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ABSTRACT
We present the first geological map of the Neruda Quadrangle (H13), Mercury. H13 is in
Mercury’s southern hemisphere between latitudes 22.5°S–65°S, and longitudes 90°E–180°
covering a total area of just under 5 million km², equivalent to 6.5% of the planet’s surface.
Map digitisation was carried out at scales between 1:300,000 and 1:700,000 for final
presentation at 1:3,000,0000, from end-of-mission data products from NASA’s MESSENGER
mission. We distinguish three main photogeologic plains units: intercrater, intermediate, and
smooth plains. We also distinguish all craters and their materials≥ 20 km in diameter based
on their degradation state. We have completed two versions of the map, one using a three-
class crater degradation scheme and one using a five-class crater degradation scheme. In
addition, specific geological units were charted for the Rembrandt impact basin. This map
has been constructed to provide context and targets for the ESA-JAXA BepiColombo
mission to Mercury.

ARTICLE HISTORY
Received 15 June 2023
Revised 23 August 2023
Accepted 31 August 2023

KEYWORDS
Mercury; geological map;
Neruda quadrangle; H13

1. Introduction

Although known since antiquity, the earliest recorded
attempts to map Mercury’s surface date from the early
1800s but could not produce geologically meaningful
results. This changed when Mariner 10 completed
three flybys of the planet between 1974 and 1975,
and the surface of Mercury was revealed for the first
time. Mariner 10 imaged ∼40–45% of the planet’s sur-
face and several authors produced geological maps
using those data (DeHon et al., 1981; Grolier &
Boyce, 1984; Guest & Greeley, 1983; King & Scott,
1990; McGill & King, 1983; Schaber & McCauley,
1980; Spudis & Guest, 1988; Spudis & Prosser, 1984;
Strom et al., 1990; Trask & Dzurisin, 1984; Trask &
Guest, 1975). In 1978, Mercury was divided into
15 mapping quadrangles informally named after
prominent surface features that had image coverage
and telescopic albedo features for areas with no
image coverage (Davies et al., 1978). Only the very
eastern edge of the H13 quadrangle (170°E–180°)
was imaged by Mariner 10 and this was included in
the map of the H12 (Michelangelo) quadrangle
(Spudis & Prosser, 1984).

MESSENGER (MErcury Surface, Space ENviron-
ment, GEochemistry, and Ranging), the second and
most recent spacecraft to visit Mercury, was able to
image the entire planet whilst in orbit between 2011

and 2015 (Solomon & Anderson, 2018). This enabled
production of the first global geological map at a scale
of 1:15M (Kinczyk et al., 2019; Prockter et al., 2016).
Consequently, H13 was renamed after the prominent
Neruda crater instead of the now obsolete albedo
feature Solitudo Persephones.

The improved spatial resolution achieved by MES-
SENGER has allowed for mapping at a larger scale
than the 1:5M mapping undertaken with Mariner 10
data. At the time of writing, 7 out of 15 MESSENGER-
based quadrangle maps have been published at a scale
of 1:3M (Galluzzi et al., 2016; Giacomini et al., 2022;
Guzzetta et al., 2017; Malliband et al., 2023; Mancinelli
et al., 2016; Pegg et al., 2021b; Wright et al., 2019).
Here we present the first geological map of H13, Neruda
(Main Map – see Supplementary information).

2. Data

2.1. Basemaps

We used a suite of data products with differing
incidence angles to obtain information in places other-
wise obscured by shadows. These data products were
produced by the MESSENGER team who used the
Mercury Dual Imaging System (MDIS) wide-angle
camera (WAC) and narrow-angle camera (NAC)
data (Denevi et al., 2018; Hawkins et al., 2007).
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2.1.1. Map projected basemap reduced data
record (BDR)
The primary basemap used was the end-of-mission
monochrome v1 BDR mosaic and tiles composed of
topographically controlled WAC and NAC images
sampled to ∼166 m/pixel (Figure 1(a)) (Murchie
et al., 2017). These products of moderate incidence
angle (∼74°) highlight surface morphology.

2.1.2. Map-projected low incidence angle
basemap reduced data record (LOI)
The v2 monochrome LOI mosaic (∼166 m/pixel;
Figure 1(b)) is composed of WAC and NAC images
captured at low solar incidence angles (∼45°) to
emphasise albedo variations (Murchie et al., 2017),
such as rays from young craters.

