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ABSTRACT

A numerical scheme for the computation of the permeability of complex mi-
crostructures is presented. As a darcean counterpart of theFast Fourier Transform
(FFT) based scheme in elasticity, the method is designed to be directly coupled with
3D imaging techniques of porous samples, without meshing ordefinition of an equiva-
lent pore network. The method relies on the variational principle of Hashin-Shtrikman
which ensures a rigorous upper bound status to the estimatedpermeabilities and pro-
vides an energetically consistent discretization of Greenoperators and of the viscosity
of heterogeneous voxels comprising both solid and fluid.

1 INTRODUCTION

A pioneering work (Ene, 1975) early clarified the theoretical link between the
macroscopic Darcy’s law for fluid flow in porous media and the microscopic Stokes
flow within the pore space. A quantitatively precise prediction of the intrinsic perme-
ability tensor thus requires an accurate description of thepore geometry. Within this
framework, successful predictions of the permeability of porous media have been per-
formed, based on different degrees of idealization of the pore/solid phase descriptions,
see e.g. (Boutin, 2000)

Finer description of the fluid flow requires direct full field simulations on real
pore geometries. These geometries may be measured thanks torecent advances in
imaging techniques, which allow for precise reconstruction of microstructures down to
a few nanometers (Desbois, 2011). Most numerical methods are based on approximate
solutions of Stokes equations in the pore space, but suffer from high computational cost
(memory and time) or complex meshing.

Taking advantage of the fast evaluation of non local terms byFFT, (Wiegmann,
2007) proposed a computationally efficient scheme. Anotherfruitful approach is the
adaptation of the FFT-based scheme initially introduced inlinear elasticity (Moulinec,
1994). This scheme was designed to be directly interfaced with imaging techniques
and has been adapted to permeability (Monchiet, 2009; Nguyen, 2013). Recently, a
variational framework for FFT-based scheme has been introduced in linear elasticity
(Brisard, 2010), improving the performances of the so-called basic scheme (Moulinec,
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1994). It consists in the minimization of an energy Hashin-Shtrikman functional, al-
lowing for an energetically consistent discretization andproviding rigorous bounds of
the homogenized properties. Recent advances (Brisard, 2012) made it fairly simple to
implement and suitable for computations on large discretization grids.

The present communication proposes a numerical scheme for the computation
of permeability combining a new Hashin-Shtrikman like framework for permeability
and a FFT-based scheme. In section 2, the framework for the homogenization of the
permeability of periodic porous media is recalled, with a specific focus on its vari-
ational formulation. In section 3, a Hashin-Shtrikman likevariational framework is
derived in this context, which is the main result of this paper. As a by-product, an
energetically consistent discretization is derived in section 4 to propose an improved
FFT-based scheme. A validation of the method is proposed on asimple geometry in
section 5 by comparison with Finite Element simulations.

2 FORMULATION OF THE FLUID FLOW PROBLEM

At the macroscopic scale, Darcy’s law linearly relates the pressure gradientα
to the fluid velocityV through the permeability tensor byV = −K · α.

A micromechanical approach to permeability has initially been presented by
(Ene, 1975) in the context of periodic boundary conditions.The elementary cellΩ is a
rectangular parallelepiped of boundary∂Ω, comprising a non deformable solid phase
in Ωs and a pore spaceΩf filled with an incompressible Newtonian fluid of viscosity
µ. The porosity of the elementary cell isϕ = |Ωf |/|Ω|. The spacial coordinates at the
micro scale are denoted byz. In this problem(P ), the fluid flow is described by the
pressure fieldp(z) and the velocity fieldv(z) in Ωf .

According to the separation of scale principle (Boutin, 2000), the fluid is loaded
by the macroscopic pressure gradientα, which is equal to the volume average overΩ of
the microscopic pressure gradient by considering an extension of the pressure field to
the solid phase. The pressure field may thus be rewritten in both fluid and solid phases
p(z) = α · z + φ(z) whereφ(z) is a periodic pressure fluctuation at the micro-scale.

The velocity field has to comply with several kinematic conditions: 1. no-slip
boundary condition at the solid-fluid interfaceIsf , 2. periodic boundary conditions on
∂Ω ∩ Ωf , 3. incompressibility or continuity equationdiv(v) = 0 in Ωf .

