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Computing the medial axis of a 3D surface mesh is challenging. Points on the discrete medial axis can be defined as interior Voronoï vertices of the surface mesh, but the resulting medial structure rarely has clean connectivity and consistent geometry. In this paper, we provide a medial axis computation based on the Voronoï diagram able to generate manifold medial sheets with coherent topology and geometry, generating consistent geometric structures similar to those in the continuous setting. Because of the correspondences between the surface mesh and resulting medial mesh, we also provide an efficient method for separating the shape into coherent regions associated to medial structures. This correspondence allows for a medial-axis-based filtration of surface structures to generate a Hausdorff ε-approximation of the surface points based on a simplified medial axis, thereby providing a robust medial representation with guaranteed surface approximation.

Introduction

Medial representations are quite popular in computer graphics because they combine implicit and explicit shape representations, and offer a lower dimensional model of a 3D shape, the skeleton, that captures the geometric information from the boundary, while a radius or distance function describes the interior of the shape. The first such model, the Blum medial axis, was introduced in [Blu73] for 2D shapes. It consists of a skeleton and a radius function defined at each point of the skeleton that gives the distance of the skeleton point to the boundary. A useful discretization of the Blum medial axis relies on a shape's Delaunay triangulation and its dual, the Voronoi diagram.

As described in [TDS * 16], several approaches exist to compute a full skeleton. Voxel-based methods [HR08, ADBS11] which are a 3D version of classical 2D thinning methods, easily maintain the structure of the shape, and can be less subject to noise. In [JST15], the voxel grid is the support of a mass transport process, leading to a multiscale, simplified skeleton. In [START_REF] Yan | Voxel cores: Efficient, robust, and provably good approximation of 3d medial axes[END_REF], the authors use a Delaunay tetrahedralization of the open voxels of a shape boundary to compute a voxel core that converges to the true medial axis as the voxelization of the shape becomes dense. A separate pruning step then removes noisy elements in the voxel core with a guarantee on the approximation and the homotopy equivalence. In these approaches, the shape must first be converted to a voxel grid, and its sampling density is directly linked to the skeleton accuracy, thereby introducing an additional parameter to the model. Also, in the voxel based approaches, no global and topologically coher-ent structure of the skeleton is available. Other methods compute through the scale axis transform that takes into account a scaling of medial balls, but the approach results in some artifacts that require a separate pruning step. This method has generated multiple variants and improvements [LWS * 15, PWG * 19] that produce a simplification of a Voronoi skeleton. However, these methods do not maintain a robust link to the 3D mesh. In contrast, our goal in the current work is to be independent of a pruning step. We both maintain global connectivity consistency in the structure of the medial axis and geometric consistency with the surface mesh, in the sense that the Delaunay tetradhedralization of the output surface mesh is dual to the output Voronoi skeleton.

Many researchers compute a curve skeleton, which is a network of curves, instead of the full skeleton in 3D, [CSM07, SYJT13].

A curve skeleton is appealing because it addresses the previously mentioned instability while capturing most of the major structures of the shape. It can be estimated by mesh contraction [ATC * 08, LW18, ZLZ20], or through the computation of a 3D skeleton [DS06, TAOZ12], or directly from the mesh, using tools such as local separators [BR21]. Curve skeletons necessarily maintain only a weak relationship to the surface mesh, however, and there are some shape structures (funnel shapes, for example) that are not well-suited for description by a single curve.

Depending on particular goals and applications for a skeletal model, different properties of the skeleton may be desired, such as continuity, connectivity, geometric correspondence with the boundary, or a particular level of simplicity. These variations in goals have produced variations in skeletonization algorithms that make different trade-offs, as the work cited in the previous paragraphs demonstrates. In this article, we take as input a Delaunay surface mesh of a shape and compute a medial axis that has a full array of desirable properties. This approach is similar to a 2D skeletonization method by propagation [DCL * 19, DMC * 19], where the skeleton is computed step by step, and where a Hausdorff distance criterion identifies noise so that insignificant parts of the medial axis are not computed. The next section describes this simplified skeletonization.