2.1.3. Map-projected high incidence East/West-
illumination basemaps (HIE/HIW)
The v2 monochrome HIW (Figure 1(c)) and HIE
(Figure 1(d)) products (∼166 m/pixel) are composed
of WAC and NAC images illuminated at high inci-
dence angles (∼78°) from the east and west respect-
ively (Murchie et al., 2017). The high solar incidence
angle of these products is extremely useful for identi-
fying subtle topographic structures as well as revealing
information in shadowed areas of the primary
basemap.

2.1.4. Enhanced color global mosaic
The Enhanced Color Global Mosaic (665 m/pixel;
Figure 1(e)) accentuates the colour differences on
Mercury’s surface (Denevi et al., 2018, Denevi, Seelos
et al., 2016). The MESSENGER team made it using
MDIS WAC images in the 430, 750 and 1000 nm
bands. They applied principal component analysis pla-
cing the second principal component in the red chan-
nel, first principal component in the green channel
and the 430/1000 ratio in the blue channel (Denevi
et al., 2018). This product provides spectral context
for morphological observations and is useful in the
identification of deposits with a noticeable spectral
response such as hollows (Blewett et al., 2011) and vol-
canic deposits (Goudge et al., 2014; Jozwiak et al.,
2018; Kerber et al., 2011; Pegg et al., 2021a; Thomas
et al., 2014a; Thomas & Rothery, 1984; Xiao et al.,
2021).

2.1.5. Digital elevation model (DEM)
The v2 global DEM (665 m/pixel; Figure 1(f)) is
derived from thousands of paired stereo images and
controlled using MESSENGER’s Mercury Laser Alti-
meter (Cavanaugh et al., 2007) elevation data (Becker
et al., 2016). This product was critical in our identifi-
cation and charting of tectonic structures and crater
ejecta.

3. Methods

3.1. Projection

H13 is located in mid-southern latitudes and is
centred on 135°E (Figure 2). We use a Lambert Con-
formal Conic (LCC) projected coordinate system
with standard parallels of 30°S and 58°S, following
previous mid-latitude MESSENGER-era quadrangle
mappers (Galluzzi et al., 2016; Guzzetta et al., 2017;
Mancinelli et al., 2016; Pegg et al., 2021b; Wright
et al., 2019)(Figure 1) based on the ‘Mercury 2015’
geographic coordinate system (sphere radius =
2,439.4 km). The LCC projection preserves shapes
and angles locally and has correct distance scale
along the standard parallels, however, distances and
areas are exaggerated outside the standard parallels
and reduced between them (Kennedy & Kopp, 2004).

3.2. Scale

The map publication scale is 1:3M, the same as the
published MESSENGER-era quadrangle maps. The
drafting scale for a 1:3M map is suggested to be
∼1:750k, 4× the publication scale according to plane-
tary mapping protocols by the United States Geologi-
cal Survey (USGS) and German Aerospace Centre
(DLR) (Hauber et al., 2020; Skinner et al., 2022). An
alternative suggestion is that the drafting scale should
be 2000× the basemap resolution (Tobler, 1987). Con-
sidering the primary basemap has a spatial resolution
of ∼166 m/pixel, we calculate a drafting scale of
∼1:300k. With both recommendations in mind, we
predominantly mapped at a scale of 1:300k and up
to 1:700k for some larger landforms.

3.3. Mapping process

We started mapping H13 in ArcMap 10.5.1 in 2019
and migrated to ArcGIS Pro in 2022. We started by
making a project file with a dedicated geodatabase
for the feature classes. Initially, we created four feature
classes: (1) linear features (polylines); (2) contacts
(polylines); (3) units (points) and (4) surface features
(polygons). We began by digitising linear features,
such as crater rims, then we mapped all tectonic struc-
tures. Next, we mapped crater material contacts while
placing unit points and assigning crater degradation
classifications to the attribute fields of those points.
We then completed all remaining contacts for plains
materials and their corresponding unit points. Finally,
we digitised superficial units. We then generated poly-
gons from the polylines of the geological ‘contacts’
and points of the ‘units’ feature classes to generate
two versions (3 crater classes and 5 crater classes) of
our map. ArcGIS’s streaming tool was used for vertex
placement of polylines and polygons with a streaming
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tolerance of 600 m. Unit symbology and definitions
are consistent with previously published MESSEN-
GER-era quadrangle maps with Rembrandt specific
units after (Pegg et al., 2021b). Map symbology was
finalised following the USGS planetary mapping pro-
tocols guidance for map symbology (Skinner et al.,
2022) and then the map was labelled, and prepared
for publication in ArcGIS Pro.

