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Living tissues display fluctuations – random spatial and temporal variations of tissue properties
around their reference values – at multiple scales. It is believed that such fluctuations may enable
tissues to sense their state or their size. Recent theoretical studies developed specific models of
fluctuations in growing tissues and predicted that fluctuations of growth show long-range correla-
tions. Here we elaborated upon these predictions and we tested them using experimental data. We
first introduced a minimal model for the fluctuations of any quantity that has some level of tem-
poral persistence or memory, such as concentration of a molecule, local growth rate, or mechanical
properties. We found that long-range correlations are generic, applying to to any such quantity,
and that growth couples temporal and spatial fluctuations. We then analysed growth data from
sepals of the model plant Arabidopsis and we quantified spatial and temporal fluctuations of cell
growth using the previously developed Cellular Fourier Transform. Growth appears to have long-
range correlations. We compared different genotypes and growth conditions: mutants with altered
response to mechanical stress have lower temporal correlations and longer-range spatial correlations
than wild-type plants. Finally, we used a theoretical prediction to collapse experimental data from
all conditions and developmental stages, validating the notion that temporal and spatial fluctua-
tions are coupled by growth. Altogether, our work reveals kinematic constraints on spatiotemporal
fluctuations that have an impact on the robustness of morphogenesis.

Significance Statement

How do organs and organisms grow and achieve robust shapes in the face of subcellular and
cellular variability is still a mystery. Here we investigated the variability of growth at multiple
scales and we analysed experimental growth data from growing plant tissues. Our results support
the prediction that tissue expansion couples temporal memory of growth with spatial variability of
growth. Our work reveals a constraint on spatiotemporal variability of growth that may impact the
robustness of morphogenesis.
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INTRODUCTION

The impact of noisy perturbations on organism devel-
opment is the subject of active research [1]. Fluctuations
– the random spatial and temporal variations of tissue
properties around their reference values – are observed
at multiple scales, from cytoskeleton [2] to cell [3] and
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tissue [4]. It has been proposed that fluctuations are
required for symmetry breaking and pattern formation
during development [5, 6] or for cells and tissues to sense
their neighbourhood [7]. Fluctuations in growth induce
mechanical stress [7–10] because, for instance, cells with
higher growth rate exert forces on neighbouring cells,
which may sense and respond to such mechanical stress.
Robust development of the fruit fly wing partially relies
on cell competition, i.e. on mismatch of growth rates
between cells, and on the ensuing modulation of prolifer-
ation and apoptosis [11, 12]. In this context, it is impor-
tant to understand whether fluctuations of a cell affect its
local neighbourhood or the whole tissue. Here, we anal-
ysed the spatial structure of fluctuations in experimental
data from growing tissues.

Recent models of tissue mechanics and growth ac-
counted for temporal and spatial fluctuations of growth
and investigated their role in robustness of morphogen-
esis [13–15]. Temporal fluctuations are characterised by
their degree of persistence, quantified with the persis-
tence time (or correlation time), the characteristic time
over which memory of previous fluctuations is lost. It
could be the time needed for remodelling of the cytoskele-
ton or of the extra-cellular matrix (in animals) / the cell
wall (in plants). Spatial fluctuations are characterised by
their degree of spatial consistency, quantified by the cor-
relation length, the characteristic length over which cells
(or subcellular domains) behave similarly, or by cell-to-
cell variability over a small neighbourhood. For instance,
the shape of a plant lateral organ was found to be less
robust in a mutant with lower cell-to-cell variability [13].
However, the spatial fluctuations may have a more com-
plex structure. Indeed, theoretical models of the expand-
ing universe [16, 17] and of growing tissues [14, 15] predict
long-range spatial correlations, i.e. a significant level of
correlations between fluctuations of two distant parts of
the system; accordingly, growing systems are expected
to exhibit fluctuations at multiple scales. Here we focus
on the underlying mechanism, which we call fluctuation
stretching – the increase in the lengthscale of fluctuations
of a tissue property or of the concentration of a molecule,
due to tissue expansion.

To assess the experimental relevance of this mecha-
nism, we analyzed growth fluctuations in the model plant
Arabidopsis thaliana. We considered the sepal, the green
leaf-like organ that protects a flower prior to their open-
ing. We characterised sepals from wild-type individuals
in different culture conditions as well as mutant plants.
We considered spiral2 and katanin mutant plants since
they were found less robust to the variability in the num-
ber of trichomes (hair cells) than wild types plants [18],
suggesting a greater impact of cellular scales on organ
ones. The lack of SPIRAL2 and KATANIN function lead
respectively to stronger [18–20] and weaker [18, 19, 21]
cortical microtubule co-alignment and reorientation in re-
sponse to mechanical stress [22, 23]. Microtubules guide
the deposition of cellulose fibers in the cell wall (the
plant extra-cellular matrix) [24]. Cellulose fibers being

the main load-bearing component of the cell wall, the re-
sponse of microtubules to stress is generally considered as
a mechanical feedback on growth and spiral2 and katanin
as mutants with altered feedback.

In this Article, we first present a simple model for fluc-
tuation stretching. We estimate spatial and temporal
correlations of tissue growth fluctuations in Arabidopsis
sepals using previous live imaging data [18, 19] and the
Cellular Fourier Transform (CFT) [25]. We investigate
how correlations vary within and between datasets and
we test the existence of the fluctuation stretching mech-
anism.

RESULTS

Models predict the stretching of fluctuations in

growing tissues

Fluctuation stretching, the enlargement of the length-
scale of fluctuations by medium expansion, is predicted
by different models of expanding media, the early uni-
verse [16] and living tissues [14, 15]. Fluctuation stretch-
ing can be understood with the help of FIG.1 and is for-
mally derived in section Datasets and Methods. Panel A

depicts the relaxation towards equilibrium of a variable
with a spatial pattern on a growing tissue; this variable
could reflect gene expression, signalling, metabolism, cell
size or cell growth, for instance. If the pattern is tempo-
rally persistent, the lengthscale of spatial variations will
be enlarged under the effect of growth, while the ampli-
tude of the pattern will be maintained or reduced over
time depending on whether the persistence is complete
or partial, respectively. In the absence of temporal per-
sistence, the pattern disappears at the next time point.
In the presence of a noise source, the pattern caused by
the source at a given time point superimposes to the
preexisting patterns that have been stretched by growth
from previous time points. Altogether, fluctuations of the
variable of interest correspond to a mixture of patterns
with different lengthscales with weight parameterized by
the persistence time τ and by average growth rate G;
the more fluctuations persist over the time for the tis-
sue to double in size (characteristic time of growth), the
more weight is taken by fluctuations that vary over large
lengthscales. This relation can be made quantitative by
using correlation functions.

