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Abstract
Computing the medial axis of a 3D surface mesh is challenging. Points on the discrete medial axis can be defined as interior
Voronoï vertices of the surface mesh, but the resulting medial structure rarely has clean connectivity and consistent geometry.
In this paper, we provide a medial axis computation based on the Voronoï diagram able to generate manifold medial sheets with
coherent topology and geometry, generating consistent geometric structures similar to those in the continuous setting. Because
of the correspondences between the surface mesh and resulting medial mesh, we also provide an efficient method for separating
the shape into coherent regions associated to medial structures. This correspondence allows for a medial-axis-based filtration
of surface structures to generate a Hausdorff ε-approximation of the surface points based on a simplified medial axis, thereby
providing a robust medial representation with guaranteed surface approximation.
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1. Introduction2

Medial representations are quite popular in computer graphics be-3

cause they combine implicit and explicit shape representations, and4

offer a lower dimensional model of a 3D shape, the skeleton, that5

captures the geometric information from the boundary, while a ra-6

dius or distance function describes the interior of the shape. The7

first such model, the Blum medial axis, was introduced in [Blu73]8

for 2D shapes. It consists of a skeleton and a radius function de-9

fined at each point of the skeleton that gives the distance of the10

skeleton point to the boundary. A useful discretization of the Blum11

medial axis relies on a shape’s Delaunay triangulation and its dual,12

the Voronoi diagram.13

As described in [TDS∗16], several approaches exist to compute14

a full skeleton. Voxel-based methods [HR08, ADBS11] which are15

a 3D version of classical 2D thinning methods, easily maintain the16

structure of the shape, and can be less subject to noise. In [JST15],17

the voxel grid is the support of a mass transport process, leading18

to a multiscale, simplified skeleton. In [YLJ18], the authors use a19

Delaunay tetrahedralization of the open voxels of a shape boundary20

to compute a voxel core that converges to the true medial axis as21

the voxelization of the shape becomes dense. A separate pruning22

step then removes noisy elements in the voxel core with a guaran-23

tee on the approximation and the homotopy equivalence. In these24

approaches, the shape must first be converted to a voxel grid, and25

its sampling density is directly linked to the skeleton accuracy,26

thereby introducing an additional parameter to the model. Also,27

in the voxel based approaches, no global and topologically coher-28

ent structure of the skeleton is available. Other methods compute29

a skeleton from boundary samples [RAV∗19, MBC12, LBKP21].30

Each boundary sample is characterized by a position and a nor-31

mal, and no additional structure is needed. A set of tangent spheres32

can then be computed, filtering any non-descriptive ones. Methods33

based on deep learning have also been proposed. In [YYW∗20], a34

simplified skeleton is computed and accurately describes the shape35

(depending on the chosen precision) but they do not capture the36

shape structure, as the resulting skeleton is typically not a graph.37

In [CD23] the local structure of the skeleton is preserved in gen-38

eral, but there is no guarantee on the coherence of the connectivity,39

that is, a tetrahedron may belong to the resulting skeleton. In fact,40

by construction deep learning methods do not maintain a clear re-41

lationship to the shape boundary. In [RLS∗21], the shape and its42

skeleton are linked but the representation is implicit, giving neither43

connectivity nor structure.44

Other approaches, including ours, are based on the computation45

of a Voronoi diagram. For simple shapes such as polyhedra, the46

Voronoi diagram can be explicitly computed [SPB96]. The power47

crust applies a power diagram to compute a mesh and a skeleton48

from a disorganized point cloud [ACK01].49

Underlying many of these methods is an attempt to address the50

major drawback of the medial axis in applications: a lack of sta-51

bility, in that a small change on the shape boundary can produce52

large changes in the medial axis. Moreover, edges linked to several53

medial axis surface sheet may appear in non singular regions, lead-54

ing to connectivity and structural inconsistencies. Many approaches55

have been proposed to construct a robust medial axis for 3D shapes,56

with varying degrees of success. Classical approaches to robustness57
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are based on pruning [DZ03, AL01] prune the Voronoi diagram to58