Further on, it will prove convenient to extend the boundary value problem to
the whole elementary cell instead of the pore space only. To do so, the rigid solid can
be regarded as an incompressible viscous fluid with an infinite viscosity. The essential
advantage of this point of view lies in the fact that the no-slip boundary condition at
the solid-fluid interface vanishes and will be automatically met by the solution to the
problem. The proposed idea however presents a shortcoming:the rigid body motions
of the solid domain must be prevented, or it would simply be dragged by the fluid.

Since the proposed method aims at dealing with real microstructures and for
the sake of clarity, solid phases with disjoint domains are not considered. Furthermore,
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periodicity implies that rotation may not occur if the solidphase spans over the whole
cell. Hence only one no-velocity condition will be considered. Note that in the case
of a single solid particle isolated in the fluid phase, rotation is not prevented so more
complex conditions to prevent rotation or deal with multiple particles could be added
(Nguyen, 2013). A more involved treatment would then follow, although the main ideas
focused on here would remain valid.

The following developments are based on the condition that for any sub-domain
ΩS ⊂ Ωs of volume fractionfS 6= 0, the average velocity is null. The setC of kine-
matically admissible velocity fieldsu for the new extended problem(P ) defined on
the whole elementary cellΩ is thenC = {u | u periodic on∂Ω, uS = 0, div(u) =
0 onΩ}, where the notationuj = |Ωj |

−1
∫

Ωj
u(z) dVz is used throughout the paper for

the volume average on any domainΩj .
The Lagrange multiplier associated to this no-velocity condition is a uniform

body force applied onΩS . In this specific case where only one no-velocity condition
is chosen, the Lagrange multiplier is known. Indeed, according to (Boutin, 2000), mo-
mentum balance states that macroscopic stresses in the solid phase, here microscopi-
cally described as the Lagrange multiplier, counterbalance the macroscopic fluid pres-
sure gradient. Eventually, momentum balance imposes the body force to bef−1

S α.
The unknowns of problem(P ) are the velocity fieldv ∈ C and the stress field

σ or, in an equivalent manner,v and the periodic pressure fluctuationφ. The field
equations of the new extended problem(P ) defined on the whole elementary cellΩ
read, for the velocityv ∈ C and the strain rated(z) = 1/2[grad(v(z))+tgrad(v(z))]

div(σ(z)) = −f−1
S α if z ∈ ΩS , 0 otherwise, (1a)

σ(z) = 2µ(z) d(z) − (α · z + φ(z))1 (z ∈ Ω), (1b)

where the Newtonian behavior (eq. 1b) links the stressσ(z) to the strain rate with
µ(z) = ∞ if z ∈ Ωs andµ otherwise. For Stokes flows, the inertia effects in the
momentum balance are neglected (eq. 1a).

These equations are formally identical to a problem of heterogeneous elasticity
involving two incompressible phases. We therefore could expect to take advantage of
the homogenization methods developed in solid micromechanics. However this anal-
ogy breaks down when the boundary conditions and loading parameters are considered.
In solid micromechanics, the loading parameter is the macroscopic strain tensor, which
defines boundary conditions as an affine displacement with periodic fluctuations. Here,
the loading parameter in(P ) is the macroscopic pressure gradient vector associated to
its equilibrating body forces inΩS . However, we shall see later that seminal ideas of
solid micromechanics will be of great help in the present context of fluid flow.

Problem(P ) is linear with respect to the loading parameterα, so the velocity
field depends onα through a localization tensork(z) such thatv(z) = −k(z) · α.
Then, the macroscopic velocity relates to the microscopic velocity throughV = v =
−k · α. Darcy’s law is recognized and the permeability tensor appears asK = k.
Hence, the resolution of(P ) directly provides the permeability tensor.
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For practical implementations, a classical approach to derive approximate solu-
tions of(P ) is the use of a variational framework. For a given strain rated, the density
of dissipated energy due to viscosity isw(d) = µ d : d. The adaptation of (Dormieux,
2006) provides the variational formulation of the extendedfluid flow (P )

−
1

2
α · K · α = inf

u∈C
w(d(u)) + α · u. (2)

