
Full Waveform Inversion Proper Orthogonal Decomposition Results On going work References

Full Waveform Inversion using Proper Orthogonal
Decomposition

Julien Besset1, Hélène Barucq1, Henri Calandra2, Stefano Frambati2

EPI Makutu, INRIA Bordeaux Sud-Ouest 1, Université de Pau et des Pays de l’Adour, TotalEnergies 2

October 3rd 2023



Full Waveform Inversion Proper Orthogonal Decomposition Results On going work References

1 Full Waveform Inversion
Inverse problem
Application to seismic : Full Waveform Inversion

2 Proper Orthogonal Decomposition
Introduction
Proper Orthogonal Decomposition method
Challenges
POD application to the Acoustic Wave Equation

3 Results
2-D forward propagation FEM vs POD
3-D forward propagation SEM vs POD with GEOS
Gradient computation and first FWI results with POD
Conclusion

4 On going work



Full Waveform Inversion Proper Orthogonal Decomposition Results On going work References

Inverse problem

FWI process
Full Waveform Inversion (FWI) is a quantitative inversion technique workflow.

Figure: FWI process (Jacquet (2021)).

Inverse problems aim to retrieve physical parameters of a medium from measured data.

These parameters intervene in the partial differential equations which characterize the
physical phenomenon of interest.

The principle is general and independent of the physical problem (PDE).
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Inverse problem

Each step in FWI can be improved to reduce the computational burden. For instance,
Numerical schemes (IGA formulation : Frambati (2021))
Mesh and polynomial adaptivity (hp-adaptivity : Jacquet (2021))
Adjoint state method with high order numerical schemes (frequency domain :
Faucher (2017))

Lately, new techniques seem to have aroused the interest such as,
Machine Learning (Adler et al. (2021)).
Reduction Order Modeling (ROM) (Borcea et al. (2022)).
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Application to seismic : Full Waveform Inversion

In a geophysical context, the inverse problem aims at reconstructing the subsurface physical
parameters (velocity, density, Lamé parameters...).

The observed data uobs are recorded via a seismic acquisition consisting of sources and
receivers for a medium. These data are called seismograms.

The amount of data uobs is often limited and usually localized in a small area of the domain
near the surface.

The cost function is the difference between the seismograms and simulated data.

Figure: Data acquisition for seismic marine
imaging

Figure: Data acquisition for seismic land
imaging
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Application to seismic : Full Waveform Inversion

State equations

Depending on the physical parameters to be retrieved, different partial differential equations can be
considered.

Acoustic Wave Equation
1
c2

∂2u
∂t2 (x, t) − ∆u(x, t) = f (x, t) in Ω × [0, T ]

α
∂u
∂t

(x, t) +
∂u
∂n

(x, t) = 0 on ∂Ω × [0, T ]

u(x, 0) = u0(x),
∂u
∂t

(x, 0) = u1(x) in Ω

(1)

Elastic Wave Equation
ρ

∂2u
∂t2 (x, t) − ∇ · (C(ϵ(u(x, t)))) = f(x, t) in Ω × [0, T ]

α
∂u
∂t

(x, t) + (C(ϵ(u(x, t))))n = 0 on ∂Ω × [0, T ]

u(x, 0) = u0(x),
∂u
∂t

(x, 0) = u1(x) in Ω

(2)
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Application to seismic : Full Waveform Inversion

FWI Setup

Due to the size of the domain (several km) and the wave velocity, we need a
huge amount of points to have a good representation of the problem (> 108

cells).
The choice of the discretization is crucial for a good estimation of the gradient.
The lack of information on the medium makes this problem particularly ill-posed.
To be able to reduce the space of the solutions, the choice of the starting model
is key to avoid local minimum.
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Introduction

ROM Introduction

The Reduction Order Modeling (ROM) is a technique for reducing the computational
cost of complex models in numerical simulations by approaching the system of PDE or
ODE with a lower order system.

