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Abstract—In this work, we investigate a reconfigurable intelli-
gent surface (RIS) aided integrated sensing and communication
(ISAC) scenario, where a base station (BS) communicates with
multiple devices in a full-duplex mode, and senses the positions of
these devices simultaneously. An RIS is assumed to be mounted
on each device to enhance the reflected echoes. Meanwhile, the
information of each device is passively transferred to the BS via
reflection modulation. We aim to tackle the problem of joint
localization and information retrieval at the BS. A grid based
parametric model is constructed and the joint estimation problem
is formulated as a compressive sensing (CS) problem. More-
over, an expectation-maximization (EM) algorithm is applied
for tuning the grid parameters to mitigate the model mismatch
problem. Finally, we analyze the efficacy of various CS algorithms
through the Bayesian Cramér-Rao bound (BCRB). Numerical
results demonstrate the feasibility of the proposed scenario and
the superior performance of the proposed EM-tuning method.

Index Terms—ISAC, RIS, full-duplex system, compressive
sensing, Bayesian Cramér-Rao bound

I. INTRODUCTION

Reconfigurable intelligent surface (RIS) has been envisioned
as a promising next-generation wireless communication tech-
nology that is able to artificially tune wireless propagation
channels [1]. An RIS consists of a large number of software-
controlled meta-atoms with adjustable phase shifts to reflect
incident electromagnetic waves towards desired directions,
thereby significantly enhancing the communication quality.
Moreover, an RIS, as a large passive antenna array, generally
has remarkable capabilities to sense the environments, which
has motivated research activities towards the integration of
sensing and communications in RIS aided systems [2], [3].
For example, the authors of [2] employed one RIS for both
sensing and communication where the direct path between the
dual function radar and communication base station (BS) and
the target exists. The goal was to maximize the radar signal-to-
interference-plus-noise ratio (SINR) under the communication
SINR constraint. The authors of [3] proposed an RIS that is
adaptively partitioned into two parts for communication and
localization, respectively, when no direct path exists.

In this work, we propose a new RIS-aided integrated sensing
and communication (ISAC) scenario, where a BS not only
communicates with multiple devices (such as vehicles) in full-

duplex, but also senses the positions of these devices simul-
taneously. We assume that an RIS is mounted on each device
to enhance the echoes reflected by the device. Meanwhile, the
information of each device is passively transferred to the BS
via reflection modulation [4], [5], in which the information
is encoded into the phase adjustments of RIS meta-atoms.
The proposed ISAC scenario is advantageous in two aspects.
First, the communication system is full-duplex in frequency
and time, where the information delivered by the BS can be
received by the devices using conventional receivers, and, at
the same time/frequency slot, the information of the devices is
passively delivered to the BS via reflection modulation thanks
to the RISs. Second, the devices are “green” since they do not
emit any electromagnetic signals during the whole process.

We consider a multiple-input multiple-output (MIMO) or-
thogonal frequency division multiplexing (OFDM) full-duplex
system, and focus on the receiver design of the BS to jointly
locating the positions of the devices and retrieving the in-
formation passively transferred by the RISs. We establish a
grid-based parametric system model, and formulate the joint
estimation problem as a compressive sensing (CS) problem by
exploiting the sparsity on the considered parameter grid. Var-
ious CS algorithms [6]–[8] can be used to solve the problem.
Moreover, an expectation-maximization (EM) algorithm is ap-
plied for tuning the grid parameters and mitigating the model
mismatch problem. The Bayesian Cramér-Rao bound (BCRB)
is also derived as a fundamental performance limit to evaluate
the efficacy of various recovery algorithms. Numerical results
demonstrate the feasibility of the proposed scenario, as well as
the superior performance of the proposed EM-tuning method.