3.3.1. Linear features
The ‘linear features’ feature class contains all non-
contact polylines including crater rims; ‘small’ (≥
5 km and < 20 km in diameter); ‘large’ (≥ 20 km in
diameter); and ‘buried-subdued’ (≥ 5 km in diam-
eter). ‘Buried-subdued’ denotes crater rims that have
been buried by plains materials or impact ejecta and/
or have been otherwise heavily degraded. In addition
to craters, we mapped the rims of irregularly shaped
pits, interpreted as being related to volcanism (Jozwiak

et al., 2018; Pegg et al., 2021a; Rothery et al., 2014;
Thomas et al., 2014b, 2014a). We also mapped wrinkle
ridges in the same feature class. Wrinkle ridges are
commonly found within smooth plains and smooth
crater floor material and are believed to represent
the surface manifestations of blind thrusts (Byrne
et al., 2018; Klimczak et al., 2019).

3.3.2. Contacts
The boundary between units is termed a ‘contact’ and
is traditionally identified by textural, compositional,
structural or temporal differences between units
(Howe, 1997). For our map we distinguish two types
of stratigraphic contacts: ‘Certain’ and ‘Approximate’
with the designation indicating our confidence in the
position of the contact location. ‘Certain’ contacts
are where there is an obvious boundary that can be
traced between geomorphic units. ‘Approximate’ con-
tacts on the other hand demarcate boundaries that are

Figure 1. Data products used. A | Primary basemap, BDR Mosaic. B | LOI Mosaic. C | HIW tiles. D | HIE tiles. E | Enhanced Color
Mosaic. F | DEM mosaic.
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either genuinely gradational or probably sharp but
whose precise location cannot be identified.

A surface-breaking fault is a type of contact as dis-
placement can result in different geomorphic units on
either side of the fault. We include two types of thrust
faults in the contacts feature class. ‘Thrust fault – cer-
tain’ is assigned to a structure with a clear break in
slope where there is clear displacement. ‘Thrust fault
– approximate’ is assigned for surface features that
are shortening structures with less obvious breaks in
slopes but with distinctive positive relief and/or the
structure separates geomorphic units. We also include
‘Normal fault’ denoting faults that bound the graben
structures found within the Rembrandt impact
basin. Polylines were drawn along the leading edge
of a structure where a sharp break in slope is
discernible.

3.3.3. Units
The ‘units’ feature class consists of points with mul-
tiple attribute fields that when populated denote the
geological unit in which the point is located. Units
points were placed in mapped areas that were enclosed
polylines, after contacts were mapped, and this feature

class was used in the construction of polygons for the
final map product using ArcGIS Pro’s ‘Feature to
Polygon’ tool. The units points were additionally
used to generate and place a majority of the labels
for the final map. Units points are not displayed on
the map and were simply used in its construction.

3.3.4. Superficial units
Superficial units do not obscure the underlying major
geomorphic units. They include: ‘rays’ of bright
material ejected by impacts and still visible around
some of the youngest, freshest craters (Braden &
Robinson, 2013; Neish et al., 2013; Trask & Guest,
1975); ‘catenae’, chains of secondary craters (Fegan,
2018); ‘faculae’, bright, spectrally red aureoles with
diffuse margins commonly centred on irregular pits
and mostly interpreted as having been emplaced by
explosive volcanism (Gillis-Davis et al., 2009; Kerber
et al., 2011; Pegg et al., 2021a; Thomas et al., 2014b;
Thomas & Rothery, 1984), and; fields of ‘hollows’,
which are bright, spectrally blue irregularly-shaped
depressions with flat floors and steep flanks (Blewett
et al., 2011; Thomas et al., 2014c). All superficial fea-
tures are represented by ornaments overlain on the

Figure 2. Location of the H13 Quadrangle. A | BDR Mosaic with graticule. B | BDR Mosaic with quadrangle outlines. H13 high-
lighted in blue.
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geological units so that no information is lost in the
final map.

3.3.5. Reconciliation
We mapped a 5° overlap with all adjacent quadrangle
maps to facilitate boundary matching, with a view to
an eventual global geological map (Galluzzi et al.,
2021).

