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Abstract—Denial of Service (DoS) and Distributed Denial of
Service (DDoS) are attacks designed to take down a service by
exhausting its resources. Lots of research have been carried in
the past decades to design efficient algorithms that can detect
these attacks. However, most of the literature on DoS and DDoS
detection consider the protection of a small or medium size
businesses network. Usually, these networks consist in several
workstations and servers protected by few firewalls that can
analyze all incoming network traffic. So that the research on
DoS and DDoS can be reproduced and analyzed, several datasets,
reflecting this network infrastructures have been proposed in
the literature. However, more and more businesses are migrating
their services to the cloud and are renting servers from Cloud
Service Providers (CSP). If the CSP wants to protect its
customers from DoS and DDoS attacks, it must perform detection
on its infrastructure. This kind of infrastructure is in no way
comparable to the ones usually found in the literature. In this
paper, we propose to compare publicly available state-of-the-art
datasets with real network traffic captured on the infrastructure
of a world-scale CSP and discuss their relevance in the context
of detecting volumetric DDoS attacks on CSP infrastructure.

Index Terms—DDoS, Cloud, Datasets, Hyperscalers

I. INTRODUCTION

Denial of Service (DoS) and Distributed Denial of Service
(DDoS) attacks are types of attacks aimed at making a service
unavailable by depleting the resources of the target system.
These attacks are used for various purposes such as financial
blackmail, unfair competition or simply to cause damage. They
have serious consequences for the victims, such as loss of
income or damage to the reputation of the organization [1].
For example, Dyn’s DDoS attack in 2016 was a massive
attack that targeted the DNS system, causing major internet
disruptions by making many websites inaccessible [2]. Since
their appearance, these attacks have become more common and
sophisticated, forcing organizations to protect themselves and
their customers against them [3]. With our modern lifestyles
becoming increasingly digitally-dependent, many organizations
have embraced the use of Cloud Computing, which allows users
to access computing resources via the Internet, rather than oper-
ating their infrastructure to provide services to their customers.

This paradigm offers several advantages, such as flexibility,
scalability, availability, security and reduced costs compared
to purchasing and managing their infrastructure. Computing
resources in the Cloud Computing model are provided by Cloud
Service Providers (CSPs) [4]. This new way of producing and
consuming IT infrastructure makes CSPs a target for attackers
as they host numerous services making them a lucrative
target [1]. In light of the escalating magnitude of DDoS attacks
and the costs involved, it is impractical for CSPs to consistently
over-provision their infrastructures as a defense mechanism.
Furthermore, the strategy of continually subjecting clients to
mitigation measures is ineffective due to the introduction of
persistent latency and the inherent risks of false positives. It is in
this context that researchers are working to create DDoS attack
detection and mitigation systems that can quickly identify and
respond to attacks while minimizing their impact. To propose
detection and mitigation solutions, researchers must validate
their experiments [5]. In addition to determine the limitations
and performance of proposed solutions, validation is needed
to convince stakeholders of the effectiveness of detection
and mitigation of attacks. Indeed, the implementation of
security measures against these attacks represents a significant
investment [6]. As we will see in more details, there are several
techniques for validating detection and mitigation solutions,
but the datasets used by the community – whether they come
from live traffic captures, simulated or emulated environments –
present several limitations. Datasets suffer from the complexity
of the simulation, the differences between test environments
and real environments, the amount of data required for testing,
as well as the high risks and costs associated with testing [7],
[8]. In addition, constraints related to sensitive data present in
network traffic captures often make these datasets unavailable or
limited to the lab environments, not allowing the reproduction
of infrastructures such as those of CSPs [9].

Therefore, in this study, we show that, while being valuable
assets, the dataset currently provided by the literature are not
representative of the trafic that can be observed at a CSP level.
Moreover, we demonstrate through measurements and analysis



that one of the main issue when trying to detect volumetric
DDoS attacks for a CSP is the relatively small amount of
trafic reprensented by those attacks with regards to the total
capacity of the CSP network infrastructure.