II. SYSTEM DESCRIPTION

A. RIS Aided Full-Duplex System

In the considered MIMO-OFDM full-duplex system, a BS
with Nt transmit and Nr receive antennas communicates
with multiple devices, each equipped with an RIS with L
reflecting elements and a conventional receiver. The antenna
and the element spacing is λ

2 , where λ is the wavelength.
The OFDM system has N orthogonal subcarriers, and the
frequency spacing of adjacent subcarriers is ∆f = 1/T ,
where T denotes the duration of one OFDM symbol. At the
beginning of each OFDM symbol, a cyclic prefix (CP) of



Fig. 1: An RIS-aided full-duplex system.

length Tcp is inserted to prevent the intersymbol interference,
and the duration of each OFDM block is Tb = T + Tcp. The
transmission protocol in Fig. 1 is described as follows. The
BS first broadcasts the OFDM signal towards a given region
by applying beamforming. The devices in the considered
region receive the transmitted signal and recover it by using
traditional signal processing techniques1. Meanwhile, the RIS
deployed on each device uses reflection modulation on the
incident electromagnetic wave, and reflects it back to the
BS. Unlike the incident wave, the reflected wave contains
new information data that is sent from the RIS to the BS.
Finally, the BS jointly estimates the positions and retrieves
the information data of the devices from the received echos.

The transmitted signal in the m-th OFDM block at the BS
is given by

xm(t) =
∑N−1
n=0 xm[n]ej2πn∆ftξ(t−mTb),mTb ≤ t ≤ (m+ 1)Tb,

(1)
where xm[n] = [xm,1[n], · · · , xm,Nt

[n]]T ∈ CNt×1 contains
the transmitted symbols at the n-th subcarrier in the m-th
block;

ξ(t) =

{
1, t ∈ [0, Tb],

0, otherwise.
(2)

We assume that the line of sight (LOS) path exists and
dominates the channel between the BS and each device. In
fact, the considered application is different from conventional
RIS-aided networks, where the RISs are utilized to create
reliable virtual non-LOS paths. In the considered case study,
the RISs are utilized to establish backscattered signals for
transmitting data to the BS in a passive manner. We model
the signal reflected by each device as a multipath characterized
by an angle of propagation, a delay and a Doppler shift. We
assume that there are K devices in the considered area. The
delay and Doppler of the k-th path are denoted by τk and νk,
respectively. Moreover, since the BS transmits and receives
signals at the same time-frequency slot, the interference be-
tween the transmit and receive antennas needs to be considered
while modeling the echos from the devices. In this work, we
assume that the receive antennas are carefully isolated from the

1We omit the details here since the receiver design at the device is not the
focus of this paper.

transmit antennas so that the self-interference can be ignored
[9]. The echos received at the BS are contaminated by an
additive noise wm(t) ∈ CNr×1 as

ym(t) =
∑K−1
k=0 βke

j2πνktHUL,kΛkHDL,kxm(t− τk) + wm(t),

(3)
where βk is the round-trip fading coefficient accounting
for the path attenuation from the BS to the k-th de-
vice and from the k-th device back to the BS; Λk =
diag{[ejθk,1,1 , · · · , ejθk,Nx,Ny ]} ∈ CL×L is a diagonal matrix
whose diagonal elements are the phase shifts {θk,i,j} applied
by the k-th RIS; HUL,k ∈ CNr×L and HDL,k ∈ CL×Nt are
the uplink and downlink channel matrices between the BS and
the k-th device, respectively, given by

HDL,k = aRIS(φi,k, γi,k)aBS(ϑk)H (4)

HUL,k = bBS(−ϑk)aRIS(φr,k, γr,k)H , (5)

where aRIS, aBS and bBS are the steering vectors defined
in what follows. We assume that the elements of each RIS
are arranged in a uniform rectangular array whose size is
Nx × Ny, where Nx and Ny are the columns and rows,
respectively. (φi,k, γi,k) and (φr,k, γr,k) are the elevation and
azimuth angles of arrival (AoA) and angles of departure
(AoD) at the k-th RIS, respectively. The steering vector
aRIS(φi/r,k, γi/r,k) ∈ CL×1 is defined as

aRIS(φi/r,k, γi/r,k) = ax(φi/r,k, γi/r,k)⊗ ay(φi/r,k, γi/r,k),
(6)

where ⊗ denotes the Kronecker product; ax(φi/r,k, γi/r,k) ∈
CNx×1 and ay(φi/r,k, γi/r,k) ∈ CNy×1 are given as

ax(φi/r,k, γi/r,k) = 1√
Nx

[1, · · · , ejπ(Nx−1) sin(φi/r,k) cos(γi/r,k)]T

(7)
ay(φi/r,k, γi/r,k) = 1√

Ny

[1, · · · , ejπ(Ny−1) sin(φi/r,k) sin(γi/r,k)]T .

