B). Noise superimpose new fluctuations on
the preceding pattern (C).

When iterated over time, fluctuation stretching and
noise give rise to multiscale fluctuations, while the de-
gree of time persistence (or memory level) controls how
far fluctuations extend toward large space-scales. This is
illustrated in Fig. 2A. in three regimes: for full, interme-
diate, and vanishing time persistence. For full time per-
sistence (τG = +∞) the pattern is stretched, increasing
its the lengthscale of variations of Φ and fluctuations are
added at small scale. For intermediate time persistence
(τG ∼ 1), the same process occurs but the preexisting
pattern is attenuated due to relaxation. In the absence
of temporal persistence (τ = 0), the preceding pattern
disappears and only the newly superimposed noise re-
mains. Mathematically, the solutions to Eq. 1 take the

form Φ(x, t) = 〈Φ〉+
∫ +∞

0
ds e−s/τ ξ(x e−sG/D, t− s) (see
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FIG. 2. Multiscale fluctuations as a consequence of
fluctuation stretching. Spatial correlations of tissue prop-
erties depend on the level of temporal persistence of fluctua-
tions. Three levels of temporal persistence are considered: full
(no time relaxation), intermediate (moderate relaxation), and
none (instantaneous relaxation). A Spatial pattern resulting
from the iteration of fluctuation stretching, relaxation, and
noise, schematically represented by function block diagrams
in series, as defined in Fig. 1; patterns are represented under
the form of plots and color stripes as in Fig. 1. Top: pat-
terns after n iterations; middle: patterns after one additional
iteration of stretching and (if appropriate) relaxation; bot-
tom: patterns after one additional superimposition of noise.
B Quantification of spatial correlations. Top: This involves
comparing the values of the variable at positions x and x+ l,
as illustrated in the colored strip. Left: Typical scatter plot
showing Φ(x+ l) as a function of Φ(x) for multiple values of
x. Middle: C(l) is defined as the correlation coefficient be-
tween Φ(x+l) and Φ(x); 〈〉 stands for the statistical average of
the expression between brackets and ∆Φ(x) = Φ(x)−〈Φ(x)〉.
Right: the correlation C(l) as a function of the distance l.
C Spatial correlation function C(l) for full, partial, and no
time persistent fluctuations. Models predict that the space
correlation function is a power-law of l, C(l) ∝ l−β.

Supplementary note, for details). The integral indicates
the superimposition while the exponential factor e−s/τ

accounts for time relaxation or loss of memory. Fluc-
tuation stretching corresponds to the exponential factor

esG/D applied to the spatial variation of the noise.

The space correlation function, C(l), is the pairwise
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correlation between the values Φ(x) and Φ(x + l) of the
variable Φ at positions distant of length l, as illustrated
in Fig. 2 B. C(l) generally decrease with the distance
l: for l = 0, Φ(x) = Φ(x + l) and so the correlation is
complete, C(0) = 1, while at large distance l, Φ(x+ l) is
expected to be independent of Φ(x) and the correlation
vanishes as illustrated in the plot on the right of panel B.
In our minimal model, the correlation function takes the

form C(l) =
∫ +∞

0 (2 ds/τ) e−2 s/τg(|l| e−sG/D), assuming
the permanent noise source ξ(x, t) = 0 has zero mean
and correlation function 〈ξ(x, t)ξ(x + l, t + s)〉 propor-
tional to δ(s)g(l) (δ is the Dirac distribution, see Sup-
plementary note, for details). Here again C(l) appears
as a weighted sum of the space correlation function g
of the noise source stretched at different spatial scales.
The correlation function g is assumed to have a corre-
lation length ℓ that sets the reference scale for spatial
variations of Φ; ℓ cannot be assumed to be zero without
causing issuess of mathematical convergence. In prac-

tice, we took g(l) = e−|l|2/(2ℓ2)(2πℓ2)−D/2. Because of
fluctuation stretching, space correlations functions for
time persistent fluctuations are predicted to be long-
ranged i.e. to have their tails which follow a power law
∝ l−β . As shown in the Supplementary note, this can
be made explicit by rewriting the space correlation func-

tion C(l) = |l|−2D/(τG)h(|l|), where the increasing func-

tion h(|l|) =
∫ |l|

0 du u2D/(τG)−1g(u) reaches an asymp-
totic value when |l| becomes large compared to the cor-
relation length ℓ of ξ. Therefore, the correlation function
C(l) of the variable of interest Φ mostly behaves as a
power-law C(l) ∼ l−β of exponent

β =
2D

τG
. (2)

This scaling law indicates that the values of the vari-
able Φ considered in two distant points decorrelate slowly
as their distance is increased, which reflects the fact that
fluctuations are a superimposition of patterns with differ-
ent spatial lengthscales. β estimates this spatial decrease
in correlations, the higher the memory (the larger τG),
the higher correlations between distant regions. Fig. 2
C show the space correlation functions for full, partial,
and no memory. Full temporal persistence is simply the
limit where the persistence time is infinite, leading to an
accumulation of fluctuations at large lengthscales. The
weight of large scaled fluctuations continuously increases
so that the correlation function tends toward a constant.
In contrast, in the absence of temporal persistence, spa-
tial correlations vanish beyond the correlation length of
the noise. Hereafter, we tested this prediction using pre-
vious experimental data about growing plant organs.

Live imaging and spectral analysis provide estimates
for spatiotemporal correlations of cell growth

Next we aimed at a quantitative description of spa-
tial and temporal correlations of growth fluctuations in
expanding tissues. We used experimental data where
sepals were imaged live to track morphogenesis over time,
with similar culture and imaging conditions [31, 32]. We
examined whether fluctuations stretching applies to cell
areal growth rate. Each sepal was imaged at multiple
times, labeled t = 0, 1, 2, ... and separated by 24 hours
intervals as illustrated by Fig. 3A, which shows an ex-
ample of cells segmented in a sepal, at three successive
time steps t, t + 1 and t + 2. Growth was defined from
cell surface area at successive time steps. Fig. 3B shows
cell areal relative growth rate Gi,t and Gi,t+1 from t to
t+ 1 and from t+ 1 to t + 2 respectively, deduced from
segmentation of sepals into cells, as showed in panel A

and mapped on the reference tissues at t and t + 1, re-
spectively. When a cell has divided between t to t+1, we
used the total surface area of its daughter cells at t + 1
to define Gi,t, see Datasets ans Methods for details.

To dissect spatial variations of growth in the tissue,
we used the Cellular Fourier Transform (CFT) [38]. The
CFT consists of decomposing the signal into a linear com-
bination of ad hoc harmonics that account for the subdi-
vision of the tissue into cells of variable size and shape.
These harmonics are the equivalent of sinusoidal waves in
an infinite continuous medium. The k-th harmonic, ek,
has wavenumber qk, and varies on a lengthscale that de-
creases with the rank k. The CFT coefficients Ĝk,t give
the weights with which cell relative areal growth is de-
composed into the harmonics ek. The Fourier spectrum
is obtained by plotting the amplitude |Ĝk,t| as a func-
tion the corresponding wave number qk. This spectrum
is well-suited to describe fluctuations of G at multiple
scales.

