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Understanding the flow of yield stress fluids in porous media is a major challenge. In particular,
experiments and extensive numerical simulations report a non-linear Darcy’s law as a function of
the pressure gradient. In this letter, we consider a tree-like porous structure for which the problem
of the flow can be resolved exactly thanks to a mapping with the directed polymer (DP) with
disordered bond energies on the Cayley tree. Our results confirm the non-linear behavior of the flow
and expresses its full pressure-dependence via the density of low-energy states of DP restricted to
vanishing overlap. These universal predictions are confirmed by extensive numerical simulations.

In a series of experiments during the nineteenth cen-
tury, Henry Darcy studied the flow of water in a cylinder
filled with sand [1] and established the empirical law for
the flow rate Q as a function of the pressure difference P
between the two ends of the cylinder

Q = κR2P/(ηL) (1)

here R and L are respectively the radius and the length
of the cylinder, η is the viscosity of the fluid and κ is the
permeability of the medium. Darcy gave an interpreta-
tion to the permeability κ starting from the Poiseuille’s
law which holds for empty cylinders and predicts QPois =
πR4P/(8ηL). He assumed that, in a medium, the flow is
possible only along non-intersecting thin channels, each
of radius Rc � R, and the permeability can be identified
as κ ∼ nchR2

c , with nch the number of open channels per
unit surface [2].

This empirical law is valid not only for water flowing
in sand but for all Newtonian fluids [3] embedded in a
porous medium (namely a complex structure with strong
heterogeneities such as soils, rocks or sand [4–7]). Indeed
for such fluids nch is pressure-independent, as in each
channel flow occurs for arbitrary weak pressure. This is
not the case for another class of fluids, such as suspen-
sions [8], gels [9], heavy oil [10], slurries or cement [11] for
which a minimum yield stress σY is needed to flow [12].
For these fluids nch grows with the applied pressure P .
Experiments [13, 14] and numerical simulations [15–17]
indicated that the Darcy law is indeed modified: below a
threshold pressure P0 no flow occurs while, above it, the
flow grows non-linearly with P . Three flowing regimes
are observed [18, 19] : i) initially the flow grows linearly
in P − P0 with a very small permeability ∼ 1/R2; ii) for
larger pressure the flow grows non-linearly as (P − P0)β
(with β ≈ 2) [20, 21]. iii) above a saturation pressure
Psat � P0, the flow shows again a linear growth but with
the much larger Newtonian permeability. Despite these

detailed observations, a theoretical explanation for the
non-linearity is still lacking. In this letter we propose
both an explanation and provide an explicit prediction
for the modified Darcy law. We consider a porous struc-
ture with the geometry of a binary Cayley tree with t
levels and 2t−1 channels (see Fig. 1). This geometry de-
scribes the flow in several biological networks (e.g. alveoli
system in lungs [22] or leaf veins) and it is the simplest
geometry with overlapping channels. Here we build on
a method proposed in [23] to determine analytically nch

as a function of pressure. Our model captures the three
regimes of the flow, in particular the non-linear one is
described by Eq. (13)) and the saturation pressure reads
Psat ∼ P0 + cst · ln t . At this pressure there are ∼ t inde-
pendent open channels and increasing further the pres-
sure does not affect sensibly the permeability. The key
point of our method is the identification of the first ∼ t
open channels with the zero-overlap low energy states of
the directed polymer on the Cayley tree, a model display-
ing one-step replica symmetry breaking (1-RSB) [24, 25].
Those low-overlap excitations are abundant in mean-field
glassy disordered systems but their number is suppressed
in finite dimension and their role in realistic set-ups is
controversial. However, in the Darcy problem, excita-
tions with high overlap are strongly penalized as they
are inessential in increasing the flow independently of the
spacial dimensionality. For this reason, low-overlap ex-
citations play an important role also in finite dimension
for the flow of yield stress fluids in porous media.

The model. — Our model is a Cayley tree pore net-
work filled by a Bingham fluid described by the modified
Poiseuille’s law

QPois(P ) = πR4

8ηL (P − τ)+ (2)

Here we denote (x)+ = max(0, x) and τ = LσY /R and
consider P > 0. In this model large open pores are con-
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FIG. 1. Top: Binary Cayley tree with t = 8 levels. Each
path α has an energy εα given by the sum of the thresholds
along to the path. We assume a fixed pressure difference P
between the top (root) and the leaves. Bottom: energies of
the paths sorted as ε0 < ε1 < ε2, . . . . At the pressure P0 = ε0
the channel indicated in blue opens. Increasing the pressure,
the orange channel opens at pressure P1 > P0 (see (5)), the
green one at pressure P2 > P1. The pairwise overlap are
indicated in figure with q̂ the maximum among them. The
energies corresponding to open channels are indicated in red
in the axis at the bottom. In the large-t limit we show that
q̂ � t and P1 = εα1 , P2 = εα2 , . . . .