The space correlation function, C(l), is the pairwise
correlation between the values Φ(x) and Φ(x+l) of a vari-
able Φ at positions distant of length l, as illustrated in
FIG. 1 B. C(l) generally decrease with the distance l: for
l = 0, Φ(x) = Φ(x+ l) and so the correlation is complete,
C(0) = 1, while at large distance l, Φ(x + l) is expected
to be independent of Φ(x) and the correlation vanishes
as illustrated in the plot on the right of panel B. FIG.1
C-E show the predicted space correlation functions for
fully, partially, and no time persistent fluctuations. Be-
cause of fluctuation stretching, space correlations func-
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FIG. 1. An explanation of ‘fluctuation stretching’, defined as
the enlargement of the lengthscale of fluctuations by tissue
expansion. The resulting spatial correlations depend on the
level of temporal persistence of fluctuations. Three levels of
temporal persistence are considered here: full, intermediate,
and none. A Initial spatial pattern and its temporal evolution
for the three levels of temporal persistence. The variable Φ(x)
is plotted as a function of position x and shown in colorscale
(blue and yellow for low and high values, respectively) along
a strip standing for the growing tissue. The red arrows indi-
cate the direction of expansion. B Quantification of spatial
correlations. Top: This involves comparing the values of the
variable at positions x and x+ l, as illustrated in the colored
strip. Left: Typical scatter plot showing Φ(x + l) as a func-
tion of Φ(x) for multiple values of x. Middle: C(l) is defined
as the correlation coefficient between Φ(x + l) and Φ(x); 〈·〉
stands for the average over the dataset of the expression is
between the brackets and ∆Φ(x) = Φ(x)− 〈Φ(x)〉. Left: the
correlation C(l) as a function of the distance l. C-E Spatial
correlation function C(l) for full, partial, and no time persis-
tent fluctuations. Models predict that the space correlation
function is a power-law of l, C(l) ∝ l−β.

tions for time persistent fluctuations are predicted to be
long-ranged i.e. to have their tails which follow a power
law ∝ l−β provided that there is a permanent noise source
and that G and τ remain stationary in time. This scal-
ing law reflects that fluctuations are a superimposition
of patterns with different spatial lengthscales: the larger
τG, the higher correlations between distant regions. Full
temporal persistence is simply the limit where the per-
sistence time is infinite, so that the correlation function
is constant, whereas in the absence of temporal persis-

tence, spatial correlations vanish beyond the correlation
length of the noise source. In section Datasets and Meth-
ods (together with the Supplementary note), we used a
simple model to show that fluctuation stretching relates
the exponent of the correlation function to the dimension
of space (D = 1 in the illustrative figure, D = 2 for thin
organs such as sepals), the persistence time, and average
growth rate:

β =
2D

τG
. (1)

Here, we tested this prediction using previous experimen-
tal data about growing plant organs.

Live imaging and spectral analysis provide estimates

for spatiotemporal correlations of cell growth

Next we aimed at a quantitative description of spa-
tial and temporal correlations of growth fluctuations in
expanding tissues. We used experimental data where
sepals were imaged live to track morphogenesis over time,
with similar culture and imaging conditions [18, 19]. We
examined whether fluctuations stretching applies to cell
areal growth rate. Each sepal was imaged at multiple
times, labeled t = 0, 1, 2, ... and separated by 24 hours
intervals as illustrated by FIG.2A, which shows an ex-
ample of cells segmented in a sepal, at three successive
time steps t, t + 1 and t + 2. Growth was defined from
the cell surface area at successive time steps. FIG.2B
shows cell areal relative growth rate Gi,t and Gi,t+1 from
t to t + 1 and from t + 1 to t + 2 respectively, deduced
from the segmentations showed in panel A and mapped
on the reference tissues at t and t+1, respectively. When
a cell has divided between t to t + 1, we used the total
surface area of the daughter cells at t+ 1 to define Gi,t.
(The explicit form of Gi,t is given in section Datasets ans
Methods.)

To dissect spatial variations of growth in the tissue,
we used the Cellular Fourier Transform (CFT) [25]. The
CFT consists of decomposing the signal into a linear com-
bination of ad hoc harmonics that account for the subdi-
vision of the tissue into cells of variable size and shape.
These harmonics are the equivalent of sinusoidal waves
in an infinite continuous medium. The k-th harmonic,
ek, has wavenumber qk, and varies on a lengthscale that
increases with the rank k, which enable the multi-scale
decomposition of signals defined over the tissue. The
CFT Ĝk,t gives the weights with which cell relative areal
growth is decomposed into the harmonics ek. Fourier
spectra are obtained by plotting the amplitudes |Ĝk,t|
as a function the corresponding wave number qk. These
spectra are well-suited to describe fluctuations in a tissue
at multiple scales.

We estimated spatial correlations from Fourier spec-
tra such as those shown in FIG.2.D1-D2, which show
that growth fluctuates at multiple scales. The predic-
tion of long-range correlations, C(l) ∼ l−β, corresponds
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FIG. 2. Quantification of spatial and temporal fluctuations in cell growth. Day (d) is used as a unit of time. A Three snapshots
of a plant tissue (abaxial sepal epidermis from wild-type plant) taken at one-day intervals. Black lines represent cell contours.
B Heatmaps of relative areal growth rate between times t and t + 1, Gi,t, and between t + 1 and t + 2, Gi,t+1 for cell #i.
A growth rate of 1d−1 corresponds to a relative increase of area of 100% in 1 day. Growth rate of white cells could not be
computed because they were not imaged at t + 2. C1-C2 The first 4 harmonics ek (k = 0, 1, 2, and 3) of the Cellular Fourier
Transform (CFT) of the tissue at t and t + 1, represented by a cyan (low value) to magenta (high values) color scheme. The
harmonics ek generalise sinusoidal waves and can be used to decompose the growth fields Gi,t and Gi,t+1 into their respective

CFTs Ĝk,t and Ĝk,t+1. D1-D2 Fourier spectra (blue dots) correspond to the modulus |Ĝk,t| and |Ĝk,t+1| of the CFTs and are
shown as function of the wavenumber qk of the harmonics ek. Wavenumbers were non-dimensionalised using mean cell size lc.

Spectra were fitted to a power-law (dashed line) of the form ∆Gtq
−αt

k

/(

∑

k q
−2αt

k

)1/2

in order to characterise each spectrum

with two numbers (see text). Here we have αt = 0.54 ± 0.08 (± standard error),αt+1 = 0.71 ± 0.08, ∆Gt = 0.157 ± 0.012 d−1

and ∆Gt=1 = 0.134 ± 0.012 d−1. E For temporal analyses, detrended areal growth rate was computed as the excess areal
growth rate of a cell with respect to neighboring cells. Detrended growth δGi,t+1 (excess cell growth between t+1 to day t+2)
is plotted as a function of detrended growth rate δGi,t (excess cell growth beween t and t + 1 ). Each blue dot corresponds
to one cell that was followed from t to t + 2. The degree of growth temporal correlation is quantified by the value of the
Kendall correlation coefficient Γt = 0.400± 0.052 (± standard error). Two outliers were excluded from the plot to improve the
readability of the figure.

to a spectrum scaling like q−α, with α = 1− β/2, as de-
rived from our simplified model (see section Datasets and
Methods). Although the limited range of wavenumbers
did not allow us to test the power-law behavior, we used

such power-laws, ∆Gtq
−αt

k

/(
∑

k q
−2αt

k

)1/2
, to summa-

rize the characteristics of a spectrum with two numbers:
the amplitude, ∆Gt, and the exponent, αt . The specific
choice made for the form of the power law is such that,
following the Parseval theorem, ∆Gt measures the stan-
dard deviation of growth while αt measures its spatial
correlations. We used statistical inference to estimate αt

and ∆Gt, which we found to approximately range 0.1 to
0.9 and 0.1 to 0.6 d−1, respectively, over all sepals and
time points considered.