(8)
Moreover, we assume that both the transmit and receive
antennas at the BS are arranged in a uniform linear antenna
array. ϑk is the angle of departure (AoD) to the k-th RIS
from the BS. The steering vectors aBS(ϑk) ∈ CNt×1 and
bBS(ϑk) ∈ CNr×1 are expressed as

aBS(ϑk) =
1√
Nt

[1, ejπ sin(ϑk), · · · , ejπ(Nt−1) sin(ϑk)]T (9)

bBS(ϑk) =
1√
Nr

[1, ejπ sin(ϑk), · · · , ejπ(Nr−1) sin(ϑk)]T .

(10)
Since each RIS is designed to reflect the incident signal
towards the opposite direction (i.e., the RIS operates as a
retro-reflective metasurface for backscattering enhancement),
the AoAs and the AoDs at the BS are opposite. Defining

αk = βkaRIS(φr,k, γr,k)HΛkaRIS(φi,k, γi,k), (11)

we can rewrite (3) as

ym(t) =

K−1∑
k=0

αke
j2πνktH(ϑk)xm(t− τk) + wm(t), (12)



Fig. 2: An illustration of the generalized Snell’s law.

where H(ϑk) = bBS(−ϑk)aBS(ϑk)H ∈ CNr×Nt . For the m-
th block, the demodulated signal at the n-th subcarrier is

ym[n] =
1

T

∫ (m+1)Tb

mTb+Tcp

e−j2πn∆ftym(t)dt. (13)

Plugging (1) and (12) into (13), we have

ym[n] =

K−1∑
k=0

αkcke
−j2πn∆fτkH(ϑk)xm[n] + wm[n], (14)

where

ck =
1

T

∫ (m+1)Tb

mTb+Tcp

ej2πνktdt (15)

wm[n] =
1

T

∫ (m+1)Tb

mTb+Tcp

e−j2πn∆ftwm(t)dt (16)

with wm[n] ∈ CNr×1 ∼ CN (0, σ2INr
).

B. Passive Beamforming and Information Transfer of RIS

We first illustrate an anomalous reflection scenario shown in
Fig. 2, where φi ∈ [−π2 ,

π
2 ] and γi ∈ [0, 2π] are the elevation

and the azimuth angle of the incident wave, respectively,
φr ∈ [−π2 ,

π
2 ] and γr ∈ [0, 2π] are the elevation and the

azimuth angle of the reflected wave, respectively. According
to the generalized Snell’s law [10], to reflect an incident plane
wave into a desired direction, breaking the specular reflection
law (φr = φi and γr = γi + π), the reflection phase of
each element should depend linearly on the corresponding
coordinate of both the x- and y-axes. Given the reference
phase of the origin of the coordinates ϕk, the phase of the
(i, j)-th element θk,i,j of the k-th RIS is obtained by [11], the
phase shift of the (i, j)-th element θk,i,j at the k-th RIS is

θk,i,j = π(i− 1)qx,k + π(j − 1)qy,k + ϕk, (17)

where qx,k and qy,k denote the phase gradients of the x- and
y-axes, calculated as[

qx,k

qy,k

]
=

[
sin(φr,k) cos(γr,k) + sin(φi,k) cos(γi,k)
sin(φr,k) sin(γr,k) + sin(φi,k) sin(γi,k)

]
. (18)

