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Abstract

We study the sine-Gordon equation with h-periodic in space coefficients. Leading-order homog-
enization yields an effective sine-Gordon equation for which travelling wave periodic solutions
of wavelength λ� h can be determined. The periodic solutions are then modulated on a scale
Λ � λ. As we know, the corresponding Whitham equations are elliptic, which ensures that
the periodic solution is unstable. However, the instability scenarios are not universal. In this
paper, such scenarios are described both in the low and high energy regimes and for supersonic
compared to the averaged sound speed case. In the low energy case the space derivatives of
the solutions “explode” in finite time (a caustic appears), while in the high energy case the
solutions grow almost linearly in time.

Keywords: Two-scale homogenization, nonlinear waves, Whitham method, modulation
equations.
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1. Introduction

We often encounter applications in which the physical parameters vary on a scale h much
smaller than a characteristic wavelength λ. It is the paradigm of homogenization, initiated
in the 70’s and which intervenes in many areas of applied sciences, such as solid mechanics
and photonics which allows us to determine “effective” parameters of such a media. The aim
of homogenization is to replace a partial differential equation (PDE) with highly oscillating
coefficients by a PDE with constant effective coefficients. Doing so is very advantageous, both
from theoretical and numerical points of view. A bibliographic review of homogenization is
out of our scope. We only refer the interested reader to [3] for a rigorous presentation of
the two-scale asymptotic method for elliptic equations with periodic coefficients, and to [4]
for linear wave equations. Litterature on homogenization of nonlinear wave equations with
oscillating coefficients is more sparse. Theoretical issues are found in [11], and the propagation
of nonlinear elastic waves in a finely layered medium is numerically investigated in [24].

Another well known upscaling method was developed by Whitham [28, 29]. Assuming
a modulational length Λ much greater than wavelength λ of periodic travelling waves, the
Whitham modulation equations emerge as the Euler-Lagrange equations for the corresponding
averaged Lagrangian. Again, a bibliographic review of Whitham’s method is out of our scope
(for this, we refer to the monographs [29, 21, 9]). A general approach for the study of modulation
equations for a large class of Hamiltonian systems can be found in [8]. A connection between
the predictions of Whitham theory and the rigorous spectral theory have been stressed in [19].
In particular, the Whitham modulation equations appeared to be a powerful method in the
study of the dispersive shocks as the solutions of the Gurevich-Pitaevskii problem (the Riemann
problem for dispersive equations) [18, 17, 15, 5, 16] and references therein.

Adressing simultaneously the three spatial scales, with

h� λ� Λ (1)

is less usual. To investigate the interplay of the three scales (1) on nonlinear waves, we focus
on the celebrated sine-Gordon equation

ρ(x)utt − (E(x)ux)x + γ(x) sinu = 0 (2)

with variable coefficients ρ, E and γ. The general form of (2) with constant coefficient ρ =
E = γ ≡ 1 constitutes one of the simplest and most widely applied prototypes of nonlinear
wave equations in mathematical physics. It appeared originally in 1862 in the study of the
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geometry of surfaces with negative Gaussian curvature, e.g. an hyperboloid. Since then, this
equation has been involed in many physical contexts, such as the physics of particles, the crystal
dislocations, the propagation of magnetic flux on a Josephson lines, the dynamics of DNA, and
the oscillations of a series of rigid pendula attached to a stretched rubber band, to cite a few
examples. The interested reader is referred to the monograph [12] for more background and
physical applications.

To the best of our knowledge, homogenization of the sine-Gordon with oscillating coefficients
(2) (i.e. the upscaling h → λ) has not been adressed. On the contrary, some works have
tackled with the modulation equations (i.e. the upscaling λ → Λ) of sine-Gordon and related
equations. In [20], the spectral stability of periodic travelling waves of the nonlinear Klein-
Gordon equation is investigated. In [13], existence of a gradient catastrophe is proven, and the
behavior of solutions to the related focusing nonlinear Schrödinger equation near this point is
addressed through the hodograph transform. In a series of works [22, 23], Whitham modulation
equations of sine-Gordon equation are interpreted as equations of hydrodynamics with a finite-
time singularity.

Our contribution is as follows. Section 2 concerns the homogenization of sine-Gordon equa-
tions with periodic coefficients by using its variational formulation. At leading order, the
homogenized equation is the sine-Gordon equation with effective constant coefficients. Sec-
tion 3 deals with the construction of a periodic solution to the effective sine-Gordon in the
supersonic case. A constructive algorithm is proposed, useful for forthcoming numerical simu-
lations. Section 4 studies the modulation equations in the limit of small oscillation amplitudes.
The scenario of instability (time of occurence of a singularity, behavior near the caustics) is
fully described. Section 5 illustrates numerically the findings, both about homogenization and
modulational instability. Lastly, Section 6 proposes future directions of research.