Simplified skeletonization

In this paper, we present a method to compute a simplified, robust medial axis for a 3D shape from a Delaunay input mesh representing the shape surface. Our approach is based on a propagation of medial balls, or equivalently, Delaunay tetrahedra, which means we do not require a pruning step. A Delaunay tetrahedron is a tetrahedron such that its circumscribed sphere does not contain any other point from the surface mesh. Therefore, each skeletal point is associated to a tetrahedron, and the edges between skeletal points are associated to tetrahedra that share faces. Finally, a Delaunay mesh is a mesh for which each triangle is a triangle from a Delaunay tetrahedron. Local geometry is combined into a global structure on the skeleton, which is then used for the simplification analysis. This In this section, we recall the structure of the medial axis in the 156 smooth setting where the shape surface is differentiable, in order 157 to provide an analogy with the discrete setting we are interested in. In the case of the medial axis for the surface of a 3D shape, such 175 as in Figure 2, each stratum is either a 2D medial sheet (in light blue 176 in the figure), a 1D medial curve (in red -generically, these will be Figure 2: A skeleton structure in the continuous setting: a continuous shape and its skeleton containing three medial sheets (and corresponding strata). Regular skeleton points (in light blue) lie in the interior of a skeleton sheet. They are bounded by singular boundary points (in blue), and intersect at interior singular curves (in black). The medial axis also contains two non-generic medial strata of lower dimension, curves (in red).

2. Singular interior points where two strata intersect, in black.
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For singular interior points, the medial spheres will be at least point on the other side ("above" and "below"), see left, but other

V 1 V 2 V 3 V 4 N V 1 V 2 V 3 V 4 N (a) Regular nodes V 1 V 1 V 3 V 4 N (b) Singular node V 1 V 2 V 3 V 4 N (c) Boundary node
Figure 3: A sampling of some different (non-exhaustive) configurations for a discrete medial node N, in blue, corresponding to different point type classifications of N. The vertices (V i ) i=1...4 are its corresponding boundary points and tetrahedron. Among the tetrahedral edges, the green edges belong to the surface mesh and the red dashed ones traverse the volume inside the 3D shape. Note that the node N is not necessarily inside the tetrahedron.

configurations are possible such as two points above and two where each oriented sheet corresponds to a different side of the sur-279 face mesh, "above" or "below", see Figures 4a and4b). The upper surface region, however, is interrupted by region associated to the smaller medial sheet that is connected to one side of the main sheet. The singular path separating the two sheets corresponds to the black dashed path on the surface mesh and the resulting dark gray region corresponds to the surface that is above the main sheet. (c) If a medial boundary path is not a closed loop, the surface path will also not be a loop, as can be seen in the surface path generated by the medial boundary of the smaller sheet. If a medial boundary path is a loop, the corresponding path on the surface mesh will also be a loop, as can be seen in the surface path generated by boundary of the main medial sheet. (d) For medial singular paths, in contrast, a medial path that is an interval can correspond to a surface path that is a loop, as can be seen in the path on the surface mesh that corresponds to the closed black medial singular path.

separating two sheets to a closed path on the shape surface that These primal elements have corresponding dual elements in V :

• tetrahedra correspond to Voronoi vertices which are centers of the circumspheres of the tetrahedra;

• tetrahedral faces correspond to Voronoi edges;

• tetrahedral edges correspond to Voronoi faces. Note that a medial face, and more generally a Voronoi face, is a planar polygon since it lies on the medial plane of the dual edge and can have an arbitrary number of nodes.

• medial vertices are a subset of Voronoi vertices and we denote them as nodes;

• medial edges are a subset of Voronoi edges;

• medial faces are a subset of Voronoi faces.

We construct our simplified medial axis by exploring the Voronoi Naturally, an open Voronoi face contains at least one open edge.

These edges do not belong to the medial mesh.

Oriented medial edges and faces

As discussed in Section 3.2, medial sheets comprising the skeleton have two sides; each side corresponds to a region of the shape surface that is either "above" or "below." This two-sidedness also will result in a path that lies on a single side of a sheet.
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We distinguish between the edges that are above and those be- and edges within a (non-oriented) sheet. Recall that the degree of an 442 edge is defined by the number of medial faces containing the edge.
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A singular edge is then an edge of degree 3 or more, a boundary 444 edge is an edge of degree 1, and a regular edge is an edge of degree 445 2. These edges may belong to multiple sheets.
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We now consider the half edges and how they compose paths 447 on a sheet (cf. Figure 8). Since each half edge is associated to a 448 half medial face, each of them will be associated to a unique sheet. Once a sheet has been computed, its singular edges are used to 497 detect the singular paths that separate the current sheet from its Figure 9: A (black) singular path on the skeleton associated to a (black) surface mesh path, whose vertices are the centers of the five Voronoi cells the path is crossing (as each medial face is separating two Voronoi cells). The computed surface path surrounds a surface portion for which we can evaluate an ε-significance.

neighbor sheets. Suppose we are given a tolerance parameter ε. We only wish to compute those neighbor sheets that correspond to a surface region, as described in 3.4.1, that has significance greater than ε, where significance is measured by Hausdorff distance to the original surface.