We investigated spatial correlations from Fourier spec-
tra such as those shown in Fig. 3.D. The amplitudes
of spectra appear significantly higher for low wave num-
bers, suggesting long-range correlations. To further test
this, we sought a characteristic lengthscale for fluctua-
tions and we considered the smallest index K for which
∑K

k=1 Ĝ
2
k ≥ 1/2

∑N−1
k=1 Ĝ2

k, so as to quantify the repar-
tition of fluctuations between low and large scales. If
fluctuations were short-ranged, then the ratio of largest
to characteristic wavenumbers, q1/qK , would be a good
estimate of the ratio of correlation length to sample size,
and would therefore be small compared to 1. In contrast,
we found the ratio q1/qK to be 0.54 on average (standard
deviation 0.29 and range 0.086 – 1, over all study sam-
ples), indicating long-range correlations. This qualita-
tive agreement with the predictions of the minimal model
prompted us to use power-laws to represent Fourier spec-
tra. We note that the prediction C(l) ∼ l−β corresponds
to a spectrum scaling like q−α, with α = 1 − β/2 (see
section Datasets and Methods). Although the limited
range of wavenumbers did not allow us to test the power-
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FIG. 3. Quantification of spatial and temporal fluctuations in cell growth. Day (d) is used as a unit of time. A Three
snapshots of a plant tissue (abaxial sepal epidermis from wild-type plant) taken at one-day intervals. Black lines represent cell
contours. B Heatmaps of relative areal growth rate between times t and t+1, Gi,t, and between t+1 and t+2, Gi,t+1 for cell
#i. A growth rate of 1d−1 corresponds to a relative increase of area of 100% in 1 day. Growth rate of white cells could not be
computed because they were not imaged at t + 2. C1-C2 The first 4 harmonics ek (k = 0, 1, 2, and 3) of the Cellular Fourier
Transform (CFT) of the tissue at t and t + 1 (the white cells in B are not included), represented by a cyan (low value) to
magenta (high values) color scheme. The harmonics ek generalise sinusoidal waves and can be used to decompose the growth

fields Gi,t and Gi,t+1 into their respective CFTs Ĝk,t and Ĝk,t+1. D1-D2 Fourier spectra (blue dots) correspond to the absolute

values |Ĝk,t| and |Ĝk,t+1| of the CFTs and are shown as function of the wavenumber qk of the harmonics ek. Wavenumbers were

non-dimensionalised using mean cell size lc. A representative power-law (solid line) ∆Gtq
−αt

k

/(

∑

k q
−2αt

k

)1/2

was obtained

as explained in the text. Each spectrum is then characterised by two numbers, the standard deviation of cell growth ∆Gt and
the spatial exponent of spatial correlations, αt. Here αt = 0.54 ± 0.08 (± standard error of the mean), αt+1 = 0.71 ± 0.08,
∆Gt = 0.157 ± 0.012 d−1 and ∆Gt+1 = 0.134 ± 0.012 d−1. E For temporal analyses, detrended areal growth rate δGi,t was
computed as the excess areal growth rate of a cell with respect to a local neighborhood. The coordinates of each blue dot are
the detrended growth δGi,t of a cell i between t to t + 1 (horizontal axis) and the detrended growth δGJi,t,t+1 of the set Ji,t

of its daughters between t+1 and t+2 (horizontal axis). The degree of growth temporal correlation is quantified by the value
of the Kendall correlation coefficient, here Γt = 0.400± 0.052 (± standard error). Two outliers were excluded from the plot to
improve the readability of the figure.

law behavior, we obtained a representative power-law as
follows. As the CFTs can be positive or negative, we as-
sumed each CFT to follow a Gaussian distribution of zero
mean and of standard deviation σk,t, which was fitted to

the equation ∆Gtq
−αt

k

/(
∑

k q
−2αt

k

)1/2
. Each spectrum

is then characterised by two numbers, its amplitude ∆Gt

and its exponent, αt. The specific choice made for the fit
is such that, following the Parseval theorem, ∆Gt mea-
sures the standard deviation of growth while αt measures
its spatial correlations. We used statistical inference to
estimate αt and ∆Gt. The scaling exponent, αt, is
expected to vary between 0 and 1, which correspond to
short-range and to extremely long-range correlations, re-
spectively. We found αt to approximately range between
0.1 to 0.9, indicating large differences between samples
and time points in terms of range of correlations (but see
below for the comparison between genotypes). We found
the standard deviation of growth ∆Gt to range between
0.1 and 0.6 d−1, values that are of the order of half the
growth rate of a sample averaged over all cells between
two time points, indicating relatively strong fluctuations
of cell growth rate.

The temporal resolution (1d) and the number of con-
secutive images of a sample (3 to 7) were in general too
low to compute persistence time from experimental data.
We therefore estimated temporal persistence of growth
using correlation coefficients. We considered the corre-
lations between relative areal cell growth Gi,t from t to
t+ 1 and GJi,t,t+1 from t+ 1 to t+ 2, where the set Ji,t
in subscript contains the labels of all daughters of cell
i at time t and GJi,t,t+1 is their areal growth rate, see
section Datasets and Methods for details. To avoid any
bias due to overall gradients in growth rate [32], we com-
puted detrended cell growth δGi,t by substracting from
the areal growth rate of a cell the average areal growth
in a local neighborhood, see Supplementary note. The
scatter plot in Fig. 3E of δGJi,t,t+1 as a function of δGi,t

shows that growth is relatively persistent in time: For
instance cells that grow more than their neighbors be-
tween t and t + 1 tend to remain so between t + 1 and
t+2. We quantified temporal correlations of growth using
Kendall’s correlation coefficient, Γt, because it is based
on the rank of data and is less sensitive to outliers than
the more classical rank-based Spearman correlation co-
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FIG. 4. Parameters that characterise growth fields
in sepals from wild-type and mutant plants. The se-
quences were temporally aligned and parameters are shown
as a function of the synchronized time Tt. A Growth rate av-
eraged over the tissue Gt. B Temporal correlation coefficient
Γt. C Dimensionless amplitude of the Cellular Fourier Trans-
form (CFT) ∆Gt/Gt (also coefficient of variation of growth).
D Scaling exponent of the CFT αt. The two datasets cor-
respond to two slightly different culture conditions. Black,
blue, orange and, red symbols/lines correspond respectively
to wild-type, spr2 mutant, mad5 mutant, and bot1 mutant
from the first dataset, while gray symbols/lines correspond
to wild-type plants from the second set. Error bars indicate
the 90% confidence intervals; error bars are not shown in A
because they are comparable to symbol size.

efficient [39]. Over all sepals and time points considered,
Γt approximately ranges from −0.1 to 0.6. Almost all
values of Γt were positive, while the negative values of
Γt were not significantly different from zero (see below),
indicating that, in general, growth is persistent over a
time comparable to experimental time resolution (1d).

We thus obtained a minimal set of parameters to
describe growth fields and their fluctuations: average
growth rate, Gt, extent (exponent) of spatial correlations,
αt, amplitude of spatial correlations, ∆Gt, and temporal
correlation coefficient Γt. Next, we analysed differences
and common features between sepals based on this min-
imal set of parameters.

Temporal and spatial correlations of cell growth
vary across genotypes and culture conditions

We analyzed growth fluctuations in several genotypes
and culture conditions. As explained in the introduction,

we chose to focus on mutants affected in responses to me-
chanical stress, spiral2 (spr2 ) and katanin (two alleles,
bot1 and mad5 ), in addition to wild-type plants. We an-
alyzed sepals from 4 genotypes in 2 culture conditions
and at different developmental stages. In order to en-
able the comparison between several sepals that were im-
aged starting from different stages, we temporally aligned
live imaging sequences along a common time frame us-
ing sepal width, building upon the approach developed
in [40], see Datasets and Methods. The parameters that
characterise growth fields in all these sequences are shown
in Fig. 4.