obtain a sensible medial structure. [YSC∗16] compute a signifi-59

cance measure: the authors demonstrate that a global measure re-60

lated to Erosion Thickness, generalized from 2D to 3D, is more61

efficient than a local measure. The well-known Scale Axis Trans-62

form [MGP10] has the advantage of taking into account multiple63

medial representations. They propose a multi-scale representation64

through the scale axis transform that takes into account a scaling of65

medial balls, but the approach results in some artifacts that require66

a separate pruning step. This method has generated multiple vari-67

ants and improvements [LWS∗15, PWG∗19] that produce a sim-68

plification of a Voronoi skeleton. However, these methods do not69

maintain a robust link to the 3D mesh. In contrast, our goal in the70

current work is to be independent of a pruning step. We both main-71

tain global connectivity consistency in the structure of the medial72

axis and geometric consistency with the surface mesh, in the sense73

that the Delaunay tetradhedralization of the output surface mesh is74

dual to the output Voronoi skeleton.75

Many researchers compute a curve skeleton, which is a network76

of curves, instead of the full skeleton in 3D, [CSM07, SYJT13].77

A curve skeleton is appealing because it addresses the previ-78

ously mentioned instability while capturing most of the major79

structures of the shape. It can be estimated by mesh contraction80

[ATC∗08, LW18, ZLZ20], or through the computation of a 3D81

skeleton [DS06, TAOZ12], or directly from the mesh, using tools82

such as local separators [BR21]. Curve skeletons necessarily main-83

tain only a weak relationship to the surface mesh, however, and84

there are some shape structures (funnel shapes, for example) that85

are not well-suited for description by a single curve.86

Depending on particular goals and applications for a skeletal87

model, different properties of the skeleton may be desired, such as88

continuity, connectivity, geometric correspondence with the bound-89

ary, or a particular level of simplicity. These variations in goals have90

produced variations in skeletonization algorithms that make differ-91

ent trade-offs, as the work cited in the previous paragraphs demon-92

strates. In this article, we take as input a Delaunay surface mesh93

of a shape and compute a medial axis that has a full array of de-94

sirable properties. This approach is similar to a 2D skeletonization95

method by propagation [DCL∗19,DMC∗19], where the skeleton is96

computed step by step, and where a Hausdorff distance criterion97

identifies noise so that insignificant parts of the medial axis are not98

computed. The next section describes this simplified skeletoniza-99

tion.100

1.1. Simplified skeletonization101

In this paper, we present a method to compute a simplified, robust102

medial axis for a 3D shape from a Delaunay input mesh represent-103

ing the shape surface. Our approach is based on a propagation of104

medial balls, or equivalently, Delaunay tetrahedra, which means we105

do not require a pruning step. A Delaunay tetrahedron is a tetrahe-106

dron such that its circumscribed sphere does not contain any other107

point from the surface mesh. Therefore, each skeletal point is as-108

sociated to a tetrahedron, and the edges between skeletal points are109

associated to tetrahedra that share faces. Finally, a Delaunay mesh110

is a mesh for which each triangle is a triangle from a Delaunay111

tetrahedron. Local geometry is combined into a global structure on112

the skeleton, which is then used for the simplification analysis. This113

global structure consists of sheets, which are surface portions of the114

skeleton, boundary paths, which are curve boundaries of a single115

sheet, and singular paths, which are curve portions separating dif-116

ferent sheets (See Section 3 for details). As a result, our approach117

guarantees the following properties (cf. Figure 1):118

• The topological and geometric relationships between the sur-119

face and medial meshes are preserved. Specifically, (a) the re-120

sulting medial mesh is homotopically equivalent to the output121

surface mesh by construction, and (b) the points on the medial122

mesh are Voronoi duals of Delaunay tetrahedra generated by the123

surface mesh. Each vertex, edge, face and sheet of the medial124

axis corresponds to a well-specified set of vertices, edges, faces,125

or region of the surface mesh. This means that we maintain cor-126

respondence between the surface and medial meshes.127

• The geometric structures of the medial mesh are clean and128

coherent. The skeleton is divided into sub-structures of sheets129

with topologically consistent manifold interiors, which are sep-130

arated and bounded by manifold paths. The skeleton mesh itself131

is connected for an input shape with a single component due to132

the homotopy equivalence.133

• The simplified medial axis provides a guaranteed134

ε-approximation to the original surface points. The simplified135

medial mesh generated for some choice of ε> 0 corresponds to a136

subset of the original surface points that are ε-close in Hausdorff137

distance to the original surface points. All topological features at138

a scale larger than ε are maintained, though features at a scale139

smaller than ε may be deleted.140

In what follows, we first describe the continuous and discrete141

constructions of the interior Blum medial axis (BMA) in Section 2.142

In Section 3, we describe the global structures of the discrete BMA143

and describe how these are related to local structures. Finally, we144

describe the algorithm for generating the simplified skeleton based145

on the ε error parameter in Section 4, and present results in Section146

5. We also include a brief appendix to explain some special cases147

that arise in this discrete setting, and how we handle them.148

2. Geometry of the interior medial axis149

The Blum medial axis is structured into parts that offers strong150

geometric properties in the smooth setting; we seek and provide151

analogs in the discrete setting. In this section, we describe these152

properties and the correspondences between smooth and discrete153

representations.154

2.1. Smooth setting155

In this section, we recall the structure of the medial axis in the156

smooth setting where the shape surface is differentiable, in order157

to provide an analogy with the discrete setting we are interested in.158

Given a closed, non-self-intersecting surface S ⊂ R3 with con-159

tinuous curvature and a finite set of curvature extrema and ridge160

curves, the interior Blum medial axis can be defined as the locus of161

centers of maximally inscribed spheres within the surface, together162

with their radii. This produces a skeleton composed of sphere cen-163

ters that is a Whitney stratified set M with a finite number of strata.164
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(a) Subdivision of a skeleton into sheets

(b) Surface mesh regions associated to each sheet of the skele-
ton

Figure 1: Global structures of the skeleton (a), and their consistency
with the surface mesh (b). The color coding in the figures shows
which global skeletal structures in (a) correspond to which global
shape structures in (b).

The points of M are traced out by the centers of the inscribing165

spheres resulting in a medial skeleton composed of smooth sur-166

faces and curves joined along well-understood singularities. A ra-167

dius function r is defined for each point of M, giving the associ-168

ated radius of the inscribing sphere. Intuitively, a Whitney strati-169

fied set is an arrangement of nicely behaved sets called strata, so170

that any non-empty intersection of strata is a manifold of lower di-171

mension, the intersection is transverse, and the tangent spaces of172

the strata converge appropriately at these intersections. See, for ex-173

ample, [Dam05] for details.174

In the case of the medial axis for the surface of a 3D shape, such175

as in Figure 2, each stratum is either a 2D medial sheet (in light blue176

in the figure), a 1D medial curve (in red – generically, these will be177

2D), an intersection point or curve where two higher dimensional178

strata meet (in black), or a boundary point or curve bounding a179

higher dimensional stratum (in blue). See [GK04] for an exhaustive180

classification of medial axis points. Away from singularities and181

sheet or curve boundaries, the degree of differentiability of M is182

equal to the degree of differentiability of S.183

As a stratified set, the points of M are generically one of three184

types, see Figure 2:185

1. Regular points in the interior of a top-dimensional stratum, in186

light blue. For regular points, the medial spheres are bitangent to187

S, which means that each point of M corresponds to two points188

of S, one on either side of M (“above" and “below").189

Figure 2: A skeleton structure in the continuous setting: a contin-
uous shape and its skeleton containing three medial sheets (and
corresponding strata). Regular skeleton points (in light blue) lie
in the interior of a skeleton sheet. They are bounded by singular
boundary points (in blue), and intersect at interior singular curves
(in black). The medial axis also contains two non-generic medial
strata of lower dimension, curves (in red).

2. Singular interior points where two strata intersect, in black.190

For singular interior points, the medial spheres will be at least191

tri-tangent to S, corresponding to the merging of bitangencies192

on at least two strata meeting along the singularity.193

3. Singular boundary points where the inscribing sphere oscu-194

lates at an extremum of at least one principal curvature, in blue.195

For singular boundary points, the medial sphere has only one196

tangency, the point of extremal curvature, corresponding to the197

merging of at least one bitangency where the points “above" and198

“below" merge into a single point.199

2.2. Discrete setting200

A primary contribution of our paper is to construct well-defined dis-201

crete versions of the medial structures described for differentiable202

shape surfaces in the previous section. In applications, the smooth203

surface S described above is typically replaced by a sampling of its204

points and connectivity between those points, a surface mesh con-205

sisting of vertices joined by edges and faces. Similarly, the smooth206

strata of the medial skeleton are replaced by a medial mesh. In what207

follows, we assume sampled points of a 3D shape surface are ver-208

tices in a Delaunay surface mesh S, with an induced medial mesh209

M. Points on M can then be computed as interior Voronoi vertices210

generated by the surface points. Because the Voronoi vertices will211

be centers of the circumspheres of its dual, the Delaunay tetrahe-212

dralization of the volume enclosed by S, the tetrahedra will provide213

a discrete analogue of medial balls in the smooth case. Similarly,214

distance from the Voronoi vertices to the surface points will pro-215

vide a discrete version of the radius function r. As the sampling216

on the surface becomes dense, converging to the smooth surface,217

a subset of this discrete medial skeleton converges to the smooth218

skeleton [DZ03].219

With this characterization, much of the structure from the dif-220

ferentiable setting carries over. The resulting discrete M will have221

three types of points, see Figure 3 for illustration:222

1. Regular points, in (3a). For regular points, each point of M223

will typically correspond to a tetrahedron that crosses the in-224

terior of S, with three points of S on one side of M and one225

point on the other side (“above" and “below"), see left, but other226
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V1