Consider a singular path contained within a computed sheet. The singular path corresponds both to a set of medial spheres centered at its nodes, and also to the corresponding surface region for the neighbor sheet whose significance we wish to determine. If the Hausdorff distance between the vertices of the surface region and the medial spheres is greater than ε, the neighbor sheet is computed.

Otherwise, the sheet may be ignored: this means that the surface region is entirely covered by existing spheres of the skeleton, with a radius increased by ε (cf. Figure 10). The algorithm proceeds through all sheets in the medial axis of 523 the input mesh, computing those with significance above the thresh-524 old ε. We summmarize the pipeline here, then detail each step in the paragraphs that follow. To begin, we compute a first sheet, starting from a first medial face (cf. 4.2) and aggregating neighboring medial faces into a complete sheet (cf. 4.3). Each singular medial edge is attached to a new sheet. We compute the singular path connecting this sheet (cf. 4.4) and determine if the significance if the sheet is greater than ε (cf. 3.5). If not, we discard the skeleton propagation to the insignificant sheet. If the sheet is relevant, we allow the propagation to compute the sheet. Repeating this operation over each half singular path linking a sheet will produce the full skeleton of ε-significant sheets. We then simplify the skeleton boundaries according to the same ε criterion, removing medial faces when possible (cf. 4.6). This step highly simplifies the resulting skeleton, removing small peaks along sheet boundaries. Finally, we ensure the sheet is manifold, removing problematic paths that create degenerate geometry (cf. 4.7).

Input mesh

The input of this algorithm is a Delaunay triangular mesh bounding a 3D shape. Each triangle of such a mesh is on a Delaunay tetrahedron: thus a Delaunay tetrahedron is either inside or outside the shape. As a consequence, we know which portion of the skeleton is inside, and which is outside, offering a clear labeling of outside and inside skeleton. Furthermore, because the mesh is Delaunay, a direct connection exists between the connectivity of the skeleton and the connectivity of the surface mesh, and between the topology of the skeleton and the topology of the surface mesh.

A Delaunay triangular mesh can be built from a given manifold surface mesh (cf. [DZM07]), using edges flipping and splitting. The vertices of the original mesh are preserved in the Delaunay mesh, and the skeletal structure we compute can still be applied to the non-Delaunay version of a mesh, though the duality will not be preserved. We also note that, since the atomic operations applied to convert a mesh into a Delaunay mesh do not affect the topology of the mesh, topology is preserved between original mesh and Delaunay mesh, and therefore maintains consistency with the skeleton.

Computing the first medial face

The algorithm starts with an initial medial face of the skeleton. We first choose a node of the skeleton. This node will likely belong to multiple medial faces, and we select one.

To compute the first node on the skeleton, we need to find an internal, or volumetric, tetrahedron. We select an arbitrary triangle of the surface mesh. As the mesh itself is a subset of the Delaunay tetrahedralization, this triangle is necessarily a face of a tetrahedron. Once this triangle is chosen, two tetrahedra are candidates to be our first tetrahedron: one interior and one exterior to the shape volume. Using the orientation of the mesh surface, we can determine which one is interior, which gives us a first interior medial node. Finally, to avoid choosing a first medial node that is not significant, we detect the neighboring node with a maximal radius (as each interior tetrahedron corresponds to a medial sphere), and iterate this operation so that that chosen initial node has a locally maximal radius.

Finally, the first medial face is randomly chosen from the medial faces surrounding the chosen node. More precisely, as an medial 578 face is the dual of a volumetric edge, we choose one volumetric 579 edge among the edges of the chosen interior tetrahedron which de-580 termines an medial face. Find pe f , next half edge on same medial face than pe Find peo, opposite half edge of pe f , on the neighbor half medial face Find pe , next half edge on same medial face than peo while pe is not singular;

The result of this operation is sequence of half edges, called a 608 singular path. A given singular path can be tested to identify in-609 significant sheets, according to ε parameter. we do not compute that sheet. In order to maintain the geometric 614 relationship between the skeleton and the mesh, we also update 615 the connectivity of the mesh when we do not compute a sheet (cf. From a to d, we first take the next edge on the same half medial face, b, then take the opposite edge to b, c. Finally, we take the next edge to c, which is the singular edge d. More generally, to go from d to i, the same steps are repeated on each medial face until a singular half edge is found. Here, it is done twice: through half edges e, f and g, h. At this point, the singular path is composed by a, d and i. During this process, each visited half medial face belongs to a unique Voronoi cell with associated dual (green) boundary point. Each new point is stored as the next vertex of the path. When the path closes, the result is a sequence of (green) vertices creating a closed path on the boundary. The main step in not computing a sheet is removing any interior tetrahedra from the object volume. This implies removing some vertices, namely vertices strictly within the region bounded by the corresponding surface path, and remeshing this portion of the surface, creating a new set of edges and faces to fill the hole.