2. Homogenization

2.1. Periodic medium

We consider the 1D sine-Gordon equation with h-periodic coefficients

ρh(x) ∂2t uh − ∂x (Eh(x)∂xuh) + γh(x) sinuh = 0. (3)

In elasticity, ρh and Eh evocate density and Young’s modulus, respectively, and γh is a nonlinear
parameter. Equation (3) emerges from the stationarity of the action ah, with Lagrangian Lh
and potential Vh: ∣∣∣∣∣∣∣∣∣∣∣

ah =

∫ t1

t0

∫ +∞

−∞
Lh dt dx,

Lh = ρh (x)
u2h,t
2
− Eh(x)

u2h,x
2
− Vh (uh, x) ,

Vh = γh(x)(1− cosuh).

(4)

The oscillating coefficients are written ρh(x) = ρ(x/h), Eh(x) = E(x/h) and γh(x) = γ(x/h),
where

(ρ, E, γ) ∈ L∞per(0, 1) := {g ∈ L∞(R), g(y + 1) = g(y), a.e. y ∈ R} ,

with ρ ≥ ρmin > 0 and E ≥ Emin > 0.
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2.2. Averaging

A fast scale y = x/h is introduced, and separation of scale is assumed so that x and y are
independant variables. The following ansatz is used:

uh = u(t, x) + h ũ(t, x, y) + o(h), (5)

with 1–periodic function ũ(t, x, •). As customary in this two-scale analysis, partial differentia-
tion with respect to x has to be rewritten as ∂x + 1

h
∂y. Injecting (5) into (4) yields

Lh = ρ(y)
u2t
2
− E (y)

(ux + ũy)
2

2
− V (u, y) +O(h). (6)

This Lagrangian is now averaged on the fast scale

L0 := Lh =

∫ 1

0

(
ρ (y)

u2t
2
− E (y)

(ux + ũy)
2

2
− V (u, y)

)
dy +O(h). (7)

The variation of L0 with respect to ũ gives

(E(y)(ux + ũy))y = 0. (8)

It implies
E(y)(ux + ũy) = A(t, x), (9)

where A does not depend on y, and thus

ux + ũy =
A(t, x)

E(y)
. (10)

Since ũ is periodic with respect to y and u does not depend on y, one has:

ux = A(t, x)

∫ 1

0

dy

E(y)
. (11)

Finally, one obtains

ux + ũy =
ux

E(y)

∫ 1

0

ds

E(s)

. (12)

The averaged Lagrangian becomes then

L0 = ρ0
u2t
2
− E0

u2x
2
− V0(u) +O(h), (13)

with

ρ0 =

∫ 1

0

ρ(y)dy, E0 =

(∫ 1

0

dy

E(y)

)−1
, V0(u) =

∫ 1

0

V (u, y)dy. (14)

In the case of the sine-Gordon equation, V0(u) = γ0(1 − cos(u)), with γ0 =
∫ 1

0
γ(y)dy. The

Euler-Lagrange equations on (13) finally leads to

ρ0 ∂
2
t u0 − E0 ∂

2
xu0 + γ0 sinu0 = 0, (15)
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with u0 = u and canceling the O(h) term. At leading order, the homogenized sine-Gordon
equation thus maintains the structure of the original equation (3), simply changing the oscillat-
ing coefficients by effective coefficients. One recognizes the arithmetic and geometric averages
of ρ and E, respectively, as in linear elastodynamics [27]. It is emphasized that the averaging
procedure is valid whatever the potential V , enabling generalizations e.g. to the nonlinear
Klein-Gordon equation.

In practice, the effective linear sound speed c0 =
√
E0/ρ0 can be much smaller than the

minimal sound speed in the microstructured medium. As a simple example, we consider a
periodic mixture of two components (denoted by A and B) with parameters ρi, Ei, i = A,B,
assembled periodically with a geometric ratio 0 < α < 1. The effective coefficients (14) lead to

1

c20
= (αρA + (1− α)ρB)

(
α

EA
+

1− α
EB

)
. (16)

Usually, if ρA > ρB then EA > EB. Consequently, there exists a maximum of 1/c20, i.e. c20
attains its minimum at the critical point

αc =
(ρB − ρA)/EB + (1/EB − 1/EA)ρB

2(ρA − ρB)(1/EA − 1/EB)
. (17)

Let us consider a numerical example, with ρA = 1, ρB = 100, EA = 1, EB = 100. Then αc = 0.5
and c20 ≈ 0.0392 � 1 = min(c2A, c

2
B). Such a drastical decrease of the effective speed is one of

the physical features of heterogeneous media.