V2

V3

V4

N

V1

V2

V3

V4

N

(a) Regular nodes

V1

V1

V3
V4

N

(b) Singular node

V1

V2

V3

V4

N

(c) Boundary node

Figure 3: A sampling of some different (non-exhaustive) configu-
rations for a discrete medial node N, in blue, corresponding to dif-
ferent point type classifications of N. The vertices (Vi)i=1...4 are its
corresponding boundary points and tetrahedron. Among the tetra-
hedral edges, the green edges belong to the surface mesh and the
red dashed ones traverse the volume inside the 3D shape. Note that
the node N is not necessarily inside the tetrahedron.

configurations are possible such as two points above and two227

below [CDE∗00], see right.228

2. Singular interior points, in (3b). For singular interior points,229

the tetrahedron will correspond to the convergence of tetrahedra230

of regular points on at least two strata meeting along the singu-231

larity. In this case, there will be at least two sets of points above232

and below corresponding to at least three disconnected regions233

of the surface.234

3. Singular boundary points, but without a notion of tangency,235

in (3c). For singular boundary points, the points in S composing236

the tetrahedron will be adjacent and belong to a single connected237

component, with the two “sides" of M having converged.238

This framework gives the foundation for the structures we use to239

generate the strata of the discrete skeleton. Unfortunately, guaran-240

tees of topological and geometric coherence from the smooth set-241

ting do not automatically carry over, as rounding errors and other242

issues often lead to medial skeletons with more complicated struc-243

tures [TDS∗16]. Our algorithm addresses these issues to produce a244

geometrically coherent skeleton.245

3. Hierarchical structure of the discrete skeleton246

In what follows, we distinguish between local medial structures247

(e.g., medial points and neighbors, corresponding surface points248

and neighbors) and global medial structures (e.g., medial sheets,249

boundaries, singular sets). Our algorithm analyzes local structures250

to build coherent global structures.251

The constructions presented in this section are necessary for un-252

derstanding the algorithm in Section 4. We define the global medial253

structures in Section 3.5, which allow us to segment the surface254

correspondingly in Section 3.2. In section 3.3, we present the local255

medial structures, derived from the Voronoi and Delaunay duality256

linking the surface mesh to the medial mesh, that provide the basis257

for the global structures and also for the simplification of the me-258

dial skeleton. Section 3.4 describes how the global structures are259

obtained from the local structures. Finally, section 3.5 describes260

how we compute the simplified 3D medial axis.261

3.1. Global structures of the discrete skeleton262

Medial sheets are typically two-dimensional for a 3D shape, but263

can also be one-dimensional. Sheet boundaries and singular paths264

are typically one-dimensional, but can also be zero-dimensional.265

For simplicity, we present our algorithm for two-dimensional case,266

but the process is analogous in the one-dimensional or zero-267

dimensional cases.268

Sheets, the top-dimensional strata described in Section 2, are the269

fundamental building blocks of the skeleton. We define a discrete270

sheet of the medial axis to be a connected set of regular medial271

points for which the corresponding regions on the surface mesh272

have two connected components, together with any neighboring273

singular points (corresponding to more than two connected com-274

ponents) or boundary points (corresponding to one connected com-275

ponent) (see Figure 3). Each sheet corresponds to one or more con-276

nected portions of the input surface mesh. Furthermore, each sheet277

has two sides, and can be therefore viewed as two oriented sheets,278

where each oriented sheet corresponds to a different side of the sur-279

face mesh, “above" or “below", see Figures 4a and 4b).280

The non-regular medial points associated to a sheet are members281

of either a boundary path, Figure 4c, corresponding to the ridge282

curves on the shape surface where the two sides of the surface cor-283

respondence of a medial sheet have merged, or a singular path,284

Figure 4d, where two medial sheets intersect, or both. The bound-285

ary and singular paths are typically 1D strata. Boundary paths with286

no singular points belong to a single sheet, but all singular paths287

belong to multiple sheets. When boundary points are also singular,288

it is because a singular set has intersected a boundary path.289

These global medial structures correspond to structures on the290

surface mesh S. Sheets correspond to coherent regions of the shape291

surface, such as protrusions. Boundary paths correspond to curva-292

ture extrema in the surface, such as ridges. Singular paths corre-293

spond to closed paths on the surface delineating connections be-294

tween coherent shape regions. Finally, we note that a path within a295

sheet, which means a path of regular points, generates two paths on296

the shape surface: one “above" and one “below". This means that297

each surface path can be attributed to one of the two oriented sheets298

associated to a medial sheet.299

3.2. Segmenting the surface using sheets and paths300

Using these global structures, we can segment the shape surface301

into coherent regions. In Figure 4, we associate the singular path302
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(a) Mesh portion covered by the
lower main sheet in darker gray

(b) Mesh portion covered by the up-
per main sheet in dark gray

(c) Boundary paths are dashed (d) Singular path is dashed

Figure 4: Correspondences between skeletal structures and surface
regions. Solid line boundary paths (darker blue) and singular paths
(black) represent paths on the mesh. Dashed paths represent the
corresponding paths on the surface mesh. (a) The medial boundary
path of the main (horizontal) sheet separates the surface into two
regions, above and below, with the lower region shown in darker
gray. (b) The upper surface region, however, is interrupted by re-
gion associated to the smaller medial sheet that is connected to one
side of the main sheet. The singular path separating the two sheets
corresponds to the black dashed path on the surface mesh and the
resulting dark gray region corresponds to the surface that is above
the main sheet. (c) If a medial boundary path is not a closed loop,
the surface path will also not be a loop, as can be seen in the sur-
face path generated by the medial boundary of the smaller sheet.
If a medial boundary path is a loop, the corresponding path on the
surface mesh will also be a loop, as can be seen in the surface path
generated by boundary of the main medial sheet. (d) For medial
singular paths, in contrast, a medial path that is an interval can cor-
respond to a surface path that is a loop, as can be seen in the path
on the surface mesh that corresponds to the closed black medial
singular path.