nected by tubes with random radius and unit length so
that the threshold τ fluctuates from tube to tube. For
simplicity we set to 1 the prefactor of (2) and we con-
sider the Bingham rhelogy between two pores i ad j as
Qij = (Pij − τij)+ with Pij the pressure difference be-
tween the pores and the yield threshold τij is drawn in-
dependently from a distribution p(τ). We are interested
in determining the global flow function Qt(P ; τ ) where τ
represents the collective set of thresholds on each bond.
Thank to the hierarchical structure, it is easy to obtain
a recursive relation increasing the number of branches:

Qt(P ; τ ) = (P − P ′ − τ0)+ , (3)
(P − P ′ − τ0)+ = Qt−1(P ′; τ (1)) +Qt−1(P ′; τ (2)) . (4)

Eq. (3) comes from the constitutive relation applied on
the topmost bond. Here P ′ is the pressure on the node
connected to the root and τ0 the corresponding thresh-
old. The second relation descends from the conservation
of the flow where τ (i), i = 1, 2 are the sets of thresholds
restricted to the two subtrees with t− 1 levels. Thus, as-
suming Qt−1(P ; τ ) is known, one can use Eq. (4) to de-
termine P ′ = P ′(P ) and inject it in Eq. (3) to compute
the flow function of the larger Cayley tree. Equations
(3) and (4) are exact and amenable for numerical calcu-
lations, but their analytic treatment is possible only for
vanishing thresholds, leading to the Newtonian behav-
ior for P > 0, Qt(P ) = κNewton

t P , with the Newtonian
permeability κNewton

t = 2t−1/(2t − 1). To obtain analyt-
ical expression of the flow in the disordered case one has

to exploit the mapping with the directed polymer in the
limit of large t.

Mapping to the directed polymer. — For each realisa-
tion of the thresholds τ , one has a sequence of pressures
{P0, P1, P2, . . . , } at which a new channel opens. As orig-
inally observed in [21], this sequence of pressures is also
related to the energy levels of an associated directed poly-
mer (DP) problem. Indeed, consider the directed paths
on the Cayley tree connecting the root to the leaves. In-
terpreting the threshold τij as the energy associated to
the bond (ij), we can associate an energy εα to each
path α given by the sum of the thresholds belonging to
the path. Ordering such energies as ε0 < ε1 < . . ., it
is easy to verify that P0 = ε0 (see figure 1). Moreover,
since there is only one channel open, only one term in
the right-hand side of Eq. (4) is non-vanishing and for
P ∈ [P0, P1], one gets simply Qt(P ; τ ) = 1

t (P − P0)+.
The computation of the flow for P > P0 has a twofold
difficulty: first, one needs to characterise the sequence
of pressures P1, P2, . . . at which new channels open; sec-
ond, for a given geometry of open channels, one needs to
evaluate the effective permeability κ ≡ dQt/dP . Indeed
for the subsequent channels, the relation between Pa in-
volves not only the energies but also the overlaps (i.e.
the number of common bonds) of the new channel with
the previously open channels. For instance to open two
channels one has to solve the following minimization

P1 = ε0 + min
α 6=0

εα − ε0
1− q̂0α/t

= ε0 + εα1 − ε0
1− q̂0α1/t

(5)

where α1 labels the path realising the minimum and q̂0α
stands for the overlap between the α-th channel and the
ground state. It is crucial to remark that in the mini-
mization, among the low-energy excited states, the ones
with high overlap with the ground state are strongly pe-
nalized by the factor 1/(1 − q̂0α/t). The same property
holds for the higher pressures P2, P3, . . . which display
similar but more cumbersome dependence (see section A
of [26]).

Large-t limit. — A major simplification occurs in
the limit t → ∞ as it is known that the directed poly-
mers on Cayley tree display one-step replica symmetry
breaking (1-RSB). For these systems the scaled overlap
q0α = q̂0α/t converges, at large t, to a bimodal distri-
bution, with either q → 0 or q → 1 [24] (finite t cor-
rections are also known [27, 28]) implying q̂0α ∼ 1 or
q̂0α ∼ t. Hence, in this large-t limit, among the two
kinds of low-energy excited states, the open channels are
of low-overlap type and basically uncorrelated. From
this major simplification two other important proper-
ties arise: First, the opening pressures P1, P2, . . . coin-
cide with the low energy levels εα1 , εα2 , . . . . Second, the
total flow reduces to the sum of the contribution from
each single open channel. As a consequence the com-
putation of the flow problem reduces to determine the
growth of the number of open channels nch as a function
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of x = P − P0. This number identifies with the num-
ber of low-energy excited states of the directed polymer,
provided they have low overlap among them. We com-
pute this number adapting the tools introduced in [23]
and based on the mapping to the discrete Kolmogorov
Petrovsky Piskunov (KPP) equation [25, 29–33].