We first noticed a significant variability within and be-
tween genotypes/conditions and trajectories that seem
heterogeneous in time. Some of this variability might be
due to experimental constraints; for instance, the imaged
regions of sepals varied in time and between individuals.
We nevertheless observed a few trends that hold for sev-
eral genotypes and conditions. Mean growth rate (panel
A) decreases in time for trajectories that are long enough
(spr2, mad5 and wild-type in dataset 2), which is a gen-
eral trend in organ morphogenesis. Temporal correla-
tions (panel B) decrease between the first and the second
time point, possibly associated with the strong decrease
in growth anisotropy observed after the second time in-
terval [32]. The relative amplitude of growth fluctuations
(panel C) decreases for the first stages in mutants before
stabilizing around 0.4. The extent of spatial correlations
(panel D) tends to decrease with time in dataset 1.

In order to quantify differences induced by mutations
or culture conditions, we used wild-type plants from
dataset 1 as a reference and we estimated the shift in
growth parameters between the reference and other geno-
types or culture condition, see Fig. 5. As the amount
of information available varied with genotype, culture
condition, or temporal stage, we developed a method
that enables a consistent comparison of differences by
taking into account developmental stages, see Datasets
and Methods for details. Briefly, we considered all pairs
formed by a reference sepal (wild-type from dataset 1)
and another sepal. We computed the shift between a ref-
erence sepal to another sepal at a given temporal stage
and we averaged shifts over time and sepal pairs to obtain
a mean shift, shown in Fig. 5 for all comparisons. This
mean shift can be understood as the representative ver-
tical difference between reference wild-type curves and
mutant or dataset 2 curves from Fig. 4. We then es-
timated the standard error of these shifts, which results
from the uncertainties of both reference sepals (wild-type
from dataset 1) and sepals of the condition of interest.

In wild-type, datasets 1 and 2 do not differ in tempo-
ral correlations (panel B) and amplitude of fluctuations
(Fig. 5.C) within the range of uncertainty on these pa-
rameters. Average growth rate (Fig. 5.A) and extent
of spatial correlations (Fig. 5.D) are lower in dataset 2,
indicating that these two parameters are more sensitive
to culture conditions. Average growth Gt is higher in
mutants than in wild-type (Fig. 5.A) over the temporal
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window considered; this might be compensated by lower
growth in mutants at later stages or by earlier growth
arrest in mutants, because mutant sepals are about 20%
smaller in area than wild type sepals [31]. The amplitude
of fluctuations ∆Gt is smaller in spiral2, but it is not pos-
sible to conclude about katanin, because the two alleles
(bot1 and mad5 ) show different trends (Fig. 5.C). When
comparing mutants to wild-type plants, temporal corre-
lations are lower (Fig. 5.B), suggesting lower persistence
time in mutants. The changes in temporal correlations
Γt are lower than in growth rates, so that the changes in
non-dimensional persistence time τtGt are expected to be
dominated by those in growthGt, with higher τtGt in mu-
tants. This might be ascribed to differences in mechan-
ical responses in these mutants — assuming wild-type
plants to have optimal mechanical responses, both over-
reaction and under-reaction to mechanical stress would
increase the timescale of changes in growth rates [27].
Based on our minimal model of fluctuation stretching (see
Eq. 2), smaller non-dimensional persistence time τtGt

would yield higher extent αt of spatial correlations. In-
deed, the exponent of the Fourier specrum appears higher
in mutants (Fig. 5.D), although the level of uncertainty
makes it difficult to draw a firm conclusion. In the follow-
ing section, we further test whether fluctuations stretch-
ing applies to cell growth in sepals.

A conserved relation between growth parameters
supports fluctuation stretching

We sought relations between growth parameters that
would hold across genotypes, data sets, and develop-
mental stages. We first considered the pairwise rela-
tions between the growth parameters defined for each
sepal: mean growth rate, Gt, temporal correlation co-
efficient, Γt, normalised amplitude of spatial fluctua-
tions, ∆Gt/Gt, and extent (exponent) of spatial fluctua-
tions, αt. The corresponding scatter plots are shown in
Fig. 6.A-F. To assess these pairwise relations, we com-
puted Kendall’s correlation coefficient between pairs of
parameters. We found rather weak trends overall. The
strongest trends were between the exponent, αt, and the
temporal correlation coefficient, Γt, and between αt and
the average growth Gt. Interestingly, these trends are
consistent with fluctuation stretching: larger spatial ex-
tent of fluctuations is favored by higher growth rate and
by higher temporal persistence, see Eq. 2. We there-
fore tested more directly the predictions of fluctuation
stretching.

Fluctuation stretching does not reduce to a pairwise
relation between growth parameters because it relates
spatial correlations to time persistence and growth rate.
If this phenomenon is at play in sepals, then Eq. 2 and the
relation α = 1− β/2 (see section Datasets and Methods)
imply αt = 1−2/(τtGt), where τt is the persistence time.
We could measure all parameters of this relation but
τt. Nevertheless the temporal correlation coefficient, Γt,
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FIG. 5. Differences in growth parameters due to mu-
tations or to change in culture conditions. Data are
shown for mutants from dataset 1 and wild-type (WT) from
dataset 2; wild-type from dataset 1 was used as a reference in
all cases. Symbols show the mean shifts DG, DΓ, D∆G/G and

Dα of : A, growth rates averaged over sepals, Gt, B, tempo-
ral correlation coefficients, Γt, C, dimensionless amplitudes of
growth fluctuations, ∆Gt/Gt, and D, exponents quantifying
spatial extents of growth fluctuations, αt, respectively. Sym-
bols and errors bars correspond to the mean and standard
error of the difference, respectively; error bars correspond
to the errors on the shifts DΦ computed from the error on
the data of interest (mutants or WT dataset 2) and on the
reference one (WT dataset 1).

should be a decreasing function of ∆t/τt, Γt = f(∆t/τt),
where f is an unknown function and ∆t = 1d is the time
delay between two steps of live imaging, because correla-
tions between states of the sepal at consecutive time steps
are higher if the time delay is small compared to the per-
sistence time. By eliminating τt from the preceding
equations, we found that the time correlation coefficient
depends on a combination of the other parameters,

Γt = f
(

∆tGt(1 − αt)/2
)

. (3)

We plotted in Fig. 6G. the time correlation coefficient
Γt as a function of ∆tGt(1 − αt)/2. The trend is much
clearer than in all other panels of Fig. 6 (Kendall’s coef-
ficient κ = −0.48) and the data seem to collapse along a
line. We used statistical inference to perform a linear fit
of the data, Γt = β0+β1∆tGt(1−αt)/2, see Supplemen-
tary note. We obtained fit parameters β0 = 0.596±0.024
and β1 = −1.87±0.15, with relatively small standard de-
viations. We then confirmed with a Kolmogorov-Smirnov
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FIG. 6. Relations between parameters of growth (fluctua-
tions). A-F Pairwise scatter plots of all growth parameters.
A-C Temporal correlation coefficient Γt, exponent of spatial
fluctuations αt, and dimensionless amplitude of spatial fluc-
tuations, ∆Gt/Gt, respectively, as function of average growth
Gt. D-E Temporal correlation coefficient, Γt, as function of
exponent of spatial fluctuations, αt, and dimensionless am-
plitude of spatial fluctuations, ∆Gt/Gt, respectively. F Ex-
ponent of spatial fluctuations, αt, as function of their dimen-
sionless amplitude, ∆Gt/Gt. G Test of the coupling between
temporal and spatial fluctuations, as resulting from fluctua-
tion stretching. Temporal correlation coefficient Γt as a func-
tion of the combination ∆tGt(1−αt)/2 where ∆t = 1 d is the
time step of live imaging. The dashed line corresponds to a
linear fit, Γt = β0 + β1∆tGt(1 − αt)/2, with fit parameters
β0 = 0.596 ± 0.024 and β1 = −1.87 ± 0.15. The analysis of
the fit residuals supports a deterministic relation between the
two, see Supplementary note. In all panels, error bars show
the 90% confidence intervals; black, blue, orange, and red
symbols correspond to wild-type, spr2, mad5 and bot1 sepals
from dataset 1, respectively, while gray symbols correspond
to wild-type sepals from dataset 2. Kendall’s correlation co-
efficient, κ, is shown above each plot.

test that the residuals (the spread of the data around
the fit) could be explained by the uncertainty on the es-
timates of τt and Γt, see Supplementary note, while the
same analysis for the other plots (Fig. 6A-F) confirmed
that none of these plots was consistent with a linear be-
havior. Altogether these results support the hypothesis
of a deterministic relation between Γt and ∆tGt(1−αt)/2
and therefore indicate that fluctuation stretching is at
play in growing sepals.

