N
N

N

HAL

open science

FFT-based homogenization of permeability using a
Hashin-Shtrikman type variational framework

Francois Bignonnet, L. Dormieux

» To cite this version:

Francois Bignonnet, L. Dormieux. FFT-based homogenization of permeability using a Hashin-
Shtrikman type variational framework. Fifth Biot Conference on Poromechanics, C. Hellmich, B. Pich-
ler, D. Adam, Jul 2013, Vienne, Austria. pp.1245-1254, 10.1061/9780784412992.149 . hal-04262557

HAL Id: hal-04262557
https://hal.science/hal-04262557
Submitted on 27 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04262557
https://hal.archives-ouvertes.fr

“Template” — 2013/2/14 — 12:00
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Université Paris-Est, Laboratoire Navier (UMR 8205), CBJRENPC, IFSTTAR, F-
77455 Marne-la-Vallée. francois.bignonnet@enpc.fr,dormieux@enpc.fr

ABSTRACT

A numerical scheme for the computation of the permeabilitgamplex mi-
crostructures is presented. As a darcean counterpart ofdke Fourier Transform
(FFT) based scheme in elasticity, the method is designee ttirlectly coupled with
3D imaging techniques of porous samples, without meshirgbnition of an equiva-
lent pore network. The method relies on the variationalgpie of Hashin-Shtrikman
which ensures a rigorous upper bound status to the estimpatedeabilities and pro-
vides an energetically consistent discretization of Gigagrators and of the viscosity
of heterogeneous voxels comprising both solid and fluid.

1 INTRODUCTION

A pioneering work (Ene, 1975) early clarified the theordtitk between the
macroscopic Darcy’s law for fluid flow in porous media and thieroscopic Stokes
flow within the pore space. A quantitatively precise prdditiof the intrinsic perme-
ability tensor thus requires an accurate description ofptbre geometry. Within this
framework, successful predictions of the permeability @fqus media have been per-
formed, based on different degrees of idealization of threfsolid phase descriptions,
see e.g. (Boutin, 2000)

Finer description of the fluid flow requires direct full fielaraulations on real
pore geometries. These geometries may be measured thamésetdt advances in
imaging techniques, which allow for precise reconstructbmicrostructures down to
a few nanometers (Desbois, 2011). Most numerical meth@lsamed on approximate
solutions of Stokes equations in the pore space, but sudfer iigh computational cost
(memory and time) or complex meshing.

Taking advantage of the fast evaluation of non local termBmBY, (Wiegmann,
2007) proposed a computationally efficient scheme. Andittuétful approach is the
adaptation of the FFT-based scheme initially introducddhear elasticity (Moulinec,
1994). This scheme was designed to be directly interfacékl mwiaging techniques
and has been adapted to permeability (Monchiet, 2009; Ngw@13). Recently, a
variational framework for FFT-based scheme has been intedl in linear elasticity
(Brisard, 2010), improving the performances of the soechliasic scheme (Moulinec,
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1994). It consists in the minimization of an energy HashimiHi&man functional, al-
lowing for an energetically consistent discretization anolviding rigorous bounds of
the homogenized properties. Recent advances (Brisar@) 20dde it fairly simple to
implement and suitable for computations on large discaétn grids.

The present communication proposes a numerical schemed@omputation
of permeability combining a new Hashin-Shtrikman like feamork for permeability
and a FFT-based scheme. In section 2, the framework for thegenization of the
permeability of periodic porous media is recalled, with &afic focus on its vari-
ational formulation. In section 3, a Hashin-Shtrikman likariational framework is
derived in this context, which is the main result of this papge a by-product, an
energetically consistent discretization is derived intisec4 to propose an improved
FFT-based scheme. A validation of the method is proposed imple geometry in
section 5 by comparison with Finite Element simulations.

2 FORMULATION OF THE FLUID FLOW PROBLEM

At the macroscopic scale, Darcy’s law linearly relates trespure gradient
to the fluid velocityV through the permeability tensor By = — K - a.