We estimated temporal correlations of growth using
correlation coefficients. We considered the correlations
of relative areal cell growth Gi,t from t to t + 1 and
GJi,t,t+1 from t + 1 to t + 2, where the set Ji,t in sub-
script contains the labels of all daughters of cell i at time

t + 1 and GJi,t,t+1 is their areal growth rate, see sec-
tion Datasets and Methods for details. To avoid any
bias due to overall gradients in growth rate [19], we com-
puted detrended cell growth δGi,t by substracting from
each areal growth rate the average growth in the group
of neighboring cells, see Supplementary information. The
scatter plot in FIG.2E of δGJi,t,t+1 as function of δGi,t

illustrates the fact growth is persistent in time: For in-
stance cells that grow more than their neighbors between
t and t + 1 tend to remain so between t + 1 and t + 2.
We then computed Kendall’s correlation coefficient , Γt,
which is based on the rank of data and is less sensitive to
outliers than the more classical Spearman correlation co-
efficient [26]. Over all sepals and time points considered,
Γt approximately ranged −0.1 to 0.6.

We thus obtained a minimal set of parameters to
describe growth fields and their fluctuations: average
growth rate, Gt, extent (exponent) of spatial correlations,
αt, amplitude of spatial correlations, ∆Gt, and temporal



5

0 2 4 2 40

0.5

1.5

0 2 4 2 40 0 2 4 2 40

0.25

0.5

0.75

2 4 2 400

0

0.4

0.8

A B

C D

mean growth temporal correlation

s������� ��	
����amplitude

data set 1 :
WT: spr2 : mad5 : bot1 :

data set 2 :
WT :a

b
c

d

a

b
c

a

b
c

a

b
c

a

b

1

0.4

0.8

FIG. 3. Parameters that characterise growth fields in sepals
from wild-type and mutant plants. The sequences were tem-
porally aligned and parameters are shown as a function of the
synchronized time Tt. A Growth rate averaged over the tissue
Gt. B Temporal correlation coefficient Γt. C Dimensionless
amplitude of the Cellular Fourier Transform (CFT) ∆Gt/Gt.
D Scaling exponent of the CFT αt. The two datasets cor-
respond to two slightly different culture conditions. Black,
blue, orange and, red symbols/lines correspond respectively
to wild-type, spr2 mutant, mad5 mutant, and bot1 mutant
from the first dataset, while gray symbols/lines corrrespond
to wild-type plants from the second set. Error bars indicate
the 90% confidence intervals.

correlation coefficient Γt. Next, we analysed differences
and common features between sepals based on this min-
imal set of parameters.

Temporal and spatial correlations of cell growth

vary across genotypes and culture conditions

We compared growth fluctuations between genotypes
and culture conditions. As explained in the introduction,
we chose to focus on mutants affected in responses to
mechanical stress, spiral2 (spr2 ) and katanin (bot1 and
mad5 ), in addition to wild-type plants. We analyzed
sepals from 3 genotypes in 2 culture conditions and at
different developmental stages. In order to enable the
comparison of several sepals that were imaged starting
from different stages, we temporally aligned live imaging
sequences along a common time frame using sepal width,
building upon the approach developed in [27], see Meth-
ods. The parameters that characterise growth fields in all
these sequences are shown in FIG. 3. Despite variability
within and between genotypes, a few trends can be seen

over time: decreases of mean growth rate (panel A), ap-
proximate decrease of the relative amplitude of growth
fluctuations (panel C), decrease of the extent of spatial
correlations (panel D); temporal correlations seem how-
ever more erratic (panel B).

In order to quantify differences induced by mutations
or culture conditions, we used wild-type plants from
dataset 1 as a reference and we estimated the shift
in growth parameters between the reference and other
genotypes or condition, see FIG. 4. In practice we
calculated this shift between pairs of sepals (one sepal
from wild-type dataset 1 and one sepal from the other
genotype/condition) over the common observation time
points and then we computed the average shift over all
sepal pairs, as well as the standard deviation of the shift.
The change in culture conditions reduces average growth
rate (panel A), temporal correlations (panel B), and ex-
tent of spatial correlations (panel D), leaving the am-
plitude of fluctuations unchanged (panel C). We found
average growth Gt to be higher in mutants than in wild-
type (panel A) over the temporal window considered.
When comparing mutants to wild-type plants, temporal
correlations are lower (panel B), while the extent of spa-
tial correlations is higher (panel D). There is no clear
conclusion for the amplitude of fluctuations, because the
two katanin alleles (bot1 and mad5 ) show different trends
(panel C).

A conserved relation between growth parameters

supports fluctuation stretching

Next, we sought relations between growth parameters
that would hold across genotypes, data sets, and devel-
opmental stages. We first considered the pairwise re-
lations between the growth parameters defined for each
sepal: mean growth rate, Gt, temporal correlation co-
efficient, Γt, normalised amplitude of spatial fluctua-
tions, ∆Gt/Gt, and extent (exponent) of spatial fluctua-
tions, αt. The corresponding scatter plots are shown in
FIG. 5.A-F. To assess these pairwise relations, we com-
puted Kendall’s correlation coefficient between the two
parameters. We found rather weak trends overall. The
strongest trends are between the exponent, αt, and the
temporal correlation coefficient, Γt, and between αt and
the average growth Gt. Interestingly, these trends would
be consistent with fluctuation stretching: larger spatial
extent of fluctuations is favored by higher growth rate
and by higher temporal persistence, see above. We there-
fore tested more directly the predictions from fluctuation
stretching.

Fluctuation stretching does not reduce to a pairwise
relation between growth parameters because it relates
spatial correlations to time persistence and growth rate.
If this phenomenon is at play in sepals, then Eq. 1 and
α = 1 − β/2 (see section Datasets and Methods) yield
αt = 1 − 2/(τtGt), where τt is the persistence time. We
could measure all parameters of this relation but τt. Nev-
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FIG. 4. Differences in growth parameters between mutant and
wild-type (WT) sepals grown in same conditions or between
wild-type sepals grown in distinct conditions. A Growth rate
averaged over the sepal, Gt. The error on Gt is smaller than
the size of the crosses. B Temporal correlation coefficient, Γt.
C Dimensionless amplitude of growth fluctuations, ∆Gt/Gt.
D Exponent quantifying spatial extent of growth fluctuations,
αt. Wild-type from dataset 1 was used as a reference in all
case. Symbols and errors bars correspond to the mean and
standard deviation of the difference, respectively. Error bars
correspond to standard deviations; they combine uncertain-
ties of the two genotypes or culture conditions compared. Av-
erage growth parameters over all available reference data (WT
dataset 1) were taken as reference units.

ertheless the temporal correlation coefficient, Γt, should
be a decreasing function of ∆t/τt, Γt = f(∆t/τt), where
∆t = 1d is the time delay between two time steps of live
imaging, because correlations between states of the sepal
at consecutive time steps are higher if the time delay
is small compared to the persistence time. As a conse-
quence, we predict that

Γt = f
(

∆tGt(1− αt)/2
)

.