DISCUSSION

Our analysis provides evidence that growth stretches
temporally persistent fluctuations: while no clear pair-
wise relation could be made among the different growth
parameters, see Fig. 6A-F, the clear trend of panel G

suggest that the persistence time can be deduced from
space correlations and tissue growth. This phenomenon
explains why higher correlation between cells (higher spa-
tial correlations) may induce more variable organ shape
and size [26]. Fluctuation stretching gives a prominent
role to the persistence time (correlation time) in con-
trolling spatial correlations in the tissue. Any mecha-
nism that would decrease persistence time would reduce
spatial correlations and, as a consequence, variability of
organ contours. Accordingly, reducing persistence time
would yield robust morphogenesis.

Surprisingly, we found that the temporal correlation
coefficient, Γt, is generally not much smaller than unity,
implying that the persistence time, τt, is not much
smaller than the time scale of growth 1/Gt. This might
be specific to plants. The cell wall sets the local growth
rate, and, at the same time, is remodelled at the pace of
growth, so that the persistence time of fluctuations of cell
wall properties is given by the time scale of growth. It
would be worthwhile to extend our study to expanding
animal tissues imaged live such as the imaginal disc of
the fruit fly [41]. In animal tissues that undergo conver-
gent extension, we would expect fluctuation stretching to
operate only in the direction of extension, and so spatial
correlations to be highly anisotropic.

As a consequence of fluctuation stretching, the level
of time persistence, or more rigorously its product with
average growth rate τG, has a strong impact on variabil-
ity of organ shape and size variability. Indeed, the shape
and size of an organ result from the growth of its cells (or
of its subcellular elements) integrated over time. If cell
growth has a random component, well-defined shape and
size may still be obtained through spatiotemporal aver-
aging [26], the cancellation of random effects over large
samples (number of cells or time points) — a local excess
of growth may be compensated by lower growth later or
elsewhere in the tissue. Higher temporal or spatial corre-
lations reduce spatiotemporal averaging since an excess
of growth is less likely to be compensated. Accordingly,
higher temporal persistence (scaled with growth rate) re-
duces the robustness of organ shape and size.
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We found a higher spatial extent of correlations (higher
αt) in mutant genotypes , suggesting higher τG. This
means that these mutants potentially have more variable
shapes or are less robust to perturbations, consistent with
the observation that the width of sepals in bot1 and spr2
varies more with trichome number in WT plants [31].
We previously predicted that variability of organ con-
tours is minimal for a well-defined level of feedback from
mechanical stress to cellulose synthesis [27], leading to
the hypothesis that in wild-type sepals the level of me-
chanical feedback is optimised so as to reduce variability
of sepal shape, compared to mutants with lower (bot1 )
or with higher (spr2 ) mechanical feedback. This level
of mechanical feedback also corresponds to a minimum
of the persistence time of fluctuations (scaled with aver-
age growth rate), τG, highlighting the importance of this
factor in setting the robustness of organ shape and size.

Fluctuation stretching is a kinematic phenomenon:
properties of cells or of regions of cells are carried (ad-
vected) by tissue growth and deformation; the persis-
tence time of these properties sets how they are carried
to larger or smaller spatial scales, in the case of tissue ex-
pansion or tissue shrinkage, respectively. This kinematic
phenomenon applies to any type of property or field as
long as it is carried by tissue growth and deformation,
such as protein concentrations in cells. Although fluc-
tuation stretching not only applies to scalar quantities
but also to vector fields (e.g. cell polarity) or tensorial
fields (e.g. organisation of cytoskeleton), we limited our
study to a scalar (areal growth) and did not consider
growth anisotropy to avoid the difficulty of taking into
account the curved geometry of sepals. Mathematical
formalisms such as quasiconformal transforms [42] may
nevertheless help to circumvent this difficulty. In the
case of complex advective flows, effects associated to co-
rotation may arise for non scalar fields. Advection also
applies to non-random properties, in line with theoreti-
cal models of polarity fields showing that a combination
of morphogens, advection, and time persistence can re-
produce the shapes of leaves [43], or with models of leaf
vasculature that show that areole (region delimited by
veins) shape is advected by leaf growth [44].

Altogether, our work sheds light on the role of persis-
tence time, that is the memory of previous states of a
given property, in the robustness of morphogenesis. The
investigation of spatiotemporal fluctuations may provide
a new avenue to characterize organ development.
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DATASETS AND METHODS

Model for fluctuation stretching

We introduced a simple model for the dynamics of a
quantity Φ(x, t) that varies with position vector, x, in
D-dimensional Cartesian space and with time, t. We
assumed Φ to be advected by tissue growth at rate G, to
have a persistence time τ , relaxing towards its reference
value 〈Φ〉, and to be driven by a stochastic source ξ(x, t),
so that

∂tΦ(x, t)+G/Dx·∂xΦ(x, t) = −(Φ(x, t)−〈Φ〉)/τ+ξ(x, t).
(4)

This equation can be solved as shown in the Supplemen-
tary note.

Experimental datasets

In order to reliably analyse fluctuations of growth rate,
we chose datasets of sepals imaged with the highest spa-
tial resolution possible among those published. We used
live imaging sequences from [32] (dataset 1) and from [31]
(dataset 2). Voxel size was 0.12 × 0.12 × 0.50µm3. All
plant lines in these sequences were crosses between Ws-4
and Col-0 ecotypes, harbouring respectively the micro-
tubule reporter p35S::GFP-MBD and the membrane re-
porter pUQ10::Lti6b-2xmCherry [32]. The two datasets
had slightly different culture conditions (type of lighting).
Dataset 1 contained wild-type plants, the spr2-2 allele of
SPIRAL2 that was originally obtained in a Col-0 back-
ground, the bot1-7 allele of Katanin that was originally
obtained in a Ws-4 background, and the mad5 allele of
Katanin that was originally obtained in a Col-0 back-
ground (for mad5, unpublished sequences were obtained
in parallel with those from [32]).

Segmentation

For sepals not already processed in [31, 32], cells of the
abaxial epidermis were segmented and tracked in time
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using MorphoGraphX [45]. A triangular mesh was ob-
tained for the outer organ surface in which cells were
identified and well-delimited.

Computation of growth rates

We aimed at analysing fluctuations of cell relative areal
growth rates tangentially to the sepal and therefore to
get rid of the curvature of the outer surface of cells. To
do so, we redefined the surface of cells from the linear
interpolation of their contours by a flat surface. Areal
growth rate was computed from the cell surface area at
successive time steps. At time t, each cell is labeled by
an index i and has surface area Si,t. Cell i may divide
between t and t + 1; the set Ji,t contains the labels of
all daughters of cell i at time t + 1 (Ji,t is reduced to a
single label if cell i has not divided). We only consider
cells which or whose daugthers remain in the segmented
region from t to t + 1. The areal growth rate of the cell
i at a time t is then defined as

Gi,t =
(

∑

j∈Ji,t

Sj,t+1

)

/Si,t − 1. (5)

Average (tissular) growth is in turn defined as Gt =
(
∑

i

∑

j∈Ji,t
Sj,t+1)/(

∑

i Si,t)− 1.