II. PROBLEM STATEMENT

To design solutions for detecting and mitigating DDoS
attacks, researchers need datasets representative of the type
of infrastructure they seek to protect. As explained in Behal et
al. [6], most of the solutions proposed in the state-of-the-art
to validate DDoS detection and mitigation solutions are based
on simulations, emulations, tests in real conditions and on the
analyzes of publicly available real datasets. All these methods
of generation have their advantages and limitations. They
observe that the use of publicly available traces – whether they
come from a laboratory environment or a real infrastructure – is
increasingly widespread. In their article Ring et al. [7], review
several datasets some of which contain commonly used DDoS
attack scenarios, including the KDD Cup 1999, DARPA 1998,
NSL-KDD, UNSW-NB15, and CICIDS2017 datasets. For
each dataset, the authors present its characteristics, limitations
and advantages as a resource for intrusion detection research.
They also discuss how each dataset was collected, processed,
and labeled, as well as the types of attacks represented therein.
They end with a discussion on the limitations of existing
datasets and future challenges for network-based intrusion
detection research. They emphasize that existing datasets do
not cover all possible situations, and that it is important to
continue developing new datasets to reflect real threats.

In addition, the datasets found in the literature do not
always represent the characteristics of a CSP. First of all, CSPs
have a highly geo-distributed infrastructure, which means that
incoming traffic can come from multiple points of presence
(PoPs) located in different geographical locations. This reality
is not reflected in the datasets we studied. Another aspect
missing is the ratio between legitimate and attack traffic. Most
of the datasets, when they do not only contain attack traffic,
are far from the ratios found on the infrastructure of a CSP.
For example, Microsoft which in 2021 mitigated a DDoS
attack of more than 3.5Tbps [10]. This attack represents only
a tiny part of the network capacity of Microsoft Azure, since
it was already announced in 2017 “Within a given region, we
can support up to 1.6Pbps of inter-datacenter bandwidth.” [11],
which gives an idea of the total capacity of their infrastructure.

Furthermore, in the context of a CSP, DDoS attacks can
target the CSP itself, as well as customers of its infrastructure.
This duality implies that in addition to knowing the
characteristics of its traffic, the teams in charge of the security
of the CSP must know the characteristics of the traffic of each
of its customers, which is not always possible. Although some
CSPs only offer Software a Service (SaaS) services, most offer
a large service catalog, such as Platform as a Service (PaaS) or
Infrastructure as a Service (IaaS). For the latter, the customer is
often free to configure their services, and for the specific case
of IaaS, the customer may be administrator on these machines,
so they can change the service topology at any time [12].

In this article we propose to study the statistical
characteristics of a selection of datasets used in the literature
to compare these same characteristics on the real production
traffic observed on the backbone of our infrastructure as a
world wide CSP. The expected outcome of our study is to
assess whether publicly available datasets are suitable for
research on DDoS detection at the scale of a large CSP.

III. RELATED WORK

In the literature, several papers aim to study the relevance
and quality of datasets publicly available to researchers.

First, Thomas et al. [13] analyze the DARPA dataset. They
review the characteristics of the dataset, which is one of the
most used to evaluate detection systems. They conclude that
due to its size, variety and representativeness of network attacks,
it has its place among the datasets used but they also point out
that the dataset has certain limitations, including weaknesses
in the representation of some types of attacks and biases in the
distribution of attacks. They draw the reader’s attention to the
use of multiple datasets to evaluate intrusion detection systems
in order to reduce bias and improve the representativeness of
attacks. Similarly, Dhanabal et al. [14] also propose to review
a dataset, NSL-KDD, which is a subset of the KDD Cup 1999
dataset also widely used by the community. In addition to this
review, they propose several algorithms of classifications and
conclude that NSL-KDD is a useful tool for the evaluation of
intrusion detection systems based on classification algorithms.
Malowidzki et al. [8] show the importance of choosing an
appropriate dataset to experiment with a detection solution, as
well as the importance of using publicly available datasets. They
explain the advantages and limitations as well as the collection
methodology and then the pre-processing applied to the data.
The authors do not offer a solution to compare the datasets to
the production traffic of a CSP. Their contribution focuses on
exposing the problem of the lack of datasets in our field.