Simplifying boundaries

Boundary paths for sheets are prone to noise. Using the same ε significance measure, we simplify sheet boundaries by removing some medial faces. We define the notion of steepness of a consecutive pair of half boundary edges to be the angle between them. At each step of the simplification (cf. Algorithm 1), we check the steepest consecutive half edges along the boundaries. We then compute the singular path separating those medial faces from the skeleton, and use it to check whether the sheet beyond the path can be removed using the ε criterion. If so, we remove the medial faces using same method as in 4.5.

Handling problematic paths

A computed sheet may contain some non-manifold edges. This happens when skeletal edges are connected to three medial faces that are labeled as belonging to the same sheet, violating the geometry of regular edges contained in a sheet interior. We first label these edges problematic edges, that is, any edge belonging to three different medial faces but labeled as members of the same sheet (see Figure 13). To resolve the problematic edges, we wish to create We require manifold meshes, and so all non-manifold mesh are dis-659 carded. Moreover, our algorithm assumes that we have Delaunay In Figure 18, we compare our approach to Voxel Core [START_REF] Yan | Voxel cores: Efficient, robust, and provably good approximation of 3d medial axes[END_REF] Figure 14: Skeletons computed with our algorithm, with ε = 0.01. To highlight the link between skeletal sheets and mesh portions, we use the same color for a skeletal sheet (right) and its associated mesh portion (left). In Figure 15, we show skeletons of the same object computed 688 with different values of ε. As ε increases from 0.00, to 0.01, and to 0.05, successive sheets are removed, but we can see a larger difference between 0.00 and 0.01 than between 0.01 and 0.05. This may suggest that each input shape has an intrinsically appropriate ε value.

Figure 16 shows skeleton computed with ε = 0. These skeletons have many spurious peaks.

Figure 17 shows effects of noise in the input surface mesh. We observe that even if more skeletal peaks are present on the thin parts, the global skeleton stays clean.

Conclusion

In this article, we present a 3D skeletonization approach to produce a simplified and geometrically consistent medial axis. Our algorithm identifies the primary structures in the medial skeleton, which are medial sheets and curves, and their boundaries, which are singular or boundary structures. These structures are topologically valid, manifold, and cleanly separated, thereby maintaining the Whitney stratified structure of the Blum medial axis in the discrete setting. Furthermore, we maintain the relationship between the surface mesh and the medial axis by associating nodes, edges, and medial faces of the skeleton with tetrahedra, triangles and edges of the Delaunay structure generated by the surface mesh points.