3. Periodic waves in the homogenized medium

Based on the homogenization performed in Section 2, we leave out the microstructure and
consider the sine-Gordon equation with constant coefficients.

3.1. Supersonic periodic solution

Passing to scaled independent variables denoted with sign ’tilde’: x =
√
E0/γ0 x̃, t =√

ρ0/γ0 t̃ and suppressing in the following the tilde and the index 0 in (15), one obtains the
standard sine-Gordon equation

utt − uxx + sinu = 0. (18)

It follows from the adimentionalized Lagrangian

L0 =
u2t
2
− u2x

2
+ V (u), V (u) = 1− cosu. (19)

Now, we consider travelling wave solutions of (18). Let ξ = x −Dt be the coordinates in the
moving frame, where D is the constant wave velocity. Since the effective sound velocity can
be very small, we will concentrate only on supersonic solution D > 1 as the physical ones.
Denoting by ’prime’ the derivative with respect to ξ, one obtains

(D2 − 1)
u′2

2
+ V (u) = E , (20)

where the density of energy E is a constant. The graph of the potential V (u) is shown in Figure
1. We denote ±θ0(E), with −π < −θ0 ≤ 0 ≤ θ0 < π, the two roots of the equation
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Figure 1: The potential V (u) = 1− cos(u) is shown on the interval [−π, π]. The horizontal orange line denotes
the energy E = 1.

1− E = cos θ0, 0 < E < 2. (21)

The solution −θ0 < u(ξ) < θ0 is deduced:∫ u

−θ0

dθ√
cos θ − cos θ0

= ±
√

2

D2 − 1
(ξ + ξ0), ξ0 = const.

Introducing the incomplete elliptic integral of the first kind [1]:

F (φ,m) =

∫ φ

0

dθ√
1−m sin2 θ

,

one obtains ∫ u

−θ0

dθ√
cos θ − cos θ0

=
2√

1− cos θ0

(
F
(u

2
,m
)

+ F

(
θ0
2
,m

))
,

with

m =
1

sin2
(
θ0
2

) .
Consequently, the periodic solution −θ0 < u < θ0 can be found implicitly from:

2√
1− cos θ0

(
F
(u

2
,m
)

+ F

(
θ0
2
,m

))
= ±

√
2

D2 − 1
(ξ + ξ0),

where ξ0 is a constant, or equivalently

F
(u

2
,m
)

+ F

(
θ0
2
,m

)
= ± ξ + ξ0√

m(D2 − 1)
. (22)

3.2. Construction of the supersonic periodic travelling wave

Based on (22), the following algorithm describes the construction of a periodic supersonic
solution:

1. Without loss of generality, one takes ξ0 = 0;
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2. Choose the value of 0 < E < 2 and find the positive root θ0 of (21). Take m = 1/ sin2
(
θ0
2

)
;

3. Choose the supersonic wave velocity D > 1;

4. For −θ0 < s < θ0, one selects

ξ+(s) =
√
m(D2 − 1) (F (s/2,m) + F (θ0/2,m)) , u+(s) = +s,

The graph (ξ, u) is thus defined in the interval ξ ∈ (0, λ/2), where the half wavelength is
given by λ/2 = ξ+(θ0).

To construct the solution in the interval ξ ∈ (λ/2, λ), the following parametric form is used:
for −θ0 < s < θ0, one takes

ξ−(s) = λ/2 +
√
m(D2 − 1) (F (s/2,m) + F (θ0/2,m)) , u−(s) = −s.

The solution is thus constructed on the interval (0, λ). The period λ is given by

λ = 4K (E/2)
√
D2 − 1, (23)

where

K (m) = F
(π

2
,m
)

=

∫ π
2

0

dθ√
1−m sin2θ

(24)

is the complete elliptic integral of the first kind. The evolution of wavelength and amplitude
with E is illustrated in Figure 2.