We plotted in FIG. 5G. the time correlation coefficient
Γt as a function of ∆tGt/2(1 − αt). The trend is much
clearer than in all other panels of FIG. 5 (Kendall’s co-
efficient κ = −0.48) and the data seem to collapse along
a line. We used statistical inference to perform a lin-
ear fit of the data, Γt = β0 + β1∆tGt(1 − αt)/2, see
Supplementary information. We obtained fit parameters
β0 = 0.596±0.024 and β1 = −1.87±0.15, with relatively
small standard deviations. We then confirmed with a
Kolmogorov-Smirnov test that the residuals (the spread
of the data around the fit) could be explained by the un-
certainty on the estimates of τt and Γt, see Supplemen-
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tions). A-F Pairwise scatter plots of all growth parameters.
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tuations, ∆Gt/Gt, respectively, as function of average growth
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sionless amplitude, ∆Gt/Gt. G Test of the coupling between
temporal and spatial fluctuations, as resulting from fluctua-
tion stretching. Temporal correlation coefficient Γt as a func-
tion of the combination ∆tGt/2(1 − αt) where ∆t = 1 d is
the time step of live imaging. The dashed line corresponds
to a linear fit, Γt = β0 + β1∆tGt/2(1 − αt), with fit parame-
ters β0 = 0.596 ± 0.024 and β1 = −1.87± 0.15. The analysis
of the fit residuals supports a deterministic relation between
the two, see Supplementary Information. In all panels, error
bars show the 90% confidence intervals; black, blue, orange,
and red symbols correspond to wild-type, spr2, mad5 and
bot1 sepals from dataset 1, respectively, while gray symbols
correspond to wild-type sepals from dataset 2. Kendall’s cor-
relation coefficient, κ, is shown above each plot.
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tary Information, while the same analysis for the other
plots (FIG.5A-F) confirmed that none of these plots was
consistent with a linear behavior. Altogether these re-
sults support the hypothesis of a deterministic relation
between Γt and ∆tGt/2(1 − αt) and therefore indicate
that fluctuation stretching is at play in growing sepals.

DISCUSSION

Our analysis provides evidence that growth stretches
time persistent fluctuations: while no clear pairwise re-
lation could be made among the different growth param-
eters, see FIG.5A-F, the clear trend of panel G suggest
that the persistence time can be deduced from space cor-
relations and tissue growth. This phenomenon explains
why higher correlation among cells (higher spatial cor-
relations) may induce more variable organ shape and
size [13]. Fluctuation stretching gives a prominent role
to the persistence time (correlation time) in controlling
spatial correlations in the tissue. Any mechanism that
would decrease persistence time would reduce spatial cor-
relations and, as a consequence, variability of organ con-
tours. Accordingly, reducing persistence time would yield
robust morphogenesis.

Surprisingly, we found that the temporal correlation
coefficient, Γt, is generally not much smaller than unity,
implying that the persistence time, τt, is not much
smaller than the time scale of growth 1/Gt. This might
be specific to plants. The cell wall sets the local growth
rate, and, at the same time, is remodelled at the pace of
growth, so that the persistence time of fluctuations of cell
wall properties is given by the time scale of growth. It
would be worthwhile to extend our study to expanding
animal tissues imaged live such as the imaginal disc of
the fruit fly [28]. In animal tissues that undergo conver-
gent extension, we would expect fluctuation stretching to
operate only in the direction of extension, and so spatial
correlations would be highly anisotropic.

We found a higher spatial extent of correlations (higher
αt) in mutant genotypes. This means that these mutants
potentially have more variable shapes or are less robust
to perturbations, consistent with the observation that the
width of bot1 and mad5 sepals varies more with trichome
number than WT plants [18]. Models predicted that vari-
ability of organ contours is minimal for a well-defined
level of feedback from mechanical stress to cellulose syn-
thesis [14], leading to the speculation that in wild-type
sepals the level of mechanical feedback is optimised so as
to reduce variability of sepal shape, compared to mutants
with lower (bot1 ) or with higher (mad5 ) mechanical feed-
back. This level of mechanical feedback also corresponds
to a minimum of the persistence time of fluctuations, τ ,
highlighting the importance of this time scale in setting
the robustness of organ shape and size.

Fluctuation stretching is a kinematic phenomenon:
properties of cells or of regions of cells are carried (ad-
vected) by tissue growth and deformation; the persis-

tence time of these properties sets how they are carried
to larger or smaller spatial scales, in the case of tissue ex-
pansion or tissue shrinkage, respectively. This kinematic
phenomenon applies to any type of property or field as
far as it is carried by tissue growth and deformation,
such as protein concentrations in cells. Advection also
applies to non-random properties, in line with theoreti-
cal models of polarity fields showing that a combination
of morphogens, advection, and time persistence can re-
produce the shapes of leaves [29], or with models of leaf
vasculature that show that areole (region delimited by
veins) shape is advected by leaf growth [30].

Altogether, our work sheds light on the role of persis-
tence time, that is the memory of previous states of a
given property, in the robustness of morphogenesis. The
investigation of spatiotemporal fluctuations may provide
a new avenue to characterize organ development.
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DATASETS AND METHODS

Model for fluctuation stretching

We introduced a simple model for the dynamics of a
quantity Φ(x, t) that varies with position vector, x, in
D-dimensional Cartesian space and with time, t. We
assumed Φ to be advected by tissue growth at rate G, to
have a persistence time τ , relaxing towards its reference
value 〈Φ〉, and to be driven by a stochastic source ξ(x, t),
so that

∂tΦ(x, t)+G/Dx·∂xΦ(x, t) = −(Φ(x, t)−〈Φ〉)/τ+ξ(x, t).
(2)
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This equation can be solved as shown in the Supple-
mentary note. We obtained the deviation ∆Φ(x, t) =
Φ(x, t)− 〈Φ〉,

∆Φ(x, t) = e−t/τ∆Φ(x e−t G/D, 0) +

∫ t

0

ds

τ
e−(t−s)/τ ξ(x e−(t−s)G/D, s). (3)

In the absence of noise, this equation corresponds to the
plots in FIG.1.A: the lengthscales of variation of the ini-

tial pattern are enlarged of a factor etG/D, while the
amplitude of the pattern decays like e−t/τ . We then as-
sumed the noise to be Gaussian, with 〈ξ(x, t)〉 = 0 and
〈ξ(x, t)ξ(x + ℓ, t + s)〉 = Kδ(s)g(|ℓ|), where 〈.〉 stands
for an ensemble average, δ(.) is the Dirac distribution,
and g(|ℓ|) is a function that vanishes when ℓ → ±∞. In
the Supplementary note, we found the spatial correlation
function C(l) = 〈∆Φ(x, t)∆Φ(x + l, t)〉/〈|∆Φ(x, t)|2〉 to
take the form

C(l) = |l|−2D/(τG)f(|l|), (4)

where f(|l|) =
∫ |l|

0
du u2D/(τG)−1g(u). C(l) exhibit a

long tail with an exponent β = 2D/(τG), proving Eq.1.

Finally, we considered the Fourier transform Φ̂(q, t) =
∫

dxe−Iq·xΦ(x, t) and predicted the root mean squared

spectrum 〈Φ̂2(q, t)〉1/2 to behave as a power law ∝ |q|−α

with

α = D/2− β/2 = D/2−D/(τG). (5)

We can therefore estimate spatial correlations in using
the Fourier spectrum and test the existence of fluctuation
stretching based on this last equation.

Experimental datasets

In order to reliably analyse fluctuations of growth rate,
we chose datasets of sepals imaged with the highest spa-
tial resolution possible among those published. We used
live imaging sequences from [19] (dataset 1) and from [18]
(dataset 2). Voxel size was 0.12 × 0.12 × 0.50µm3.
All plant lines in these sequences were crosses between
Ws-4 and Col-0 ecotypes, harbouring respectively the
microtubule reporter p35S::GFP-MBD and the mem-
brane reporter pUQ10::Lti6b-2xmCherry [19]. The two
datasets had different culture conditions (type of light-
ing). Dataset 1 contained wild-type plants, the spr2-

2 allele of SPIRAL2 that was originally obtained in a
Col-0 background, the bot1-7 allele of Katanin that was
originally obtained in a Ws-4 background, and the mad5
allele of Katanin that was originally obtained in a Col-0
background (unpublished sequences obtained in parallel
with those from [19]).