separating two sheets to a closed path on the shape surface that303

delineates the coherent surface region associated to that sheet. In304

Figure 4, consider the upper part of the object where there is a305

small medial sheet connected to the larger one. The small sheet306

corresponds to a small portion of the surface of the object that is307

surrounded by the dashed black loop induced by the black singu-308

lar path at the base of the medial sheet. Repeating this analysis for309

each sheet in a medial axis produces a segmentation of the shape310

boundary where shape segments are bounded by surface loops in-311

duced by singular paths in the medial axis. This will be important in312

Section 4 where we determine whether or not to compute a sheet in313

the medial axis by evaluating the contribution of the corresponding314

shape segment to the overall shape.315

3.3. Local structures of the discrete skeleton316

The global structures described in the previous section can be317

formed by aggregation of the appropriate local structures. Philo-318

sophically, the aggregation is straightforward – join connected sets319

of points that are regular, or singular, or boundary – but many lo-320

cal degeneracies arise in practice (some of which are collected in321

Appendix A) that make the process challenging. We now define the322

local structures that will allow us to generate global structures.323

3.3.1. Voronoi and Delaunay duality between the skeleton and324

the surface mesh325

Based on a Delaunay triangulation of a surface mesh S, we con-326

struct the Delaunay tetrahedralization T of the volume of the inte-327

rior of S. T is the dual of the Voronoi diagram V of the vertices of328

S. Each of S, M, T , and V have vertices, edges, and faces, and T329

also has tetrahedra.330

All vertices of T are vertices of the surface mesh. Note that while331

all edges and faces of S belong to the Delaunay tetrahedralization332

T , only a subset of edges and faces of T belong to S. Because of333

the number of types of collections of vertices, edges, and faces,334

we specify vocabulary and color-code mesh elements consistently335

in the text and figures to distinguish between them. All vertices,336

edges, faces (triangles in the general setting), and volumes (tetra-337

hedra in the general setting) belonging to the Delaunay tetrahedral-338

ization are colored in red. We identify the edges and faces that cross339

the volume of the interior of S by appending the word volumetric.340

The faces of the Delaunay tetrahedralization that are also faces of341

the surface S are colored in green and carry the word surface.342

Similarly for V , almost all vertices interior to S belong to the me-343

dial mesh M [DZ03], while only a subset of the edges and faces344

of V are contained in M. The elements in the Voronoi diagram V345

are colored in dark blue except for the subset of the elements that346

belong to the medial axis M, which are lighter blue. We refer to347

the faces of V as Voronoi faces to emphasize that they are not typi-348

cally triangular. Identifying the faces, edges, and vertices of V that349

are completely inside the volume bounded by S defines the interior350

discrete medial axis that is our primary object of study. Note that351

there are also Voronoi vertices, edges, and faces that are completely352

outside the volume bounded by S. These define an exterior medial353

skeleton that we do not study here.354

Figure 5: Difference between volumetric and surface tetrahedral
components. Surface edges and faces (green) lie on the mesh of the
object, while volumetric edges and faces (red) cross the volume of
the object. The shapes of the drawn tetrahedra refer to Figure 3.

We illustrate the local constructions more precisely next, empha-355

sizing the duality between them: the Delaunay tetrahedralization356
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T , which is primal, creates connectivity between surface vertices357

through the shape interior. In the typical case, this generates:358

• edges, joining two surface points, that may be a surface edge359

(Figures 5 and 3, plain green edges), or volumetric edges (Fig-360

ures 5 and 3, dashed red edges);361

• triangles, joining three surface points, that may be a surface tri-362

angle in which case, its three edges are also surface edges (Fig-363

ures 5 and 3, green triangles), or a volumetric triangle (Figures 5364

and 3, red triangles);365

• tetrahedron, joining four surface points that are volumetric, since366

we consider only the interior Delaunay tetrahedra (Figures 5, red367

tetrahedra).368

These primal elements have corresponding dual elements in V :369

• tetrahedra correspond to Voronoi vertices which are centers of370

the circumspheres of the tetrahedra;371

• tetrahedral faces correspond to Voronoi edges;372

• tetrahedral edges correspond to Voronoi faces. Note that a me-373

dial face, and more generally a Voronoi face, is a planar polygon374

since it lies on the medial plane of the dual edge and can have an375

arbitrary number of nodes.376

• medial vertices are a subset of Voronoi vertices and we denote377

them as nodes;378

• medial edges are a subset of Voronoi edges;379

• medial faces are a subset of Voronoi faces.380

We construct our simplified medial axis by exploring the Voronoi381

diagram to determine which elements to include in the medial axis,382

and then computing the medial axis components according to their383

importance to the overall shape as measured by the Hausdorff dis-384

tance between the original corresponding surface points and the385

simplified version. The process requires both local and global con-386

siderations of both primal and dual components.387

Around a given medial edge, there can be as many Voronoi faces388

as there are Delaunay edges (including volumetric edges and sur-389

face edges) around the associated Delaunay face. This means that390

edges are not necessarily surrounded by 3 Voronoi faces. A Voronoi391

face dual to a Delaunay edge that belongs to the surface, that is, dual392

to a surface edge, is called an open Voronoi face, cf. Figure 6. An393

open Voronoi face contains a node that is outside the shape bound-394

ary. This type of Voronoi face does not belong to the skeleton of395

the medial axis, because it is not entirely contained in the interior396

S. This allows us to filter out Voronoi face that are not part of the397

interior medial axis.398

Using the same idea, an open edge is associated to a Delaunay399

face that belongs to the surface mesh. For this type of edge, one400

of its extremities is a Voronoi nodes on the inner medial axis, and401

the other one is a Voronoi vertex on the outer medial axis. Like the402

open Voronoi face, the open edge therefore crosses the surface S.403

Naturally, an open Voronoi face contains at least one open edge.404

These edges do not belong to the medial mesh.405

3.3.2. Oriented medial edges and faces406

As discussed in Section 3.2, medial sheets comprising the skele-407

ton have two sides; each side corresponds to a region of the shape408

surface that is either “above" or “below." This two-sidedness also409

Figure 6: Illustration of the relationship between skeleton and sur-
face components. An open skeletal edge (dashed blue) is associated
to its dual, a surface mesh face (green triangle). An open face, con-
taining open edges is associated to its dual, a surface mesh edge
(green). This kind of face contains edges that lie on both the inter-
nal and the external skeletons. A Delaunay triangle (red) is asso-
ciated to its dual, a skeletal edge (black), and each of its crossing
edges (dashed red) is associated to its dual, a skeletal face.