Equation (18) reveals that the anomalous reflection from
arbitrary angles (φi,k, γi,k) to arbitrary angles (φr,k, γr,k) can
be achieved by setting qx,k and qy,k accordingly. Besides,
another degree of freedom provided in (17) is the reference

phase ϕk of the k-th RIS, which determines the wavefront
phase of the reflected beam. Especially, for the scenario of
retro-reflection (φr,k = −φi,k and γr,k = γi,k), we have[

qx,k

qy,k

]
=

[
−2 sin(φk) cos(γk)
−2 sin(φk) sin(γk)

]
(19)

In practice, the angles φi,k and γi,k can be estimated through
sensors deployed at the k-th device, e.g., by using the MUSIC
algorithm [12]. Plugging (17) into (11), we have

αk =
βk
L

Nx∑
i=1

Ny∑
j=1

ej2π(i−1) sin(φr,k) cos(γr,k)ejθk,i,j

× ej2π(j−1) sin(φi,k) sin(γi,k)

(20a)

= βke
jϕk , (20b)

where ϕk can be easily controlled by the RIS. This motivates
us to use reflection modulation on the incident wave [13].
The reflected wave, or more specifically ϕk, can be utilized
to passively transmit new information that is generated at the
device and needs to be sent to the BS.

Note that xm[n] is the self-information known by the BS.
Then, the problem we are interested in consists of jointly
estimating the unknown parameters ϑk, τk, νk and ϕk from
the noisy observations {ym[n]} in (14).

III. JOINT LOCALIZATION AND INFORMATION RECOVERY

In this section, we first introduce the grid-based parametric
model to formulate the problem stated in the previous section,
and then discuss CS algorithms to solve it.

A. Parametric Grid Model

The angle, delay and Doppler domains (location parameters)
are uniformly sampled into a set of Q, U and V discrete
values, defined as

ϑ = [ϑ0, · · · , ϑQ−1]T , ϑq ∈ [ϑmin, ϑmax] (21a)

τ = [τ0, · · · , τU−1]T , τu ∈ [τmin, τmax] (21b)

ν = [ν0, · · · , νV−1]T , νv ∈ [νmin, νmax]. (21c)

Based on the above discretized points, (14) is rewritten as

ym[n] =

V−1∑
v=0

U−1∑
u=0

Q−1∑
q=0

cve
−j2πn∆fτuH(ϑq)xm[n]ζv,u,q + wm[n]

= Zm[n]ζ + wm[n]
(22)

with

Zm[n] = c⊗ (e−j2πn∆fτ )T ⊗H(ϑ)(IQ ⊗ xm[n]), (23)

where c = [c0, · · · , cV−1]T ∈ CV×1, e−j2πn∆fτ =
[e−j2πn∆fτ0 , · · · , e−j2πn∆fτU−1 ]T ∈ CU×1,
H(ϑ) = [H(ϑ0), · · · ,H(ϑQ−1)] ∈ CNr×QNt . ζ =
[ζ1,1,1, · · · , ζ1,1,Q, ζ1,2,1, · · · , ζ1,U,Q, ζ2,1,1, · · · , ζV,U,Q]T ∈
CV UQ×1, where ζv,u,q denotes the α of a possible device
at the v-th, u-th and q-th grid point in (21). Since there
are only K devices in the considered region, ζ is a sparse



vector, where the non-zero elements represent the {αk} of
the devices.

Collecting the received signals on N subcarriers, we obtain

ym = [ym[1]T , · · · ,ym[N ]T ]T = Zmζ + wm, (24)

where Zm = [Zm[1]T , · · · ,Zm[N ]T ]T ∈ CNrN×V UQ and
wm = [wm[1]T , · · · ,wm[N ]T ]T ∈ CNrN×1. Moreover, by
stacking all the demodulated symbols in M OFDM blocks
into a column vector y ∈ CNrNM×1, we have

y = [yT1 , · · · ,yTM ]T = Zζ + w, (25)

where Z = [ZT1 , · · · ,ZTM ]T ∈ CNrNM×V UQ and w =
[wT

1 , · · · ,wT
M ]T ∈ CNrNM×1.

With the knowledge of the transmitted symbols xm[n] and
the grids in (21), the matrix Z is known by the BS. The
estimation problem is converted into the problem of estimating
ζ based on y in (25). By noting the sparsity of ζ, it can be
recovered by using CS techniques.