3.4. Mapped units

3.4.1. Craters
With H13 being perhaps the most heavily cratered
region on the planet (Denevi, Ernst, et al., 2016; Fas-
sett et al., 2011), the craters in the quadrangle and
their associated material make up a significant portion
of the map. To understand the sequence of cratering
and to compare the relative ages of craters not just
on Mercury but with other planets, crater materials
including rims, internal structures and ejecta are

classified according to their degradation state. It can
be assumed that craters, including those not in contact
with each other, of the same degradation state formed
within the same span of geological time. While gener-
ally useful, this assumption breaks down in specific
cases, such as where degradation is accelerated by bur-
ial with ejecta from a subsequent nearby large impac-
tor, rather than background degradation processes.

Mapping at 1:5M scale, the Mariner 10-era mappers
(DeHon et al., 1981; Guest & Greeley, 1983; King &
Scott, 1990; McGill & King, 1983; Schaber & McCau-
ley, 1980; Spudis & Prosser, 1984; Strom et al., 1990;
Trask & Dzurisin, 1984) used a five-class crater degra-
dation scheme. However, the first MESSENGER-era
quadrangle mappers (Galluzzi et al., 2016; Guzzetta
et al., 2017; Mancinelli et al., 2016) used a three-class
crater degradation scheme (Figure 3) to avoid
occasional apparent contradictions whereby ejecta
from a crater classified as more degraded overlies
ejecta from a crater classified as less degraded. Here

Figure 3. Three-class crater classification (C3–C1). BDR Mosaic on the left and map interpretation on the right.
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we follow several more recent MESSENGER-era map-
pers (Malliband et al., 2023; Pegg et al., 2021b; Wright
et al., 2019) by simultaneously employing a five-class
crater degradation scheme in parallel with the newer
three-class scheme, on the grounds that the five-class
scheme records more information and that this is
intended to be morphostratigraphic rather than purely
stratigraphic.

The three-class classification scheme (Figure 3) is
given as: C1 representing the oldest and most
degraded, C₂ for craters intermediate in age and
degradation state, and C3 for the freshest craters
with the crispest morphology. The five-class scheme
(Figure 4) runs c1–c5 (with lower case c) representing
most degraded to freshest (and usually corresponding
to oldest to youngest). The five-class crater

Figure 4. Five-class crater classification (c5–c1). BDR Mosaic on the left and map interpretation on the right.
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degradation scheme is not strictly stratigraphic in
sequence, because crater degradation does not have
to correspond to stratigraphic order (Kinczyk et al.,
2020). Furthermore, not only do impactors of different
sizes create craters of differing complexity but differ-
ent sized craters degrade at different rates; smaller,
less complex craters degrade faster than larger com-
plex craters (Basilevsky & Vernadsky, 1976; Wood
et al., 1977). Cognizant of this, and with a revised
five-class crater degradation scheme available to us
during our mapping (Kinczyk et al., 2020) we have
produced both three-class and five-class versions of
our map with all craters≥ 20 km diameter classified.
Below we outline the different schemes in detail.

3.4.1.1. Fresh craters (C3 | c5, c4). Pristine–well pre-
served craters with fresh, crisp rims and intact internal
crater structures such as pronounced central peak/
peak ring elements, upstanding wall terraces, textured
ejecta blankets. For C3 – three-class craters, rays may
be present whilst for c5 – five-class craters rays must
be present (c4 rays are absent) (Figure 3 and 4). Con-
tacts between crater floor material and internal struc-
tures are sharp and well defined.

3.4.1.2. Degraded craters (C2 | c3, c2). Moderately
degraded craters with obvious, but somewhat sub-
dued, rims. Internal structures such as central peak/
peak ring elements are subdued, and crater wall ter-
races are slumped or missing (Figure 3 and 4). Ejecta
is discernible but distal ejecta can be rare (c2) and lacks

radial texture (c3). Contacts between crater floor
material and internal structures are mostly sharp.

3.4.1.3. Heavily degraded craters (C1 | c2, c1). Craters
with incomplete and/or significantly subdued and
heavily degraded rims. No obvious internal structures
whatsoever, only the largest craters may exhibit rem-
nant central peaks/peak ring elements and any form
of ejecta (Figure 3 and 4). C1 and c1 craters may
have breached crater rims and floors flooded from
external sources. Contacts between floor material
and crater walls are often gradational and marked as
approximate.

3.4.1.4. Smooth crater floor (cfs). Description: Spar-
sely cratered smooth material confined to the floors
of craters (Figure 5).