applies to our local structures, producing two-sided edges and two-410

sided face that we denote by half edges and half facets, as in411

[DRJ15]. As shown in Figure 7, on a degree 3 edge, three face412

are connected, which gives six half facet. In total, six half edges are413

derived from a degree 3 edge, one for each half facet. For example,414

viewing a singular path as composed of a succession of half edges415

will result in a path that lies on a single side of a sheet.416

We distinguish between the edges that are above and those be-417

low by defining two half edges for each edge in the medial mesh.418

These half edges will have orientations, moving in sequential or-419

der around an medial face. The half edges are in counter-clockwise420

order around the medial face, with respect to its normal vector. As421

there are two possibilities for the normal orientation, there are two422

sets of half edges, which are associated to the two sides of the me-423

dial face. A half medial face consists of all the half edges that are on424

the same side. Using the resulting graph structure to represent the425

skeleton, we can easily navigate between the medial faces, edges426

and vertices and their corresponding surface regions from the con-427

nectivity information, and we can resolve ambiguities about neigh-428

boring medial faces, since a neighbor must be on the same side of429

the medial mesh.430

3.4. Building global from local431

We now aggregate the local structures described in Section 3.3 into432

the global medial structures described in 3.1. In other words, we433

determine medial sheets and identify which of its nodes and edges434

are regular, singular, or belonging to the sheet boundary.435

Each sheet is a subset of the medial faces of the skeleton. Two436

medial faces are on the same sheet if there exists a path of medial437

faces between them such that any two successive medial faces are438

separated by a regular edge. Collecting all medial faces contained439

in the same sheet produces the mesh for that sheet.440

It remains to determine the regularity or singularity of the nodes441
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Figure 7: Representation of the half edges around a (black) singular
medial edge, from different views (up left, up right, below). Around
this degree 3 edge, there are 6 half edges represented by the black
arrows. Each pair of (black arrows) half edges represents a different
area on the surface mesh.

and edges within a (non-oriented) sheet. Recall that the degree of an442

edge is defined by the number of medial faces containing the edge.443

A singular edge is then an edge of degree 3 or more, a boundary444

edge is an edge of degree 1, and a regular edge is an edge of degree445

2. These edges may belong to multiple sheets.446

We now consider the half edges and how they compose paths447

on a sheet (cf. Figure 8). Since each half edge is associated to a448

half medial face, each of them will be associated to a unique sheet.449

Note that an open path of full medial edges corresponds to a closed450

path of half edges: one traversal of successive edges on one side of451

the sheet and another traversal of the same edges on the other side452

but with the opposite orientation. We say that two half edges are453

successive if they respect the following conditions:454

• The last node of one half edge is the first node of the other,455

• Their associated half medial faces are neighbors (or are the456

same).457

A half singular path, or singular path (as every path in what458

follows will now be half edges) is defined by a set of successive459

half singular edges (degree 3 or more). As there are opposite half460

edges for each edge on an medial face, each singular path can be461

associated to an opposite singular path (cf. Figure 8).462

Finally, a boundary path is a set of successive half boundary463

edges. As there are two half boundary edges for each boundary464

Figure 8: A path on the skeleton is a sequence of half edges. Here,
we can see two sides of the same skeleton, where two paths are
drawn (yellow and purple), representing the same (black) singular
edges. By construction of half edges, these paths have opposite di-
rection. Note that green and purple half paths do not lie on the same
medial faces, and therefore are not on the same sheet.

edge on an medial face, a boundary path will be traced out twice by465

half paths, one on each side of the sheet.466

In the following, we consider a specific subset of boundary and467

singular paths, such that all the half edges composing them are on468

the same sheet. In the case of the boundary path, it will help to sim-469

plify the boundary of a single sheet, and in the case of the singular470

path, it will separate a given sheet from other sheets.471

3.4.1. Medial mesh and surface mesh correspondence472

Given the global structures on the medial axis, we can recover the473

corresponding regions on the surface mesh (cf. Figure 9). Each se-474

quence of half edges on the skeleton corresponds to a path on the475

surface mesh as follows: each half edge is associated to a half me-476

dial face on one side of the skeleton, and therefore determines one477

vertex of the surface mesh (the center of the unique Voronoi cell on478

which the half medial face lies). Therefore, the sequence of medial479

faces associated to the sequence of half edges gives us a sequence480

of vertices on the surface mesh. Indeed, if two medial faces are481

neighbors, the associated surface vertices are on the same Delau-482

nay triangle. As they are on the same side by construction of the483

path, they necessarily are neighbors.484

When this sequence of half edges corresponds to tracing out a485

half path loop along the entirety of a singular path, it generates486

a closed path on the surface mesh that distinguishes the surface487

region corresponding to the current sheet from the rest of the the488

shape surface.489

While we primarily consider the paths on the surface mesh in-490

duced by singular skeletal paths, note that any skeletal path can be491

associated to a path on the surface mesh. For example, a boundary492

skeletal path, as it is two-sided, induces two closed paths on the sur-493

face mesh: each vertex and face between those paths is associated494

to a boundary skeletal node.495

3.5. Evaluation of the significance of new sheets496

Once a sheet has been computed, its singular edges are used to497

detect the singular paths that separate the current sheet from its498
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Figure 9: A (black) singular path on the skeleton associated to a
(black) surface mesh path, whose vertices are the centers of the five
Voronoi cells the path is crossing (as each medial face is separating
two Voronoi cells). The computed surface path surrounds a surface
portion for which we can evaluate an ε-significance.

neighbor sheets. Suppose we are given a tolerance parameter ε. We499

only wish to compute those neighbor sheets that correspond to a500

surface region, as described in 3.4.1, that has significance greater501

than ε, where significance is measured by Hausdorff distance to the502

original surface.503

Consider a singular path contained within a computed sheet. The504

singular path corresponds both to a set of medial spheres centered505

at its nodes, and also to the corresponding surface region for the506

neighbor sheet whose significance we wish to determine. If the507

Hausdorff distance between the vertices of the surface region and508

the medial spheres is greater than ε, the neighbor sheet is computed.509

Otherwise, the sheet may be ignored: this means that the surface re-510

gion is entirely covered by existing spheres of the skeleton, with a511

radius increased by ε (cf. Figure 10).512

Figure 10: Illustration of the ε criterion. A tetrahedron corresponds
to a unique medial ball, passing through its four vertices. Adding ε

to the radius of the ball, we obtain a new (dashed) sphere, covering
other vertices of the surface mesh.