Bhuyan et al. [15] review the various methods, systems and
tools used for the detection of anomalies in computer networks.
In the section on the evaluation criteria, they review several
commonly used datasets and come to the conclusion that
although the datasets, which they define as benchmarks, are very
useful, they are not representative of real traffic. The authors
did not study if those datasets reflect a CSP environment.

Gharib et al. [16], evaluate several datasets to determine
their quality by measuring diversity, size, normalization,
relevance, credibility and availability. Their work also includes
analysis and tools to generate synthetic data sets for intrusion
detection. They show that most available datasets lack diversity,
standardization and credibility, and do not accurately represent
real data from computer networks. In this study, the authors
do not seek to compare the datasets to real traffic nor do they
propose a dataset that meets the criteria they propose.

Ring et al. [7], review several widely used datasets. For each
of them, they present the technical characteristics, the types of
intrusions simulated, the performance measures evaluated and
their strengths and weaknesses. They also evaluate their ability
to simulate real attack scenarios, their size, their diversity and



their representativeness. The authors outline the challenges
in creating new datasets for network-based intrusion detection,
such as the difficulty of simulating realistic attack scenarios
and the need to protect private data.

Cordero et al. [17] provide a review of datasets used in
the field of Intrusion Detection Systems (IDS) up until 2018.
Furthermore, they propose comparing the datasets based on
measures such as the number of packets and the variation in en-
tropy of different fields in the IP packet header, which we have
also chosen to replicate in our study. Additionally, the authors
propose a dataset generator that takes a pcap file of background
traffic as input, along with a description of the attacks the user
wishes to inject, in order to generate datasets that adhere to
the statistical properties of the original background traffic.

Damasevicius et al. [18] propose a new dataset based on a
real university network. They also compare it to several datasets
from the literature that we are studying. The authors’ work
focuses on an infrastructure that is approaching the size of a
CSP. Additionally, they employ statistical methods to compare
and analyze their traffic, which aligns with the methods we
also utilize in our comparison. Based on the results they have
obtained, we can conclude that despite the size of their infras-
tructure, the impact of volumetric DDoS attacks on statistical
measures remains significant, unlike in a CSP infrastructure,
as we demonstrate in the subsequent part of our study.

Maciá-Fernández et al. [19] provide a literature review of
some of the datasets that we have also selected in our study. Fol-
lowing this literature review, they describe how they constructed
their datasets using captured data from a Tier 3 ISP portion.
They detail the evolution of traffic in response to the attacks
they encountered using the same kind of statistical measures
as those employed in our study. It is noteworthy that the
dimensions of their infrastructure are similar to those of a CSP.

In the literature that we have reviewed, none seek to
compare the datasets to the traffic that a CSP can observe
on its infrastructure. The authors seek either to compare the
datasets between them, to identify which is the most relevant
to evaluate a given detection method, or they establish a list
of criteria that a dataset must respect to be considered as of
good quality and evaluate the dataset against these criteria.

IV. DATASETS SELECTION

As noted by both Behal et al. [6] and Camargo et al. [20],
most of the publicly available datasets – such as DARPA
1999 [21] or CAIDA 2007 [22] – are either outdated or lack
the features essential for developing detection tools. Until now,
we are not aware of a comparative study of the usability of the
datasets in the literature to detect DDoS attacks against CSP
infrastructures. This is why we have selected datasets that
seem the closest to a CSP, in particular those that contain both
legitimate traffic and attacks, include at least several hours of
capture, with several volumetric DDoS attacks. Moreover, we
only study publicly available datasets. Ring et al. [7] compare
34 datasets commonly used in the field of anomaly-based
network intrusion detection systems. From their review, we

can keep a list of 16 datasets that seem useful for detecting
and mitigating DDoS attacks at first sight.

The table I presents a comprehensive overview of the key
attributes pertaining to the various datasets employed in the
scholarly literature. It furnishes pertinent details encompassing
the year of publication, cumulative size, duration, data format,
public accessibility, and the specific types of legitimate traffic
and attacks addressed within each respective dataset. By
conducting this comparative analysis, we can ascertain the
datasets that will be employed for comparison against our
production traffic in our study.