Interpretation: In fresh craters (C3 | c5, c4) this is
usually theorised to represent ponded impact melt
that has solidified (Daniels & Neish, 2018; Malliband
et al., 2023; Pegg et al., 2021b; Wright et al., 2019).
In degraded craters it is possibly a combination of vol-
canic material and impact melt.

3.4.1.5. Hummocky crater floor (cfh). Description:
Texturally rough or cratered material confined to
within craters (Figure 5).

Interpretation: In fresh craters (C3 | c5, c4) hum-
mocky material may represent original crater floor,
free of impact melt. For degraded craters, hummocky
crater floor material likely represents degraded

Figure 5. Crater floor materials. BDR Mosaic on the left hand side and map interpretation on the right hand side. Smooth crater
floor material (cfs) and hummocky crater floor material (cfh).
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internal structures and floor material inundated by
distal ejecta from elsewhere.

3.4.2. Rembrandt units
The∼720 km Rembrandt impact basin straddles the H13
and H14 quadrangles and due to its size, basin-specific
units are mappable (Figure 6) (Fassett et al., 2012; Whit-
ten & Head, 2015). Following H14 quadrangle mapper

(Pegg et al., 2021b), we identify and include five
Rembrandt-specific units after region specific mappers
(Hynek et al., 2017; Semenzato et al., 2020).

3.4.2.1. Hummocky unit (Reh). Description: A textu-
rally rough, undulating terrain of hills and depressions
with a lower albedo than the interior smooth plains
(Semenzato et al., 2020).

Figure 6. Rembrandt materials. BDR Mosaic on the left and map interpretation on the right. Rembrandt hummocky unit (Reh),
Rembrandt massifs (Rem), Rembrandt rim (Rer), Rembrandt lineated ejecta (Rel) and Rembrandt ejecta (Ree).
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Interpretation: This material is theorised to be part
of the basin floor that has not been buried by lavas
(Watters et al., 2009). The gradational boundary of
the unit is consistent with lavas that have onlapped
and embayed the upstanding hummocky unit, infilling
depressions along the margins.

3.4.2.2. Massifs (Rem). Description: Blocky, isolated
mountains within the Rembrandt impact basin.

Interpretation: These structures may represent iso-
lated blocks of impact ejecta (Pegg et al., 2021b) or
remnants of peak ring elements (Watters et al., 2009).

3.4.2.3. Rim (Rer). Description: A chain of massifs
with significant relief, separating internal and external
basin material.

Interpretation: These structures most likely rep-
resent the rim of the impact basin, similar to the Caloris
Montes unit that rings the Caloris basin (Fassett et al.,
2009; Pegg et al., 2021b).

3.4.2.4. Lineated ejecta (Rel). Description: Radially
oriented material found in a series of ridges and
troughs within the exterior smooth plains (Whitten
& Head, 2015).

Interpretation: Interpreted as ejecta scour (in the
case of the troughs) or deposited ridges of material
radial to the rim of the impact basin (Whitten &
Head, 2015). This unit is equivalent to the Van Eyck
formation of the Caloris Basin (Fassett et al., 2009;
Watters et al., 2009).

3.4.2.5. Ejecta (Ree). Description: Material found
draped over terrain and infilling craters exterior to
Rembrandt. The material is texturally hummocky
and discontinuous.

Interpretation: Interpreted as ejecta that formed
instantaneously after the Rembrandt impact event
and basin formation.

3.5. Plains units

3.5.1. Intercrater plains (icp)
Description: A heavily cratered, highly textured unit
(Figure 7). First identified by (Trask & Guest, 1975),
intercrater plains are described as ‘level to gently roll-
ing ground between and around large craters and
basins’. Recognised as the most widespread geo-
morphic unit on the planet (Kinczyk et al., 2019;
Strom et al., 1975), intercrater plains characteristically
have a high density of superposing craters 5–15 km in
diameter (Leake, 1981; Strom, 1977; Trask & Guest,
1975). Superposing craters however are not limited
to 5–15 km but can be of all sizes and degradation
classes. Spectrally, the intercrater plains are not associ-
ated with a definitive colour and can be spectrally
highly variable.

Interpretation: Intercrater plains are theorised to be
volcanic plains that have been extensively reworked,
possibly predating the end of the Late Heavy Bom-
bardment of the inner solar system (Strom et al.,
1975; Trask & Guest, 1975). Given the density of
superposing craters, the unit is likely to include a sub-
stantial quantity of reworked impact melt and ejecta.