A micromechanical approach to permeability has initialgeb presented by
(Ene, 1975) in the context of periodic boundary conditidrise elementary cell is a
rectangular parallelepiped of boundaif2, comprising a non deformable solid phase
in {2, and a pore spac@; filled with an incompressible Newtonian fluid of viscosity
p. The porosity of the elementary cellgs= [€2/|/|€2|. The spacial coordinates at the
micro scale are denoted Iy In this problem(P), the fluid flow is described by the
pressure fielgh(z) and the velocity fieldb(z) in €.

According to the separation of scale principle (Boutin,@Q€he fluid is loaded
by the macroscopic pressure gradientvhich is equal to the volume average oVeof
the microscopic pressure gradient by considering an exters the pressure field to
the solid phase. The pressure field may thus be rewrittentmfhod and solid phases
p(z) = a - z + ¢(z) whereg(z) is a periodic pressure fluctuation at the micro-scale.

The velocity field has to comply with several kinematic cdiwdis: 1. no-slip
boundary condition at the solid-fluid interfagg;, 2. periodic boundary conditions on
00 N Qy, 3. incompressibility or continuity equatieliv(v) = 0 in ;.

Further on, it will prove convenient to extend the boundaaiue problem to
the whole elementary cell instead of the pore space only.oleod the rigid solid can
be regarded as an incompressible viscous fluid with an iefingicosity. The essential
advantage of this point of view lies in the fact that the rip-boundary condition at
the solid-fluid interface vanishes and will be automaticatlet by the solution to the
problem. The proposed idea however presents a shortcothimgigid body motions
of the solid domain must be prevented, or it would simply kegded by the fluid.

Since the proposed method aims at dealing with real mierostres and for
the sake of clarity, solid phases with disjoint domains areconsidered. Furthermore,
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periodicity implies that rotation may not occur if the sgiidase spans over the whole
cell. Hence only one no-velocity condition will be consielér Note that in the case
of a single solid particle isolated in the fluid phase, rataiis not prevented so more
complex conditions to prevent rotation or deal with mubiplarticles could be added
(Nguyen, 2013). A more involved treatment would then follathough the main ideas
focused on here would remain valid.

The following developments are based on the condition trary sub-domain
Qs C €, of volume fractionfs # 0, the average velocity is null. The s@tof kine-
matically admissible velocity fielda for the new extended probleli) defined on
the whole elementary cefl is thenC = {u | u periodic ond2, w® = 0, div(u) =
0 on 2}, where the notation’ = |Q2;|~* fQj u(z) d 'V, is used throughout the paper for
the volume average on any doméain

The Lagrange multiplier associated to this no-velocityditan is a uniform
body force applied ofi2s. In this specific case where only one no-velocity condition
is chosen, the Lagrange multiplier is known. Indeed, adgogrtb (Boutin, 2000), mo-
mentum balance states that macroscopic stresses in tdepbalse, here microscopi-
cally described as the Lagrange multiplier, counterbadahe macroscopic fluid pres-
sure gradient. Eventually, momentum balance imposes tthe fooce to befs ' a.

The unknowns of problertiP) are the velocity fields € C and the stress field
o or, in an equivalent manner, and the periodic pressure fluctuatign The field
equations of the new extended problém) defined on the whole elementary céll
read, for the velocity € C and the strain ratd(z) = 1/2[grad(v(z))+'grad(v(z))]

div(o(2)) = —fs'aif z € Qg, 0 otherwise (1a)

o(z) = 2u(z)d(z) — (a2 +(2))1 (2 €Q), (1b)
where the Newtonian behavior (eq. 1b) links the stre&s) to the strain rate with
u(z) = oo if z € Q, andp otherwise. For Stokes flows, the inertia effects in the
momentum balance are neglected (eq. 1a).

These equations are formally identical to a problem of loggemeous elasticity
involving two incompressible phases. We therefore coufaeekto take advantage of
the homogenization methods developed in solid micromdchaklowever this anal-
ogy breaks down when the boundary conditions and loadiranpeters are considered.