KPP equation. — To begin, we introduce the num-
ber of states with energy smaller than ε0 + x, namely
m

(full)
t (x) =

∑
α ϑ(x − (εα − ε0)) (ϑ(x) is the Heaviside

theta function). The statistics of m(full)
t (x) was stud-

ied in [23] and its large-t behavior can be computed by
making use of the mapping to the discrete KPP equa-
tion (see also section C of [26] for a summary). An
important result is that the t → ∞ limit exists finite,
m

(full)
∞ (x) ≡ limt→∞m

(full)
t (x). The same result holds for

the random energy model (REM) [24, 34], where the
2t states are independent Gaussian random numbers of
variance σ2t. In this case the average number of states
is:

m
(REM)
∞ (x) = eβcx (6)

with βc =
√

2 ln 2/σ (the overline stands for the average
over the disorder). For the DP a closed-form expression
for the average number of states is not known [35]. Nu-
merically it was shown in [23] that their number is larger
than the corresponding REM model with the following
asymptotics

m
(full)
∞ (x) x�1= Axeβcx (7)

where A is an O(1) non-universal constant. Here we
are interested in a subset of states around the minimum,
namely the number of open channels below the pressure
P0 + x, nch

t (x) =
∑
a ϑ(x − (Pa − P0)). Since one al-

ways has the upper bound m
(full)
t (x) > nch

t (x) the limit
nch
∞(x) = limt→∞ nch

t (x) exists finite. It is tempting to
identify their mean number nch

∞(x) with the number of
states of the corresponding REM ∼ eβcx [24], as the zero
overlap states are basically uncorrelated paths.

A direct numerical investigation of this claim is possi-
ble only for moderate t and it is carried out by the exact
flow problem using an algorithm derived from [21] and
explained in section B of [26]. Our results are plotted in
Fig. 3 left and display a slow convergence to our claim,
but with strong finite size effects. To make progress we
introduce the quantity mq̂,t(x) which counts, in a tree
with t levels, the number of paths with energy εα ≤ P0+x
and maximum overlap among themselves q̂ = 1, . . . , t. In
practice, this can be obtained by a pruning procedure
(see Fig. 2): at the level q̂ of the full Cayley tree, there
are 2q̂ subtrees labelled by a = 1, . . . , 2q̂. We replace
each of these subtrees with a singe bond with an effec-
tive energy that equals ε(a)

0 , the minimal energy of the
a-th subtree. These 2q̂ remaining states correspond to
the ones with maximal overlap q̂. Clearly, for q̂ = t, we

FIG. 2. Left: An example of Cayley tree with a total of t = 5
generations and 24 leaves. The minimal path of the topmost
subbranch after q̂ = 2 generations is shown in bold. Right:
Pruning of the full Cayley tree, where within each subtree
starting from the q̂-th generation, only the minimal path is
retained.

recover m(full)
t (x). If, on the contrary, we take first the

limit t → ∞, leading to mq̂(x) = limt→∞mq̂,t(x), we
are effectively considering energies with vanishing scaled
overlap q̂0α/t → 0. This remains true even if the limit
q̂ → ∞ is taken thereafter and we claim the following
equality

nch
∞(x) = lim

q̂→∞
mq̂(x) . (8)

For t → ∞ and finite q̂, the pruning procedure is equiv-
alent to growing a tree with q̂ levels where the leaves
thresholds are drawn from the distribution of of the min-
imum of an infinite tree. As a consequence, mq̂(x) can be
computed by adapting the equations employed in [23] to
compute m(full)

t (x) as an integral of a function rt(x′;x):

m
(full)
t (x) =

∫
dx′ rt(x′;x) (9a)

rt+1(x′;x) = 2
∫
dτp(τ)Ωt(x′ − τ)rt(x′ − τ ; z) (9b)

with initial conditions r1(x′;x) = p(x+ x′) and Ω′1(x) =
−p(x). Here −Ω′t(x) is the distribution of the minimal
energy of the directed polymer of t levels and it satisfies
the discrete KPP equation:

Ωt+1(x) =
∫
dτp(τ)Ωt(x− τ)2 (10)

The recursive equations Eqs. (9) corresponds to growing
a t+ 1-level tree starting from two t-level trees. Thus, to
compute mq̂(x), one has to adjust the initial conditions
(see section C.3 of [26]), starting from a single bond with
a threshold drawn from the distribution of the minimum
of an infinite tree −w′min(x) [36]. Here wmin(x) solves the
fixed point KPP equation

wmin(x+ c(βc)) =
∫
dτp(τ)w2

min(x− τ) (11)
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FIG. 3. Left: Exact numerical solution using the algorithm of section B of [26]. The threshold are Gaussian distributed with
zero mean and variance σ2 = 1/12. Hence βc =

√
2 ln 2/σ. Numerics is performed for moderate sizes t = 12, 15, 17, 19, 21, 23.