For any choice of a kinematically admissible velocity field,(2) provides a lower
bound estimate of the permeability. Akin to the minimum of potential energy in linear
elasticity, this inequality is the basis for Finite ElementMethods (FEM), which explore
subsets ofC with finite dimension. Note that the complex description of the solid-fluid
interphase for the no-slip boundary condition has been transfered to a problem with
infinite contrast in viscosities. Direct use of this variational principle (e.g. FEM) is thus
numerically difficult because of the infinite contrast and the incompressibility condi-
tion. In the following section, (2) will be used to derive a novel Hashin-Shtrikman
variational principle (Hashin, 1962), in which the so-called polarization field to opti-
mize has no condition to fulfill. Another motivation is that the optimization problem
associated with the Hashin-Shtrikman variational principle is known in solid microme-
chanics to lead to a FFT scheme able to deal with infinite contrast (Brisard, 2010).

3 HASHIN-SHTRIKMAN-LIKE VARIATIONAL FRAMEWORK

In the line of reasoning of (Willis, 1977), a transposition of the Hashin-
Shtrikman variational principle (Hashin, 1962) to darceanhomogenization may be de-
rived. The main idea is to transfer the difficulty arising from a heterogeneity in viscosity
to an additional loading parameterτ , called polarization, acting as a prestress.

The Legendre transform of the density of dissipated energyw(d) is defined
on the space of stress tensors asw∗(τ ) = supd (τ : d(u) − w(d)) . In the case of an
incompressible isotropic Newtonian fluid, it equalsw∗(τ ) = (4µ)−1τ : τ .

Let us consider a reference medium of uniform viscosityµ0 smaller than any
local value of the viscosity in the heterogeneous medium at hand. According to its
definition, the Legendre transform(w−w0)

∗ associated with a heterogeneous medium
of viscosityµ(z)− µ0 satisfies∀τ ; ∀d; w(d) ≥ w0(d) + τ : d − (w −w0)

∗(τ ). After
addition of the loading term inα and volume averaging overΩ, the minimum over all
kinematically admissible velocity fields inC yields, using (2)

∀τ ;−
1

2
α · K · α ≥ inf

u∈C

(

w0(d(u)) + τ : d(u) + α · u
)

− (w − w0)∗(τ ). (3)

The result (3) is known as the Hashin-Shtrikman variationalprinciple (Hashin,
1962). The first part of the right term is the variational formulation of an auxiliary
problem(P 0), similar to(P ), except the viscosity is homogeneous and the polarization
field is an additional loading parameter. The second part is known by definition of
the Legendre transform. The whole right hand side is a functional of the variableτ
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called Hashin-Shtrikman functionalHS(τ ). The equality is met for a unique optimum
polarization field. The inequality (3) is the basis of the proposed FFT scheme since it
may be used to provide upper bound estimates of the permeability for any choiceof a
polarization fieldτ , with no conditiononτ .

In order to fully express the quadratic dependence onτ of the Hashin-
Shtrikman functional, the auxiliary problem(P 0) has to be solved forv0 ∈ C.
The only difference with(P ) lies in the prestressed behavior law, which now writes
σ0(z) = 2µ0 d0(z) − (α · z + φ0(z)) 1 + τ (z ∈ Ω) instead of (1b).

(P 0) is split using superposition in a reference problem(P α) loaded byα only
and a prestressed problem(P τ) loaded by the polarization fieldτ only. In the following
developments, exponentα (resp.τ ) refers to the solution of(P α) (resp.(P τ)).

The minimum of the potential energy in the Hashin-Shtrikmanfunctional meets
its minimum inC for v0 solution of(P 0). The functional is simplified by repeatedly
using the divergence theorem and boundary conditions to

HS(τ ) =
1

2
α · vα + dα : τ +

1

2
τ : dτ −

1

2
(2µ − 2µ0)−1τ : τ . (4)

Since the viscosity is uniform in both sub problems, they maybe solved using
Green operators. The solutions of problems(P α) and(P τ ) are expressed thanks to the
different order Green operators as defined in Appendix A

vα(z) = vα +
(

G0 ∗ f−1
S χSα

)

(z) ; dα(z) =
(

t
G0 ∗ f−1

S χSα
)

(z),

vτ (z) = vτ + (G0 ∗ τ ) (z) ; dτ (z) = − (Γ0 ∗ τ ) (z).