4. Computing a topologically coherent and simplified skeleton513

representing an ε-approximation of the surface mesh514

We now describe how to compute a simplified skeleton from an515

input surface mesh. Using the structures developed in the previous516

sections, we compute a provably, topologically coherent skeletal517

structure sheet by sheet and check if each sheet is significant for518

representing an ε approximation of the original shape in terms of519

the Hausdorff distance. As input, this method assumes a Delaunay520

triangular mesh (cf. 4.1). The pseudocode of the algorithm is given521

in Algorithm 1.522

ALGORITHM 1: Skeletonization.
Input : M: Delaunay mesh
Input : ε: Hausdorff distance parameter
Output: S: Simplified skeleton
Let Mw be a working copy of M
Compute Delaunay tetrahedralization of Mw

Estimate a first medial face F of the skeleton
Compute full sheet S containing F
Let ls be the list of degree 3 half edges on S
while ls not empty do

E = pop_ f ront(ls)
Eext = half edge neighboring E, on neighbor sheet
P = singular path containing Eext , on neighbor sheet
C = set of faces on Mw covered by neighbor sheet
d = maximal distance between skeletal spheres on P and mesh

vertices on C
if d < ε then

Remove faces C from Mw

D = set of internal Delaunay faces closing the hole
Add faces D to Mw

else
Compute neighbor sheet Si
Add list of degree 3 half edges on Si to ls

end
end
Let lb be the list of degree 1 half edges on skeleton
while lb not empty do

E = steepest half edge of lb
F = set of medial faces containing E and En

P = singular path separating F from the computed skeleton
C = set of faces on Mw covered by the sheet beyond P
d = distance between skeletal spheres on P and mesh vertices

on C
if d < ε then

Remove faces C from Mw

D = set of internal Delaunay faces closing the hole
Add faces D to Mw

end
Let lp be the list of problematic half edges on skeleton
while lp not empty do

E = pop_ f ront(lp)
P = problematic path containing E
F = set of medial faces separated by P
Set edges of P singular
Assign new label to faces of F

end

The algorithm proceeds through all sheets in the medial axis of523

the input mesh, computing those with significance above the thresh-524

old ε. We summmarize the pipeline here, then detail each step in the525
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paragraphs that follow. To begin, we compute a first sheet, starting526

from a first medial face (cf. 4.2) and aggregating neighboring me-527

dial faces into a complete sheet (cf. 4.3). Each singular medial edge528

is attached to a new sheet. We compute the singular path connecting529

this sheet (cf. 4.4) and determine if the significance if the sheet is530

greater than ε (cf. 3.5). If not, we discard the skeleton propagation531

to the insignificant sheet. If the sheet is relevant, we allow the prop-532

agation to compute the sheet. Repeating this operation over each533

half singular path linking a sheet will produce the full skeleton of534

ε-significant sheets. We then simplify the skeleton boundaries ac-535

cording to the same ε criterion, removing medial faces when pos-536

sible (cf. 4.6). This step highly simplifies the resulting skeleton,537

removing small peaks along sheet boundaries. Finally, we ensure538

the sheet is manifold, removing problematic paths that create de-539

generate geometry (cf. 4.7).540

4.1. Input mesh541

The input of this algorithm is a Delaunay triangular mesh bounding542

a 3D shape. Each triangle of such a mesh is on a Delaunay tetra-543

hedron: thus a Delaunay tetrahedron is either inside or outside the544

shape. As a consequence, we know which portion of the skeleton545

is inside, and which is outside, offering a clear labeling of outside546

and inside skeleton. Furthermore, because the mesh is Delaunay,547

a direct connection exists between the connectivity of the skeleton548

and the connectivity of the surface mesh, and between the topology549

of the skeleton and the topology of the surface mesh.550

A Delaunay triangular mesh can be built from a given manifold551

surface mesh (cf. [DZM07]), using edges flipping and splitting. The552

vertices of the original mesh are preserved in the Delaunay mesh,553

and the skeletal structure we compute can still be applied to the554

non-Delaunay version of a mesh, though the duality will not be555

preserved. We also note that, since the atomic operations applied to556

convert a mesh into a Delaunay mesh do not affect the topology of557

the mesh, topology is preserved between original mesh and Delau-558

nay mesh, and therefore maintains consistency with the skeleton.559

4.2. Computing the first medial face560

The algorithm starts with an initial medial face of the skeleton. We561

first choose a node of the skeleton. This node will likely belong to562

multiple medial faces, and we select one.563

To compute the first node on the skeleton, we need to find an564

internal, or volumetric, tetrahedron. We select an arbitrary triangle565

of the surface mesh. As the mesh itself is a subset of the Delaunay566

tetrahedralization, this triangle is necessarily a face of a tetrahe-567

dron. Once this triangle is chosen, two tetrahedra are candidates to568

be our first tetrahedron: one interior and one exterior to the shape569

volume. Using the orientation of the mesh surface, we can deter-570

mine which one is interior, which gives us a first interior medial571

node. Finally, to avoid choosing a first medial node that is not sig-572

nificant, we detect the neighboring node with a maximal radius (as573

each interior tetrahedron corresponds to a medial sphere), and it-574

erate this operation so that that chosen initial node has a locally575

maximal radius.576

Finally, the first medial face is randomly chosen from the medial577

faces surrounding the chosen node. More precisely, as an medial578

face is the dual of a volumetric edge, we choose one volumetric579

edge among the edges of the chosen interior tetrahedron which de-580

termines an medial face.581

4.3. Single sheet propagation582

We will assign a label to each skeletal sheet. To compute a sheet, we583

start from a first medial face, which we label. We then add all the584

neighbor medial faces sharing a regular edge in a propagation pro-585

cess, and assign the same label to them. We repeat the propagation586

for each added face, labeling the medial faces until no neighboring587

unlabelled medial faces sharing a regular edge remain. This pro-588

cess ends because the boundaries of sheets consist of singular or589

boundary edges which are not regular edges, and a medial sheet for590

a finite volume discrete surface mesh will have a finite number of591

medial faces.592

4.4. Singular paths computation593

For each half singular edge on the boundary of the processed me-594

dial sheet, a half singular edge on a neighbor sheet can be identified.595

From this neighbor half singular edge, a half singular path can be596

estimated, which is associated to the neighbor sheet. (As described597

in Section 3.4, a half singular path in a sheet is a set of successive598

half singular edges belonging to the same sheet.) Recall that a full599

singular path corresponds to a closed loop of half singular edges600

that trace out the full path twice but in opposite directions (see e.g.601

Figure 8).602

We start from a half singular edge to form the candidate list ls603

and identify a neighboring half singular edge (cf. Figure 11) using604

Algorithm 2. We iterate until the loop of half edges closes, and605

returns the complete singular path. We then remove every used half606

edge from the candidate list ls.607

ALGORITHM 2: Computing next half singular edge.
Input : Half singular edge pe
Output: Next half singular edge pe′