B. Algorithm Design

In the following, we solve ζ given y in (25) for two
scenarios, namely, the on-grid and off-grid models.

1) On-Grid Model: In this case, the localization parameters
to be estimated are assumed to be placed on the grid specified
in (21). By leveraging the sparsity of ζ, several algorithms can
be used to solve (25), such as the orthogonal matching pursuit
(OMP) [6] and the sparse Bayesian learning (SBL) [7] method.
However, OMP has low estimation accuracy, and SBL involves
high computational complexity due to the need of matrix
inversion. In this work, we apply the Bernoulli-Gaussian
generalized approximate message passing (BG-GAMP) [8]
algorithm for solving (25), which can offer a high accuracy
and low complexity.

Since each device is independent and identically distributed
in the considered region, the distribution p(ζ) is modeled as
Bernoulli-Gaussian, i.e.,

p(ζ) =

V UQ∏
i

((1− ρ)δ(ζi) + ρCN (ζi; ᾱ, vα)) , (26)

where ρ = K
V UQ is the sparsity of ζ; δ(·) is the Dirac delta

function; p(αk) is approximated with a Gaussian distribution
with mean ᾱ and variance vα for simplification2. The posterior
probability p(ζ|y) is calculated as

p(ζ|y) =
1

p(y)
p(y|ζ)p(ζ), (27)

where p(y|ζ) ∼ CN (y; Zζ, σ2INrNM ).

2In practice, the fading coefficient βk in αk is the multiplication of two
fading coefficients correspondingly to the forward and backward (reflected)
links. Since there is no prior information about the two fading coefficients, we
treat the multiplication as an unknown variable, whose distribution is assumed
to be Gaussian.

2) Off-Grid Model: It is worth noting that the true local-
ization parameters may not be in the given grids resulting in
a model mismatch. To address this issue, we treat ϑ, τ and
ν in Z as unknown parameters and consider learning these
parameters to improve the BG-GAMP performance.

Let ω = {ϑ, τ ,ν}. The parameter set ω is updated through
the EM method. The EM method is an iterative process with
each iteration consisting two steps, namely, the E-step and the
M-step. Denote by ωi the parameter set ω in the i-th iteration.
The E-step calculates the expectation of the log-likelihood
evaluated using the current estimate as

Q(ω,ωi) = Ep(ζ|y,ωi){ln p(y, ζ|ω)}

=

∫
ln p(y|ω, ζ)p(ζ|y,ωi)dζ +

∫
ln p(ζ|ω)p(ζ|y,ωi)dζ.

(28)
The M-step is to maximize (28), that is

max
ω

∫
ln p(y|ω, ζ)p(ζ|y,ωi)dζ, (29)

where the last term in (28) is dropped since it is irrelevant
to ω by noting p(ζ|ω) = p(ζ). Plugging (27) into (29) and
ignoring the terms independent of ω, we have

max
ω
G(ω,ωi) = 2R{yHZ(ω)ζ̄i} − Tr{Z(ω)HZ(ω)Ωi},

(30)
where Ωi = Vζi + ζ̄iζ̄

H
i , ζ̄i and Vζi are the posterior mean

and variance calculated in (27) based on ω = ωi; R{·}
represents the real part; Tr{·} denotes the trace operation.

In practice, it is not easy to obtain a closed-form solution
to (30) since the problem is highly non-linear in ϑ, τ and
ν. Therefore, we propose the gradient descent method to
iteratively maximize G(ω,ωi). The update rule is

ωi+1 = ωi + εOG(ω,ωi), (31)

where ε is an appropriate stepsize, and

OG(ω,ωi) = 2R
{

yH
∂Z(ω)

∂ω
ζ̄i

}
− Tr

{(
∂Z(ω)H

∂ω
Z(ω) + Z(ω)H

∂Z(ω)

∂ω

)
Ωi

}
.