The analytical prediction (solid line), valid when t → ∞, is approached, but finite-size effects are still strong. Middle: mq̂(x)
is obtained by numerical integration (section C of [26]) of Eqs. (9) starting from an initial threshold drawn from the fixed
point distribution −w′(x). m(full)

∞ (x) (dashed black line) is instead obtained for an initial threshold drawn from ρ(t) and for
t = 10000. Right: Average effective permeability κ for the data of Fig. 3 left. Only the first ∼ t channels are sufficient to
reach an effective permeability close to the Newtonian one. Inset of right figure: t dependence of n(ch)

SAT, defined as the average
number of channels needed to saturate at the effective permeability δ · κNewton.

where c(βc) is the minimal value for which (11) has a
solution (see section C.1 of [26]). Thus the equations for
mq̂(x) are still equations (9) and (10) with the modified
initial conditions Ωq̂=1(x) = wmin(x) and rq̂=1(x′;x) =
−w′min(x+x′). In Fig. 3 middle we compute numerically
both m(full)

t (x) for large t and mq̂(x) for various q̂. Their
difference is clear, moreover we see that by increasing q̂
the solution approach the analytical prediction

lim
q̂→∞

mq̂(x) = eβcx (12)

We refer to section D of [26] for an analytical derivation.
We are now in the position of evaluating explicitly the
average flow at large t. For a fixed x = P −P0, there will
be a finite number of open channels, sharing low overlap
one with the other and each supporting a flow (x−x′)/t,
being P0 + x′ its opening pressure. In this regime the
total flow reduces the sum of the contribution from each
single open channel, leading to

Qt(P0 + x) t→∞=
∫ x

0

dx′

t
nch
∞(x− x′) = eβcx − 1

βct
. (13)

Equation (13) is the main analytical result of the work
and it is valid for moderate pressure above P0, describing
both the linear single-channel as well as the non-linear
behaviours observed in experiments.

Saturation pressure. — We now give an estimate for
Psat. Let us first observe that from Eq. (13), we ob-
tain an exponentially growth in the permeability κt =
dQt/dP ∼ eβc(P−P0)/t, however its value should saturate
to κNewton

t = 2t−1/(2t − 1). Equating the two regimes,

one obtains an saturation already at Psat −P0 ∼ ln t/βc.
Let us comment about this result: when the pressure is
slightly above the minimal value P0, only a single channel
os is open and the permeability is ∼ 1/t. However, due to
the fast growth of the density of available channels (12), a
logarithmic increase in the pressure is enough to open ∼ t
channels and saturate the permeability to its Newtonian
value κNewton

t . A manifestation of this effect is shown in
Fig. 3 right, where one observes the fast growth of the
permeability followed by a negligible increase. Finally, in
the inset of Fig. 3 right, we show the average number of
channels nch

SAT required for the permeability to surpass a
certain fraction δ · κNetwon

t and the linear growth in t is
apparent.

Conclusions. — In this work, we have presented the
study of yield stress fluids on the Cayley tree. We show
that the problem is closely related to the directed poly-
mer in the same geometry. In particular, in the limit
of large trees, a direct mapping emerges between nch

and low-energy excited states with zero-overlap of the di-
rected polymer. Thanks to this identification, we derive
a simple universal expression for the flow as a function
of the applied pressure. Equation (13) is independent of
most microscopic details and threshold distribution and
the tree branching ratio set only the parameter βc.
The next big challenge would be to solve the problem of
the flow in finite dimension. In particular it would be
interesting to see if the low-overlap excitations of the as-
sociated directed polymer play a role also in the rheology
of a finite dimensional porous medium.
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Supplementary Material
The Darcy’s law of yield stress fluids on a tree-like network

Few-channel solution

In this section we report the derivation of the expression for P1 used in the main text and P2. We also write down
the expression of the flow for one and two channels. You can check that in the limit t→∞, P1 = εα1 , P2 = εα2 and
tQ(P ) = (P − P0) + (P − P1) for P0 < P < P1.

Flow for a single channel

At the critical pressure P0 = ε0, corresponding to the ground state of the directed polymer, the first channels opens
and the flow simply writes:

Q0,t(P ) = P − ε0
t

(1)

The subscript 0 indicates that only one channel (i.e. the ground state) is open. Such a formula holds for P > P0 = ε0
but less than P1, the critical pressure at which a second channel opens. We will see in detail in the next section how
it can be determined.

Explicit derivation flow up to two channels

FIG. 4. Schematics for the Cayley tree with two open channels.

Let us now consider the case of a tree with two open channels (see figure 4).One is the ground state with energy ε0
depicted in blue, the other is a channel with energy εα depicted in orange. These two channels have a common part
of length q̂0α and we denote with ε0α the sum of the thresholds along this common portion. Along it, the fluid flows
along a single channel with a pressure difference = P − P ′, being P ′ the pressure at the bottom of the common part.
We can thus write the flow adapting (1), upon replacing the length t → q̂0α, the energy E0 → E0α and the pressure
difference P → P − P ′. Given these ingredients, the flow reads:

Q1,t(P ) = P − P ′ − ε0α
q̂0α

(2)

The pressure P ′ can still be determined using the conservation of the flow, i.e. Eq. (4). Indeed:

P − P ′ − ε0α
q̂0α

= Q
(0)
0,t−q̂0α

(P ′) +Q
(1)
0,t−q̂0α

(P ′) (3)
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where Q(0)
0,t−q̂0α

(P ′) is the flow along the subtree containing the ground state, Q(1)
0,t−q̂0α

(P ′) containing the other channel
(see the two branches of figure 4). Since each of these is a single channel of length t − q̂0α, we can use once again
Eq. (1). One has