The average velocities in both problems may be computed thanks to the no
velocity boundary condition. For problem(P α) namely,0 = vαχS = vαχS +

χS
(

G0 ∗ f−1
S χSα

)

, where the auto-influence term of the Green function overΩS is
recognized (appendix B). Finally,vα = −GSS

0 · α. The auto-influence termGSS
0 may

thus be considered as the permeability of the fictitious reference problem(P α). The
Hashin-Shtrikman functional is now explicited as a quadratic form in τ , and the upper
bound on the permeability writes

∀τ ,
1

2
α · K · α 6

1

2
α · GSS

0 · α −
(

tG0 ∗ f−1
S χSα

)

: τ

+
1

2
τ : Γ0 ∗ τ +

1

2
(2µ − 2µ0)−1τ : τ .

(5)

4 FROM DISCRETIZATION TO A FFT SCHEME

The d-dimensional domainΩ is divided in a regularN1 × ... × Nd grid of
N = N1...Nd sub-domainsΩβ (pixels for d = 2, voxels for d = 3) of length (or
resolution)r along the d axis of an orthonormal basis(e1, ..., ed). The multi-index
β = (β1, ..., βd) ∈ I = [0..N1 − 1] × ... × [0..Nd − 1] is used to position the pixel in
the d directions.
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In order to optimize the Hashin-Shtrikman functional, we restrict to the explo-
ration of the space of pixel-wise constant polarization fields. For any choice of a se-
quence(τβ)β∈I , a polarization field is associated byτ (z) =

∑

β∈I
τβ χβ(z), where

χβ is the characteristic function of pixelΩβ defined asχβ(z1e1 + ... + zded) = 1 if
∀i, 2|zi − rβi| 6 r, 0 otherwise.

Each term of the Hashin-Shtrikman functional may be numerically computed
exactlythanks to the consistently discretized operators introduced by (Brisard, 2010)
and briefly recalled in appendix B. These operators allow forthe use of Discrete Fourier
Transforms while no truncation of the Fourier series are made. The discrete convolution
products⊛ are computed as a direct product in the Fourier space, using the Fast Fourier
Transform (FFT) to compute the discrete Fourier transforms.

The constant term may be computedexactlyif ΩS is chosen as a union of pixels,
resorting to the discrete convolution product to compute the auto-interaction term

GSS
0 =

1

Nf 2
S

∑

β∈I

χS
β

(

Gc
0 ⊛ χS

)

β
=

∑

β∈I

χS
βG

Sβ
0 .

The linear term relates to the mean value ofdα over pixelΩβ, denoteddα
β, sincedα

β =
(

tG
c
0 ⊛ f−1

S χSα
)

β
=t G

βS

0 · α. and is calculated using the relation

τ :
(

tG0 ∗ f−1
S χSα

)

=
1

N

∑

β∈I

τβ :
(

t
G

c
0 ⊛ f−1

S χSα
)

β
=

1

N

∑

β∈I

τ β : dα
β,

Similarly, the first quadratic term is computed thanks to theproperty

τ : Γ0 ∗ τ =
1

N2

∑

β∈I

∑

δ∈I

τ β : Γβδ
0 : τ δ =

1

N

∑

β∈I

τβ : (Γc
0 ⊛ τ )β ,

where the computation is quicker in the second option than inthe first option by resort-
ing to FFTs by the order of magnitudeN log(N) versusN2 operations.

The second quadratic term leads to the introduction of an energetically consis-
tent averaging rule for the equivalent viscosity of a composite pixel comprising fluid
and solid. Introducing the equivalent viscositiesµβ defined on each pixel by the aver-
aging rule(µβ − µ0)

−1 = N χβ(µ − µ0)−1, this term containing the local information
may be expressed as

(2µ − 2µ0)−1τ : τ =
1

N

∑

β∈I

(2µβ − 2µ0)
−1τβ : τβ.

Gathering all these results, a bound on the permeability is obtained for any
choice of the sequence(τβ)β∈I

1

2
α · K · α 6

1

2
α · GSS

0 · α +
1

N

∑

β∈I

(

−dα
β : τ β

+
1

2

[

τ β : (Γc
0 ⊛ τ )β + (2µβ − 2µ0)

−1τβ : τ β

]

)

.