(32)

From (23), the derivatives with respect to ϑ, τ and ν are given
by

∂Zm[n]

∂ϑ
= c⊗(e−j2πn∆fτ )T ⊗ ∂H(ϑ)

∂ϑ
(IQ⊗xm[n]), (33a)

∂Zm[n]

∂τ
= c⊗ ∂(e−j2πn∆fτ )T

∂τ
⊗H(ϑ)(IQ⊗xm[n]), (33b)

∂Zm[n]

∂ν
=
∂c

∂ν
⊗(e−j2πn∆fτ )T ⊗H(ϑ)(IQ⊗xm[n]). (33c)

The overall procedure is summarized in Algorithm 1.



Algorithm 1 EM-BG-GAMP

1: Input: y, Z, p(ζ)
2: while The stopping criterion is not met do
3: Use the BG-GAMP [8] to obtain ζ̄i and Vζi .
4: Fix ν, τ , and maximize (30) with respect to ϑ through

gradient descent (31) to obtain ϑi+1.
5: Fix ν,ϑ, and maximize (30) with respect to τ through

gradient descent (31) to obtain τi+1.
6: Fix τ ,ϑ, and maximize (30) with respect to ν through

gradient descent (31) to obtain νi+1.
7: Generate new Z based on ϑi+1, τi+1 and νi+1.
8: end while
9: Output: ϑ̂, τ̂ , ν̂ and ζ̂

IV. BAYESIAN CRAMÉR-RAO BOUND

We now develop a mean square error lower-bound of the
considered estimation problem by assuming that the support
of ζ is known. Then, the signal model in (25) reduces to

y = Zrealζreal + w, (34)

where Zreal ∈ CNrNM×K is similar to Z but it is constructed
by the angles ϑreal = [ϑ1, · · · , ϑK ]T ∈ RK×1, delays
τreal = [τ1, · · · , τK ]T ∈ RK×1 and Doppler shifts νreal =
[ν1, · · · , νK ] ∈ RK×1; ζreal = [α1, · · · , αK ]T ∈ CK×1. Let
κ = [ϑTreal, τ

T
real,ν

T
real, ζ

T
real]

T be the parameter vector. The
Bayesian information matrix (BIM) [14] is defined as

[Jy(κ)]i,j = [JD
y (κ)]i,j + [JP

y(κ)]i,j , (35)

where

[JD
y (κ)]i,j = Ey|κ

{
∂ ln p(y|κ)

∂κi

∂ ln p(y|κ)

∂κj

}
(36)

[JP
y(κ)]i,j = Eκ

{
∂ ln p(κ)

∂κi

∂ ln p(κ)

∂κj

}
(37)

with κi being the i-th element of κ. Since y ∼
CN (Zrealζreal, σ

2INrNM ), (36) is calculated as

[JD
y (κ)]i,j =

2

σ2
R

{(
∂(Zrealζreal)

∂κi

)H
∂(Zrealζreal)

∂κj

}
,

(38)
where the derivatives are similar to (33) and their expressions
are omitted here due to space limitation. Moreover, since
p(ζreal) in (26) needs to be a priori known in the BG-GAMP
algorithm, the ζreal in (37) is calculated as

[JP
y(ζreal)]i,j = Eζreal

{
∂ ln p(ζreal)

∂ζreal,i

∂ ln p(ζreal)

∂ζ
real,j

}
=

2

vα
.

(39)
Since ϑreal, τreal and νreal are uniformly distributed in
the corresponding ranges, [JP

y(ϑreal)]i,j , [JP
y(τreal)]i,j and

[JP
y(νreal)]i,j are all zero. The BCRB3 for the estimation of

κ is given by
V ar{κi} = [J−1

y (κ)]i,i, (40)

3Compared to the CRB, which gives fundamental lower limits to the
variance of any unbiased estimator, the BCRB is used for random variables
and provides a lower bound on the variance of any estimator.

where V ar{·} denotes the variance. Moreover, we note that

dreal =
c

2
τreal, (41)

where dreal = [d1, · · · , dK ]T ∈ RK×1 are the distances
between the BS and the devices with c being the light speed.
Thus, the BCRB for the estimation of dreal is given by

V ar{dreal,i} =
c2

4
V ar{τreal,i}. (42)

Specifically, κ is reduced to ζreal in the on-grid system, since
the localization parameters are constituted by the grid values
in (21). The indices can be obtained through the positions of
non-zero elements in ζ.