We have chosen the following datasets for our study:
CICIDS 2017 [35], ISCX 2012 [36], UNSW-NB15 [37],
CSE-CIC-IDS2018 [35], DDoS 2019 [38] URG’16 [19] and,
LITNET-2020 [18], as these datasets are publicly available,
contain both legitimate and attack traffic captures, and
importantly span a sufficiently long time interval to allow
for the evolution of legitimate traffic patterns in response to
seasonal effects. Additionally, we have selected datasets in
Packet format (PCAP) or Netflow format to ensure that all
metadata utilized by the existing literature can be extracted.

In the remainder of this article we will compare the selected
datasets against each other, using the characteristics selected
in the datasets with what we observe in a CSP infrastructure.

V. METRICS

We have selected a series of statistical characteristics among
the most used in the literature to describe the traffic present
in the datasets and to compare them with each other, as well
as with the production traffic of the CSP we study [18], [39].
We computed these characteristics by aggregating the packets
over one-minute time window. We have chosen the following
statistical characteristics to describe the traffic:

• Number of source IP addresses per destination IP
address: This feature helps describing the complexity
of traffic flows and can potentially indicate the presence
of DDoS attacks utilizing botnets. For each one-minute
time window, we calculate the maximum number of
unique source IP addresses that have communicated with
a single destination IP address.

• Total number of packets observed: This metric helps
describing the overall traffic volume and can potentially
indicate the presence of volumetric attacks. For each
one-minute time window, we record the total number of
packets observed.

• The distribution of protocols: This metric helps describing
the diversity of protocols present in the traffic and can
potentially indicate the presence of attacks targeting
specific protocols. For each one-minute time window, we
compute the ratio between the various protocol counters
(TCP, UDP, ICMP, or OTHER) to determine the protocol
distribution. To calculate the “Protocol distribution” metric,
we first need to compute the protocol counts and ratios for
each protocol in the one-minute time window. Let’s denote
the counts for each protocol as follows: CTCP : count of
TCP packets, CUDP : count of UDP packets, CICMP :



Table I: Summary of Datasets

Dataset Year Size Duration Format Publicly
Avail-
able

Studied Contains
Attack
Traffic

Contains
Legiti-
mate

Traffic

Attack Types

Booters [23] 2013 250GB 2 days Packet Yes No Yes No 9 types
of DDoS attacks

CIC DoS [24] 2017 5GB 24 hours Packet Yes No Yes Yes 8 application layer
DoS attack traces

DARPA [25] 1999 10GB 5 weeks Packet Yes No Yes Yes DoS, privilege
escalation,

probing attacks
KDD CUP 99 [26] 1998 <1GB N/A Connections Yes No Yes Yes DoS, privilege

escalation,
probing attacks

NSL-KDD [27] 2009 <1GB 5 weeks Not Specified Yes No Yes Yes Same
as KDD CUP 99

PU-IDS [23] 1998 N/A N/A N/A Yes No Yes Yes Same
as NSL-KDD

NDSec-1 [28] 2016 2GB Not
Specified

Packet Yes No Yes No Brute force,
DDoS, exploits,
probe, spoofing

Kyoto 2006+ [29] 2006-
2015

>100GB >9 years Bro IDS sessions No No Yes Yes Various attacks
against honeypots

Santa [30] 2014 N/A N/A N/A No No Yes Yes (D)DoS, DNS am-
plification, heart-
bleed, port scans

SSENET-
2011 [31]