Segmentation

For sepals not already processed in [18, 19], cells of the
abaxial epidermis were segmented and tracked in time
using MorphoGraphX [31]. A triangular mesh was ob-
tained for the outer organ surface in which cells were
identified and well delimited.

Computation of growth rates

We aimed at analysing fluctuations of cell relative areal
growth rates tangentially to the sepal and therefore to
get rid of the curvature of the outer surface of cells. To
do so, we redefined the surface of cells from the linear
interpolation of their contours. Areal growth rate was
defined from the cell surface area at successive time steps.
At time t, each cell is labeled by an index i and has
surface area Si,t. Cell i may divide between t and t+ 1;
the set Ji,t contains the labels of all daughters of cell i
at time t + 1 (Ji,t is reduced to a single label if cell i
has not divided). We only consider cells which or whose
daugthers remain in the segmented region from t to t+1.
The areal growth rate of the cell i at a time t is then
defined as

Gi,t =
(

∑

j∈Ji,t

Sj,t+1

)

/Si,t − 1. (6)

Tissular growth is in turn defined as Gt =
(
∑

i

∑

j∈Ji,t
Sj,t+1)/(

∑

i Si,t)− 1.

Cellular Fourier Transforms

The Fourier harmonics are built from a coarse and
discreet version of the Laplace operator. To compute
this operator we triangularized cell surfaces using the
’MESH2D’ matlab algorithm [32, 33]. More details can
be found in the Supplementary Information. The Cel-
lular Fourier Transform (CFT) Ĝk,t of cell relative areal
growth gives the weights by which growth is decomposed
over the harmonics ek of the CFT. In this paper, the
definition of the CFT differ from the one in [25] by a
prefactor 1/

√
St where St is the total surface area. This

change simplifies the interpretation of Fourier spectra:
the coefficients have the same physical dimension as the
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original signal and the first coefficient is the average of
the signal.

Scaling exponent and amplitude of fluctuations

We quantified spatial correlations in the tissue by fit-
ting the spectral density with a power law. To do so, we
assumed a Gaussian distribution for the CFT, centred
around 0 with a standard deviation verifying,

σk,t = ∆Gtq
−αt

k /

√

∑

l

q−2αt

l (7)

where ∆Gt and the scaling exponent αt are the fit pa-
rameters characterizing respectively the amplitude and
the extent of spatial correlation of growth fluctuations.
For the fit, we used statistical inference as detailed in
the Supplementary Information. Doing so, we estimated
a probability for the parameters ∆Gt and αt, their ex-
pected value, their standard error, and median values.
We also estimated the 90% confidence interval, from the
fifth to the ninety fifth percentiles.

Temporal correlations

We estimated temporal correlations of relative areal
growth in considering cell growth Gi,t from t to t+1 and
cells growth GJi,t,t+1 from t+1 to t+2. GJi,t,t+1 is simply
the areal growth rate from t to t + 1 of the descendants
of the cell i in the segmentation at t:

GJi,t,t+1 =

∑

j∈Ji,t

∑

l∈Jj,t+1
Sl,t+2

∑

j∈Ji,t
Sj,t+1

− 1. (8)

To avoid any bias due to systematic variation of growth at
organ scale [19], we used the detrended cell growth δGi,t,
which can be defined by subtracting average growth

in a neighborhood to cell growth, see Supplementary
Information. Temporal correlations were computed as
Kendall’s correlation coefficient Γt of δGi,t and δGJi,t,t+1.
Kendall’s correlation coefficient is rank-based and so is
less sensitive to outliers [26]. We used boostrapping to
obtain confidence intervals and uncertainties.

We note that Γt tends to be underestimated: A posi-
tive error on SJi,t,t+1 leads to an overestimation of δGi,t

and an underestimation of δGJi,t,t+1, inducing a nega-
tive correlation between δGi,t and δGJi,t,t+1. This may
explain the few negative values of Γt. We found this neg-
ative bias to be stronger when we defined growth from
the cells outer surface area, leading us to use the inter-
polation of cell contours instead (see above).

Comparing genotypes

To describe the impact of mutations on growth param-
eters, we compared tissues at equivalent developmental
stages. We first synchronized all the live imaging se-
quences from a dataset by considering the time curves of
organ widths for every considered tissues and finding the
time delays ensuring their superposition, building upon
the approach developed in [27], leading to a corrected
time Tt. We defined the mean shift of a quantity Φt as

D =

∑

n′,t′
∑

n,t W
(n′,n)
t′t (Φ

(n′)
t′ − Φ

(n)
t )

∑

n′,t′
∑

n,t W
(n′,n)
t′t

, (9)

where the upper exponents (n′) and (n) label the pair
of conditions compared (e.g. one mutant and the ref-
erence wild-type). The sums

∑

n′,t′ and
∑

n,t are over
all squences of the mutant and the WT respectively. D
quantifies how much, in average, the quantities Φt for the

mutants are shifted from the WT where W
(n′,n)
t′,t gives the

weights at which each pair is considered. A weight differs
from 0 only if the values of synchronized times Tt of the
pair are close, see Supplementary Information for details.
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I. MODEL FOR FLUCTUATION STRETCHING

A. Model

To support the explanation of fluctuation stretching proposed in FIG.1., we model the dynamics of a quantity
Φ advected in a growing medium. If the medium grows isotropically and uniformly, its strain rate tensor in the
D-dimensional space is G/Dδij where G is the line, surface or volume growth for D = 1, 2, or 3 respectively and δij
is the Kronecker delta tensor. We assume the dynamics of the quantity Φ to be ruled by intrinsic cellular processes
among which some are stochastic. For simplicity, we restrict our model to low order and linear dynamical systems.
Denoting time by t and the Cartesian space coordinate vector by x, we assume the evolution of Φ(x, t) to be given by,

∂tΦ(x, t) +G/Dx · ∂xΦ(x, t) = −(Φ(x, t)− 〈Φ〉)/τ + ξ(x, t), (1)

where the material point at x = 0 serves as the origin of the spatial coordinate system. ∂t and ∂x respectively stand
for the partial derivative with respect to time and for the gradient. The left hand side of (1) corresponds to the
material time derivative. The first term in the right hand side ensures the relaxation of Φ toward its reference value
〈Φ〉, while the second term accounts for stochasticity through the noise ξ.

∗ antoine.fruleux@universite-paris-saclay.fr † arezki.boudaoud@polytechnique.edu
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B. Linear response

We denote the deviation of Φ from its reference value by ∆Φ(x, t) = Φ(x, t)− 〈Φ〉. The persistence time τ sets the
memory of the system as can be seen in the explicit solution of (1),

∆Φ(x, t) = e−t/τ∆Φ(x e−t G/D, 0) +

∫ t

0

ds

τ
e−(t−s)/τ ξ(x e−(t−s)G/D, s). (2)

In this equation, τ sets the time over which initial conditions persist and the delay over which the noise impacts the
value of Φ.