ROM techniques can be classified as follows
Proper orthogonal decomposition methods.
Reduced basis methods.
Balancing methods
Simplified physics or operational based reduction methods.
Nonlinear manifold methods.
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Proper Orthogonal Decomposition method

POD introduction

Starting from an arbitrary system and experimental or simulated data, we can
determine a new system (reduced model) of PDE or ODE that is representative
of the starting system.
By agreeing to pay the cost of one or several resolutions of our accurate model,
we hope, for the same numerical cost, realize a greater amount of simulations
with the reduced model.
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Proper Orthogonal Decomposition method

POD approximation

POD approximation

We approach the solution u(x , t) of an arbitrary system with x ∈ Ω space variable and
t ∈ [0, T ] time variable, in the form of a finite sum of separated variables functions
product :

u(x , t) ≈
K∑

k=1

ak(t)ϕk(x) (3)

This representation of u is not unique.
We can choose ϕk as Legendre, Lagrange polynomial or trigonometric functions.
In our case we choose ϕk being linked to the solutions u of the full system.
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Proper Orthogonal Decomposition method

POD approximation

Supposing that the base (ϕk) is orthonormal we have :

< u(x , t)|ϕl (x) >= al (t).

Solving (3) is equivalent to the following minimization problem:

min
Nt∑
i

||u(x , ti ) −
K∑

k=1

< u(x , ti )|ϕk(x) > ϕk(x)||22 (4)

with Nt the number of discrete solutions in time.
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Proper Orthogonal Decomposition method

Snapshot matrix

We suppose that u(x , t) is known for Nx values of x and Nt values of t. We gather all
the realizations of u(xi , tj ) in a matrix called Snapshot:

Snapshot matrix

A =


u(x1, t1) u(x1, t2) · · · u(x1, tNt )
u(x2, t1) u(x2, t2) · · · u(x2, tNt )

...
...

...
u(xNx , t1) u(xNx , t2) · · · u(xNx , tNt )

 ∈ RNx ×Nt
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Proper Orthogonal Decomposition method

Link between POD and SVD

Supposing u can be decomposed in an arbitrary finite element basis :

un(x , ti ) =
n∑

j=1

uj (ti )φj (x)

We can then define the following discrete scalar product :

< u|v >M= uT Mv

with M the finite element mass matrix. We deduce the associated norm :

||u||λ =< u|u >
1
2
M= ||(M

1
2 )T u||
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Proper Orthogonal Decomposition method

Link between POD and SVD

We can reformulate the minimization problem (4) as:

min
Nt∑
i

||un(x , ti ) −
K∑

k=1

< un(x , ti )|ϕk(x) > ϕk(x)||2M (5)

where we suppose that the POD basis (ϕk) can be written in the finite element basis
(φj )n

j=1.

POD Minimization Problem

If we collect all the POD coefficient ϕj
k in a matrix ϕ ∈ Rn×Nt , (5) is equivalent to:

min
Z∈Rn>K

||Ã − ZZT Ã||2F (6)

with Ã = (M
1
2 )T A and Z = (M

1
2 )T ϕ
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Proper Orthogonal Decomposition method

Link between POD and SVD

Expression of ϕ

Finally, using the Eckart-Young theorem (Cordier and Bergmann (2006)) we find that
ϕ is solution to :

(M
1
2 )T ϕ = Uk ∈ Rn×K (7)

with Uk the k − st first column of the matrix U in the Singular Value Decomposition
(SVD) Ã = UΣV .

U can be determined as the eigenvectors of ÃÃT . However if Nx >> Nt , we prefer to
evaluate V as the eigenvectors of ÃT Ã, then deduce U using the relation:

U = Σ−1ÃV (8)
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Challenges

Challenges

POD construction requires a first resolution of the high fidelity model.
=⇒ Can’t seem to be avoided.
The POD is constructed for a particular set of physical parameters.
=⇒ We assume that for small perturbation of the physical parameters, the
computed basis will still be correct.
The search for the basis (ϕi ) requires a SVD of the Snapshot matrix.
=⇒ Instead of doing a SVD on the full snapshot matrix, we iteratively (as we
solve the full problem) compute the POD basis using QR-decomposition with a
Gram-Schmidt orthonormalization process.
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POD application to the Acoustic Wave Equation

POD formulation

Using the expression of u(x, t) in the POD basis :

u(x , t) ≈
K∑

k=1

ak(t)ϕk(x)

We can re-write the previous system of equations as :

Acoustic Wave Equation POD formulation

K∑
k=1

1
c2

∂2ak(t)
∂t2 ϕk(x) − ∆(ak(t)ϕk(x)) = f (x, t) in Ω × [0, T ]

K∑
k=1

α
∂ak(t)

∂t
ϕk(x) + ak(t)

∂ϕk(x)
∂n

= 0 on ∂Ω × [0, T ]

ak(0) = ⟨u0(x) , ϕk(x)⟩,
∂ak
∂t

(0) = ⟨u1(x) , ϕk(x)⟩ in Ω

(9)
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POD application to the Acoustic Wave Equation

POD discretization

Space discretization

ϕT 1
c2 Mϕ

∂2a(t)
∂t2 + ϕT αSϕ

∂a(t)
∂t

+ ϕT Kϕa(t) = ϕT f (t) (10)

where M is the mass matrix, K is the stiffness matrix and S is the damping matrix.