2011 N/A 4 hours N/A No No Yes Yes DoS,
port scans, etc

SENET-2014 [32] 2014 N/A 4 hours N/A No No Yes Yes botnet,
flooding, port scan

TUIDS [33] 2012 N/A 21 days Packet, Flow No No Yes Yes botnet, DDoS
DDoS 2016 [34] 2016 <1GB N/A Textual

packet summary
Yes No Yes Yes 4 types

of DDoS attacks
CICIDS 2017 [35] 2017 50GB 5 work-

ing days
Packet Yes Yes Yes Yes DoS, DDoS, etc

ISCX 2012 [36] 2012 85GB 7 days Packet Yes Yes Yes Yes HTTP DoS,
DDoS, network

infiltration,
SSH brute force

UNSW-NB15 [37] 2015 150GB 31 hours Packet Yes Yes Yes Yes DoS, exploits,
fuzzers, etc

CSE-
CIC-IDS2018
on AWS [35]

2018 500GB 2 days Packet Yes Yes Yes Yes Brute force,
DoS, Botnet,
DDoS attacks

DDoS 2019 [38] 2019 150GB Not
Specified

Packet Yes Yes Yes Yes SYN Flood,
UDP Flood,

HTTP Flood,
DNS Flood, etc

URG’16 [19] 2016 14GB 4 months Netflow Yes Yes Yes Yes DoS, Informations
Gathering Attack,
Probe and Botnet

LITNET-2020 [18] 2020 >1GB 10
months

Netflow Yes Yes Yes Yes TCP SYN-flood,
UDP-flood,

HTTP-flood, etc

count of ICMP packets, COTHER: count of packets with
other (IP) protocols. Next, we calculate the total number
of packets in the one-minute time window, denoted as Tc:

Tc=CTCP +CUDP +CICMP +COTHER (1)

Now we can compute the different protocol ratios Rp,
where p∈{TCP,UDP,ICMP,OTHER}:

Rp=
Cp

Tc
(2)

The “Protocol distribution” metric can be represented as
a tuple or vector of the protocol ratios:

ProtocolDistribution=

(RTCP ,RUDP ,RICMP ,ROTHER)
(3)

Where RTCP +RUDP +RICMP +ROTHER=1. These
ratios represent the relative frequency of each protocol
type within the one-minute time window, and their sum
equals 1 as they together account for 100% of the packets
in that window.



• Entropy of source and destination ports: This metric helps
describing the diversity of ports used in the traffic and can
potentially indicate the presence of attacks targeting spe-
cific ports. For each one-minute time window, we calculate
the entropy of the port distribution using the formula:

H(P )=−
∑
i

pilogpi (4)

Where H(P ) is the entropy of the port distribution, P
is the set of unique ports and pi is the probability that
a packet uses port i.

We then plotted a graphical representation of these
characteristics to see their evolution over time. We also
compared these characteristics between the different datasets
and with a CSP production traffic.

VI. LITERATURE DATASET QUANTIFICATION

In this section, we demonstrate the relevance of the
previously introduced metrics on DDoS attack datasets from
scientific literature. The focus is not to detail a specific
detection technique, but rather to showcase the data that
experts rely on to identify crisis situations. To achieve
this, we first present how these metrics manifest on benign
traffic, before showing how they can be used to characterize
volumetric DDoS attacks. We then discuss the implications
of these results at the scale of a CSP.

A. Normal flows characterization

Figure 1a presents the four aforementioned metrics for a “nor-
mal” network traffic — i.e. without DDoS attacks — on Mon-
day’s data from the CICIDS2017 dataset. This representation ef-
fectively exhibits the progression of the metrics under standard
operational conditions. Upon examining the Number of source
IP addresses per destination IP address metric, we observe a
random distribution centered around an approximate average
of 100 source IP per destination IP. The figure also unveils an
initial “startup” phase at the beginning of the day, where 12 a.m.
(GMT) corresponds to 9 a.m. in the timezone of the dataset.

Moreover, a “seasonal effect” or “cyclostationarity” [19]
emerges in the early morning on the Total number of packets
observed metric, surpassing 10,000 packets per second during
the initial hour of connectivity before settling to an average of
1,000 packets per second subsequently. This seasonal effect is
further manifested at the onset of the dataset for the Protocol
distribution metric and the entropy calculation of the ports.
In each instance, the metric under consideration adheres to
a random distribution encircling an average value, punctuated
by sporadic seasonal fluctuations.