Using these medial structures, we compute a simplified skeleton, excluding insignificant sheets. Using the geometric links between the mesh and the skeleton, we evaluate the relevance of a skeletal sheet by evaluating the deviation from the surface mesh that would result from removing the surface region associated to that sheet. As a result, we do not compute insignificant sheets for which the Hausdorff distance of the points in the associated region of the surface mesh to the remaining surface points is lower than an ε threshold. • As shown on Figure 13, some edges can be problematic, as they Figure 19: Some skeletons computed by our method (ε = 0.01).
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  skeleton from boundary samples [RAV * 19, MBC12, LBKP21]. 30 Each boundary sample is characterized by a position and a nor-31 mal, and no additional structure is needed. A set of tangent spheres 32 can then be computed, filtering any non-descriptive ones. Methods 33 based on deep learning have also been proposed. In [YYW * 20], a 34 simplified skeleton is computed and accurately describes the shape 35 (depending on the chosen precision) but they do not capture the 36 shape structure, as the resulting skeleton is typically not a graph. 37 In [CD23] the local structure of the skeleton is preserved in gen-38 eral, but there is no guarantee on the coherence of the connectivity, 39 that is, a tetrahedron may belong to the resulting skeleton. In fact, 40 by construction deep learning methods do not maintain a clear re-41 lationship to the shape boundary. In [RLS * 21], the shape and its 42 skeleton are linked but the representation is implicit, giving neither 43 connectivity nor structure. 44 Other approaches, including ours, are based on the computation 45 of a Voronoi diagram. For simple shapes such as polyhedra, the are based on pruning [DZ03, AL01] prune the Voronoi diagram to obtain a sensible medial structure. [YSC * 16] compute a significance measure: the authors demonstrate that a global measure related to Erosion Thickness, generalized from 2D to 3D, is more efficient than a local measure. The well-known Scale Axis Transform [MGP10] has the advantage of taking into account multiple medial representations. They propose a multi-scale representation
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  global structure consists of sheets, which are surface portions of the 114 skeleton, boundary paths, which are curve boundaries of a single 115 sheet, and singular paths, which are curve portions separating dif-116 ferent sheets (See Section 3 for details). As a result, our approach 117 guarantees the following properties (cf. Figure1): 118 The topological and geometric relationships between the sur-119 face and medial meshes are preserved. Specifically, (a) the re-120 sulting medial mesh is homotopically equivalent to the output 121 surface mesh by construction, and (b) the points on the medial 122 mesh are Voronoi duals of Delaunay tetrahedra generated by the 123 surface mesh. Each vertex, edge, face and sheet of the medial 124 axis corresponds to a well-specified set of vertices, edges, faces, 125 or region of the surface mesh. This means that we maintain cor-126 respondence between the surface and medial meshes. 127 The geometric structures of the medial mesh are clean and 128 coherent. The skeleton is divided into sub-structures of sheets 129 with topologically consistent manifold interiors, which are sep-130 arated and bounded by manifold paths. The skeleton mesh itself 131 is connected for an input shape with a single component due to 132 the homotopy equivalence. 133 The simplified medial axis provides a guaranteed 134 ε-approximation to the original surface points. The simplified 135 medial mesh generated for some choice of ε > 0 corresponds to a 136 subset of the original surface points that are ε-close in Hausdorff 137 distance to the original surface points. All topological features at 138 a scale larger than ε are maintained, though features at a scale 139 smaller than ε may be deleted. 140 In what follows, we first describe the continuous and discrete 141 constructions of the interior Blum medial axis (BMA) in Section 2. 142 In Section 3, we describe the global structures of the discrete BMA 143 and describe how these are related to local structures. Finally, we 144 describe the algorithm for generating the simplified skeleton based 145 on the ε error parameter in Section 4, and present results in Section 146 5. We also include a brief appendix to explain some special cases 147 that arise in this discrete setting, and how we handle them.148 2. Geometry of the interior medial axis 149 The Blum medial axis is structured into parts that offers strong 150 geometric properties in the smooth setting; we seek and provide 151 analogs in the discrete setting. In this section, we describe these 152 properties and the correspondences between smooth and discrete 153 representations.
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  Given a closed, non-self-intersecting surface S ⊂ R 3 with con-159 tinuous curvature and a finite set of curvature extrema and ridge 160 curves, the interior Blum medial axis can be defined as the locus of 161 centers of maximally inscribed spheres within the surface, together 162 with their radii. This produces a skeleton composed of sphere cen-163 ters that is a Whitney stratified set M with a finite number of strata.

  Figure 1: Global structures of the skeleton (a), and their consistency with the surface mesh (b). The color coding in the figures shows which global skeletal structures in (a) correspond to which global shape structures in (b).
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  191 tri-tangent to S, corresponding to the merging of bitangencies 192 on at least two strata meeting along the singularity.

193 3 .

 3 Singular boundary points where the inscribing sphere oscu-194 lates at an extremum of at least one principal curvature, in blue. 195 For singular boundary points, the medial sphere has only one 196 tangency, the point of extremal curvature, corresponding to the 197 merging of at least one bitangency where the points "above" and 198 "below" merge into a single point.

  of our paper is to construct well-defined dis-201 crete versions of the medial structures described for differentiable 202 shape surfaces in the previous section. In applications, the smooth 203 surface S described above is typically replaced by a sampling of its 204 points and connectivity between those points, a surface mesh con-205 sisting of vertices joined by edges and faces. Similarly, the smooth 206 strata of the medial skeleton are replaced by a medial mesh. In what 207 follows, we assume sampled points of a 3D shape surface are ver-208 tices in a Delaunay surface mesh S, with an induced medial mesh 209 M. Points on M can then be computed as interior Voronoi vertices 210 generated by the surface points. Because the Voronoi vertices will 211 be centers of the circumspheres of its dual, the Delaunay tetrahe-212 dralization of the volume enclosed by S, the tetrahedra will provide 213 a discrete analogue of medial balls in the smooth case. Similarly, 214 distance from the Voronoi vertices to the surface points will pro-215 vide a discrete version of the radius function r. As the sampling 216 on the surface becomes dense, converging to the smooth surface, 217 a subset of this discrete medial skeleton converges to the smooth 218 skeleton [DZ03]. 219 With this characterization, much of the structure from the dif-220 ferentiable setting carries over. The resulting discrete M will have 221 three types of points, see Figure 3 for illustration: 222 1. Regular points, in (3a). For regular points, each point of M 223 will typically correspond to a tetrahedron that crosses the in-224 terior of S, with three points of S on one side of M and one 225

  227below [CDE * 00], see right.