Time discretization

an+1 =
(

Mϕ + α
δt
2

Sϕ

)−1 ((
2Mϕ − δt2Kϕ

)
an −

(
Mϕ − α

δt
2

Sϕ

)
an−1 + δt2f n

ϕ

)
(11)

with Mϕ = ϕT 1
c2 Mϕ, Sϕ = ϕT αSϕ, Kϕ = ϕT Kϕ and fϕ = ϕT f
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2-D forward propagation FEM vs POD

Figure: Two layers model

The model is a two layers model 10m/s in the upper layer and 15m/s in the bottom
one.
We used a Q4 finite element mesh and the domain is covered with 30x30 elements.
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2-D forward propagation FEM vs POD

Vectors of the POD basis

ϕ0 ϕ2 ϕ5

ϕ8 ϕ10 ϕ12

ϕ15 ϕ18 ϕ20

Figure: 9 of the 21 vectors of the POD basis built using QR decomposition
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2-D forward propagation FEM vs POD

Figure: ϕt 1
c2 Mϕ and ϕtKϕ using the QR decomposition
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2-D forward propagation FEM vs POD

Figure: Comparison of time trace in one point between the FEM solution and the
POD solution
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3-D forward propagation SEM vs POD with GEOS

Figure: Equinor model

We have implemented the POD basis approach in the plateform GEOS, and tested it
on the 3-D Equinor model which has velocities from 1500m/s up to 5300m/s.

The domain is meshed with Q1 Spectral Element Method (SEM) with ≃ 1.500.000
elements.
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3-D forward propagation SEM vs POD with GEOS

Vectors of the POD basis

ϕ0 ϕ5 ϕ12

ϕ15 ϕ19 ϕ25

Figure: 6 of the 26 vectors of the POD basis built using QR decomposition

2MPI :

Simulation = 9.1s

Simulation + POD basis = 49.3s

12MPI :

Simulation = 5.0s

Simulation + POD basis = 13.3s
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3-D forward propagation SEM vs POD with GEOS

Propagation comparison

Figure: Comparison of time trace in one point between the SEM solution and the
POD solution
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3-D forward propagation SEM vs POD with GEOS

Time computation

12MPI :
SEM simulation = 5.0s =⇒ for 1.500.000 d.o.f
POD simulation = 3.5s =⇒ regardless the number of d.o.f

Once we have paid the price of the POD basis and POD matrices construction, the
more degrees of freedom we have in the domain, the better the POD is in terms of
computational time.
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Gradient computation and first FWI results with POD

Inversion

Figure: Equinor model Figure: v0 model for FWI

≃ 1.500.000 cells
2520m × 1440m × 1520m
30 sources
2560 receivers
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Gradient computation and first FWI results with POD

For this study, we decide to build 3 PODs from different SEM model iterations :
PODi means that the POD (forward and backward) is constructed from model mi−1
during the SEM gradient computation. Once the POD is built, it is used for the next
models for gradient and linesearch computations.

Figure: Cost functions evolution between SEM and POD constructed at 1st, 3rd or
5th SEM iteration.
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Gradient computation and first FWI results with POD

We compare the seismic trace of the SEM and POD1 at one receiver location for the
model m1. We can clearly see a phase shift between the two traces. Because the
velocity of the media changed between m0 and m1, the wavelength is also modified,
and the vectors of the POD basis, which are constructed from model m0, do not have
the new wavelength information.

Figure: Comparison of the seismic traces at one receiver location for the SEM and
POD1 at model m1 given by SEM.
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Gradient computation and first FWI results with POD

The phase shift in the simulation has a direct impact on the gradient computation.