The June 11th data from the ISCX IDS 2012 dataset is
another example of a dataset without any trace of DDoS attack.
An expert in the field will observe seasonal (daily) effects
related to working hours in these records as shown in Figure
1b. From 9 a.m. to 6 p.m., the traffic has a distinctly different
pattern compared to nighttime traffic, for each of the indicators.
The maximum number of source IPs per destination is higher
during the day than at night, and the protocol ratios differ. The

total number of packets transmitted per minute and its variance
over time are both noticeably different. Specific “events”
can be observed at 6:00 a.m. and 6:00 p.m. regarding port
entropy, as well as a higher average entropy during the day
compared to nighttime. Once again, understanding the seasonal
characteristics of network traffic appears to be important.

B. DDoS identification

1) CICIDS2017: Figure 2a focuses on the Wednesday data
from the CIC IDS 2017 dataset, which contains four DoS
attacks.

The metrics identified by the literature can highlight the
attacks without substantial difficulty. Both Slowloris attacks
are clearly visible in the Total packets count metric, which
exhibits spikes an order of magnitude greater than the average
value. The Protocol distribution metric conveys the same
information. The potential challenge in identifying the attack
based on these two metrics lies in the fact that they are scarcely
distinguishable from the morning’s seasonal peak. The entropy
measurement of source ports, which is markedly distinct from
the entropy measurement of destination ports during the attacks,
serves as another notable marker. The familiarity with these
three markers and the network’s seasonal behaviors enables an
expert to swiftly identify volumetric DDoS attack scenarios.
DoS attacks 3 and 4 are not visible on the graphs, as they are
not volumetric DDoS attacks targeting the network. Instead,
they involve the use of low-volume HTTP traffic designed to
put a heavy load on the server. This underscores the fact that
CSPs cannot manage this type of problem at the global level
of their network infrastructure. Consequently, each customer,
depending on their specific use cases, must conduct a tailored
analysis of their servers within the overall infrastructure in
order to address these attacks in their cloud infrastructure.

The CSE-CIC-IDS2018 dataset contains several DDoS
attacks. On Tuesday, two DDoS attacks are present, DDoS
attacks-LOIC-HTTP and DDoS-LOIC-UDP.

The second attack is clearly identified by the previously
described metrics as shown by Figure 2b. It is distinctly
visible in the Total packets count per minute, marked by a
significant spike, which corresponds to a sudden variation
in the protocol ratios (favoring UDP, given the nature of
the attack) as seen in the Protocol distribution metric, and
a fluctuation in the destination port entropy.

The first attack, on the other hand, does not involve any
particular network traffic as it is a DDoS attack on a web
server, specifically targeting the server’s resources rather than
the infrastructure as a whole.

2) DDoS 2019: Figure 3a presents the metrics measured
for the CIC DDoS 2019 dataset on the second day. As a
reminder, there are 12 DDoS attacks on that day, most of
them being volumetric ones.

The three key metrics from the literature – total packets per
minute, Protocol distribution, and entropy of incoming and
outgoing ports – clearly indicate each of these volumetric at-
tacks, demonstrating the relevance of these measures for DDoS
detection. The only metric that is not relevant based on the



12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00
Time GMT

101

102

so
ur
ce
 IP
s

Max source IPs per destination over one minute

12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00
Time GMT

103

104

105

To
ta
l p
ac
ke
ts
 c
ou
nt

Total packets count over one minute

12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00
Time GMT

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ot
oc
ol
s d
ist
rib
ut
io
n

Protocol distribution over one minute
TCP
UDP
ICMP
Other

12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00
Time GMT

0

1

2

3

4

5

6

7

En
tro
py

Port source and destination entropy over one minute

Ports source entropy
Ports destination entropy

(a) CIC IDS 2017 Monday working hours.
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(b) ISCX IDS 2012 11 June.

Figure 1: Datasets with no DDoS attacks.
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(a) CIC IDS 2017 Wednesday working hours.
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(b) CSE CIC IDS 2018 Tuesday 20-02-2018.

