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Abstract. Electronic voting promises the possibility of convenient and efficient systems for recording and tallying
votes in an election. To be widely adopted, ensuring the security of the cryptographic protocols used in e-voting is
of paramount importance. However, the security analysis of this type of protocols raises a number of challenges,
and they are often out of reach of existing verification tools.

In this paper, we study vote privacy, a central security property that should be satisfied by any e-voting system.
More precisely, we propose the first formalisation of the recent BPRIV notion in the symbolic setting. To ease the
formal security analysis of this notion, we propose a reduction result allowing one to bound the number of voters
and ballots needed to mount an attack. We first consider the case where voters do not revote, and the ballot box
is trusted before relaxing these two conditions. Our result applies on a number of case studies including several
versions of Helios, Belenios, JCJ/Civitas, and Prêt-à-Voter. For some of these protocols, thanks to our result, we
are able to conduct the analysis relying on the automatic tool Proverif.
Keywords: Electronic voting, Formal methods, Protocol verification, Privacy

1. Introduction

Remote electronic voting systems aim at allowing the organisation of elections over the Internet,
while providing the same guarantees as traditional paper voting. Although relying on e-voting for
large-scale elections is controversial, it is already in use in many lower-stakes elections today (e.g.
the Helios [1] voting system has been used to elect the IACR board of directors since 2010), and is
likely to be used even more in the future, for better or for worse. These elections may involve a
large number of voters and may have an important impact on democracy when it comes to elect
political leaders. It is therefore of paramount importance to ensure the security of these systems.
As for security protocols in general, formal methods provide powerful techniques to analyse

e-voting systems, and prove their security. Identifying what makes a good, secure e-voting system
is a complex problem that has not yet been completely solved, and is actively being researched.
It is however rather universally acknowledged that a central security guarantee e-voting systems
should provide is vote privacy. Intuitively, this property states that votes must remain secret, so
that no one can learn who voted for which candidate.
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One common way of formalising vote privacy, which we will call SWAP, is to require that an
attacker is not able to distinguish between the situation where Alice is voting yes and Bob is
voting no from the situation where the two voters swapped their vote. That formalisation was
first proposed by Benaloh [2], originally in a computational model. It has since been adapted to
the symbolic setting [3], and applied to many voting schemes, e.g. [4–9]. The SWAP notion was
originally written considering the specific case of a referendum, where the result is the number of
yes and no votes. It has then been generalised to cover other kinds of elections [10], but remains
limited w.r.t. the way of counting votes – essentially, it only makes sense when the result of the
election is the number of votes for each candidate, excluding more complex counting procedures
such as Single Transferable Vote (STV).
More recently, a new definition, called BPRIV for “ballot privacy”, has been proposed to overcome

such limitations, in the case of a trusted ballot box [11], with later extensions to handle an untrusted
one [12]. Essentially, BPRIV lets the attacker interact with the system, and see either real ballots,
or fake ones containing fake votes. Using oracles, he can choose the values of real and fake votes,
and cast any ballot he can construct (in the name of corrupted voters). In the end, the tally of real
ballots is published. To be BPRIV, the attacker should be unable to distinguish the two scenarios,
i.e. no information is leaked on the ballots’ content.
Privacy-type properties, and in particular vote privacy, are often expressed using a notion of