Cellular Fourier Transforms

The Fourier harmonics are built from a coarse and
discreet version of the Laplace operator. To compute
this operator we triangularized cell surfaces using the
‘MESH2D’ matlab algorithm [46, 47]. More details
can be found in the Supplementary note. The Cellu-
lar Fourier Transform (CFT) Ĝk,t of cell relative areal
growth gives the weights by which growth is decomposed
over the harmonics ek of the CFT. In this paper, the
definition of the CFT differ from the one in [38] by a
prefactor 1/

√
St where St is the total surface area. This

change simplifies the interpretation of Fourier spectra:
the coefficients have the same physical dimension as the
original signal and the first coefficient is the average of
the signal.

Scaling exponent and amplitude of fluctuations

We quantified spatial correlations in the tissue by fit-
ting the spectral density with a power law. To do so, we
assumed a Gaussian distribution for the CFT, centred
around 0 with a standard deviation verifying,

σk,t = ∆Gtq
−αt

k /

√

∑

l

q−2αt

l (6)

where ∆Gt and the scaling exponent αt are the fit pa-
rameters characterizing respectively the amplitude and

the extent of spatial correlation of growth fluctuations.
For the fit, we used statistical inference as detailed in the
Supplementary note. Doing so, we estimated a probabil-
ity for the parameters ∆Gt and αt, their expected value,
their standard error, and median values. We also esti-
mated the 90% confidence interval, from the fifth to the
ninety fifth percentiles.

Temporal correlations

We estimated temporal correlations of relative areal
growth in considering cell growth Gi,t from t to t+1 and
cells growth GJi,t,t+1 from t+1 to t+2. GJi,t,t+1 is simply
the areal growth rate from t to t + 1 of the descendants
of the cell i in the segmentation at t:

GJi,t,t+1 =

∑

j∈Ji,t

∑

l∈Jj,t+1
Sl,t+2

∑

j∈Ji,t
Sj,t+1

− 1. (7)

To avoid any bias due to systematic variation of growth at
organ scale [32], we used the detrended cell growth δGi,t,
which can be defined by subtracting average growth
in a local neighborhood from cell growth, see Supple-
mentary note. Temporal correlations were computed as
Kendall’s correlation coefficient Γt of δGi,t and δGJi,t,t+1.
Kendall’s correlation coefficient is rank-based and so is
less sensitive to outliers [39]. We used boostrapping to
obtain confidence intervals and uncertainties.

We note that Γt tends to be underestimated: A posi-
tive error on SJi,t,t+1 leads to an overestimation of δGi,t

and an underestimation of δGJi,t,t+1, inducing a nega-
tive correlation between δGi,t and δGJi,t,t+1. This may
explain the few negative values of Γt. We found this neg-
ative bias to be stronger when we defined growth from
the cells outer surface area, leading us to use the inter-
polation of cell contours instead (see above).

Comparing genotypes

To describe the impact of mutations or culture con-
ditions on growth parameters, we compared tissues at
equivalent developmental stages. We first synchronized
all the live imaging sequences from a dataset by building
upon the approach developed in [40]. We considered the
time curves of organ width for every sepal and finding
the time delays ensuring the best superposition between
width vs. time curves, leading to a corrected time Tt.
We checked that this temporal alignment was consistent
with stages of guard cell differentiation, indicating that
sepal width is a good proxy of developmental stage in
the genotypes/conditions that we studied. We defined
the mean shift of a quantity Φt as

DΦ =

∑

n′,t′
∑

n,t W
(n′,n)
t′,t (Φ

(n′)
t′ − Φ

(n)
t )

∑

n′,t′
∑

n,tW
(n′,n)
t′,t

, (8)
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where n′ and n label the pair of sepals compared (e.g.
one mutant and the reference wild-type) and t′ and t
correspond to the time in the sequence of live-imaging
of those two sepals. The sums

∑

n′,t′ and
∑

n,t are over
all sequences of the mutant and the WT respectively.

W
(n′,n)
t′,t gives the weights at which each pair is considered.

A weight differs from 0 only if the values of synchronized
times Tt of the pair are close, see Supplementary note
for details. DΦ quantifies how much, in average, the
quantities Φt for the mutants (or for WT in dateset 2)
are shifted from the reference WT.
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I. MODEL FOR FLUCTUATION STRETCHING

A. Model

In line with the explanation of fluctuation stretching proposed in Figs. 1-2, we model the dynamics of a quantity
Φ advected in a growing medium. If the medium grows isotropically and uniformly, its strain rate tensor in the
D-dimensional space is G/Dδij where G is the line, surface or volume growth for D = 1, 2, or 3 respectively and δij
is the Kronecker delta tensor. We assume the dynamics of the quantity Φ to be ruled by intrinsic cellular processes
among which some are stochastic. For simplicity, we restrict our model to lowest order and consider a linear partial
differential equation. Denoting time by t and the Cartesian space coordinate vector by x, we assume the evolution of
Φ(x, t) to be given by

∂tΦ(x, t) +G/Dx · ∂xΦ(x, t) = −(Φ(x, t)− 〈Φ〉)/τ + ξ(x, t), (1)

where the material point at x = 0 serves as the origin of the spatial coordinate system. ∂t and ∂x respectively stand
for the partial derivative with respect to time and for the gradient. The left hand side of (1) corresponds to the
material time derivative. The first term in the right hand side ensures the relaxation of Φ toward its reference value
〈Φ〉 with a time scale τ , while the second term accounts for stochasticity through the noise ξ.
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B. Linear response

We denote the deviation of Φ from its reference value by ∆Φ(x, t) = Φ(x, t)− 〈Φ〉. The persistence time τ sets the
memory of the system as can be seen in the explicit solution of (1),

∆Φ(x, t) = e−t/τ∆Φ(x e−t G/D, 0) +

∫ t

0

ds

τ
e−(t−s)/τ ξ(x e−(t−s)G/D, s). (2)

In this equation, τ sets the time over which initial conditions persist and the delay over which the noise impacts the
value of Φ.

C. Spatial correlation function

To describe the statistical properties of Φ, we assume the noise to be Gaussian, with 〈ξ(x, t)〉 = 0 and 〈ξ(x, t)ξ(x+
l, t+ s)〉 = Kδ(s)g(|l|). 〈.〉 stands for an ensemble average, K is the noise strength, and δ(.) is the Dirac distribution.
The function g(l) = 〈ξ(x, t)ξ(x + l, t)〉/〈|ξ(x, t)|2〉 describes the spatial correlations of ξ, assumed to be regular and
to vanish at infinity. As a consequence of the long-ranged correlations that we predict, small scales cannot be
neglected and a Dirac distribution cannot be substituted to g without causing problems of convergence, unless a
cutoff is introduced by hand. The correlations of Φ can be computed using (2) with t = −∞ as initial time. The
space correlation function C(l) = 〈∆Φ(x, t)∆Φ(x + l, t)〉/〈|∆Φ(x, t)|2〉 can then be written as,

C(l) =

∫ +∞

0

(2 ds/τ) e−2 s/τg(|l| e−sG/D). (3)

The space correlation function C(l) is obtained by stretching the variation lengthscales of g by a factor sG/D and
summing the stretched functions with weights e−2 s/τ . Changing the integration variable, we rewrite (3) as,

C(l) = |l|−2D/(τG)h(|l|), (4)

where the increasing function h(|l|) =
∫ |l|

0
du u2D/(τG)−1g(u) is expected to reach an asymptotic value as |l| is large

compared to the correlation length of ξ. (4) makes therefore explicit the long-ranged property of C, characterized by
the scaling exponent β = 2D/(τG).