Figure 2: Datasets that includes DDoS attacks.

reported information is the Max IP sources per destination met-
ric. This can be explained by the fact that during these attacks,
no botnets were used, and IP spoofing was not implemented.

VII. CLOUD SERVICE PROVIDER QUANTIFICATION

To quantify a CSP traffic, we conducted on a CSP network
a data capture spanning twelve hours, from 8 a.m. (GMT) to
20 p.m. (GMT), using a consistent methodology to track the
temporal evolution of the selected metrics. The traffic was cap-
tured using packet sampling. This capture method is mandatory
because of the scale of the observed traffic. Indeed, the observed
infrastructure is composed of hundreds of thousands of servers
hosting a large customer base of over 1.5 million users. The
resulting network traffic reaches several terabytes per second.
As a result, sampling techniques such as NetFlow [40] or
sFlow [41] documented in the scientific literature are employed.
These sampling methods enable the collection of a representa-
tive subset of the overall traffic, providing insights into traffic
characteristics without the need for real-time monitoring of
the entire flow. Furthermore, in line with the observations of
Androulidakis et al. [42], the effectiveness of sampling relies
solely on the sampling rate and not on the specific methodology
employed. With an approximate sampling rate of 1/2000 for
incoming traffic and 1/4000 for outgoing traffic, and considering
the capability to observe billions of packets per second on the

infrastructure, we have reasonable confidence in the statistical
representativeness of the data, comparable to that extracted
from the datasets mentioned in the literature. We focused
exclusively on IPv4 flows, as the datasets predominantly consist
of IPv4 traffic. Figure 4 presents the evolution of the obtained
metrics throughout the capture period. It is noteworthy that the
values remain largely homogeneous, despite the occurrence of
around ten thousands DDoS attacks detected by our existing
volumetric DDoS attack detection system. Unlike what has
been observed in the literature datasets, these attacks have no
discernible impact on the metrics. However, a slight upward
trend is observed as the day progresses, which can be attributed
to the previously mentioned seasonal effect.

VIII. DISCUSSION

We have been able to demonstrate the evolution of the
selected metrics in the literature datasets where they were
not previously calculated. However, for the URG’16 [19] and
LITNET-2020 [18] datasets, the authors had already performed
this analysis in their respective articles. We encourage the
reader to refer to Figures 1 and 4 for URG’16, and Figures
5, 6, and 7 for LITNET-2020, to gain further insights
into these specific datasets. The various illustrations of the
primary metrics, derived from the existing body of research,
demonstrate that the essential information for detecting
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(b) 1/32 packet sampling rate.

Figure 3: CIC DDoS 2019 on 1st december with and without sampling.

volumetric DDoS attacks becomes discernible once the metrics
are computed. Upon initial analysis, it may appear reasonable
to anticipate comparable findings when observing these metrics
on CSP backbones. Nonetheless, a prominent difference
exists: the volume of packets in transit is significantly greater
than that of the datasets. For instance, the network traffic
observed on the backbone of the considered CSP amounts to
approximately 2,5 billions packets per second, whereas the
datasets’ volume never surpasses 40,000 packets per second.

This change in scale, in terms of packet volume in transit,
inevitably impacts the computation of metrics defined by the
literature and presented in section V and illustrated in section
VI. First, as stated in section VII, it is not feasible to capture
all traffic. Therefore, the statistics are based on a sample of
packets. The use of samples for statistical production is a
well-documented field, even in the context of network metrics.
However, we believe it is necessary to verify whether this sam-
pling is not the root of the problem. Second, this change in scale
affects the ratio of healthy data volume to the volume of data
generated for conducting a volumetric attack. It is critical to
ascertain whether this factor is not the source of a dilution of the
sought signal, which becomes weak in the face of regular noise.

To examine the first hypothesis, we employed a sampling
methodology on the state-of-the-art datasets; subsequently, we
computed the identical metrics as those on the original datasets,
but using this sampled version. Due to space constraints, we
include here merely one of the figures obtained: the CIC
DDoS 2019 01-12 dataset, using a sampling rate of 1/32.