228 2 .

 2 Singular interior points, in (3b). For singular interior points, 229 the tetrahedron will correspond to the convergence of tetrahedra 230 of regular points on at least two strata meeting along the singu-231 larity. In this case, there will be at least two sets of points above 232 and below corresponding to at least three disconnected regions 233 of the surface. 234 3. Singular boundary points, but without a notion of tangency, 235 in (3c). For singular boundary points, the points in S composing 236 the tetrahedron will be adjacent and belong to a single connected 237 component, with the two "sides" of M having converged. 238 This framework gives the foundation for the structures we use to 239 generate the strata of the discrete skeleton. Unfortunately, guaran-240 tees of topological and geometric coherence from the smooth set-241 ting do not automatically carry over, as rounding errors and other 242 issues often lead to medial skeletons with more complicated struc-243 tures [TDS * 16]. Our algorithm addresses these issues to produce a 244 geometrically coherent skeleton. 245 3. Hierarchical structure of the discrete skeleton 246 In what follows, we distinguish between local medial structures 247 (e.g., medial points and neighbors, corresponding surface points 248 and neighbors) and global medial structures (e.g., medial sheets, 249 boundaries, singular sets). Our algorithm analyzes local structures 250 to build coherent global structures. 251 The constructions presented in this section are necessary for un-252 derstanding the algorithm in Section 4. We define the global medial 253 structures in Section 3.5, which allow us to segment the surface 254 correspondingly in Section 3.2. In section 3.3, we present the local 255 medial structures, derived from the Voronoi and Delaunay duality 256 linking the surface mesh to the medial mesh, that provide the basis 257 for the global structures and also for the simplification of the me-258 dial skeleton. Section 3.4 describes how the global structures are 259 obtained from the local structures. Finally, section 3.5 describes 260 how we compute the simplified 3D medial axis. 261 3.1. Global structures of the discrete skeleton 262 Medial sheets are typically two-dimensional for a 3D shape, but 263 can also be one-dimensional. Sheet boundaries and singular paths 264 are typically one-dimensional, but can also be zero-dimensional. 265 For simplicity, we present our algorithm for two-dimensional case, 266 but the process is analogous in the one-dimensional or zero-267 dimensional cases. 268 Sheets, the top-dimensional strata described in Section 2, are the 269 fundamental building blocks of the skeleton. We define a discrete 270 sheet of the medial axis to be a connected set of regular medial 271 points for which the corresponding regions on the surface mesh 272 have two connected components, together with any neighboring 273 singular points (corresponding to more than two connected com-274 ponents) or boundary points (corresponding to one connected com-275 ponent) (see Figure 3). Each sheet corresponds to one or more con-276 nected portions of the input surface mesh. Furthermore, each sheet 277 has two sides, and can be therefore viewed as two oriented sheets, 278
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  Figure 4d, where two medial sheets intersect, or both. The bound-285

Figure 4 :

 4 Figure 4: Correspondences between skeletal structures and surface regions. Solid line boundary paths (darker blue) and singular paths (black) represent paths on the mesh. Dashed paths represent the corresponding paths on the surface mesh. (a) The medial boundary path of the main (horizontal) sheet separates the surface into two regions, above and below, with the lower region shown in darker gray. (b)The upper surface region, however, is interrupted by region associated to the smaller medial sheet that is connected to one side of the main sheet. The singular path separating the two sheets corresponds to the black dashed path on the surface mesh and the resulting dark gray region corresponds to the surface that is above the main sheet. (c) If a medial boundary path is not a closed loop, the surface path will also not be a loop, as can be seen in the surface path generated by the medial boundary of the smaller sheet. If a medial boundary path is a loop, the corresponding path on the surface mesh will also be a loop, as can be seen in the surface path generated by boundary of the main medial sheet. (d) For medial singular paths, in contrast, a medial path that is an interval can correspond to a surface path that is a loop, as can be seen in the path on the surface mesh that corresponds to the closed black medial singular path.