(6)
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The comparison of (6) with linear elasticity (Eq. (17) in (Brisard, 2010)) shows great
similarities, although the difference in loading parameter and boundary conditions lead
to a more complicated reference solution: constant strain in linear elasticity versus
Green operator dependent strain rate here.

Among the subset of pixel wise constant polarization fields,the optimal choice
(τ opt

β )β∈I in the sense of the Hashin-Shtrikman energy complies with the system

∀β ∈ I, (Γc
0 ⊛ τ )β + (2µβ − 2µ0)

−1τβ = dα
β. (7)

In the case were the pixel averaged viscosity matches the reference viscosity, the po-
larization is forced to zero on the corresponding pixels.

The quadratic form associated with the Hashin and Shtrikmanfunctional has
been shown to be definite positive (Willis, 1977), so the system (7) has a unique so-
lution. To take advantage of the fast evaluation of the discrete convolution product
by FFT, the matrix underlying this system is not explicited,although its expression is
known through the pixel to pixel interaction terms of the fourth order Green operator.
Instead, (Brisard, 2010) suggests using iterative linear solvers such as the conjugate
gradient. The optimum bound on the permeability for a given discretization is then

α · K · α 6 α · GSS
0 · α −

1

N

∑

β∈I

τ
opt
β :t G

βS

0 · α.

The average on pixelΩβ of the associated velocity field is

v
opt
β =

(

G
Sβ
0 − GSS

0

)

· α +
(

G
c
0 ⊛ τ opt

)

β
−

1

N

∑

δ∈I

G
Sδ
0 : τ

opt
δ . (8)

Eq. (8) will be shown to be a good approximation of the solution of the initial
problem(P ) in section 5. Furthermore, it also proves to be energetically consistent
since at the optimum the identityα · K · α 6 −α · N−1

∑

β∈I
v

opt
β holds.

5 VALIDATION

In this section, the 2D problem a flow past a regular array of square cylinders is
numerically studied. The square has half the size of the unitcell which is of size 1 and
the same orientation of the faces (e1 ande2). Thanks to the symmetry of the problem,
no rotation of the solid phase occurs. A bound is obtained on the componentK11 of the
intrinsic permeability tensor by settingµf = 1 andα = e1. The discretization grid is
of N1 = N2 pixels in each direction. FEM computations have been carried out using
quadratic elements on a2562 square elements grid using the Finite Element Method
(FEM) code Cast3M.

The reference viscosity is chosen equal to the fluid velocity, so that only the
solid phase is polarized. This choice experimentally provides the best bound for a given
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Figure 1. Square inclusion problem. Left: bounds on permeability: FFT ( +), FEM
(×). Right: velocity field for FEM (fine ×), FFT: N1 = 16 (+), N1 = 1024 (fine −).

discretization. Note that this is valid only for geometriesin which the viscosity averag-
ing rule is not needed. This choice also results in less iterations of the linear iterative
solver, since the space of explored polarization fields is shrunk. In this example, the
choiceΩS = Ωs is made and consistent discrete Green operators have been used.

Results for the bound onK11 are shown in Fig. 1. Since the FFT (resp. FEM)
method is based on the principle of Hashin-Shtrikman (resp.minimum potential energy
(2)), refinement of the discretization provides increasingly better upper (resp. lower)
bounds on the permeability, and both methods steadily converge to the same value.

The local velocities computed using (8) prove to be good approximations of the
solution velocity field on Fig. 1, even at low discretizationgrid (16 × 16).

6 CONCLUSION

The present work introduced a Hashin-Shtrikman variational framework for the
darcean flow problem with periodic boundary conditions. This formulation proved to
be a solid basis for the development of numerical approximate solutions. The varia-
tional framework ensures the status of upper bound on the permeability of any derived
estimate as well as an improvement of the estimates with gridrefinement, and provides
a consistent discretization of heterogeneous pixels and ofthe Green operators. The pro-
posed method is computationally faster than FEM and easier to implement: no meshing
operation has to be realized, since images may be directly used as an input.
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A ON THE DIFFERENT ORDER GREEN OPERATORS

The Green functionG0 solves for the velocityu in a RVE Ω comprising
a uniform material with linear properties loaded by a body force field f through
u(z) =