Figure: Relative errors and angle between gradient given by SEM and gradient given
by the different PODs for the iterations following their construction.
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Conclusion

The QR approach for computing the POD basis is fast and cheap in terms of
memory cost.
The basis is source dependent.
The basis is model dependent and not suitable for an FWI process.
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On going work

Update the POD basis using machine learning techniques.
=⇒ The first tests suggest that we would need a high amount of samples
to train the network. The size of the problems seems too big for neural
networks techniques.
Update the POD basis using minimization.
Update the POD basis using Proper Generalized Decomposition (PGD)
(Oulghelou and Allery (2017)).
Try this POD within a Least Square Reverse Time Migration process.
=⇒ The basis is still source dependent.
Build a POD using mode shapes of velocity model and independent of
the source (Basir et al. (2018)).
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Cost function

The reconstruction of the parameters is based on the minimization of a misfit function.

J(m) =
1
2

T∑
t

N∑
n

||(Ru)n,t − (uobs)n,t ||2 + Fn,t (12)

m is the model parameters.
uobs are the observed data.
Ru are the simulated data, with R an injective operator.
N the number of observations.
T the number of time step.
F a regularization term.
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Gradient computation and model update

Using a Taylor development on the expression of J, and assuming it reaches a
minimum for m = m0 + ∆m we find that the model update is given by:[

∂2J(m0)
∂m2

]
∆m =

∂J(m0)
∂m

⇐⇒ H∆m = ∇mJ

(13)

with H the Hessian of J.
∇mJ can be evaluated by different method. (ex : Adjoint state method).
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Iterative computation

The problem is then solved using iterative methods such as:
Steepest descent
Conjugate gradient
Nonlinear conjugate gradient
L-BFGS
Gauss-Newton methods...
Stochastic methods...
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Methods comparisons

Figure: Cost function evolution for different search direction strategies (?).
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Eckart-Young theorem

The problem (4) is then equivalent to search for X with the same size as A but with a lower rank
k such that for a certain norm, the error A − X is minimal. Taking the Frobenius norm, the
solution of this problem is given explicitly by the Eckart-Young theorem :

min
rank(X)≤k

||A − X ||F = ||A − Ak ||F =

(
r∑

j=k+1

σ
2
j (A)

) 1
2

(14)

where

Ak = U

(
Σk 0
0 0

)
V t

= σ1u1v t
1 + · · · σk uk v t

k

with σj (A) are the eigenvalues of A.
This theorem establishes a relation between the rank k of the approximation X of A and the
eigenvalue k of A. In conclusion, if the eigenvalues of A decrease rapidly enough, we can choose
an approximation X of A with a very small rank.
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QR introduction

QR Decomposition

Let A be a real m × n matrix (m > n) with rank(A) = n. The QR decomposition
means that A can be written as :

A = QR (15)

where Q is (m × n) orthogonal (QtQ = In) and R is (n × n) upper triangular.

A very well known way of computing this decomposition is to use the Gram-Schmidt
orthonormalization process.
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Classical Gram-Schmidt

The classical Schmidt algorithm consists of n steps. For each step, the k-th column of A will
produce a new column of Q. Assuming we have already computed the k first columns of Q, the
idea is to compute the projections of Ak onto all Qi , i ∈ {0, · · · , k − 1} :

rik = Qt
i Ak

Then we can compute the vector Q̃k :

Q̃k = Ak −
k−1∑
i=0

rik Qi (16)

which is orthogonal to all previous Qi . Finally we normalize this vector :

Qk =
Q̃k

∥Q̃k ∥

However, it was soon observed that this algorithm is unstable. To be able to use this classical
Gram-Schmidt orthonormalization and ensure the orthogonality, we are going to use
reorthogonalization.
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Reorthogonalization

The unstability in the classical Gram-Schmidt algorithm comes from the numerical
approximation that is done by the computation of (16). An indication of this
unstability is given if :

∥Q̃k∥ << ∥Ak∥

Or we can also use the Rutishauser criterion to decide if reorthogonalization is
required, which stands for :

∥Q̃k∥ ≤
1
10

∥Ak∥ (17)

If this criterion is verified, then we proceed to a new orthogonalization of Q̃k with
respect to all Qi , i ∈ {0, · · · , k − 1}.
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POD based on QR
Because we want to find a reduce basis that will represent at best our solution, we are going to reject all the Q̃k
that verifies the Rutishauser criterion. This leads to the following algorithm :

l = 0
for k = 0 : m − 1 do

Ql = Ak
success = 1
for i = 0 : l − 1 do

rik = Qt
i Ak

Ql = Ql − rik Qi

if ∥Ql ∥ ≤ 1
10 ∥Ak ∥ then

success = 0
break

end if
end for
if success then

Ql = Ql
∥Ql ∥

l = l + 1
end if

end for
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