pe′ = pe
do

Find pe f , next half edge on same medial face than pe′

Find peo, opposite half edge of pe f , on the neighbor half
medial face

Find pe′, next half edge on same medial face than peo
while pe′ is not singular;

The result of this operation is sequence of half edges, called a608

singular path. A given singular path can be tested to identify in-609

significant sheets, according to ε parameter.610

4.5. Identifying an insignificant sheet beyond a singular path611

If a singular path separates the current sheet from a sheet that has612

been determined to be insignificant according to the ε criterion,613

we do not compute that sheet. In order to maintain the geometric614

relationship between the skeleton and the mesh, we also update615

the connectivity of the mesh when we do not compute a sheet (cf.616

Figure 12).617
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a

bc
d

e

f
g

h

i

Figure 11: Identifying the next half edge to compute a singular path
(here (a,d, i) ). The singular edges are in black. Two examples are
shown here. From a to d, we first take the next edge on the same
half medial face, b, then take the opposite edge to b, c. Finally,
we take the next edge to c, which is the singular edge d. More
generally, to go from d to i, the same steps are repeated on each
medial face until a singular half edge is found. Here, it is done
twice: through half edges e, f and g, h. At this point, the singular
path is composed by a, d and i. During this process, each visited
half medial face belongs to a unique Voronoi cell with associated
dual (green) boundary point. Each new point is stored as the next
vertex of the path. When the path closes, the result is a sequence of
(green) vertices creating a closed path on the boundary.

The main step in not computing a sheet is removing any interior618

tetrahedra from the object volume. This implies removing some619

vertices, namely vertices strictly within the region bounded by the620

corresponding surface path, and remeshing this portion of the sur-621

face, creating a new set of edges and faces to fill the hole.622

4.6. Simplifying boundaries623

Boundary paths for sheets are prone to noise. Using the same ε sig-624

nificance measure, we simplify sheet boundaries by removing some625

medial faces. We define the notion of steepness of a consecutive626

pair of half boundary edges to be the angle between them. At each627

step of the simplification (cf. Algorithm 1), we check the steepest628

consecutive half edges along the boundaries. We then compute the629

singular path separating those medial faces from the skeleton, and630

use it to check whether the sheet beyond the path can be removed631

using the ε criterion. If so, we remove the medial faces using same632

method as in 4.5.633

4.7. Handling problematic paths634

A computed sheet may contain some non-manifold edges. This635

happens when skeletal edges are connected to three medial faces636

that are labeled as belonging to the same sheet, violating the ge-637

ometry of regular edges contained in a sheet interior. We first label638

these edges problematic edges, that is, any edge belonging to three639

different medial faces but labeled as members of the same sheet640

(see Figure 13). To resolve the problematic edges, we wish to create641

(a) Path detection
(b) Modify the mesh to ignore a
sheet

Figure 12: Singular path detection and ignoring a sheet. Here, to ig-
nore the sheet, two edges, then three faces, are created on the mesh.
The mesh vertices inside the region are removed from the mesh.
To ignore the sheet, the mesh vertices within the closed boundary
path are removed from the mesh and the corresponding region is
re-triangulated. Note that that singular edges bordering the medial
path have become regular.

a new sheet, distinct from the current sheet, as shown in Figure 13.642

To determine the boundaries of the new sheet, we resolve a prob-643

lematic path by joining problematic edges together with selected644

regular edges to border and be part of a new sheet’s singular set.645

We then select the medial faces separated off by this path and cre-646

ate the new sheet by labeling them with a new label, as described647

in Algorithm 3. Splitting the new sheet from the original sheet re-648

solves the problematic edges.649

ALGORITHM 3: Correcting problematic edges.
Input : Problematic half edge pe
Output: Set of medial faces with new label
Output: Set of degree 2 edges set as singular
P = Path of problematic half edges containing pe
N = Extremity of P non connected directly to a boundary edge
S = Path of regular edges starting from N to boundary nodes of

skeleton
Set S edges singular
F = Separated skeletal faces
Assign new label to faces of F

5. Results650

To evaluate our methods, we apply them to 3D models from two651

popular databases using our implementation in Rust (https://652

github.com/Ibujah/compact-skel-3d):653

• The McGill database [SZM∗08], which aggregates different654

classical databases, such as Princeton’s, and the authors own655

models (http://www.cim.mcgill.ca/~shape/benchMark/).656

• The Lavoué database [LCSL18](https://perso.liris.657

cnrs.fr/guillaume.lavoue/data/saliency/).658

We require manifold meshes, and so all non-manifold mesh are dis-659

carded. Moreover, our algorithm assumes that we have Delaunay660



Durix et al. / A clean, robust 3D medial axis 11

(a) A continuous path containing problematic edges

(b) Adding artificial singular edges (dashed black) separates the
sheet in two parts and reformulates the problematic edges

Figure 13: An example of problematic edges, and their resolution.
A problematic edge belongs to three medial faces belonging to
the same sheet. Note that in (a), all medial faces belong to the
same sheet even though there are some faces connected by singu-
lar edges. In (a), the black edges are problematic because they are
not cleanly separating two sheets. This situation cannot be char-
acterized locally, but requires the full computation of the sheet to
detect. Our solution is to relabel appropriate regular edges as singu-
lar edges (new edge in dashed black in the bottom figure) in order
to split the affected medial faces into two separate sheets. In (b),
the medial faces surrounded by the yellow edges now belong to a
separate sheet. This means that singular edges (black edges in the
bottom figure) now belong to at most two medial faces belonging
to the same sheet.