Q
(0)
0,t−q̂01

(P ′) = P ′ − (ε0 − ε0α)
t− q̂0α

, Q
(1)
0,t−q̂0α

(P ′) = P ′ − (εα − ε0α)
t− q̂0α

(4)

From equation (3) we derive first the expression for P ′(P ) and then Q1,t(P ):

P ′(P ) = q̂0α(ε0 + εα) + (t− q̂0α)P
t+ q̂0α

− ε0α , Q1,t(P ) = 2
t+ q̂0α

(
P − ε0 + εα

2

)
(5)

Finally we impose the continuity of the flow Q0,t(P̃1) = Q1,t(P̃1) to find the crossover pressure between one and two
channels

P̃1 = ε0 + t

t− q̂0α
(εα − ε0) (6)

The criterion to select the first excited channel that opens above P0, is that the pressure P1 is the smallest among all
the P̃1 computed for all possible two-channel geometries. This translates into

P1 = min
P̃1

P̃1 = ε0 + min
α 6=0

t

t− q̂0α
(εα − ε0) (7)

The channel satisfying the minimum condition is denoted by α1. As discussed in the main text, one sees from this
expression that the minimization procedure involves a competition between the energy cost εα and the overlap q̂0α.

In the next section, we show that a similar behavior holds even where three channels are open.

Expression of the flow for three channels

In this section, we report the behavior of the flow when three channels are open. There are three possible configu-
rations for the position of the second excited channel with respect to the ground state and the first one. They each
lead to a slightly different expression for the pressure P2, but all simplify to P2 = εα2 in the limit t→∞.

FIG. 5. Schematics for the Cayley tree with three open channels in the three possible geometrical arrangements.

Case I

The first case is the simplest: the second channel opens with a common overlap q̂0α2 = q̂α1α2 with the ground state
and the first channel. See figure 5 left. By construction, q̂0α2 < q̂0α1 .
The pressure P2 reads:

P2 = min
α2 6={α1,0}

[
εα2 −

q̂0α2

t+ q̂0α1 − 2q̂0α2

(εα1 + ε0 − 2εα2)
]

(8)

In the limit t→∞ we saw that q̂0α1 = O(1); from this and q̂02 < q̂01, it follows that q̂02 = O(1) and P2 = εα2 .
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Case II

The second case corresponds to the opening of the second excited channel from the ground state with an overlap
q̂0α2 > q̂α1α2 = q̂0α1 . See figure 5 middle. The pressure P2 reads:

P2 = ε0 −
q̂0α1

t− q̂0α1

(εα1 − ε0) + min
α2 6={α1,0}

t+ q̂0α1

t− q̂0α2

(εα2 − ε0) (9)

When t→∞, the previous argument for the first excited channel sets q̂0α1/t ≈ 0. In this limit, the resulting expression
for P2 is:

P2 = ε0 + min
α2 6={α1,0}

t

t− q̂0α2

(εα2 − ε0) when t→∞ (10)

This expression is identical to equation (7) with the substitution α → α2, and applying the same arguments of the
first channel we arrive at setting q̂0α2/t ≈ 0, leading P2 = εα2 .

Case III

The last case is the mirror of the previous one, with the second channels that opens from the first one with overlap
q̂α1α2 > q̂0α1 = q̂0α2 . See figure 5 right. The pressure P2 reads:

P2 = ε0 + t

t− q̂0α1

(εα1 − ε0) + min
α2 6={α1,0}

t+ q̂0α1

t− q̂α1α2

(εα2 − εα1) (11)

When t→∞, the previous argument for the first excited channel sets q̂0α1/t ≈ 0. In this limit, the resulting expression
for P2 is:

P2 = ε1 + min
α2 6={α1,0}

t

t− q̂α1α2

(εα2 − εα1) when t→∞ (12)

This expression is again similar to equation (7) and applying the same arguments of the first channel we arrive at
setting q̂α1α2/t ≈ 0, leading P2 = εα2 .

Exact numerical solution of the flow for the Cayley tree

The Darcy flow on the Cayley tree can be exactly numerically solved for moderate t and the code used in the paper
is available here. The solution consists in finding the pressures P0, P1, P2, . . . at which each new channel opens. The

FIG. 6. Sketch of the algorithm used for the exact solution of the flow in the Cayley tree.

algorithm we use to produce the Fig. 3 left and the Fig. 3 right of the main text is a simplified version of the general

https://github.com/Schimmenti/DarcyBethe
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algorithm valid for any directed network and discussed in the supplementary material of [21]. In practice, the critical
pressure P0 is the ground state of the associated directed polymer model. The other pressures are found following an
iterative procedure. At each step we denote by Cs the subtree made of open channels exclusively for P ∈ [Ps, Ps+1]
(where Ps+1 is not yet determined). Then,

1. Using Kirchhoff’s equations, we determine the pressure at each node of Cs as a function of the applied pressure
P (these functions are linear in P ).

2. We find all the subtrees connected to a node in Cs which are still closed. In figure 6 they are highlighted by
ovals.

3. For each subtree we find its ground state, denoted by E(1)
s , E(2)

s , . . . . They are indicated with dashed lines in
figure 6.