  Figure 4, consider the upper part of the object where there is a 305

  315 3.3. Local structures of the discrete skeleton 316 The global structures described in the previous section can be 317 formed by aggregation of the appropriate local structures. Philo-318 sophically, the aggregation is straightforward -join connected sets 319 of points that are regular, or singular, or boundary -but many lo-320 cal degeneracies arise in practice (some of which are collected in 321 Appendix A) that make the process challenging. We now define the 322 local structures that will allow us to generate global structures. 323 3.3.1. Voronoi and Delaunay duality between the skeleton and 324 the surface mesh 325 Based on a Delaunay triangulation of a surface mesh S, we con-326 struct the Delaunay tetrahedralization T of the volume of the inte-327 rior of S. T is the dual of the Voronoi diagram V of the vertices of 328 S. Each of S, M, T , and V have vertices, edges, and faces, and T 329 also has tetrahedra. 330 All vertices of T are vertices of the surface mesh. Note that while 331 all edges and faces of S belong to the Delaunay tetrahedralization 332 T , only a subset of edges and faces of T belong to S. Because of 333 the number of types of collections of vertices, edges, and faces, 334 we specify vocabulary and color-code mesh elements consistently 335 in the text and figures to distinguish between them. All vertices, 336 edges, faces (triangles in the general setting), and volumes (tetra-337 hedra in the general setting) belonging to the Delaunay tetrahedral-338 ization are colored in red. We identify the edges and faces that cross 339 the volume of the interior of S by appending the word volumetric. 340 The faces of the Delaunay tetrahedralization that are also faces of 341 the surface S are colored in green and carry the word surface. 342 Similarly for V , almost all vertices interior to S belong to the me-343 dial mesh M [DZ03], while only a subset of the edges and faces 344 of V are contained in M. The elements in the Voronoi diagram V 345 are colored in dark blue except for the subset of the elements that 346 belong to the medial axis M, which are lighter blue. We refer to 347 the faces of V as Voronoi faces to emphasize that they are not typi-348 cally triangular. Identifying the faces, edges, and vertices of V that 349 are completely inside the volume bounded by S defines the interior 350 discrete medial axis that is our primary object of study. Note that 351 there are also Voronoi vertices, edges, and faces that are completely 352 outside the volume bounded by S. These define an exterior medial 353 skeleton that we do not study here.
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Figure 5 :

 5 Figure 5: Difference between volumetric and surface tetrahedral components. Surface edges and faces (green) lie on the mesh of the object, while volumetric edges and faces (red) cross the volume of the object. The shapes of the drawn tetrahedra refer to Figure 3.

  diagram to determine which elements to include in the medial axis, and then computing the medial axis components according to their importance to the overall shape as measured by the Hausdorff distance between the original corresponding surface points and the simplified version. The process requires both local and global considerations of both primal and dual components. Around a given medial edge, there can be as many Voronoi faces as there are Delaunay edges (including volumetric edges and surface edges) around the associated Delaunay face. This means that edges are not necessarily surrounded by 3 Voronoi faces. A Voronoi face dual to a Delaunay edge that belongs to the surface, that is, dual to a surface edge, is called an open Voronoi face, cf. Figure 6. An open Voronoi face contains a node that is outside the shape boundary. This type of Voronoi face does not belong to the skeleton of the medial axis, because it is not entirely contained in the interior S. This allows us to filter out Voronoi face that are not part of the interior medial axis. Using the same idea, an open edge is associated to a Delaunay face that belongs to the surface mesh. For this type of edge, one of its extremities is a Voronoi nodes on the inner medial axis, and the other one is a Voronoi vertex on the outer medial axis. Like the open Voronoi face, the open edge therefore crosses the surface S.

Figure 6 :

 6 Figure 6: Illustration of the relationship between skeleton and surface components. An open skeletal edge (dashed blue) is associated to its dual, a surface mesh face (green triangle). An open face, containing open edges is associated to its dual, a surface mesh edge (green). This kind of face contains edges that lie on both the internal and the external skeletons. A Delaunay triangle (red) is associated to its dual, a skeletal edge (black), and each of its crossing edges (dashed red) is associated to its dual, a skeletal face.

417Figure 7 :

 7 Figure 7: Representation of the half edges around a (black) singular medial edge, from different views (up left, up right, below). Around this degree 3 edge, there are 6 half edges represented by the black arrows. Each pair of (black arrows) half edges represents a different area on the surface mesh.
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 457 Figure8: A path on the skeleton is a sequence of half edges. Here, we can see two sides of the same skeleton, where two paths are drawn (yellow and purple), representing the same (black) singular edges. By construction of half edges, these paths have opposite direction. Note that green and purple half paths do not lie on the same medial faces, and therefore are not on the same sheet.

Figure 10 :

 10 Figure 10: Illustration of the ε criterion. A tetrahedron corresponds to a unique medial ball, passing through its four vertices. Adding ε to the radius of the ball, we obtain a new (dashed) sphere, covering other vertices of the surface mesh.
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 3 Single sheet propagation 582We will assign a label to each skeletal sheet. To compute a sheet, we 583 start from a first medial face, which we label. We then add all the 584 neighbor medial faces sharing a regular edge in a propagation pro-585 cess, and assign the same label to them. We repeat the propagation 586 for each added face, labeling the medial faces until no neighboring 587 unlabelled medial faces sharing a regular edge remain. This pro-588 cess ends because the boundaries of sheets consist of singular or 589 boundary edges which are not regular edges, and a medial sheet for 590 a finite volume discrete surface mesh will have a finite number of 591 medial faces.