3.5.2. Smooth plains (sp)
Description: Expanses of mostly flat, texturally smooth
material with few superposing craters (Figure 7). Cra-
ters that superpose smooth plains are typically mor-
phologically fresh with distinguishable ejecta
blankets and sharp contacts. In H13, example areas
of smooth plains are the interior and exterior plains
of the Rembrandt impact basin. Spectrally, smooth
plains are typically relatively red however, there is
variation; for example the interior and exterior plains
of the Rembrandt basin (Whitten & Head, 2015).
Often in smooth plains are buried craters that are
identifiable by wrinkle ridges demarcating an under-
lying crater rim. Wrinkle ridges unrelated to buried
craters are also common throughout smooth plains.
Small patches of smooth plains are found within
other units such as infilling crater chains, perched
on crater walls and ejecta or in partially fault-bounded
or purely topographic depressions.

Interpretation: Expanses of smooth plains are inter-
preted as effusive volcanic material; lava flows that
have not been heavily degraded (Byrne et al., 2016;
Denevi et al., 2013, 2009; Thomas & Rothery, 1984;
Whitten & Head, 2015). Isolated patches of smooth
plains may represent ponded impact melt (Malliband
et al., 2023; Pegg et al., 2021b; Wright et al., 2019).

3.5.3. Intermediate plains (ip)
Description: Expanses of material that are transitional
in surface roughness between smooth and intercrater
plains (Figure 7), with a density of superposing craters
in-between that of smooth and intercrater plains (Gal-
luzzi et al., 2016; Spudis & Prosser, 1984). In the case
of H13, intermediate plains almost always have an
‘approximate’ boundary contact due to the grada-
tional change from either smooth or intercrater plains
into the unit. Intermediate plains exhibit a mantled
appearance with many small isolated and intercon-
nected small patches of smoother material alongside
hummocky, upstanding mounds and ridges. Spec-
trally, the intermediate plains exhibit similar colour
responses to intercrater plains however, some
smoother patches appear brighter and redder, com-
parable to smooth plains.

Interpretation: This unit is interpreted as smooth
plains material that has partially or thinly covered
the older intercrater plains unit. The depressions
were likely infilled and therefore became smooth,
whereas components such as crater rims and ejecta
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may have only partially been covered, resulting in the
aforementioned upstanding mounds and ridges. The
inclusion of intermediate plains in our map follows
previous MESSENGER-era quadrangle mappers to
be comparable and equable for a future global map.
It is important to note, however that elsewhere on
Mercury, intermediate plains have been interpreted
as plains units that are intermediate in age between
intercrater plains and smooth plains (Galluzzi et al.,
2016; Giacomini et al., 2022; Guzzetta et al., 2017; Mal-
liband et al., 2023; Pegg et al., 2021b) and as a result,
our correlation of map units allows for this.

4. Correlation of map units

Our stratigraphic columns (Figure 8) display the geo-
logical history of the mapped units for the H13 quad-
rangle for both three-class and five-class crater
degradation schemes. The crater ages follow (Galluzzi
et al., 2016) for the three-class version and (Spudis &

Guest, 1988) with amendments after (Banks et al.,
2017; Ernst et al., 2017) for the five-class version.
The plains materials are based on absolute model
age estimates; for intercrater plains (Marchi et al.,
2013; Whitten et al., 2014), and for smooth plains
(Byrne et al., 2016).

5. Summary

Using the end-of-mission MESSENGER data pro-
ducts, we have produced the first geological map of
the Neruda quadrangle (H13) of Mercury. The map
was produced for publication at a scale of 1:3 M as
part of the series of quadrangle maps that together
will constitute a global geological map of the planet.
This map provides for the first time geological context
within the H13 quadrangle to be used by ESA-JAXA’s
BepiColombo mission to Mercury. The map shows
that crater materials dominate the surface of H13.
Smooth and intermediate plains are most common

Figure 7. Plains materials. BDR Mosaic on the left side and map interpretation on the right side. Smooth plains (sp), intercrater
plains (icp) and intermediate plains (ip).
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in the west of the map, particularly interior and
exterior to the Rembrandt impact basin. Intercrater
plains are found amongst the high density of craters
and are most abundant to the east of the quadrangle.

Software

We used ESRI ArcMap 10.5.1 and ArcGIS Pro 2.9.5
Geographic Information System software to produce
the map. Basemaps were processed using USGS
ISIS3 software. The final map sheets were put together
in ArcGIS Pro 2.9.5 and CorelDRAW X6.
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