4. We find the minimal applied pressure P̃ (1)
s , P̃

(2)
s , . . . at which the ground state of each subtree opens. This is

done by setting the node pressure at the root of each subtree (determined in step (1) using Kirchhoff’s equation)
equal to E(1)

s , E(2)
s , . . . .

5. We pick as a new channel the one with minimal opening pressure, namely Ps = minα P̃ (α)
s .

In numerical simulations we stop at t = 23 due to the exponential growth in t of the number of configurations on the
Cayley tree.

Directed polymer on the Cayley tree: the KPP approach

The problem of a directed polymer on the Cayley tree can be studied using the formalism of the discrete KPP
equation (see [23, 25] for the original literature). A binary Cayley tree of t levels has 2t−1 distinct paths denoted by
α. Each path α has an associated energy given by the sum of the thresholds along the path:

εα =
∑
i∈α

τi (13)

Since any two paths α, α′ have some bonds in common, the energies are correlated random variables. As a concrete
example, for Gaussian thresholds τi ∼ N (0, σ2), the correlation of the energies is given by

εαεα′ = q̂σ2 (14)

where q̂ is the overlap between the two paths, namely the number of common bonds. The overbar indicates the
average over the disorder.
A directed polymer on the Cayley tree with t+ 1 levels can be constructed by considering two independent trees with
t levels and joining them together by adding a bond with threshold τ . This hierarchical structure can be exploited
when we want to study functions of the energies with a multiplicative form

Gt(x) =
∏
α

g(x− εα)) (15)

for some g(x). Indeed Gt+1(x) and Gt(x) can be related by the following discrete KPP recursive equation:

Gt+1(x) =
∫
dτp(τ)G2

t (x− τ) (16)

where p(τ) is the probability distribution of a single threshold and the initial conditions reads Gt=0(x) = g(x).
A few relevant examples of functions g(x) are:

• g(x) = θ(−x) (with θ(x) the Heaviside step function) used for the study of the minimum energy of the directed
polymer. In particular we have

Ωt(x) =
∏
α

θ(εα − x) = θ(ε0 − x) , ε0 = min
α
εα (17)

where 1− Ωt(x) is the cumulative distribution of the minimum energy of a directed polymer of t levels.



10

• g(x) = λθ(x) = 1 + θ(x)(λ− 1) for the study of the generating function Ψt(x;λ) of nt(x), namely the number of
states with energy smaller than x (see [23]):

Ψt(x;λ) = λnt(x) , nt(x) =
∑
α

θ(x− εα) (18)

In the following subsection we exploit these recursive KPP equations to describe various properties of the directed
polymer on the Cayley tree which are relevant for the study of the Darcy law.

Discrete KPP equation

At large t, the discrete KPP equation (16) allows for travelling wave solutions of the form

Gt(x) = w(x+ ct) when t→∞ (19)

where c is the velocity of the traveling wave. When the initial conditions G0(x) = g(x) satisfy limx→∞ g(x) = 0 and
limx→−∞ g(x) = 1, c is positive and the front moves backward (when the limits are reversed is c negative and the
front propagates in the forward direction). The form of the front w(x) satisfies the following fixed point equation:

w(x+ c) =
∫
dτp(τ)w2(x− τ) (20)

We consider initial conditions of the form g(x) x→−∞= 1 − eβx. By substituting this form into equation (20) and
expanding at first order in eβx one obtains an equation for c as a function of β:

c(β) = 1
β

log 2
∫
dτp(τ)e−βτ (21)

The velocity is shown, as a function of β, in figure () and presents a minimum at βc. It was proven [29, 38, 39] that
the increasing branch of c(β) is unstable and that for β > βc both the velocity and the front shape freeze, namely
c(β > βc) = c(βc) and the front shape takes the form wmin(x) satisfying the fixed point equation:

wmin(x+ c(βc)) =
∫
dτp(τ)w2

min(x− τ) (22)

This equation corresponds to equation (11) of the main text.

β

c(
β

)

βc −30 −20 −10 0 10

x

0.0

0.2

0.4

0.6

0.8

1.0

Ω
t(
x

)

t = 0

t = 10

t = 20

FIG. 7. Left panel: the dispersion relation of the velocity (black solid line) as a function of β. In the Gaussian case, τ ∼ N (0, σ2),
we find from equation (21) c(β) = ln 2/β + βσ2/2 with a minimum at βc =

√
2 ln 2/σ. For β > βc the value of the velocity

freezes at c(βc). We report in dashed lines the unstable branch of c(β) for β > βc. Right panel: numerical solution for Ωt(x)
(17) for different values of t (black lines). At large t, Ωt(x) approaches the stationary solution wmin(x) (red line), up to a
t-dependent translation. Note that wmin(x) moves exactly at velocity c(βc) while the location of the front Ωt(x) is −c(βc)t up
to logarithmic corrections (23).
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To study the minimum energy of the directed polymer the appropriate initial condition is g(x) = θ(−x) which
corresponds to β →∞. Hence the directed polymer with minimal energy on a Cayley tree with t levels for large t is

P0 = ε0 = −c(βc)t+ 3
2βc

log t+ χ0 (23)

The extensive part of the minimal energy, −c(βc)t, comes from the velocity selection criterion. The subextensive
logarithmic correction cannot be obtain by our first order analysis of equation (20) but was proven by Bramson [39].
The term χ0 is a random variable of order 1 whose cumulative distribution is 1− wmin(x).

