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Abstract. Mid-infrared supercontinuum sources are particularly important for identifying and
characterizing molecules and materials through spectroscopy, thus enabling key applications. We here

demonstrate the possibility of combining both mid-IR supercontinuum generation and evanescent wave

spectroscopy in a single chalcogenide fiber device by means of heat-and-draw processes to manage linear

and nonlinear wave-guiding properties.

Fiber evanescent wave spectroscopy, also known as
FEWS, is a powerful technique used for analysing
chemical compositions in medical or environmental
fields. It consists of a single-index or uncladded step-
index optical fiber immersed in a sample media which
acts as an absorbing cladding. The evanescent fraction of
the guided light at the interface between the waveguide
and sample to test is partially absorbed by the molecule’s
fingerprints (i.e., attenuated internal reflection), resulting
in the detection of suitable absorption spectra at the fiber
output. The development of this technology in the IR and
especially in mid-IR, where a lot of molecules have their
strongest absorptions, is a very active research field. The
goal is to enhance sensitivity and expand operational
range via studying different geometries, shapes, sources
or materials [1-6]. One of the main limitations of this
technique can be the light source itself. In general, a
thermal emitter is used as the broadband light source
coupled into the fibre, resulting in high insertion losses
and low output power. In this work, we investigate the
possibility to overcome this issue by combining
simultaneously two optical functions in a single chalco-
genide glass rod, namely mid-IR supercontinuum (SC)
generation in a first tapered section of the glass rod and
FEWS sensor in a second coiled tapered section.

Our experimental work is based on a TeAsSe glass rod
(i.e., a single-index chalcogenide fiber) with a 180-pm
diameter. For both SC generation and FEWS
functionalization of the glass rod, we advantageously
combine well-known post-processing techniques (i.e.,
heat-and-draw processes) of shaping optical fibers into
different geometries to manage their wave-guiding
features. For the first section in charge of the SC
generation, a taper with a small waist diameter of 25um

is fabricated using a Vytran Glass Processor (GPX
3400). On the one hand it shifts the zero dispersion
wavelength down to 6um, and on the other hand, it
significantly increases the light confinement and thus,
enhances the nonlinear effects for efficient super-
continuum generation.
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Fig. 1.(a-b) Picture showing the shaped chalcogenide rod in
and out of the experimental device (red dashed line indicates
the two different sections). (c) Full experimental setup.
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The second part of the device is the sensing section,
which is also tapered down but to a larger waist diameter
of 100um. This taper is used to increase the proportion
of evanescent field, and thus, the sensitivity of the device
[7], but does not participate in the generation of new
frequencies. Additionally, this sensing part is coiled with
a home-made system, in order to have a longer
interaction length with the sample, as well as to simplify
the handling of the whole device, as shown in Fig.la.
We then implemented the complete experimental setup
shown in Fig. lc.

We first characterized the SC generated in the first
tapered section of our glass rod, pumped by a
femtosecond laser source. We made use of 275-fs mid-
IR pulses at 200-kHz repetition rate around 7-pm
wavelength. Laser pulses are coupled into rods by means
of a 40-mm-focal ZnSe lens and the output SC is
collected through a mid-IR hollow-core fiber with high
transmission over 2-16um. Spectral characterizations
were performed using a compact FTIR spectrometer or a
monochromator combined with a MCT detector. A
supercontinuum spanning from 5 to 12um was achieved
with an output power of more than 20mW (see Fig. 2a).
Such a spectral coverage is comparable to previous
measurements without sensing part in the fiber. We then
assumed negligible losses due to the coiling in the SC
spectral range. Then, we immersed the sensing part of
the chalcogenide fiber in different blends of water and
ethanol (see Fig. 1b) to assess the operation of our
sensor. The transmission spectrum recorded for a 25:75
vol% blend is depicted in Fig. 2b and compared to the
reference spectrum from database [8]. Two main
absorption peaks of ethanol between 9 and 10um are
clearly observed, while the ones between 10 and 12pm
are less visible due to the lower signal-to-noise ratio
provided by our SC source.
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Fig. 2.(a) Supercontinuum spectrum measured at the output of
the whole device. The input pump spectrum is also depicted.
(b) Measured transmission spectrum of our device for a 25:75
vol% blend of water-ethanol applied to the FEWS section

(black solid line) compared to the corresponding reference
from database [8] (blue dashed line).

In conclusion, our preliminary results demonstrate the
possibility to simultaneously combine two optical
functions (a nonlinear broadband frequency conversion
and a linear FEWS) in the mid-IR on a single
chalcogenide fiber device by using suitable heat-and-
draw processes. Nevertheless, several optimization
procedures and challenges remain and are under
investigations.
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