V. NUMERICAL RESULTS

The parameters used in the simulation are listed in Tab. I.
The fading coefficient βk is given by [15]

βk = ηk

√
GtGrG

L2 λ4

4

64π3d4
k

(43)

with ηk ∼ CN (0, 1), Gt = 100, Gr = 100 and G = 1 being
the transmitter, receiver and RIS gains, respectively. Since the
waveform propagates much faster than the devices’ velocities,
we make the approximation that the distances from the BS to
the RIS and from the RIS to the BS are the same as dk. The
SNR is defined as 10 log

‖Zrealζreal‖22
NrNMσ2 . The mean and variance

in (26) are

ᾱ = 0 vα =
P 2

min + PminPmax + P 2
max

3
+

(Pmin + Pmax)2

4
,

(44)

where Pmax =

√
GtGrG

L2 λ4

4

64π3d4min
, Pmin is similarly defined.

TABLE I: Global parameters

Parameters Symbols Values
Subcarrier spacing ∆f 15 kHz

CP duration Tcp 16.67 µs
Number of subcarriers N 16

Number of transmit antennas Nt 16
Number of receive antennas Nr 4

Range of angle ϑ [−30◦,30◦]
Range of distance d [100 m,120 m]

Range of Doppler frequency ν [-2 kHz,2 kHz]
Number of reflecting elements on RIS L 30×30

Number of transmitted symbols M 16

Fig. 4 shows the normalized mean square error (NMSE) of
ζreal and the symbol error rate (SER) of the transmitted sym-
bols {αk} in the on-grid system. To further recover the mod-
ulated phase {ϕk} in {αk}, the differential phase shift keying
(DPSK) modulation is applied since {βk} change slowly and
can be treated as constant values during multiple successive
OFDM blocks. With the DPSK, the unknown phases caused by
{βk} can be compensated. Considering differential quadrature
phase shift keying (DQPSK) modulation as an example, the
modulated phase {ϕk} for the information bits transferred at
the RIS are {e±π4 , e± 3π

4 } and the transmitted symbols {αk}
belong to {βke±

π
4 , βke

± 3π
4 }. The numbers of grid points in
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Fig. 4: On-grid system.

the angle, delay and Doppler domains are set as 10, 10 and 20,
respectively, so that the resolutions ∆ω in the corresponding
domains are 3◦, 13.3 ns and 200 Hz. The sparse vector ζ to be
recovered is of length 2000, and contains 4 non-zero elements,
i.e., there are K = 4 devices in the service region. In the on-
grid system, the values of the localization parameters are taken
over the grid in (21), and the indices can be obtained through
the positions of non-zero elements in ζ. It is observed that all
three algorithms have almost the same NMSE performance
in the estimation of ζ and the same SER performance while
recovering the information transmitted from the device.

Moreover, Fig. 5 shows the performance of parameter tuning
with the EM algorithm in the off-grid system, where the local-
ization parameters θreal and τreal are set as the values around
the grid points within the range of 0.2∆ω. The relationship
between dreal and τreal can be found in (41). The initial grids
are the same with the on-grid system in (21). It can be seen that
the EM method can effectively correct the model mismatches
and improve the NMSE and SER performance. The proposed
EM-BG-GAMP algorithm significantly outperforms the other
baseline methods, especially at high SNR.

OMP [6] SBL [7] EM-BG-GAMP
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Fig. 5: Off-grid system.

VI. CONCLUSIONS

In this work, we have proposed a new RIS-aided ISAC
scenario, where a BS communicates with multiple devices
in full-duplex mode, and senses the positions of these de-
vices simultaneously. A grid based parametric model was

constructed, and the joint estimation problem was formulated
as a CS problem. Several CS algorithms were used to solve
the problem. To tackle the issue of model mismatch, an EM
algorithm was utilized for parameter tuning. Simulation results
have shown the good performance of the proposed method.
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