D. Fourier spectrum

The Fourier transform Φ̂(q, t) =
∫

dxe−Iq·xΦ(x, t) can be used to estimate the space correlation function C(l). More

exactly, the mean squared spectrum 〈|Φ̂(q, t)|2〉 is proportional to the Fourier transform Ĉ(q) =
∫

dle−Iq·lC(l) =

|q|β−Dh(|q|) with h(|q|) =
∫

dDu|u|−βf(|u|/|q|)eIu·ŷ and ŷ a unit vector. It exhibits a singularity for |q| → 0 where it
scales like |q|−2α, with

α = D/2− β/2 = D/2−D/(τG). (5)

If the correlation length of the noise source is small with respect to system size, the root mean squared spectrum can
be approximated by a power law whose amplitude relate to the standard deviation through Parseval’s theorem and
whose exponent α is given by the persistence time τ and growth rate G according to (5).

II. CELLULAR FOURIER TRANSFORM

Here we present the computation of cell surface area, we define the discrete Laplace operator, we explain how we
built the Fourier harmonics based on this Laplace operator, and we define the Cellular Fourier Transform (CFT). The
theoretical basis of the CFT may be found in [1].
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A. Cell area and discrete Laplace operator

We compute cell area from the linear interpolation of cell contour. More precisely, we project the contour on a
plane that is perpendicular to the surface vector. The contour being polygonal, the surface factor can be written
1/2

∑

n ~rn ∧ ~rn+1 where the sum is over the contour vertexes, ~rn is their position, n indexes the position around the
contour and ∧ is the exterior product. We then triangulate the surface enclosed in the projected contour using the
MESH2D Matlab package [2, 3]. To obtain a 3D mesh and determine the position of the mesh along the surface
vector, we performed a linear interpolation of the cell contours. The area Si,t for cell i at time t is then computed as

the sum of areas of triangles in the triangulation, Si,t =
∑(i,t)

m dSm, where m spans triangles of cell i at time t and
dSm is the area of triangle #m. The tissue is made of N cells that are followed from t to t+ 1.

The discrete Laplace operator is a square matrix of size N ×N and its components are given by

L̄ij,t = δij − W̄ij,t, with, W̄ij,t =

√

Si,t

Sj,t

∑(i,t)
m dSm

∑(j,t)
n dSn exp(−dmn/(5 ℓc))

∑(i,t)
m dSm

∑

j

∑(j,t)
n dSn exp(−dmn/(5 ℓc))

, (6)

where indices i = 0, 1, ..N − 1 and j = 0, 1, ..N − 1 span the N cells of the tissue. dmn is the distance between
triangle m from cell i and triangle n from cell j, both considered at time step t. The unit of length is mean cell size
ℓc =

√

St/N , where St is the surface of the tissue at time t and N is the number of cells. Here we took the width 5lc
for the coarse Laplace operator.

B. Fourier harmonics

We define Fourier harmonics as the right singular vectors of the discrete Laplace operator L̄ defined in
Eq. 6. We showed in [1] that L̄ is a good representation of the coarse Laplace operator L[f ](x) =
∫

dy exp (|x− y|/(5 ℓc)) (f(x)− f(y)), applying to real functions f of the position vector. The singular vectors of L̄ij,t

are, for example, expected to have the same oscillatory nature as the eigenfunctions of L and their associated wave

number qk to relate to their singular values through the same relation qk = 1/(5lc)Q(λk), with Q(l) =
√

(1− l)−2/3 − 1
associated to the kernel of the coarse Laplace operator [1]. The singular value decomposition of the Laplace operator

L̄, which yields left singular vectors V , right singular vectors U , and the singular values L̂k, is:

L̄ij,t =

N−1
∑

k=0

L̂k VkiUkj . (7)

The value taken by the kth-harmonic in cell i at time step t is 1/Si,tUki, and its wave number is given by qk =

1/5Q(L̂k). The harmonics are indexed so that their index grows with the wave number.

C. Calculation of the CFT of cell growth

The areal growth rate of cell i at time step t is defined as Gi,t =
((

∑

j∈Ji,t
Sj,t+1

)

/Si,t − 1
)

/∆t where Ji,t is

either the new label of cell i at time t + 1 or the set of labels of the daughters of cell i if it has divided, while the
time step is always ∆t = 1d. The kth CFT coefficient is then Ĝk,t =

∑

i UkiGi,t

√

Si,t/St where St is the total area

St =
∑

i Si,t. Here we use a convention that differs from [1] by a multiplicative factor 1/
√
St in the definition of the

CFT. This makes the interpretation of CFTs simpler: they have the same dimensions (units) as the original signal
(here growth) and the first coefficient is equal to the average signal.

III. SPATIAL CORRELATIONS

We estimated spatial correlations of growth from the Fourier spectra i.e. from the distribution of Fourier transforms
Ĝk,t and associated wavenumbers qk. For this we used Bayesian inference.
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A. Inference methods applied to Fourier spectra

To quantify spatial correlations, we assumed the CFT coefficients, Ĝk,t for k ≥ 2, to be independent random
Gaussian variables whose mean squared deviation follows a power law with respect to the wave number qk,

σk,t = ∆G2
t q

−2αt

k /

(

N−1
∑

l=2

q−2αt

l

)

, (8)

with the parameters ∆Gt and αt quantifying the amplitude of growth fluctuations and their space correlations,
respectively. We made the choice not to consider the first two CFT coefficients to avoid potential bias related to large
scale growth patterns, which should not be considered as fluctuations. For the derivation of the equations, it is more

convenient to rewrite (8) as σk,t = Q−2αt

k /ξ, where Qk = qk/(
∏N−1

l=2 ql)
1/(N−2) and ξ =

∑N−1
k=2 Q−2αt

k /(2∆G2
t ). We

write the probability distribution fucntion of Ĝk,t as

pk(Ĝ|ξ, αt) = e−ξĜ2Q
2 αt
k

√

ξQ2αt

k

π
. (9)

We use Bayesian inference to estimate ξ and αt, assuming a flat prior distribution for ξ ∈ [0,+∞[ and αt ∈ [0, 1],
which are the relevant range of parameters for (9). The posterior distribution for ξ and αt takes the form

P(ξ, αt) =

∏N−1
k=2 pk(Ĝk|ξ, αt)

∫ +∞

0
dξ′
∫ 1

0
dα
∏N−1

l=2 pl(Ĝl|ξ′, α)
. (10)

We then substitute the probabilities pk by their explicit form, noting that, by construction,
∏N−1

k=2 Qk = 1, and,
computing the first integral in the denominator, we get

P(ξ, αt) =
e−ξ

∑N−1
k=2 Ĝ2

k,tQ
2 αt
k

ξ Γ(N/2)
∫ 1

0 dα(ξ
∑N−1

k=2 Ĝ2
k,tQ

2α
k )−N/2

, (11)

where Γ is Euler’s gamma function.