Average number of states above the minimum

Using the KPP formalism we can also study the number of states with an energy less or equal than x:

nt(x) =
∑
α

θ(x− εα) (24)

Indeed by choosing as initial condition g(x) = 1 + θ(x)(λ− 1) we can obtain the generating function of nt(x), namely
Ψt(x) = λnt(x). However we are interested in the average number of states having an energy εα bigger than the
minimal energy ε0 of an amount x. We denote this quantity by:

m
(full)
t (x) =

∑
α

θ(x+ ε0 − εα) = nt(ε0 + x) (25)

This quantity is more complex than nt(x) since it involves the minimal energy ε0. However, following an approach
introduced in [23], it is possible to derive an equation for m(full)

t (x) that we can solve numerically. We sketch here the
derivation. The reader uninterested to the technical details can skip directly to Eqs. (32,33).

The first step is to introduce the generating function of m(full)
t (x) with |λ| < 1:

χt(x;λ) = λm
(full)
t (x) (26)

This function satisfies the following identity:

χt(x;λ) =
∫
dx′ λnt(x′+x)δ(x′ − ε0) = 1 + ∂x

∫
dx′ λnt(x′+x)θ(ε0 − x′) (27)

To prove the validity of (27) we used (∂xλn)θ = (∂x′λn)θ = ∂x′(λnθ) − λn(∂x′θ). The integrand of equation (27)
satifies a discrete KPP equation (16) since it can be recast into a multiplicative form:

λnt(x
′+x)θ(ε0 − x′) =

∏
α

λθ(x
′+x−εα)θ(εα − x′) (28)

In this case the initial condition reads g(x′) = λθ(x
′+x)θ(−x′). The average number of states above the minimum can

be written as:

m
(full)
t (x) = ∂λχt(x;λ)|λ=1 (29)

We thus expand for λ = 1− ε

λnt(x′+x)θ(ε0 − x′) = Ωt(x′)− εRt(x′;x) +O(ε2) (30)

The function Ωt(x) is defined in (17). This expansion leads to:

m
(full)
t (x) =

∫
dx′ ∂zRt(x′;x) =

∫
dx′ rt(x′;x) (31)

where we set rt(x′;x) = ∂xRt(x′;x). Now, by plugging the expansion (30) in (16) and taking the first order in ε, we
obtain a linear equation for Rt(x′;x)

Rt+1(x′;x) = 2
∫
dτ p(τ)Ωt(x′ − τ)Rt(x′ − τ ;x) , Rt=0(x′;x) = 1

2θ(x
′ + x)θ(−x′) . (32)
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Moreover because of the linearity of (32), rt(x; z) satisfies

rt+1(x′;x) = 2
∫
dτ p(τ)Ωt(x′ − τ)rt(x′ − τ ;x) , rt=0(x′;x) = 1

2δ(x
′ + x) (33)

By numerically solving simultaneously the equation for Ωt(x) and (33), one has direct access to the t dependence of
m

(full)
t (x) (31).

Average number of states above the minimum with maximal overlap

In the main text we introduced the quantity mq̂,t(x) which counts the average number of states above the minimum
with a maximal overlap q̂. Simply by definition limq̂→tmq̂,t(x) = m

(full)
t (x). On the contrary, here we are interested

in the limit mq̂(x) = limt→∞mq̂,t(x). States of an infinite tree with maximal overlap q̂ can be built by first taking a
tree of q̂ levels where the thresholds on each bond are distributed according to p(τ) and then adding the q̂ + 1 level
with thresholds distributed according as χ0 ∼ −w′min(x). Indeed since we will be interested only in differences in
energies we can use the distribution of fluctuations around the extensive part of the minimal energy. Then m(full)

t=q̂ (x)

FIG. 8. Construction of the states with maximal overlap q̂.

for this tree corresponds exactly to mq̂(x) for an infinite tree. The only difference with respect to equations (32,33)
is that term Ωt(x) is replaced wmin(x+ c(βc)q̂). The equation (33) becomes:

rq̂+1(x′;x) = 2
∫
dτ p(τ)wmin(x′ − τ + c(βc)q̂)rq̂(x′ − τ ;x) (34)

Using rq̂(x′;x) we obtain:

mq̂(x) =
∫
dx′ rq̂(x′;x) . (35)

In the main text, in Figure 3 (middle panel), we show that mq̂(x) for large q̂ converges to eβcx and is different from
m

(full)
t (x).