(a) (b)
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Figure 2: Evolution of the wavelength λ (a) and amplitude of u (b) with respect to the energy E .
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3.3. Generation by boundary conditions

For numerical simulations proposed in Section 5, one needs as initial data not only u(0, x)
but also ut(0, x). For this purpose, a convenient way is to generate periodic solutions by
boundary conditions. The step 4 of the algorithm given in Section 3.2 needs to be modified.
At x = 0 and for −θ0 < s < θ0, the boundary condition is sought in the following parametric
form:

t+(s) =
1

D

√
m(D2 − 1) (F (s/2,m) + F (θ0/2,m)) , u+(s) = s,

The solution u as a function of t is thus defined implicitly in the interval t ∈ (0, τ/2), where
the half period is given by τ/2 = t+(θ0). To build the solution in the interval t ∈ (τ/2, τ), the
following parametric form is used: for −θ0 < s < θ0, one takes

t−(s) = t+(θ0) +
1

D

√
m(D2 − 1) (F (s/2,m) + F (θ0/2,m)) , u−(s) = −s.

The solution is thus defined on the interval (0, τ), τ = λ/D. This algorithm is repeated on the
interval (τ, 2τ), etc. Once u is determined, an estimate of ut is obtained by finite differences.

4. Modulation theory

4.1. Whitham’s method

In Section 3, a periodic solution with constant D and E of the homogenized sine-Gordon
equation (18) was built. It was characterized by a wavelength λ and a phase θ = ωt − kx,
where ω = 2π/τ is the angular frequency and k = 2π/λ is the wavenumber.

Now, we consider a periodic wave train with slow evolution of the parameters on a spatial
scale Λ� λ. Slow variables are introduced:

µ =
λ

Λ
� 1, X = µx, T = µ t, Θ = ωT − kX = µ θ, (25)

hence ω = −θt = −ΘT and k = θx = ΘX . We are looking for solutions of the form

u = U(θ, T,X, µ) = U(θ, T,X) +O(µ). (26)

The period of the travelling wave may be normalized to 2π, so that we impose the condition
that U is 2π periodic with respect to θ. An additional averaging with respect to the fast phase
θ is performed following the Whitham method [28, 29]. Using ∂t = ω ∂θ + µ ∂T ≈ ω ∂θ and
∂x = −k ∂θ + µ ∂X ≈ −k ∂θ, then (19) is transformed in an ODE in θ, and the new averaged
Lagrangian is

L =
1

2π

∫ 2π

0

L0 dθ ≈
1

2π

∫ 2π

0

(
1

2
(ω2 − k2)U2

θ − V (U)

)
dθ, (27)

with
1

2
(ω2 − k2)U2

θ + V (U) = E = const, V (U) = 1− cosU. (28)

Variations of L(ω, k, E) with respect to θ and E lead to Euler-Lagrange equation and nonlinear
dispersion equation, completed with a constraint of compatibility phase equation [29]:

(Lω)T − (Lk)X = 0, LE = 0, kT + ωX = 0. (29)
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4.2. Modulation equations

Injecting (28) in (27) and changing the variables of integration yields

L =
1

2π

∫ 2π

0

(ω2 − k2)U2
θ dθ − E ,

=
2

2π

∫ U2(E)

U1(E)
(ω2 − k2)Uθ dU − E ,

=

√
2 (ω2 − k2)

π

∫ U2(E)

U1(E)

√
E − V (U) dU − E ,

(30)

where 0 < E < 2 and U1 < U2 are the roots of the equation 1− cosU = E . The integral in (30)
can be simplified:∫ U2(E)

U1(E)

√
E − V (U) dU = 2

√
E
∫ U2(E)

0

√
1− 2

E
sin2 U

2
dU,

= 4
√
E
∫ arcsin

√
E
2

0

√
1− 2

E sin2 ϕ
dϕ,

= 4
√
E E

(
arcsin

(√
E/2

)
, 2/E

)
,

(31)

with the incomplete elliptic integral of the second kind

E(φ,m) =

∫ φ

0

√
1−m sin2 θ dθ.

It follows the averaged Lagrangian

L =
√
ω2 − k2 f(E)− E , with f(E) =

4
√

2 E
π

E
(

arcsin
(√
E/2

)
, 2/E

)
. (32)

Injecting (32) in (29) gives the modulation equations for the sine-Gordon equation [25] :

(
ωf(E)√
ω2 − k2

)
T

+

(
kf(E)√
ω2 − k2

)
X

= 0, (33a)

ω2 − k2 =
(
f

′
(E)
)−2

, (33b)

kT + ωX = 0. (33c)

The function f in (32)-(33) and its derivatives can be further simplified, based on the following
lemma proven in Appendix A.

Lemma 1. The function f(E) in (32) and its derivatives can be written in terms of complete
elliptic integrals:

f(E) =
8

π
(E (E/2)− (1− E/2)K (E/2)) , f

′
(E) =

2

π
K (E/2) ,

f
′′
(E) =

1

π

1

E (1− E/2)
(E (E/2)− (1− E/2)K (E/2)) .