B. Estimating amplitude of fluctuations and exponent of spatial correlations

To estimate ∆Gt, αt and their uncertainty, we consider the joint cumulative distribution function F(∆G,α), of
having ∆Gt and αt smaller than the values ∆G and α, respectively. This function can be written in terms of P(ξ, α)
as

F(∆G,α) =

∫ α

0

dα′

∫ +∞

∑N−1
k=2 Q−2 α′

k /(2∆G2)

dξ P(ξ, α′). (12)

By using the expression P(ξ, α) in (11) and computing the second integral, we then get

F(∆G,α) =

∫ α

0
dα′ (

∑N−1
k=2 Ĝ2

k,tQ
2α′

k )−N/2Γ
(

N/2,
∑N−1

k=2

Ĝ2
k,t

2∆G2q−2 α′

k
/
∑N−1

l=2
q−2 α′

l

)

∫ 1

0 dα′′ (
∑N−1

k=2 Ĝ2
k,tQ

2α′′

k )−N/2Γ
(

N/2
) , (13)

where Γ(a, z) =
∫ +∞

z dt ta−1e−t is the incomplete gamma function.
We used the median as a representative value of the different quantities we considered. We estimated ∆Gt from the

median F(∆Gt, 2) = .5 and the 90% confidence interval [∆G1,t,∆G2,t] from the 5th, F(∆G1,t, 2) = .05, and the 95th

percentile, F(∆G2,t, 2) = .95. Similarly, we estimate αt from the median F(+∞, αt) = .5 and the 90% confidence
interval [α1,t, α2,t] from the 5th, F(+∞, α1,t) = .05, and the 95th percentile, F(+∞, α2,t) = .95.

When we approximated their distributions by Gaussians (for fits or to estimate shifts from WT to mutants tissues),
we used the the expected value and the standard deviations of αt and ∆Gt. We estimated the expected value of αt,

〈αt〉 =
∫ α

0
dα′ α′ (

∑N−1
k=2 Ĝ2

k,tQ
2α′

k )−N/2

∫ 1

0 dα′′ (
∑N−1

k=2 Ĝ2
k,tQ

2α′′

k )−N/2
, (14)
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its standard deviation δα =
√

〈α2
t 〉 − 〈αt〉2 with,

〈α2
t 〉 =

∫ 1

0
dα′ (α′)2 (

∑N−1
k=2 Ĝ2

k,tQ
2α′

k )−N/2

∫ 1

0
dα′′ (

∑N−1
k=2 Ĝ2

k,tQ
2α′′

k )−N/2
, (15)

the expected value of ∆Gt,

〈∆Gt〉 =

∫ 1

0 dα′

√

1/2
(

∑N−1
k=2 Ĝ2

k,t. ∗Q2α
k

)(

∑N−1
l=2 Ql.−2α

)

(
∑N−1

k=2 Ĝ2
k,tQ

2α′

k )−N/2Γ
(

N/2− 1/2
)

∫ 1

0 dα′′ (
∑N−1

k=2 Ĝ2
k,tQ

2α′′

k )−N/2Γ
(

N/2
) (16)

and the standard deviation δ(∆Gt) =
√

〈∆G2
t 〉 − 〈∆Gt〉2

〈∆G2
t 〉 =

∫ 1

0
dα′

(

1/(N − 2)
∑N−1

k=2 Ĝ2
k,t. ∗Q2α

k

)(

∑N−1
l=2 Ql.

−2α
)

(
∑N−1

k=2 Ĝ2
k,tQ

2α′

k )−N/2

∫ 1

0
dα′′ (

∑N−1
k=2 Ĝ2

k,tQ
2α′′

k )−N/2
. (17)

IV. TEMPORAL CORRELATIONS

To quantify temporal correlations, we detrended growth from large-scale spatial patterns and we calculated Kendall’s
correlation coefficient of detrended growth.

A. Detrending

Before estimating time correlations, we corrected cellular growth using a local average of growth, aiming to detrend
our estimate from large-scale deterministic spatial variations. We thus avoid potential bias induced by large scale
growth variations that should not be considered as fluctuations. We use growth rate Gi,t of cell i between t and
t+ 1, as defined in Sec. II A. Computing local excess of growth is equivalent to apply a smooth Laplace operator to
growth [1]. For convenience, we use the Laplace operator defined in (6), and we define δGi,t =

∑

j Lij,t

√

Sj,t/Si,tGj,t,
where j spans cells that can be tracked from t to t+2. Detreneded growth at time t needs to be compared to detrended
growth at time t+ 1, δGJi,t,t+1 =

∑

k∈Ji,t

∑

j Lkj,t+1

√

Sk,t+1Sj,t+1Gj,t+1/(
∑

l∈Ji,t
Sl,t+1).

B. Kendall’s correlation coefficient

Time correlations are quantified by Kendall’s correlation coefficient Γt between δGi,t and δGJi,t,t+1. We used a

bootstrap approach with 104 resamplings to quantify the statistical properties of Γt. We estimated Γt from the median
of the boostrap distribution and the bounds of the confidence interval are its 5th and its 95th percentile. Finally, we
also considered 〈Γt〉 and δΓt the expected value and the standard error of the distribution.

V. ANALYSIS OF TEMPORAL VARIATIONS IN GROWTH PAREMETERS

We analyzed two datasets, the first containing wild-type and mutant plants while the second group contained wild-
type plants grown in different conditions. We first synchronised the time series of the two datasets. We then compared
mutants to wild-type sepals from plants cultured in the same conditions, or wild type sepals from plant cultured in
different conditions.

A. Registration

To synchronize (register) the different time series (labeled with an upper index (n)), we looked for the temporal

shifts ∆t(n) that maximise the overlap of curves of width vs. time w
(n)
t . The perfect overlap being, in general, not

possible, we define a distance between pairs of curves, and we choose the delays which minimise the quadratic sum
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over all possible pairs S =
∑

n,n′ d2nn′ , of these distances. For two time series w
(n)
t and w

(n′)
t , the distance from n to

n′ is defined as dnm = Ann′ − An′n, where Ann′ is the area of the region in the Cartesian plane that is delimited to

the left by the linear interpolation of w
(n)
t versus t and to the right by the linear interpolation of w

(n′)
t versus t. This

distance depends linearly on the the time-shifts, dnn′ = ann′ − an′n + hnn′(∆t(n
′) −∆t(n)) where ann′ and an′n are

the areas Ann′ and An′n before synchronization. The minimization problem is then simply quadratic and the shifts
are given by the solution of

∑

n′

Mnn′∆t(n
′) = Yn,

with Mnn′ = δnn′(
∑

m hnm)−hnn′ and Yn = 2
∑

n′(ann′ −an′n)hnn′ . The matrix M is not invertible due to invariance
by translations in time, but this system can be solved by adding the condition that the smallest temporal shift (the

smallest ∆t(n)) has a value of 0. We denote by T
(n)
t the new temporal coordinate for live-imaging series n following

registration. We checked that this temporal alignment was consistent with stages of guard cell differentiation,
indicating that sepal width is a good proxy of developmental stage in the genotypes/conditions that we studied.

B. Differences between mutant and wild-type growth parameters

To compare a quantity Φt (which could be Γt, ∆Gt, αt or Gt = (
∑

i

∑

j∈Ji,t
Sj,t+1)/(

∑

i Si,t)− 1) between mutant

sepals or wild-type from dataset 2 and wild-type sepals from dataset 1, we defined the mean difference DΦ as,

DΦ =

∑

n′,t′
∑

n,t W
(n′,n)
t′t (Φ

(n′)
t′ − Φ

(n)
t )

∑

n′,t′
∑

n,t W
(n′,n)
t′t

(18)

where the upper indices (n′) and (n) label the mutant and wild-type live-imaging sequences, respectively. The sums
∑

n′,t′ and
∑

n,t are over all the time points of the mutant and the wild-type, respectively. DΦ quantifies how much,

on average, the quantities Φt for the mutants differ from the WT. The weights W
(n′,n)
t′,t are defined as

W
(n′,n)
t′,t = Λ(T

(n′)
t′ − T

(n)
t ), (19)

where Λ(x) = max(1 − |x|, 0) is the triangle function. This definition ensures that only differences between sepals of
comparable stages are considered in the distance DΦ.