∫

Ω
G0(z − y) · f (y) d Vy = (G0 ∗ f)(z). In the Fourier space, the con-

volution product is simply expressed as the dot productû(k) = Ĝ0(k) · f̂ (k),
where, in the Fourier space:k is the wave vector,n its normalization,f̂ the Fourier
transform of a functionf . The Fourier transform of the Green function is known as
Ĝ0(k) = (µ0|k|

2)−1 (1 − (2(1 − ν0))
−1n ⊗ n) , with ν0 = 1/2. For k = 0 the con-

vention is that all operators are null. The operatorG0 is symmetric.
A third order Green operator may be defined. This operator links polarization to

velocity throughv = G0∗τ and its Fourier transform iŝG0(k) = −ıĜ0(k)
s

⊗ k, where
the superscripts indicates symmetrization. Then body force is linked to strain rate
throughd = (tG0 ∗ f). Use of the Maxwell-Betti theorem indicates that the operator
G0 is anti-symmetric in the sensef · (G0 ∗ τ ) = −τ : (tG0 ∗ f ).

The fourth order Green operatorΓ0 links the polarization to strain rate through

d = −Γ0 ∗ τ . In Fourier space,̂Γ0(k) = −k
s

⊗ Ĝ0(k)
s

⊗ k. Γ0 is symmetric.

B ON DISCRETIZED PERIODIC GREEN OPERATORS

The periodized Green operator introduced in (Brisard, 2010; 2012) may be gen-
eralized to different order operators. Consider an operator H operating asx(z) =
(H ∗ y) (z) and two sub-domainsΩI andΩJ of Ω whose characteristic functions are
denotedχI andχJ , of volume fractionsfI andfJ . To capture the interaction of the two
sub-domains, the interaction termHIJ = f−1

I χIH ∗ f−1
J χJ is introduced.

Physically speaking, the interaction termHIJ yields the average velocity (or
strain) on domainΩI resulting from a uniform body force (or polarization) applied on
domainΩJ (depending on the choice of Green operator). Using the properties of the
Fourier transform,HIJ = f−1

I f−1
J

∑

b∈Zd χ̂I∗(kb)Ĥ(kb)χ̂
J(kb), where the superscript

∗ denotes the complex conjugate. Note that the influence term is null if ΩI or ΩJ is
equal toΩ in the case of Green operators, since they are null fork = 0.

Now assumeΩI andΩJ are both a union of pixels, as defined in section 4. The
finite data series(χI

β)β∈I is introduced, such asχI
β = 1 if the pixelΩβ is in ΩI , and is

null otherwise. For this particular choice, the Fourier transform ofχ̂I(kb) is linked to
the discrete Fourier transform (DFT)χ̂I

b by χ̂I(kb) = [
∏

c∈(1,..,d) N
−1
c sinc(πbc/Nc)]χ̂

I
b.

The sum overZd is reorganized to take advantage of the DFT periodicity. Reorganiza-
tion leads to the introduction of the consistently discretized operatorĤc whose DFT
is Ĥc

b =
∑

n∈Zd Ĥ(kb1+n1N1,...,bd+ndNd
)
∏

c∈(1,..,d) sinc2(π[bc/Nc + nc]). The influence

term is then expressed asHIJ = (N2fIfJ)−1
∑

b∈I χ̂I∗

b Ĥc
b χ̂J

b .
A discrete convolution product⊛ may be defined by introducing the sequence

(

Hc ⊛ χJ
)

β
whose DFT is ̂(Hc ⊛ χJ)b = Ĥc

b χ̂J
b . Use of the Plancherel theorem pro-

vides the useful relationHIJ = (NfIfJ)−1
∑

β∈I
χI

β(Hc⊛χJ)β. Thus, the convolution
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products may be exactly computed ifΩI andΩJ are both a union of pixels thanks to
the relationχIH ∗ χJ = N−1

∑

β∈I
χI

β

(

Hc ⊛ χJ
)

β
, where the discrete convolution

product may numerically be efficiently computed by FFT of(χJ
β)β∈J , product with the

consistent operator in the Fourier space and inverse FFT.
The consistent operators require computation of infinite sums, but for suffi-

ciently refined grids, (Brisard, 2012) proved they could be advantageously replaced by
so-called filtered non consistent operators in a very satisfactory approximation, which
neither require involved computations nor storage.
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