Numerical solutions

The directed numerical integration of Ωt(x) (17) is not feasible at large t as the position of the front moves in the
backward direction. In order to maitain the integration limits fixed in a window [xmin, xmax] one needs to shift the front
by fixing its position as t grows. Moreover to ensure a better numerical stability we evolve Ht(x) = e−βcx(1−Ωt(x))
then the equation for (17) becomes:

Ht+1(x) =
∫
dτ p̃(τ)[2Ht(x− τ)− eβc(x−τ)Ht(x− τ)] (36)
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with p̃(τ) = p(τ)e−βcτ and initial condition H0(x) = θ(x)e−βcx. To fix the position of Ht(x) we compute numerically
(Riemann sum) bt =

∫
dxHt(x)eβcx. At each step t if bt− b0 > 0 we make the substitution Ht(x)→ Ht(x− (bt− b0)).

As we shift we should assign a value of Ht(x) to the points in [xmin, xmin+bt−b0]; to do so interpolate the last 10 points
using a spline. We employed p(τ) = 1√

2π e
−x2/2 and discretized our integration limits [xmin, xmax] in N = 150000

points with xmin = −10000 and xmax = 30. The equation for rt(x; z) (33) is solved in parallel to Ht(x) taking into
account the aforementioned translations. We use the same procedure to solve for rq̂(x; z) (34).

Large q̂ limit of maximal overlap states

In the main text (12) we report the convergence of mq̂(x) to eβcx as q̂ →∞ . To get further insights about the large
q̂ behavior of mq̂(x), we observe that Eq. (34) can be cast into the application of a q̂-independent linear operator, by
going in the co-moving frame. In other words, we introduce the shifted quantity r

(s)
q̂ (x′;x) = rq̂(x′ − c(βc)q̂;x). In

this way, Eq. (34) becomes

r
(s)
q̂+1(x′;x) = 2

∫
dτ p(τ)wmin(x′ − τ − c(βc))r(s)

q̂ (x′ − τ − c(βc);x) = [L · r(s)
q̂ ](x′) = [Lq̂ · r(s)

0 ](x′) (37)

where we implicitly defined the linear operator L and in the last equality we iterated the linear equation to obtain a
formal solution starting from the initial condition. The advantage of the formulation in terms of the shifted quantity
r

(s)
q̂ (x′;x) is that it involves a linear operator L independent of q̂. In the limit q̂ → ∞, the operator L acts as a

projector on its largest eigenvector (assuming a gap is present). This can be easily identified taking the derivative of
Eq. (22) with respect to x′, which shows

ρmin(x′) = [L · ρmin(x′)](x′) . (38)

with ρmin(x) = −w′min(x). In other words, the probability distribution function of the fluctuations around the
minimum is an eigenvector. However, since the operator L is not self-adjoint, in order to compute the projector on
the eigenvector in (38), we need to determine the corresponding left eigenvector `min(x). We introduce the standard
scalar product between two functions `(x) and r(x) as

〈`, r〉 =
∫
dx `(x)r(x) . (39)

Then, `min(x) must satisfy

`min(x) = [L† · `min](x) (40)

where the adjoint of L satisfies 〈`,L · r〉 = 〈L† · `, r〉. In this way, we can formally express

lim
q̂→∞

r
(s)
q̂ (x′;x) = 〈`min, r

(s)
0 〉

〈`min, ρmin〉
ρmin(x′) (41)

Using (35), we can express the limit

lim
q̂→∞

mq̂(x) = 〈`min, r
(s)
0 〉

〈`min, ρmin〉

∫
dx′ ρmin(x′) = 〈`min, r

(s)
0 〉

〈`min, ρmin〉
(42)

So the x-dependence is hidden in the scalar product in Eq. (42), which depends on `min(x′). Explicitly, the dual
operator in Eq. (40) takes the form

[L† · `](x) = 2wmin(x)
∫
dx′ `(x′)p(x′ − x− c(βc)) (43)

The explicit form of `min(x) cannot be determined in general as it depends on the specific form of the threshold
distribution p(τ). So, it might look surprising that eventually the large q̂ drastically simplify to a universal form, but
a subtle mechanism is at play. Indeed, in the limit x→ −∞, we assume `min(x) ∼ e−β̃x. Plugging it in Eq. (40) and
using that wmin(x→ −∞) = 1, we can determine the value of β̃. We obtain

2
∫
dx′ e−β̃x

′
p(x′ − x− c(βc)) = e−β̃x (44)
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and after the change of variables τ = x′−x−c(βc), it coincides with Eq. (21) with β̃ = βc. Since ρmin(x′) x→−∞−→ x′eβcx
′

and r
(s)
0 (x′;x) = ρmin(x′ + x), we see that both the numerator and denominator in Eq. (12) are formally infinite as

the integrand have a finite limit for x→ −∞. So the ratio in Eq. (42) needs to be evaluated by a limiting procedure.
In order to regularize we introduce a cutoff Λ and set `(Λ)

min(x) = θ(x+ Λ)`min(x). Then, we have

lim
q̂→∞

mq̂(x) = lim
Λ→∞

∫∞
−Λ dx

′ `min(x′)ρmin(x+ x′)∫∞
−Λ dx `min(x′)ρmin(x′)

= lim
Λ→∞

eβcx
∫ 0
−Λ dx (x′ + x) +O(1)∫ 0
−Λ dx

′ x′ +O(1)
= eβcx (45)

which gives the expected exponential behavior.
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