In solid micromechanics, the loading parameter is the nsaoic strain tensor, which
defines boundary conditions as an affine displacement withgie fluctuations. Here,

the loading parameter i) is the macroscopic pressure gradient vector associated to
its equilibrating body forces ifks. However, we shall see later that seminal ideas of
solid micromechanics will be of great help in the presentextof fluid flow.

Problem(P) is linear with respect to the loading parameterso the velocity
field depends omx through a localization tensd¢(z) such thaw(z) = —k(z) - .
Then, the macroscopic velocity relates to the microscoeloatty throughV = v
—k - . Darcy’s law is recognized and the permeability tensor apppaakK =
Hence, the resolution @fP) directly provides the permeability tensor.

k.
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For practical implementations, a classical approach twel@pproximate solu-
tions of (P) is the use of a variational framework. For a given strain datine density
of dissipated energy due to viscosityui$d) = p d : d. The adaptation of (Dormieux,
2006) provides the variational formulation of the extentled flow (P)

1
——a-K-a=infw(du)+a-u. 2

2 ueC

For any choice of a kinematically admissible velocity fi¢R), provides a lower
bound estimate of the permeability. Akin to the minimum ofgutial energy in linear
elasticity, this inequality is the basis for Finite Elem&tgthods (FEM), which explore
subsets of with finite dimension. Note that the complex descriptiontad solid-fluid
interphase for the no-slip boundary condition has beersteaed to a problem with
infinite contrast in viscosities. Direct use of this vamaual principle (e.g. FEM) is thus
numerically difficult because of the infinite contrast and thcompressibility condi-
tion. In the following section, (2) will be used to derive avebHashin-Shtrikman
variational principle (Hashin, 1962), in which the so-edllpolarization field to opti-
mize has no condition to fulfill. Another motivation is thatetoptimization problem
associated with the Hashin-Shtrikman variational pritecip known in solid microme-
chanics to lead to a FFT scheme able to deal with infinite esh{Brisard, 2010).

3 HASHIN-SHTRIKMAN-LIKE VARIATIONAL FRAMEWORK

In the line of reasoning of (Willis, 1977), a transpositioh the Hashin-
Shtrikman variational principle (Hashin, 1962) to darckamogenization may be de-
rived. The main idea is to transfer the difficulty arisingfra heterogeneity in viscosity
to an additional loading parameter called polarization, acting as a prestress.

The Legendre transform of the density of dissipated ener@y) is defined
on the space of stress tensorsugé$r) = sup, (7 : d(u) — w(d)) . In the case of an
incompressible isotropic Newtonian fluid, it equaly(T) = (4u) "7 : 7.

Let us consider a reference medium of uniform viscogiysmaller than any
local value of the viscosity in the heterogeneous mediumaatdhAccording to its
definition, the Legendre transforfw — w,)* associated with a heterogeneous medium
of viscosityu(z) — o satisfies/r; Vd; w(d) > wo(d) + 7 : d — (w — wp)* (7). After
addition of the loading term i and volume averaging ovér, the minimum over all
kinematically admissible velocity fields thyields, using (2)

vr: —%a Ko > it (wdw) 7 dw) taw) - wowrr). ()
The result (3) is known as the Hashin-Shtrikman variatigmadciple (Hashin,

1962). The first part of the right term is the variational fatation of an auxiliary

problem(P?), similar to( P), except the viscosity is homogeneous and the polarization

field is an additional loading parameter. The second parhva by definition of

the Legendre transform. The whole right hand side is a fanatiof the variabler



“Template” — 2013/2/14 — 12:00

called Hashin-Shtrikman function&S (7). The equality is met for a unique optimum
polarization field. The inequality (3) is the basis of thegwesed FFT scheme since it
may be used to provide upper bound estimates of the perntgdbil any choiceof a
polarization fieldr, with no conditionon r.

In order to fully express the quadratic dependenceronf the Hashin-
Shtrikman functional, the auxiliary problerf?’) has to be solved fow® € C.
The only difference with P) lies in the prestressed behavior law, which now writes
o'(z) =2upd’(z) — (- 2+ ¢°2)) 1 +7 (z € Q) instead of (1b).