Figure

  Figure8).

602

  We start from a half singular edge to form the candidate list ls 603 and identify a neighboring half singular edge (cf. Figure 11) using 604 Algorithm 2. We iterate until the loop of half edges closes, and 605 returns the complete singular path. We then remove every used half 606 edge from the candidate list ls. 607 ALGORITHM 2: Computing next half singular edge. Input : Half singular edge pe Output: Next half singular edge pe pe = pe do

6104. 5 .

 5 Identifying an insignificant sheet beyond a singular path 611 If a singular path separates the current sheet from a sheet that has 612 been determined to be insignificant according to the ε criterion,

  613
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  Figure12).

Figure 11 :

 11 Figure11: Identifying the next half edge to compute a singular path (here (a, d, i) ). The singular edges are in black. Two examples are shown here. From a to d, we first take the next edge on the same half medial face, b, then take the opposite edge to b, c. Finally, we take the next edge to c, which is the singular edge d. More generally, to go from d to i, the same steps are repeated on each medial face until a singular half edge is found. Here, it is done twice: through half edges e, f and g, h. At this point, the singular path is composed by a, d and i. During this process, each visited half medial face belongs to a unique Voronoi cell with associated dual (green) boundary point. Each new point is stored as the next vertex of the path. When the path closes, the result is a sequence of (green) vertices creating a closed path on the boundary.

ALGORITHM 3 :••

 3 Figure12: Singular path detection and ignoring a sheet. Here, to ignore the sheet, two edges, then three faces, are created on the mesh. The mesh vertices inside the region are removed from the mesh. To ignore the sheet, the mesh vertices within the closed boundary path are removed from the mesh and the corresponding region is re-triangulated. Note that that singular edges bordering the medial path have become regular.
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  Figure 13: An example of problematic edges, and their resolution.A problematic edge belongs to three medial faces belonging to the same sheet. Note that in (a), all medial faces belong to the same sheet even though there are some faces connected by singular edges. In (a), the black edges are problematic because they are not cleanly separating two sheets. This situation cannot be characterized locally, but requires the full computation of the sheet to detect. Our solution is to relabel appropriate regular edges as singular edges (new edge in dashed black in the bottom figure) in order to split the affected medial faces into two separate sheets. In (b), the medial faces surrounded by the yellow edges now belong to a separate sheet. This means that singular edges (black edges in the bottom figure) now belong to at most two medial faces belonging to the same sheet.

and

  Scale Axis Transform (SAT) [MGP10]. Our method consis-677 tently retains salient shape features across different types of shape 678 configurations, unlike the other two, while maintaining a similar 679 level of cleanliness. For example, SAT erodes important regions of 680 the body of the bunny. Similarly, Voxel Core erodes important re-681 gions of the tool (bottom left) and the head and the wings of the 682 dragon, as well as legs of the chair. This is because our method 683 explicitly preserves ε-fidelity with the input surface vertices while 684 simultaneously seeking geometric coherence. In other words, we 685 have the additional advantage that we maintain geometric consis-686 tency with the surface mesh.

  687

Future

  work might explore the relationship between the noise level of the surface mesh and optimal ε values for several distributions of noise. Additionally, exploring preprocessing approaches to allow for more general formats for surface data beyond Delaunay meshes would be useful.

Figure 15 :

 15 Figure 15: Comparison of the same skeleton with different ε values. Between 15a and 15b, we can see that most of the noisy peaks were removed. Few sheets were removed between 15b and 15c.

  (a) Skeleton and mesh without noise (b) Skeleton and mesh with noise

Figure 17 :

 17 Figure 17: Effect of the mesh noise on the skeleton (ε = 0.01).

Appendix A: Irregularities of the discrete skeleton Generating the medial mesh from the Voronoi/Delaunay structures of the surface mesh, even a nice one, can produce geometric irreg- 

744

• Though it is rare, some "sheets" may be one-dimensional in cer-745 tain places or in their entirety (for example, an arm that is a long 746 circular cylinder will have a curve as its skeleton). We handle 747 these cases separately: instead of propagating medial faces, we 748 compute successive degree 0 edges.

749

• Two singular paths can cross each other: this situation is not 750 generic behavior in the continuous setting, but can happen in the 751 discrete setting.

752

• Some medial nodes can be associated to a sphere outside the 753 mesh (cf. Figure 16). This is because, for some interior boundary 754 tetrahedra, the associated sphere center will be outside of the