Moreover, the limit cases of low and high energy yield:
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• f(E)→ 0, f
′
(E)→ 1 if E → 0;

• f(E)→ 8

π
, f

′
(E)→ +∞ if E → 2.

Using Lemma 1 in (33b) at low energy E → 0 recovers the linear dispersion relation ω2 =
k2 + 1. On the contrary, the limit-case of high energy E = 2 gives ω = ±k, i.e. nondispersive
waves.

4.3. Complex Riemann invariants

The slow evolution of (ω, k, E) is described by (33). Using D = ω/k, equation (33b) provides

k =
1√

D2 − 1

1

f ′(E)
, ω =

D√
D2 − 1

1

f ′(E)
.

Injecting this equation in (33c) and (33a) gives the system in variables (E , D)

(
1√

D2 − 1

1

f ′(E)

)
T

+

(
D√

D2 − 1

1

f ′(E)

)
X

= 0, (34a)

(
D√

D2 − 1
f(E)

)
T

+

(
1√

D2 − 1
f(E

)
X

= 0. (34b)

Its quasilinear form is
Df ′

f
ET −

1

D2 − 1
DT +

f ′

f
EX −

D

D2 − 1
DX = 0,

f
′′ET +

Df ′

D2 − 1
DT +Df

′′EX +
f ′

D2 − 1
DX = 0.

(35)

This system is written in matrix form

AUT + BUX = 0,

with

U> = (E , D), A =

Df
′

f
− 1

D2 − 1

f
′′ Df ′

D2 − 1

 , B =

 f ′

f
− D

D2 − 1

Df
′′ f ′

D2 − 1

 . (36)

The eigenvalues β satisfying det(B− βA) = 0 are

β =
1 + iαD

D + iα
,

=
D(1 + α2) + iα(D2 − 1)

D2 + α2
,

= βr + i βi,

(37)

and β = βr − i βi. Lemma 1 gives

α(E) =

√
f ′′(E)f(E)

f ′2(E)
=

1√
E(2− E)

2E (E/2)− (2− E)K (E/2)

K (E/2)
. (38)

10



Since β is complex, the system (35) is elliptic for all E and D, which proves the modulation
instability of the sine-Gordon equations. Now, we will find the Riemann invariants in complex
form. Let e> = (ξ, η) be the left eigenvector satisfying:

e> (B− βA) = 0. (39)

The components (ξ, η) are related by:

ξ
f ′(1− βD)

f
+ ηf

′′
(D − β) = 0.

Replacing the expression of β from (37), one gets:

η = i
ξ

αf ′
.

Now, let us consider the expression

e>AUT = ξ

(
1,

i

αf ′

)
AUT = ξ

D + iα

α

(√
f ′′

f
,

i

D2 − 1

)
UT ,

= i ξ
D + iα

α

(
1

D2 − 1
DT + i

√
f ′′

f
ET

)
,

= i ξ
D + iα

α

(
1

D2 − 1
DT + i

1√
8 E (1− E/2)

ET

)
,

(40)

where we have used the relation between f and f
′′

given in Lemma 1. Integration leads to the
complex Riemann invariant r

r =

∫ D dp

p2 − 1
+ i

∫ E ds√
8 s (1− s/2)

,

= ln

(√
D + 1

D − 1

)
+ i arcsin

(√
E/2

)
,

(41)

where r satisfies the quasilinear complex equation

rT + β rX = 0. (42)

A similar form has been obtained in [23].

4.4. Formation of a caustic

In the following, we will use the Riemann invariant r given by (41) and focus on the case
of low energy E . We introduce the change of variables (ρ, b):

E = 2 ρ, D =
cosh b

sinh b
, (43)

where 0 < ρ < 1 and b > 0. Then (41) gives

r = b+ i arcsin(
√
ρ).
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Figure 3: The graph of the function % in (52) is shown. The singularity is a caustic formed at τ = 0 and χ = 0.