(P) is split using superposition in a reference problght) loaded by only
and a prestressed problgii™) loaded by the polarization field only. In the following
developments, exponeat(resp.r) refers to the solution of P*) (resp.(P7)).

The minimum of the potential energy in the Hashin-Shtrikriuarctional meets
its minimum inC for v° solution of (P°). The functional is simplified by repeatedly
using the divergence theorem and boundary conditions to

1 1 1
HS(T):§a‘va+d°‘:T+§T:d7—§(2,u—2u0)—17':7'. 4)
Since the viscosity is uniform in both sub problems, they ine@yolved using
Green operators. The solutions of probleff?$) and(P™) are expressed thanks to the
different order Green operators as defined in Appendix A

v(2) =07+ (Go* fs'x°a) (2) 5 d(2) = (‘Gox fs'x ) (2),
v (2)=v" 4+ (GoxT)(2) ; d(z)=—(To*x71)(2).

The average velocities in both problems may be computeckshamthe no
velocity boundary condition. For problerf®) namely,0 = wvox$ = v +
xS (Go * f5'xSa), where the auto-influence term of the Green function averis
recognized (appendix B). Finally? = —G5° - . The auto-influence ter&5° may
thus be considered as the permeability of the fictitiousreefee problen(P*). The
Hashin-Shtrikman functional is now explicited as a quaddarm in —, and the upper
bound on the permeability writes

1 1
V‘r,ia-K-a <§a-GgS-a— (‘Go * fs'x5a) : T
(5)
1 1
+ 51’ Tox1+ 5(2,[1 - 2,”0)_17- ST

4 FROM DISCRETIZATION TO A FFT SCHEME

The d-dimensional domaif is divided in a regulatN; x ... x Ny grid of
N = N;..N; sub-domaind2s (pixels for d = 2, voxels for d = 3) of length (or
resolution)r along the d axis of an orthonormal basss, ..., e;). The multi-index
B = (f,..,04) € =1[0..N; — 1] x ... x [0..N4 — 1] is used to position the pixel in
the d directions.
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In order to optimize the Hashin-Shtrikman functional, wstriet to the explo-
ration of the space of pixel-wise constant polarizatiordBelFor any choice of a se-
quence(T)acz, @ polarization field is associated byz) = > 5., 75 x°(z), where
x? is the characteristic function of pix€ls defined as®(z1e; + ... + z4e4) = 1 if
Vi, 2|z; — r3;] < r, 0 otherwise.

Each term of the Hashin-Shtrikman functional may be nunadlyicomputed
exactlythanks to the consistently discretized operators intredury (Brisard, 2010)
and briefly recalled in appendix B. These operators allowHeuse of Discrete Fourier
Transforms while no truncation of the Fourier series arean@tie discrete convolution
products® are computed as a direct product in the Fourier space, useriggst Fourier
Transform (FFT) to compute the discrete Fourier transforms

The constant term may be computedctlyif (2s is chosen as a union of pixels,
resorting to the discrete convolution product to compuéeatito-interaction term

1
Gi® = 572 206 (G @X°) g = D_x5Gh".
S Bez BeT

The linear term relates to the mean valueitfover pixel(2s, denotedd;;, sinceds =
(‘G5 ® fglxsa)ﬁ —t GP% . . and is calculated using the relation

1 1
T (o fs'Sa) = D e (G5 @ fs'xa) g =5 > T d,
BeT BeT

Similarly, the first quadratic term is computed thanks togheperty

——_ 1 g6 1 ¢
T:FO*TZWZZTB:FO :ngNZTg:(I‘O(%T)B
BeTl 6T BeT

where the computation is quicker in the second option thandtirst option by resort-
ing to FFTs by the order of magnitudélog(N) versusN? operations.