C. Spatial correlation function

To describe the statistical properties of Φ, we assume the noise to be Gaussian, with 〈ξ(x, t)〉 = 0 and 〈ξ(x, t)ξ(x+
l, t + s)〉 = Kδ(s)g(|l|). 〈.〉 stands for an ensemble average. K is the noise strength. δ(.) is the Dirac distribution.
The function g(l) = 〈ξ(x, t)ξ(x + l, t)〉/〈|ξ(x, t)|2〉 describes the spatial correlation of ξ, assumed to be regular and to
vanish at infinity. The correlations of Φ can be computed using (2) with t = −∞ as initial time. The space correlation
function C(l) = 〈∆Φ(x, t)∆Φ(x + l, t)〉/〈|∆Φ(x, t)|2〉 can then be written as,

C(l) =

∫ +∞

0

(2 ds/τ) e−2 s/τg(|l| e−sG/D). (3)

The space correlation function C(l) is obtained by stretching the variation lengthscales of g by a factor sG/D and
summing the stretched functions with weights e−2 s/τ . Changing the integration variable, we rewrite (3) as,

C(l) = |l|−2D/(τG)f(|l|), (4)

where the increasing function f(|l|) =
∫ |l|

0 du u2D/(τG)−1g(u) is expected to reach an asymptotic value as |l| is large
compared to the correlation length of ξ. (4) makes therefore explicit the long ranged property of C, characterized by
the scaling exponent β = 2D/(τG).

D. Fourier spectrum

The Fourier transform Φ̂(q, t) =
∫

dxe−Iq·xΦ(x, t) can be used to estimate the space correlation function C(l). More

exactly, the mean squared spectrum 〈|Φ̂(q, t)|2〉 is proportional to the Fourier transform Ĉ(q) =
∫

dle−Iq·lC(l) =

|q|β−Dh(|q|) with h(|q|) =
∫

dDu|u|−βf(|u|/|q|)eIu·ŷ and ŷ a unit vector. It exhibits a singularity for |q| → 0 where it
scales like |q|−2α, with

α = D/2− β/2 = D/2−D/(τG). (5)

If the correlation length of the noise source is small, the root mean squared spectrum can be approximated by a power
law whose amplitude relate to the standard deviation through the Parseval theorem and whose exponent α is given
by the persistence time τ and growth rate G according to (5).

II. CELLULAR FOURIER TRANSFORM

Here we present the computation of cell surface area, we define the discrete Laplace operator, we explain how we
built the Fourier harmonics based on this Laplace operator, and finally we define the Cellular Fourier Transform
(CFT). The theoretical basis of the CFT may be found in [1].

A. Cell area and discrete Laplace operator

We compute cell area from the linear interpolation of cell contour. More precisely, we project the contour on a
plane that is perpendicular to the surface vector. The contour being polygonal, the surface factor can be written



3

1/2
∑

n ~rn ∧ ~rn+1 where the sum is over the contour vertexes, ~rn is their position, n indexes the position around the
contour and ∧ is the exterior product. We then triangulate the surface enclosed in the projected contour using the
MESH2D Matlab package [2, 3]. To obtain a 3D mesh and determine the position of the mesh along the surface
vector, we did a linear interpolation of the cell contours. The area Si,t for cell i at time t is then computed as the

sum of areas of triangles in the triangulation, Si,t =
∑(i,t)

m dSm, where m spans triangles of cell i at time t and dSm

is the area of triangle #m. The tissue is made of N cells that are followed from t to t+ 1.
The discrete Laplace operator is a square matrix of size N ×N and its components are given by

L̄ij,t = δij − W̄ij,t, with, W̄ij,t =

√

Si,t

Sj,t

∑(i,t)
m dSm

∑(j,t)
n dSn exp(−dmn/(5 ℓc))

∑(i,t)
m dSm

∑

j

∑(j,t)
n dSn exp(−dmn/(5 ℓc))

, (6)

where indices i = 0, 1, ..N − 1 and j = 0, 1, ..N − 1 span the N cells of the tissue. dmn is the distance between
triangle m from cell i and triangle n from cell j, both considered at time step t. The unit of length is mean cell size
ℓc =

√

St/N , where St is the surface of the tissue at time t and N is the number of cells. Here we took the width 5lc
for the coarse Laplace operator.

B. Fourier harmonics

We start from the singular value decomposition of the Laplace operator L̄, which yields left singular vectors V ,
right singular vectors U , and the singular values L̂k:

L̄ij,t =

N−1
∑

k=0

L̂k VkiUkj . (7)

The value taken by the kth-harmonic in cell i at time step t is 1/Si,tUki. The wave number of the kth harmonic is

given by qk = 1/5Q(L̂k), with Q(l) =
√

(1− l)−2/3 − 1. The harmonics are indexed so that their index grows with
the wave number.

C. Calculation of the CFT of cell growth

The areal growth rate of cell i at time step t is defined as Gi,t =
((

∑

j∈Ji,t
Sj,t+1

)

/Si,t − 1
)

/∆t where Ji,t is

either the new label of cell i at time t + 1 or the set of labels of the daughters of cell i if it has divided, while the
time step is always ∆t = 1d. The kth CFT coefficient is then Ĝk,t =

∑

i UkiGi,t

√

Si,t/St where St is the total area

St =
∑

i Si,t. Here we use a convention that differs from [1] by a multiplicative factor 1/
√
St in the definition of the

CFT. This makes the interpretation of CFTs simpler: they have the same dimensions (units) as the original signal
(here growth) and the first coefficient is equal to the average signal.

III. SPATIAL CORRELATIONS

We estimated spatial correlations of growth from the Fourier spectra i.e. from the distribution of Fourier transforms
Ĝk,t and associated wavenumbers qk. For this we used Bayesian inference.

A. Inference methods applied to Fourier spectra

To quantify spatial correlations, we assumed the CFT coefficients, Ĝk,t for k ≥ 2, to be independent random
Gaussian variables whose mean squared deviation follows a power law with respect to the wave number qk,

σk,t = ∆G2
t q

−2αt

k /

(

N−1
∑

l=2

q−2αt

l

)

, (8)

the parameters ∆Gt and αt quantifying the amplitude of growth fluctuations and their space correlations respec-
tively. We make the choice not to consider the two first CFTs to avoid potential bias related to large scale growth
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patterns, which should not be considered as fluctuations. For the derivation of the equations, it is more convenient

to rewrite (8) as σk,t = Q−2αt

k /ξ, where Qk = qk/(
∏N−1

l=2 ql)
1/(N−2) and ξ =

∑N−1
k=2 Q−2αt

k /(2∆G2
t ). We write the

probability distribution fucntion of Ĝk,t as

pk(Ĝ|ξ, αt) = e−ξĜ2Q
2 αt
k

√

ξQ2αt

k

π
. (9)

We use Bayesian inference to estimate ξ and αt, assuming a flat prior distribution for ξ ∈ [0,+∞[ and αt ∈ [0, 1],
which are the relevant range of parameters for (9). The posterior distribution for ξ and αt takes the form

PΞ,A(ξ, αt) =

∏N−1
k=2 pk(Ĝk|ξ, αt)

∫ +∞

0 dξ′
∫ 1

0 dα
∏N−1

l=2 pl(Ĝl|ξ′, α)
. (10)

We then substitute the probabilities pk by their explicit form, noting that, by construction,
∏N−1

k=2 Qk = 1, and
computing the first integral in the denominator, we get

PΞ,A(ξ, αt) =
e−ξ

∑N−1
k=2 Ĝ2

k,tQ
2 αt
k

ξ Γ(N/2)
∫ 1

0 dα(ξ
∑N−1

k=2 Ĝ2
k,tQ

2α
k )−N/2

, (11)

where Γ is the Euler’s gamma function.