Approximating the distribution of Φt to Gaussian, DΦ has a Gaussian distribution and its expected value is

〈DΦ〉 =
∑

n,t

∑

n′,t′ W
(n′,n)
t′,t (〈Φ(n′)

t′ 〉 − 〈Φ(n)
t 〉)

∑

n,t

∑

n′,t′ W
(n′,n)
t′,t

,

where 〈Φ(n′)
t′ 〉 and 〈Φ(n)

t 〉 are the expected values of Φ for the mutants and the wild-type tissues. The standard
deviation is

δDΦ =

√

∑

n,t

∑

n′,t′ W
(n′,n)
t′,t

(

(

δΦ
(n′)
t′

)2

−
(

δΦ
(n)
t

)2
)

∑

n,t

∑

n′,t′ W
(n′,n)
t′,t

,

where δΦ
(n′)
t′ and δΦ

(n)
t are the standard error of Φ for the mutants and the WT tissues.

VI. LINEAR FIT AND RESIDUALS

We used statistical inference to determine which linear relation is the most likely to fit our data. We did this to test
if the master curve of Γt as function ∆t/τt can well be fitted by a linear relation. We also estimated the uncertainty
of the fit itself and tested whether the distribution of data around the fit can be explained by the data uncertainty,
in coherence with the hypothesis of a linear and deterministic relation between the two.
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A. Linear fit

We performed this analysis to fit the master curve Γt as function of ∆t/τt, but since we applied the same analysis
to other scatter plots, we considered here the relation between generic variables, x and y. To each measurement
performed (indexed i) is associated a probability pi(xi, yi) of finding a certain quantity xi associated to the quantity
yi. Approximating pi to a Gaussian distribution, and assuming no specific correlations for the error on xi and yi, we
can write

pi(xi, yi) = exp

(

−1

2

(

(xi − 〈xi〉)2
δx2

i

+
(yi − 〈yi〉)2

δy2i

))

/(2πδxiδyi), (20)

where 〈xi〉 and 〈yi〉 are the expected values of xi and yi and δxi, and δyi are their standard errors. The probability of
finding the x-coordinate in xi and of being on the line y = β0 + β1x is then, pi(xi, β0 + β1xi) which can be written as

pi(xi, β0 + β1xi) = exp

(

−1

2

(

(

1

δx2
i

+
1

δy2i

)(

x− β1
〈yi〉 − β0 − β1〈xi〉

δy2i + β2
1δx

2
i

)2

+
(〈yi〉 − β0 − β1〈xi〉)2

δy2i + β2
1δx

2
i

))

/(2πδxiδyi),

(21)
where we rearranged the argument of the exponential to write the dependence with x as a square. Integrating over
xi, we obtain the probability that the data measured in i falls on the line y = β0 + β1x as

pi(y = β0 + β1x) = e
−

(〈yi〉−β0−β1〈xi〉)
2

2(δy2
i
+β2

1
δx2

i
) /

√

2π(δy2i + β2
1δx

2
i ), (22)

The probability of having the n, assumed independent, measurements falling on y = β0 + β1x is then
∏n

i=1 pi(y =
β0 + β1x), and using flat prior for β0 and a Cauchy distribution as a prior for β1, which is equivalent to assume a flat
prior for the orientation of the line y = β0 + β1x, we get

P (β0, β1) =
e
− 1

2

∑n
i=1

(〈yi〉−β0−β1〈xi〉)
2

δy2
i
+β2

1δx2
i

Z(1 + β2
1)
√
2π
∏n

i=1

√

δy2i + β2
1δx

2
i

(23)

where the constant Z given below is defined so that
∫ +∞

−∞ dβ0

∫ +∞

−∞ dβ1P (β0, β1) = 1. Introducing a(β1) =
∑n

i=1 1/(δy
2
i + β2

1δx
2
i ), b(β1) =

∑n
i=1(β1〈xi〉 − 〈yi〉)/(δy2i + β2

1δx
2
i ), c(β1) =

∑n
i=1(β1〈xi〉 − 〈yi〉)2/(δy2i + β2

1δx
2
i ) +

ln(δy2i + β2
1δx

2
i ), we can write

P (β0, β1) =
e−1/2(β2

0a(β1)+2β0b(β1)+c(β1))

Z(1 + β2
1)

. (24)

Then, Z =
∫ +∞

−∞ dβ0

∫ +∞

−∞ dβ1
e−1/2(β2

0a(β1)+2β0b(β1)+c(β1))

(1+β2
1)

can be rewritten, computing the first integral, as

Z =

∫ +∞

−∞

dβ1
e−1/2(c(β1)−b(β1)

2/a(β1))

(1 + β2
1)
√

a(β1)
. (25)

The expected value for β1 is thus

〈β1〉 =
∫ +∞

−∞

dβ1β1
e−1/2(c(β1)−b(β1)

2/a(β1))

Z(1 + β2
1)
√

a(β1)
. (26)

and the standard deviation is δβ1 =
√

〈β2
1〉 − 〈β1〉2, where

〈β2
1〉 =

∫ +∞

−∞

dβ1β
2
1

e−1/2(c(β1)−b(β1)
2/a(β1))

Z(1 + β2
1)
√

a(β1)
. (27)

The expected value for β0 is

〈β0〉 = −
∫ +∞

−∞

dβ1
b(β1)

a(β1)

e−1/2(c(β1)−b(β1)
2/a(β1))

Z(1 + β2
1)
√

a(β1)
, (28)

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2024. ; https://doi.org/10.1101/2023.10.23.563640doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.23.563640
http://creativecommons.org/licenses/by-nd/4.0/


8

and the standard deviation δβ1 =
√

〈β2
1〉 − 〈β1〉2, where

〈β2
0〉 =

∫ +∞

−∞

dβ1

(

1

a(β1)
+

(

b(β1)

a(β1)

)2
)

e−1/2(c(β1)−b(β1)
2/a(β1))

Z(1 + β2
1)
√

a(β1)
. (29)

We computed these integrals numerically to estimate the fitting parameters and their standard deviations.

B. residuals

We would like to test whether the expected values 〈β0〉 and 〈β1〉 enable to adequately fit the set of data. We gave
in Eq. 22 the probability of having a linear relation y = β0 + β1x in measurement i. For β0 = 〈β0〉 and β1 = 〈β1〉,
this probability is

pi(y) = 〈β0〉+ 〈β1〉x) = e
−

(〈yi〉−〈β0〉−〈β1〉〈xi〉)
2

2(δy2
i
+〈β1〉2δx2

i
) /

√

2π(δy2i + 〈β1〉2δx2
i ), (30)

We see that this probability follows a standard normal distribution with respect to the parameter ri =
〈yi〉−〈β0〉−〈β1〉〈xi〉√

δy2
i+〈β1〉2δx2

i

. If our assumptions are consistent, and notably the assumption that a linear relation exists be-

tween yi and xi is correct, then the distribution of ri over all the measurements should be close to a standard normal
distribution. To assess this, we performed a Kolmogorow-Smirnov test at the 5% significance level. We concluded
that, in the case of the master curve, the distribution of data around the fit can be explained by the uncertainty on
the estimates, and that the data are compatible with the hypothesis of a linear and deterministic relation between
Γt and ∆t/τt, while we could not draw the same conclusions for any of the other pairwise trends. The p-values of
the Kolmogorow-Smirnov test for the residuals of the linear fits of all the plots of Fig. 6. of the main are given in the
table below.

Plot p-value

Γt vs Gt 2.2 10−4

αt vs Gt 4.3 10−2

∆Gt/Gt vs Gt 3.3 10−7

Γt vs αt 2.0 10−2

Γt vs ∆Gt/Gt 8.7 10−3

αt vs ∆Gt/Gt 1.6 10−5

Γt vs ∆tGt/2(1− αt) 1.1 10−1

TABLE I. p-value for the Kolmogorow-Smirnov test of the residuals of the linear fits of all the plots in Fig. 6.
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