meshes. Some meshes of these two databases are not Delaunay,661

and so we apply Dyer’s algorithm [DZM07] to convert them to De-662

launay.663

In total, we have tested our algorithm on 411 models (in sup-664

plementary material), with meshes with between 3000 and 30,000665

vertices in the McGill database, and around 20,000 vertices in the666

Lavoué database. Skeletonization takes in average less than one667

minute per mesh, depending on the complexity of the given model.668

Some examples are shown on Figure 14. For these examples,669

we set ε as 1% of the bounding box diagonal. Our algorithm can670

accept Delaunay meshes of arbitrary genus. As shown in Figure671

14, our algorithm separates the skeleton into different sheets which672

are highlighted (right side of figure), and these sheets correspond673

to surface mesh regions (left side of figure). The structure of the674

skeleton is then easily accessible and usable.675

In Figure 18, we compare our approach to Voxel Core [YLJ18]676

Figure 14: Skeletons computed with our algorithm, with ε = 0.01.
To highlight the link between skeletal sheets and mesh portions,
we use the same color for a skeletal sheet (right) and its associated
mesh portion (left).

and Scale Axis Transform (SAT) [MGP10]. Our method consis-677

tently retains salient shape features across different types of shape678

configurations, unlike the other two, while maintaining a similar679

level of cleanliness. For example, SAT erodes important regions of680

the body of the bunny. Similarly, Voxel Core erodes important re-681

gions of the tool (bottom left) and the head and the wings of the682

dragon, as well as legs of the chair. This is because our method683

explicitly preserves ε-fidelity with the input surface vertices while684

simultaneously seeking geometric coherence. In other words, we685

have the additional advantage that we maintain geometric consis-686

tency with the surface mesh.687

In Figure 15, we show skeletons of the same object computed688

with different values of ε. As ε increases from 0.00, to 0.01, and689
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to 0.05, successive sheets are removed, but we can see a larger dif-690

ference between 0.00 and 0.01 than between 0.01 and 0.05. This691

may suggest that each input shape has an intrinsically appropriate692

ε value.693

Figure 16 shows skeleton computed with ε = 0. These skeletons694

have many spurious peaks.695

Figure 17 shows effects of noise in the input surface mesh. We696

observe that even if more skeletal peaks are present on the thin697

parts, the global skeleton stays clean.698

6. Conclusion699

In this article, we present a 3D skeletonization approach to produce700

a simplified and geometrically consistent medial axis. Our algo-701

rithm identifies the primary structures in the medial skeleton, which702

are medial sheets and curves, and their boundaries, which are singu-703

lar or boundary structures. These structures are topologically valid,704

manifold, and cleanly separated, thereby maintaining the Whitney705

stratified structure of the Blum medial axis in the discrete set-706

ting. Furthermore, we maintain the relationship between the sur-707

face mesh and the medial axis by associating nodes, edges, and708

medial faces of the skeleton with tetrahedra, triangles and edges of709

the Delaunay structure generated by the surface mesh points.710

Using these medial structures, we compute a simplified skeleton,711

excluding insignificant sheets. Using the geometric links between712

the mesh and the skeleton, we evaluate the relevance of a skeletal713

sheet by evaluating the deviation from the surface mesh that would714

result from removing the surface region associated to that sheet. As715

a result, we do not compute insignificant sheets for which the Haus-716

dorff distance of the points in the associated region of the surface717

mesh to the remaining surface points is lower than an ε threshold.718

Future work might explore the relationship between the noise719

level of the surface mesh and optimal ε values for several distribu-720

tions of noise. Additionally, exploring preprocessing approaches to721

allow for more general formats for surface data beyond Delaunay722

meshes would be useful.723

(a) ε = 0 (b) ε = 0.01 (c) ε = 0.05

Figure 15: Comparison of the same skeleton with different ε values.
Between 15a and 15b, we can see that most of the noisy peaks were
removed. Few sheets were removed between 15b and 15c.

Appendix A: Irregularities of the discrete skeleton724

Generating the medial mesh from the Voronoi/Delaunay structures725

of the surface mesh, even a nice one, can produce geometric irreg-726

Figure 16: Computed skeleton without simplification (ε = 0). Un-
wanted peaks appear, including peaks going outside of the mesh.

ularities. These can be classified into two different categories: nu-727

merical problems, which come from the fact we manipulate floating728

point numbers instead of real numbers, and discrete skeleton prob-729

lems, which are problems arising from particular configurations of730

the surface points, potentially breaking the properties of continuous731

skeletons.732

• There can be more than 4 mesh points on a particular sphere, and733

more than 3 points on a Delaunay face. Tetrahedra and triangles734

are the most frequent type of Delaunay polyhedra, but not the735

only one. The Delaunay library we use, Tetgen [Si15] computes736

only standard tetrahedra, which avoids the problem, but this can737

result in flat (very low volume) tetrahedra.738

• More than three sheets can share the same singular set, which739

means singular paths can lie on more than three sheets. There-740

fore, when separating two sheets, several half singular paths can741

be computed. When we test if a new sheet has to be computed,742

we compute the half singular path which lies on the new sheet743

(as explained in 4.4).744

• Though it is rare, some “sheets" may be one-dimensional in cer-745

tain places or in their entirety (for example, an arm that is a long746

circular cylinder will have a curve as its skeleton). We handle747

these cases separately: instead of propagating medial faces, we748

compute successive degree 0 edges.749

• Two singular paths can cross each other: this situation is not750

generic behavior in the continuous setting, but can happen in the751

discrete setting.752

• Some medial nodes can be associated to a sphere outside the753

mesh (cf. Figure 16). This is because, for some interior boundary754

tetrahedra, the associated sphere center will be outside of the755

mesh. This can happen due to overly coarse surface sampling or756

to flat tetrahedra. Our algorithm detects and removes these nodes757

by removing the associated tetrahedra.758
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(a) Skeleton and mesh without noise

(b) Skeleton and mesh with noise

Figure 17: Effect of the mesh noise on the skeleton (ε = 0.01).

• As shown on Figure 13, some edges can be problematic, as they759

separate three medial faces from the same sheet. This problem,760

specific to the discrete case, is addressed in Section 4.7.761
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Figure 18: Comparison between our approach (ε = 0.01), voxelcore (λ = 0.04) and scale-axis-transform (s = 1.1). Because of the resolution
of the image it seems that the skeleton disconnects but the topology of the skeleton is kept in all approaches.
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Figure 19: Some skeletons computed by our method (ε = 0.01).