The eigenvalue β in (37) and the Riemann invariant can be simplified in the case of small ρ
(i.e. small E)

β ≈ b+ i

√
ρ

2
, r ≈ b+ i

√
ρ. (44)

It follows that the eigenvalue β(r) does not satisfy the Cauchy–Riemann conditions, and hence
the eigenvalue β is not an analytic function of r. Even for holomorphic initial data, the method
of characteristics thus cannot be used. Also, the life span of the solution is finite. Injecting
(44) into (42) and separating the real and imaginary parts yields the system of PDEs

ρT + (ρ b)X = 0, bT + b bX −
1

4
ρX = 0. (45)

This is analogous to the system of shallow water equations with a negative ’gravity constant’
g = −1/4; using this analogy, ρ is the fluid depth and b is the fluid velocity. An exact solution
of (45) is known for the initial data

ρ(0, X) = 4a2 sech2

(
X

Λ

)
, b(0, X) = b0, (46)

with parameters a > 0, b0 > 0 and Λ > 0. In comparison with [22] where g = −1 was
considered, a factor 4 is introduced in ρ(0, X) in (46) to account for g = −1/4. Also, we used
the Galilean invariance of (45) to account for the case b0 6= 0, as required by (43). The so-
called ASK solution (Akhmanov–Sukhorukov–Khokhlov) for the shallow water equations ‘on
the seiling’ can then be written in parametric form [2, 22]: introducing the time and space
parametrisation

T =
Λ

a

ξ

(1 + ξ2)(1− η2)
,

X

Λ
=

2ξ2η

(1 + ξ2)(1− η2)
− 1

2
ln

(
1 + η

1− η

)
+
b0
a

ξ

(1 + ξ2)(1− η2)
, (47)

one gets
ρ(ξ, η) = 4 a2(1 + ξ2)(1− η2), b(ξ, η) = 2 a ξ η + b0. (48)

Here ξ > 0 and −1 < η < 1. The time and space derivatives can be expressed as

ρX =
−ρξTη + ρηTξ

J1
, bX =

−bξTη + bηTξ
J1

,

ρT =
ρξXη − ρηXξ

J1
, bT =

bξXη − bηXξ

J1
,

12



with

J1 = det

(
Tξ Tη
Xξ Xη

)
=

Λ2

a

(ξ2 − 1)2 + η2(−1 + 6 ξ2 + 3 ξ4)

(−1 + η2)3(1 + ξ2)3
.

The Jacobian J1 is singular when ξ := ξc = 1 and η := ηc = 0. In variables (T,X), it
corresponds to

T := Tc =
Λ

2a
, X := Xc =

b0Λ

2a
. (49)

The corresponding values of b and ρ are

ρ = ρc = 8a2, b = bc = b0. (50)

Let us derive the asymptotic behavior of the solution at the vicinity of this critical point.
Developing into Taylor series, one gets:

χ :=
X −Xc

Λ
≈ η (ξ − 1) +

b0
2a
τ, τ :=

T − Tc
Tc

≈ η2 − (ξ − 1)2

2
,

% =
ρ− 8a2

8a2
≈ ξ − 1−

(
η2 − (ξ − 1)2

2

)
.

It implies a biquadratic equation for %+ τ :

(%+ τ)4 + 2 τ(%+ τ)2 − 2

(
χ− b0

2a
τ

)2

= 0. (51)

The solution is

% = −τ −

√√√√√
τ 2 + 2

(
χ− b0

2a
τ

)2

− τ . (52)

The graph of this function is shown in Figure 3 and shows the formation of a caustic.

5. Numerical results

5.1. Homogenization

Set-up. To illustrate the leading-order homogenization, one considers a uniform mesh size ∆x
and time step ∆t. The numerical resolution of (15) is based on a finite-difference scheme,
centered in space and explicit in time. This second-order scheme is stable under the CFL
condition ζ = max(c)∆t/∆x ≤ 1; in practice we use ζ = 0.95. The scheme preserves the
discrete energy. No care is taken concerning the boundaries of the computational domain, since
the simulations are stopped before the wave reaches the edges. Some additional care is required
for the numerical resolution of the microstructured problem (3). The interfaces are discretized
by an immersed interface method: see [26] and references therein for technical details.

The microstructured medium investigated here is similar to the one examined in [10], except
that now it involves also the parameter γh in (3). As an example, let us take h = 20, with
a phase A of length 5, and a phase B of length 15. The physical parameters are piecewise
constant in each phase:

(ρ, E, γ) =

{
(1000, 109, 106) in phase A,

(1500, 6× 109, 106) in phase B.

13
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Figure 4: Time evolution of the source g (a) with a central frequency fc = 3 and frequency evolution of the
Fourier transform |g(f)| (b). The vertical dotted line denotes fc.

The effective parameters are ρ0 ≈ 1375, E0 ≈ 2.66× 109 and γ0 = 106. It follows the effective
phase celerity c0 =

√
E0/ρ0 ≈ 1392.62. The physical domain [0, 1000] is discretized on 1000

grid nodes, hence ∆x = 1.

(a) Microstructured field uh (b) Superposition of uh and the effective field u0
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Figure 5: Snapshots of the fields at t = 0.35 emitted by a source point with central frequency fc = 3 (i.e.
ηc = 0.043). In (a), the dotted vertical lines denote the interfaces in the microstructured medium.