Figure 3b illustrates that properly executed sampling
(randomly selecting one packet out of n to sample) does not lead
to a loss of information within the aggregated data. This Figure
represents the same datasets as the one depicted in Figure 3a,
with a sampling rate of 1/32. The insights underscored in
Figure 3a are unequivocally identifiable in Figure 3b.

We have successfully reproduced these results on a variety of
other datasets, which we cannot extensively discuss in this arti-
cle due to space constraints. However, these additional datasets
consistently produce the same findings. Furthermore, the study

by Boin et al. [43] has established that many seasonal effects are
observable at the scale of a CSP. It appears, therefore, that there
are no impediments to the well-known techniques in scientific
literature being applicable in the context of network analysis.

Nevertheless, the sheer volume of network traffic raises
another issue: that of weak signals. Indeed, even during a vol-
umetric DDoS attack, a CSP’s customer may generate network
traffic that is negligible compared to the overall network traffic.
Identifying this weak signal against legitimate network usage
peaks could be the genuine obstacle hindering the implemen-
tation of DDoS detection solutions at the scale of a CSP.

To corroborate this hypothesis of weak signals, we
conducted another experiment. By blending 100 times the
benign traffic from Figure 1a with one instance of DDoS
traffic from Figure 3a, we generated the metrics depicted in
Figure 5. In this scenario, it becomes apparent to the observer
that the sought-after information is diluted within the total
volume. The volumetric attack has indeed become a weak
signal, submerged within an overall benign volume.

Furthermore, in the studies conducted by Damasevicius et
al. [18] and Maciá-Fernández et al. [19], it can be observed that
although the impact of DDoS attacks on these metrics remains
visible, it diminishes as the size of the infrastructure increases.

This analysis offers a crucial understanding of the challenges
faced in detecting volumetric DDoS attacks within the setting of
a CSP. The primary issue stems from the weak signal that these
attacks present within the enormous volume of network traffic,
which proves to be a significant obstacle. It becomes clear that
while traditional metrics are successful in smaller, literature-
derived datasets, they may struggle to effectively identify these
attacks in the vast expanse of everyday network operations at
such a large scale. Therefore, future research should focus on
developing innovative methods and metrics that can address
these unique challenges inherent to the CSP environment.

IX. CONCLUSION

In this paper, we have highlighted the differences we
observe between the volumetric DDoS datasets proposed in
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Figure 4: Metrics observed on the captured traffic of a CSP backbone.
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Figure 5: Protocol distribution observed when blending CIC
DDoS 2019 attacks and CIC DDoS 2017 benign traffic with
a 1/100 ratio.
the scientific literature and what we observe on the network
backbone of the CSP we work for.

We have explained that the volume of data in transit on the
network backbones of CSPs necessitates the implementation
of sampling techniques.

We have also empirically established that these sampling
techniques do not have detrimental effects on the establishment
of volumetric DDoS detection metrics.

However, we have observed that the volumes of data in
transit on these backbones are orders of magnitude higher
than those in the datasets used in the literature.

Finally, we have shown that the gargantuan volumes of data
lead to a difficulty not identified by the literature:

Volumetric attacks directed at one of the CSP’s clients have
a very limited impact on the metrics traditionally used to detect
them, when collected from the traffic managed by the CSP.

Identifying these attacks by analyzing the global traffic of

the CSP is akin to searching for a weak signal, particularly
in the face of the seasonal effects of traffic.

This situation is therefore not comparable to that observed
in the datasets proposed and used by the literature.

In accordance with these observations, we propose to direct
our future work to:

• Provide a means of testing DDoS detection techniques
proposed by academic research on datasets that reflect the
metrics we observe on the network backbones of CSPs. For
obvious reasons of confidentiality, as well as data volume,
it is not possible to present industry-derived data, which
is why such datasets are not available in the literature.
However, given legal and technical constraints, we believe
it is reasonable to consider the use of traffic generators.

• Demonstrate how the signals exploited by volumetric
DDoS detection techniques can be adapted to report
volumetric attacks, even when they constitute only a
weak signal of the network traffic being analyzed. Or,
if this proves impossible, to propose new metrics.
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