B. Estimating amplitude of fluctuations and exponent of spatial correlations

To estimate ∆Gt, αt and their uncertainty, we consider the joint cumulative distribution function F(∆G,α), of
having ∆Gt and αt smaller than the values ∆G and α, respectively. This function can be written in terms of P(ξ, α)
as

F(∆G,α) =

∫ α

0

dα′

∫ +∞

∑N−1
k=2 Q−2 α′

k /(2∆G2)

dξ P(ξ, α′). (12)

By using the expression P(ξ, α) in (11) and computing the second integral, we then get

F(∆G,α) =

∫ α

0 dα′ (
∑N−1

k=2 Ĝ2
k,tQ

2α′

k )−N/2Γ
(

N/2,
∑N−1

k=2

Ĝ2
k,t

2∆G2q−2 α′

k
/
∑N−1

l=2
q−2 α′

l

)

∫ 1

0
dα′′ (

∑N−1
k=2 Ĝ2

k,tQ
2α′′

k )−N/2Γ
(

N/2
) , (13)

where Γ(a, z) =
∫ +∞

z
dt ta−1e−t is the incomplete gamma function.

We used the median as a representative value of the different quantities we considered. We estimate ∆Gt from the
median F(∆Gt, 2) = .5 and the 90% confidence interval [∆G1,t,∆G2,t] from the 5th, F(∆G1,t, 2) = .05, and the 95th

percentile, F(∆G2,t, 2) = .95. Similarly, we estimate αt from the median F(+∞, αt) = .5 and the 90% confidence
interval [α1,t, α2,t] from the 5th, F(+∞, α1,t) = .05, and the 95th percentile, F(+∞, α2,t) = .95.

When we approximated their distributions by Gaussians (for fits or to estimate shifts from WT to mutants tissues),
we used the the expected value and the standard deviations of αt and ∆Gt. We estimated the expected value of αt,

〈αt〉 =
∫ α

0 dα′ α′ (
∑N−1

k=2 Ĝ2
k,tQ

2α′

k )−N/2

∫ 1

0 dα′′ (
∑N−1

k=2 Ĝ2
k,tQ

2α′′

k )−N/2
, (14)

its standard deviation δα =
√

〈α2
t 〉 − 〈αt〉2 with,

〈α2
t 〉 =

∫ 1

0 dα′ (α′)2 (
∑N−1

k=2 Ĝ2
k,tQ

2α′

k )−N/2

∫ 1

0 dα′′ (
∑N−1

k=2 Ĝ2
k,tQ

2α′′

k )−N/2
, (15)

the expected value of ∆Gt,

〈∆Gt〉 =

∫ 1

0
dα′

√

1/2
(

∑N−1
k=2 Ĝ2

k,t. ∗Q2α
k

)(

∑N−1
l=2 Ql.−2α

)

(
∑N−1

k=2 Ĝ2
k,tQ

2α′

k )−N/2Γ
(

N/2− 1/2
)

∫ 1

0
dα′′ (

∑N−1
k=2 Ĝ2

k,tQ
2α′′

k )−N/2Γ
(

N/2
) (16)
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and the standard deviation δ(∆Gt) =
√

〈∆G2
t 〉 − 〈∆Gt〉2

〈∆G2
t 〉 =

∫ 1

0
dα′

(

1/(N − 2)
∑N−1

k=2 Ĝ2
k,t. ∗Q2α

k

)(

∑N−1
l=2 Ql.

−2α
)

(
∑N−1

k=2 Ĝ2
k,tQ

2α′

k )−N/2

∫ 1

0
dα′′ (

∑N−1
k=2 Ĝ2

k,tQ
2α′′

k )−N/2
. (17)

IV. TEMPORAL CORRELATIONS

To quantify temporal correlations, we detrended growth from growth spatial patterns and we calculated Kendall’s
correlation coefficient.

A. Detrending

Before estimating time correlations, we corrected cellular growth using a local average of growth, aiming to detrend
our estimate from large-scale deterministic spatial variations. We thus avoid potential bias induced by large scale
growth variations that should not be considered as fluctuations. We use growth rate Gi,t of cell i between t and
t+ 1, as defined in Sec. II A. Computing local excess of growth is equivalent to apply a smooth Laplace operator to
growth [1]. For convenience, we use the Laplace operator defined in (7), and we define δGi,t =

∑

j Lij,t

√

Sj,t/Si,tGj,t,
where j spans cells that can be tracked from t to t+2. Detreneded growth at time t needs to be compared to detrended
growth at time t+ 1, δGJi,t,t+1 =

∑

k∈Ji,t

∑

j Lkj,t+1

√

Sk,t+1Sj,t+1Gj,t+1/(
∑

l∈Ji,t
Sl,t+1).

B. Kendall’s correlation coefficient

Time correlations are quantified by Kendall’s correlation coefficient Γt between δGi,t and δGJi,t,t+1. We used a

bootstrap approach with 104 resamplings to quantify the statistical properties of Γt. We estimated Γt from the median
of the boostrap distribution and the bounds of the confidence interval are its 5th and its 95th percentile. Finally, we
also considered 〈Γt〉 and δΓt the expected value and the standard error of the distribution.

V. ANALYSIS OF TEMPORAL VARIATIONS IN GROWTH PAREMETERS

We analyzed two datasets, the first containing wild-type and mutant plants while the second group contained wild-
type plants grown in different conditions. We first synchronised the time series of the two datasets. We then compared
mutants to wild-type sepals from plants cultured in the same conditions, or wild type sepals from plant cultured in
different conditions.

A. Registration

To synchronize (register) the different time series (labeled with an upper index (n)), we looked for the temporal

shifts ∆t(n) that maximise the overlap of curves of width vs. time w
(n)
t . The perfect overlap being, in general, not

possible, we define a distance between pairs of curves, and we choose the delays which minimise the quadratic sum

over all possible pairs S =
∑

n,n′ d2nn′ , of these distances. For two time series w
(n)
t and w

(n′)
t , the distance from n to

n′ is defined as dnm = Ann′ − An′n, where Ann′ is the area of the region in the Cartesian plane that is delimited to

the left by the linear interpolation of w
(n)
t versus t and to the right by the linear interpolation of w

(n′)
t versus t. This

distance depends linearly on the the time-shifts, dnn′ = ann′ − an′n + hnn′(∆t(n
′) −∆t(n)) where ann′ and an′n are

the areas Ann′ and An′n before synchronization. The minimization problem is then simply quadratic and the shifts
are the solution of

∑

n′

Mnn′∆t(n
′) = Yn,

with Mnn′ = δnn′(
∑

m hnm)−hnn′ and Yn = 2
∑

n′(ann′ −an′n)hnn′ . The matrix M is not invertible due to invariance
by translations in time, but this system can be solved by adding the condition that the smallest temporal shift (the
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smallest ∆t(n)) has a value of 0. We denote by T
(n)
t the new temporal coordinate for live-imaging series n following

registration.

B. Differences between mutant and wild-type growth parameters

To compare a quantity Φt (which could be Γt, ∆Gt, αt or Gt = (
∑

i

∑

j∈Ji,t
Sj,t+1)/(

∑

i Si,t)− 1) between mutant

and wild-type sepals in dataset 1, we defined the mean difference D as,

D =

∑

n′,t′
∑

n,tW
(n′,n)
t′t (Φ

(n′)
t′ − Φ

(n)
t )

∑

n′,t′
∑

n,t W
(n′,n)
t′t

(18)

where the upper indices (n′) and (n) label the mutant and wild-type live-imaging sequences, respectively. The sums
∑

n′,t′ and
∑

n,t are over all the time points of the mutant and the wild-type,respectively. D quantifies how much, on

average, the quantities Φt for the mutants differ from the WT. The weights W
(n′,n)
t′,t are defined as

W
(n′,n)
t′,t = Λ(T

(n′)
t′ − T

(n)
t ), (19)

where Λ(x) = max(1 − |x|, 0) is the triangle function. This definition ensures that only differences between mutants
and WT of comparable stages are considered in the distance D.