The second quadratic term leads to the introduction of argetieally consis-
tent averaging rule for the equivalent viscosity of a conitegsixel comprising fluid
and solid. Introducing the equivalent viscositiesdefined on each pixel by the aver-
aging rule(ug — o)~ = N xB(u — po)~?, this term containing the local information
may be expressed as

1 .
(@p—2p0) 7T = ;Q(QMB —2u0) "' T

Gathering all these results, a bound on the permeabilitybtaied for any
choice of the sequende g) g7

1 1 1 o
ia-K-agéa-Gﬁs-a+NZ(—dﬂ:75

. (6)
1 ) )
+5 [Tﬁ (TG ® 7)g + (28 — 210) 1"'ﬁ¢"’ﬂ])-
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The comparison of (6) with linear elasticity (Eq. (17) in (&rd, 2010)) shows great
similarities, although the difference in loading parameted boundary conditions lead
to a more complicated reference solution: constant strailinear elasticity versus
Green operator dependent strain rate here.

Among the subset of pixel wise constant polarization figls,optimal choice
(Tg”t)gel in the sense of the Hashin-Shtrikman energy complies wilsjistem

VB e, (T{@®T)5+ (2up — 2u0) '7p = dj. (7)

In the case were the pixel averaged viscosity matches teecrafe viscosity, the po-
larization is forced to zero on the corresponding pixels.

The quadratic form associated with the Hashin and Shtrikfuaational has
been shown to be definite positive (Willis, 1977), so theeays{7) has a unique so-
lution. To take advantage of the fast evaluation of the digcconvolution product
by FFT, the matrix underlying this system is not explicitatfhough its expression is
known through the pixel to pixel interaction terms of therthuorder Green operator.
Instead, (Brisard, 2010) suggests using iterative linearess such as the conjugate
gradient. The optimum bound on the permeability for a givieorétization is then

1
o Koaga G amg) 00 o
BeZ

The average on pixéls of the associated velocity field is

O; C O 1 O;
o = (661 et (@), - Lo @
S

Eq. (8) will be shown to be a good approximation of the solutd the initial
problem(P) in section 5. Furthermore, it also proves to be energeyicaihsistent
since at the optimum the identity - K - o« < —ac- N™' Y5, fug”t holds.

5 VALIDATION

In this section, the 2D problem a flow past a regular array oésgcylinders is
numerically studied. The square has half the size of theaatlitvhich is of size 1 and
the same orientation of the faces @nde,). Thanks to the symmetry of the problem,
no rotation of the solid phase occurs. A bound is obtainedhercdbmponenis;; of the
intrinsic permeability tensor by settings = 1 andac = e;. The discretization grid is
of N; = N, pixels in each direction. FEM computations have been chwig using
quadratic elements on2562 square elements grid using the Finite Element Method
(FEM) code Cast3M.

The reference viscosity is chosen equal to the fluid velpsibythat only the
solid phase is polarized. This choice experimentally ptesithe best bound for a given
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Figure 1. Square inclusion problem. Left: bounds on permealiity: FFT ( +), FEM
(x). Right: velocity field for FEM (fine x), FFT: N; = 16 (4), N; = 1024 (fine —).

discretization. Note that this is valid only for geometiiesvhich the viscosity averag-
ing rule is not needed. This choice also results in lesstitera of the linear iterative
solver, since the space of explored polarization fields rargh In this example, the
choice(2s = €2, is made and consistent discrete Green operators have begn us

Results for the bound of’;; are shown in Fig. 1. Since the FFT (resp. FEM)
method is based on the principle of Hashin-Shtrikman (regpimum potential energy
(2)), refinement of the discretization provides increalsirgptter upper (resp. lower)
bounds on the permeability, and both methods steadily egave the same value.

The local velocities computed using (8) prove to be good@pprations of the
solution velocity field on Fig. 1, even at low discretizatignd (16 x 16).