A source term s(x, t) is introduced in the right-hand side of (3) or (15). This forcing is a
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source point s(x, t) = g(t) δ(x− xs) where g is a smooth combination of bounded sinusoids

g(t) =

 G

4∑
m=1

am sin(bmωct) if 0 < t <
1

fc
,

0 otherwise,

(53)

where bm = 2m−1, the coefficients am are a1 = 1, a2 = −21/32, a3 = 63/768, a4 = −1/512, and
the amplitude factor G. It entails that g is a smooth function (g ∈ C6([0,+∞[)). Moreover,
g(t) is a wide-band signal with a central frequency fc = ωc/2π (Figure 4). This frequency is
used to define a dimensionless parameter characteristic of the low-frequency regime underlying
the formal asymptotic expansions used throughout the paper:

ηc = h fc/c0. (54)

The source point is located at xs = 495 in the middle of phase B. The amplitude is G = π/4.

(a) ηc = 0.086 (b) ηc = 0.123
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Figure 6: Superpositions of the microstructured field uh and of the leading-order field u0 at t = 0.35 for a
central frequency fc = 6 (ηc = 0.086) and fc = 9 (ηc = 0.123).

Results. Figure 5 illustrates the low-frequency regime, with fc = 3 (i.e. ηc = 0.043). A snapshot
of uh is shown at t = 0.35 (a). The vertical dotted lines indicate the interfaces between phases
A and B. The source point in the middle of the domain emits left-going and right-going waves.
Due to the symmetry of the problem, these waves are symmetrical with respect to xs.

In contrast to [10], oscillations due to the dispersion of the sine-Gordon equation are ob-
served. In (b), we compare uh and u0. The leading-order field u0 captures well the mean value
of uh. On the other hand, the oscillations of uh on the micro-scale are obviously not taken into
account. To capture them, one would need to compute first-order correctors [6].

Figure 6 compares uh and u0 for higher frequencies. Logically, the agreement between the
two fields deteriorates. In particular, additional oscillations due to the microstructure are not
captured by the leading-order homogenization. To take them into account, the homogenization
should be pushed to the second order [10].
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Figure 7: Snapshots of periodic solutions. Left column (a-c): E = 0.1 and D = 10; right column (b-d): E = 1.9
and D = 1.1. Top: initial data (a-b); bottom (c-d): solution at t = 70. The vertical dashed line refers to the
position xr of the receiver.

5.2. Periodic solutions

Set-up. From now on, we consider constant coefficients ρ0, E0 et γ0 corresponding to the effec-
tive parameters of the Section 5.1. The propagation of periodic supersonic waves is investigated
in two limit-cases: (i) E = 0.1 and D = 10 (low energy and high speed |D − 1|); (ii) E = 1.9
and D = 1.1 (high energy and low speed |D − 1|). In these two cases, the wavelengths are
λ ≈ 3269.90 and λ ≈ 275.29, respectively.

The computations are initialized by a single period on a domain of length L = λ. The
construction of the initial data is described in Section 3.3. Periodic boundary conditions are
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implemented. Lastly, a receiver at xr = 100 records u at each time step.

Results. Figure 7 shows the initial data and the solution after propagation. In the low-energy
regime, the solution is difficult to distinguish from a sine (a), unlike in the high-energy regime
(b). After propagation, we observe that both solutions are completely distorted (c-d), which
highlights the instability of periodic solutions.
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Figure 8: Time history of periodic solutions measured at the receiver. (a): E = 0.1 and D = 10; (b): E = 1.9
and D = 1.1.

Figure 8 shows the time history of u(t, xr). In the low-energy regime (a), the periodic so-
lution destabilizes around t = 30 s. In the high-energy regime (b), we observe a succession
of plateaus (at multiples of 2π) followed by a phase of approximately linear growth or decay.
Similar numerical experiments have been carried out with N > 1 periods, i.e. on larger com-
putational domains. The results are qualitatively the same as for N = 1, even if the details
vary (e.g. time of instability).