Approximating the distribution of Φt to Gaussian, D has a Gaussian distribution and its expected value is

〈D〉 =
∑

n,t

∑

n′,t′ W
(n′,n)
t′,t (〈Φ(n′)

t′ 〉 − 〈Φ(n)
t 〉)

∑

n,t

∑

n′,t′ W
(n′,n)
t′,t

,

where 〈Φ(n′)
t′ 〉 and 〈Φ(n)

t 〉 are the expected values of Φ for the mutants and the wild-type tissues. The standard
deviation is

δD =

√

∑

n,t

∑

n′,t′ W
(n′,n)
t′,t

(

(

δΦ
(n′)
t′

)2

−
(

δΦ
(n)
t

)2
)

∑

n,t

∑

n′,t′ W
(n′,n)
t′,t

,

where δΦ
(n′)
t′ and δΦ

(n)
t are the standard error of Φ for the mutants and the WT tissues. We used the same method

to compare between wild-type sepals from the two culture conditions.

VI. LINEAR FIT AND RESIDUALS

We used statistical inference to determine which linear relation is the most likely to fit our data. We did this to
test if the master curve of Γt as function ∆t/τt can well be fitted by a linear relation. In using statistical inference,
we accounted for the strong uncertainty of the different estimates we made. We could also estimate the uncertainty
of the fit itself end test whether the distribution of data around the fit can be explained by the data uncertainty, in
coherence with the hypothesis of a linear and deterministic relation between the two. This is what we did in a second
time.

A. Linear fit

We did this analysis to fit the master curve Γt as function of ∆t/τt but since we applied the same analysis to other
scatter plots, we preferred to consider genera x− and y−coordinates. In a method which account for the uncertainty
of the data estimates. To each measurement performed (indexed i) is associated a probability pi(xi, yi) of finding a
certain quantity xi associated to the quantity yi. Approximating pi to a Gaussian distribution, and assuming not
specific correlations for the error on xi and yi, we can write
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pi(xi, yi) = exp

(

−1/2

(

(xi − 〈xi〉)2
δx2

i

+
(yi − 〈yi〉)2

δy2i

))

/(2πδxiδyi), (20)

where 〈xi〉 and 〈yi〉 are the expected values of xi and yi and δxi, and δyi are their standard errors. The probability
of finding the x-coordinate in xi and of being on the line y = β0 + β1x is then, pi(xi, β0 + β1xi) which can be written
as

pi(xi, β0 + β1xi) = exp

(

−1/2

(

(

1

δx2
i

+
1

δy2i

)(

x− β1
〈yi〉 − β0 − β1〈xi〉

δy2i + β2
1δx

2
i

)2

+
(〈yi〉 − β0 − β1〈xi〉)2

δy2i + β2
1δx

2
i

))

/(2πδxiδyi),

(21)
where we rearranged the argument of the exponential to write the dependence with x as a square. Integrating over
xi, we obtain the probability that the data measured in i falls on the line y = β0 + β1x as

pi(y = β0 + β1x) = e
−1/2

(〈yi〉−β0−β1〈xi〉)
2

δy2
i
+β2

1δx2
i /

√

2π(δy2i + β2
1δx

2
i ), (22)

The probability of having the n, assumed independent, measurements falling on y = β0 + β1x is then
∏n

i=1 pi(y =
β0 + β1x), and using flat prior for β0 and a Cauchy distribution as a prior for β1, which is equivalent to assume a flat
prior for the orientation of the line y = β0 + β1x, we get

P (β0, β1) =
e
−1/2

∑n
i=1

(〈yi〉−β0−β1〈xi〉)
2

δy2
i
+β2

1
δx2

i

Z(1 + β2
1)
√
2π
∏n

i=1

√

δy2i + β2
1δx

2
i

(23)

where the constant Z given below is defined so that
∫ +∞

−∞ dβ0

∫ +∞

−∞ dβ1P (β0, β1) = 1. Introducing a(β1) =
∑n

i=1 1/(δy
2
i + β2

1δx
2
i ), b(β1) =

∑n
i=1(β1〈xi〉 − 〈yi〉)/(δy2i + β2

1δx
2
i ), c(β1) =

∑n
i=1(β1〈xi〉 − 〈yi〉)2/(δy2i + β2

1δx
2
i ) +

log(δy2i + β2
1δx

2
i ), we can write

P (β0, β1) =
e−1/2(β2

0a(β1)+2β0b(β1)+c(β1))

Z(1 + β2
1)

. (24)

Then, Z =
∫ +∞

−∞ dβ0

∫ +∞

−∞ dβ1
e−1/2(β2

0a(β1)+2β0b(β1)+c(β1))

(1+β2
1)

can be rewritten, computing the first integral, as

Z =

∫ +∞

−∞

dβ1
e−1/2(c(β1)−b(β1)

2/a(β1))

(1 + β2
1)
√

a(β1)
. (25)

The expected value for β1 is thus

〈β1〉 =
∫ +∞

−∞

dβ1β1
e−1/2(c(β1)−b(β1)

2/a(β1))

Z(1 + β2
1)
√

a(β1)
. (26)

and the standard deviation is δβ1 =
√

〈β2
1〉 − 〈β1〉2, where

〈β2
1〉 =

∫ +∞

−∞

dβ1β
2
1

e−1/2(c(β1)−b(β1)
2/a(β1))

Z(1 + β2
1)
√

a(β1)
. (27)

The expected value for β0 is

〈β0〉 = −
∫ +∞

−∞

dβ1
b(β1)

a(β1)

e−1/2(c(β1)−b(β1)
2/a(β1))

Z(1 + β2
1)
√

a(β1)
, (28)

and the standard deviation δβ1 =
√

〈β2
1〉 − 〈β1〉2, where

〈β2
0〉 =

∫ +∞

−∞

dβ1

(

1

a(β1)
+

(

b(β1)

a(β1)

)2
)

e−1/2(c(β1)−b(β1)
2/a(β1))

Z(1 + β2
1)
√

a(β1)
. (29)

We computed these integrals numerically to estimate the fitting parameters and their standard deviations.
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B. residuals

We would like to test if the expected values 〈β0〉 and 〈β1〉 allow to adequately fit the set of data. We gave in (22)
the probability of having a linear relation y = β0 + β1x in the measurement i. For β0 = 〈β0〉 and β1 = 〈β1〉, it is,

pi(y = 〈β0〉+ 〈β1〉x) = e
−1/2

(〈yi〉−〈β0〉−〈β1〉〈xi〉)
2

δy2
i
+〈β1〉2δx2

i /
√

2π(δy2i + 〈β1〉2δx2
i ), (30)

We see that this probability follows a standard normal distribution with respect to the parameter ri =
(〈yi〉−〈β0〉−〈β1〉〈xi〉)

2

δy2
i+〈β1〉2δx2

i
. If our assumptions are consistent, and notably the assumption that a linear relation exists

between yi and xi is correct, then the distribution of ri over all the measurements should be close to a standard
normal distribution. To assess this, we performed a Kolmogorow-Smirnov test. We concluded that, in the case of the
master curve, the distribution of data around the fit can be explained by the uncertainty on the estimates, and that
the data are compatible with the hypothesis of a linear and deterministic relation between Γt and ∆t/τt, while we
could not draw the same conclusions for any of the other pairwise trends.
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