6 CONCLUSION

The present work introduced a Hashin-Shtrikman variatisraenework for the
darcean flow problem with periodic boundary conditions.sTormulation proved to
be a solid basis for the development of numerical approxrsatutions. The varia-
tional framework ensures the status of upper bound on thragsdility of any derived
estimate as well as an improvement of the estimates withrgfillement, and provides
a consistent discretization of heterogeneous pixels atittedbreen operators. The pro-
posed method is computationally faster than FEM and easiemilement: no meshing
operation has to be realized, since images may be direaly as an input.
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A ON THE DIFFERENT ORDER GREEN OPERATORS

The Green functionG, solves for the velocityu in a RVE 2 comprising
a uniform material with linear properties loaded by a bodycéofield f through
u(z) = [,Go(z —y) - f(y)dV, = (Gy* f)(z). In the Fourier space, the con-
volution product is simply expressed as the dot produt) = Go(k) - f(k),
where, in the Fourier space:is the wave vectom its normalization,f the Fourier
transform of a functionf. The Fourier transform of the Green function is known as
Go(k) = (olk)?) ™" (1 — (2(1 — 1)) 'm ®n), with 15, = 1/2. Fork = 0 the con-
vention is that all operators are null. The operaggris symmetric.

A third order Green operator may be defined. This operatks [polarization to

velocity throughv = Go+7 and its Fourier transform §, (k) = —.G (k) ® k,where
the superscript indicates symmetrization. Then body force is linked toistrate
throughd = ('G, * f). Use of the Maxwell-Betti theorem indicates that the opmrat
G, is anti-symmetric in the senge: (Go x 1) = —7 : (!Go * f).

The fourth order Green operatBy links the polarization to strain rate through
d = —T, + 7. In Fourier spacel’y(k) = —k ® Go(k) @ k. T, is symmetric.

B ON DISCRETIZED PERIODIC GREEN OPERATORS

The periodized Green operator introduced in (Brisard, 28002) may be gen-
eralized to different order operators. Consider an operat@perating ase(z) =
(H xy) (z) and two sub-domainQ; and(2; of {2 whose characteristic functions are
denotedy’ andy”’, of volume fractionsf; and f;. To capture the interaction of the two
sub-domains, the interaction tefif’ = f; *x/H  f; '’ is introduced.

Physically speaking, the interaction teff” yields the average velocity (or
strain) on domaif)! resulting from a uniform body force (or polarization) agglion
domain)’ (depending on the choice of Green operator). Using the piiepeof the
Fourier transformi’ = f; £ 3", 0 X7 (ks)H(ks) X’ (s), where the superscript
x denotes the complex conjugate. Note that the influence temall if 2; or Q; is
equal tof2 in the case of Green operators, since they are nukfer0.

Now assumé?; and(2; are both a union of pixels, as defined in section 4. The
finite data seriesxé)gg is introduced, such agé = 1 if the pixel 2z isin 2, and is
null otherwise. For this particular choice, the Fouriensifarm ofy’(k,) is linked to
the discrete Fourier transform (DFY) by X' (ks) = [[[.c(1. g No " sinc(mbe/No)|Xs,
The sum ovefZ is reorganized to take advantage of the DFT periodicity.r§amuiza-
tion leads to the introduction of the consistently disaedi operatof{* whose DFT
IS Hg = > peze H(Koytni vy batnang) Heena) sinc?(7w[b./N. + n.]). The influence
term is then expressed @87 = (N2f; ;)7 Sy cr Xb HE XL

A discrete convolutiomdu@ may be defined by introducing the sequence
(He® X")[3 whose DFT igHe ® ), = Hg ¢7. Use of the Plancherel theorem pro-

vides the useful relatiol’” = (N f1 ;)" > 57 x5(H ®x”) 5. Thus, the convolution
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products may be exactly computeddf and(2; are both a union of pixels thanks to
the relationy/H « x; = N™'Y g7 x5 (He® XJ)B, where the discrete convolution

product may numerically be efficiently computed by FF'I(p,ﬁ)BEJ, product with the
consistent operator in the Fourier space and inverse FFT.

The consistent operators require computation of infinitesubut for suffi-
ciently refined grids, (Brisard, 2012) proved they could beaetageously replaced by
so-called filtered non consistent operators in a very satisfy approximation, which
neither require involved computations nor storage.
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