5.3. Modulation equations

Set-up. The objective here is to illustrate numerically the findings of Section 4.4, where a
scenario describing the instability of low-energy periodic solutions has been proposed. For this
purpose, we consider a domain [−L/2, L/2] and a even modulated energy E , with a maximal
energy E = 0.1 at x = 0; the speed, on the other hand, is maintained constant at D = 10
(supersonic wave). From (43) and (46), one chooses a2 = E/8 so that

E(x) = E sech2
(x

Λ

)
. (55)

Based on E(x), D, and the algorithm described in Section 3.3, we construct the spatially mod-
ulated initial data u(0, x) and the initial time derivative ut(0, x). At the origin, the amplitude
of the initial data is u(0, 0) ≈ 0.45. The wavelength for (E , D) is λ ≈ 3269.90.
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When moving away from x = 0, then the energy E , the wavelength λ and the amplitude of
u(0, x) decrease, as deduced from (55) and from Figure 2. Contrary to the unmodulated case,
the condition u(0, L/2) = u(0,−L/2) (and similarly for ut) is thus not automatically satisfied
by choosing L = Nλ, where N is the number of archs. To enforce this condition while having N
archs, then a iterative algorithm is implemented to determine L. Once done, periodic boundary
conditions are applied for time-marching.

In line with the Whitham analysis, the envelope of u must be slowly varying, i.e. Λ� λ ≥ λ.
We choose Λ = 3 × 104 ≈ 10λ, so that the small parameter in (25) is µ = 0.1. To be
consistent with the ASK analytical solution (Section 4.4), the domain must also be sufficiently
broad for mimicing an infinite domain. We choose N = 40 archs, so that L ≈ 1.29 105 and
E(±L/2)/E = 0.052 � 1. The modulation enveloppe and the initial data are displayed in
Figure 9.
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Figure 9: Modulation equation. (a): spatial evolution of E(x) in (55); (b): initial data u(0, x).

Results. Figure 10-(a) shows a snapshot of u at t = 20. We observe that the maximum of u is
always at the middle of the domain. The shape of the solution has changed, and the amplitude
of u(20, 0) is about 0.9, which corresponds roughly to a doubling of amplitude.

Figure 10-(a) shows the time evolution of m(t) = maxt(u)(t), where the maximum is taken
at each instant over the whole computational domain. From the initial amplitude m(0) ≈ 0.45,
we observe that m(t) oscillates and globally increases, reaching an maximum around 0.96 at
t = 21.5, and then decreases. It is consistent with the analysis of Section 4.4, where the
emergence of a caustic was predicted at tc = Λ/c0 ≈ 21.55.

6. Conclusion

This work opens several research directions. A first direction is the theoretical study of the
stability of periodic solutions for other regimes. In the high energy case, numerical observations
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Figure 10: Modulation equations. (a): snapshot of u at t = 20. (b): time history of maxt(u).

have shown the existence of a linear evolution (Figure 8). This property remains to be studied
theoretically.

A second direction is the high-order homogenization of the sine-Gordon equation with pe-
riodic coefficients. Following the energy approach outlined in Section 2, additional terms will
be introduced into the effective equation. It would be interesting to understand whether the
additional terms modify the stability properties of the corresponding modulation equations.

Appendix A. Proof of Lemma 1

Introducing s2 = E/2, one has

f(E) = g(s) =
8 s

π

∫ arcsin(s)

0

√
1− 1/s2 sin2 θ dθ,

=
8

π

∫ arcsin(s)

0

√
s2 − sin2 θ dθ.

Let t = sin θ, then

g(s) =
8

π

∫ s

0

√
s2 − t2√
1− t2

dt.

Now, let t = s p, then

g(s) =
8 s2

π

∫ 1

0

√
1− p2√

1− s2p2
dp.

Introducing p = sinϕ, one has

g(s) =
8 s2

π

∫ π/2

0

cos2 ϕ√
1− s2 sin2 ϕ

dϕ,

=
8(s2 − 1)

π

∫ π/2

0

dϕ√
1− s2 sin2 ϕ

+
8

π

∫ π/2

0

√
1− s2 sin2 ϕdϕ.
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Let s2 = m, then m = E/2 and

f(E) = h(m) =
8(m− 1)

π

∫ π/2

0

dϕ√
1−m sin2 ϕ

+
8

π

∫ π/2

0

√
1−m sin2 ϕdϕ,

=
8(m− 1)

π
K(m) +

8

π
E(m),

with K and E are the complete elliptic integrals of the first kind and second kind, respectively.
These integrales satisfy the properties

E
′
(m) =

1

2m
(E(m)−K(m)) , K

′
(m) =

1

2m(1−m)
(E(m)− (1−m)K(m)) .

It follows

f
′
(E) =

2

π
K

(
E
2

)
and the expression of f

′′
(E). A Taylor expansion of f around the origin gives

f(E) = E +
1

16
E2 +

3

256
E3 +

25

8192
E4 + · · · ...

and thus
lim
E→0+

f
′
(E) = 1,

which concludes the proof.
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