behavioural equivalence [13]. A notable exception is the definition of (α, β)-privacy [14] which
nevertheless relies on some notion of static equivalence. Proving equivalences is cumbersome, and
is difficult to do in details by hand, as witnessed by the manual analysis of the SWAP property
done for e.g. the Helios protocol [5] and the Norwegian one [7]. Regarding mechanisation, several
mature tools are available for analysing trace properties such as secrecy or authentication in the
symbolic setting: most notably, Proverif [15, 16] and Tamarin [17]. These tools support equivalence
properties [18, 19], although they remain limited to a restricted form of equivalence, called diff-
equivalence. Some e-voting schemes have been analysed with these automated tools in the symbolic
model, e.g. the Neuchâtel [8] or BeleniosVS [20] protocols. Proverif even has an extension called
ProSwapper [21], that specifically handles swapped branches that typically occur in the SWAP
definition. These tools have proved very helpful for the study of e-voting systems. However, they
still suffer from limitations that restrict their applicability, as they e.g. cannot handle homomorphic
encryption, or manipulate lists of arbitrary size to encode the bulletin board, and tend to quickly
run into performance issues when the number of agents in parallel increases.
An interesting option to ease the security analysis is to rely on reduction results. This approach

has been used to bound the number of agents involved in an attack for both reachability [22],
and equivalence properties [23]. Reduction results bounding the number of sessions [24, 25] have
also been proposed in more restricted settings. All these results do not apply in the context of
e-voting protocols. Here, we would like to bound the number of voters (agents) participating in
the election. However, since only one vote is counted for each voter, we can not replace a session
played by A by one played by B, as was done e.g. in [23]. The only existing result in that context
is the result proposed in [6], where the authors give bounds on the number of voters and ballots –
respectively 3 and 10 – needed for an attack on the SWAP notion This allows them to carry out
several case studies using Proverif. No such results, however, exist for the newer and more general
BPRIV definition.



Contributions. Our contributions are threefold. First, we propose a definition of BPRIV adapted
for the symbolic model. BPRIV has been first introduced in the computational setting where some
subtleties regarding the communication model have been overlooked. In the computational setting,
for instance, the casting of a ballot is handled by an oracle adding it to the ballot box. This
means it is implicitly assumed that a ballot cast will necessarily reach the ballot box, and this is
an important assumption when analysing weeding-based protocols (where duplicate ballots are
eliminated before tallying).
Second, we identify some conditions under which BPRIV can be analysed considering only one

honest voter and k dishonest ones, casting at most k ballots in total. The bound k depends on a
property of the procedure used to count votes which we define. Actually, in most usual cases, we
have k = 1, and the number of ballots being tallied is reduced to 1. These reduction results are
generic, in particular we do not restrict the equational theory, and our result applies for different
counting functions. We first establish the reduction result in the setting where voters do not revote,
and the ballot box is trusted. We then propose two extensions: we show the same result still holds
when allowing revote, and when facing a dishonest ballot box. In the case of the untrusted ballot
box, this requires us to propose an adaptation of the game-based definition of [12] to the symbolic
model.
Finally, we apply our result on several e-voting protocols from the literature relying on the tool

Proverif. Even if our theoretical reductions result are generic, we are limited in practice by the
features offered by the tools (e.g. homomorphic encryption is not supported by existing tools).
Nevertheless, relying on Proverif, we successfully establish that BPRIV holds for an arbitrary
number of voters in several cases. Our bounds for BPRIV, better than those obtained in [6] when
considering SWAP, allow us to analyse many protocols in a reasonable time (whereas several hours
were needed in some cases in [6]). We also identify an issue in the security analysis performed
in [6] where a protocol has been declared secure while it is not.

This paper is an extended version of our work [26], published at the 27th ESORICS conference
(2022): in particular, the BPRIVD definition as well as the reduction result established in Section 6
to deal with the case of a dishonest ballot box is entirely new.

2. Modelling security protocols

In this section, we introduce background notions on protocol modelling. We model security
protocols in the symbolic model with a process algebra inspired from the applied pi-calculus [27].
Participants are represented by processes, while messages exchanged between participants are
represented by terms. Our model is mostly standard, except that in order to model the stateful
nature of e-voting protocols, we consider memory cells, that can store a persistent state across
processes. We need to avoid concurrent accesses to memory cells while updating them: to that end,
we use a specific instruction that atomically appends a message to the content of a memory cell.

2.1. Messages

We assume an infinite set N of names used to model keys, nonces, etc. We consider two infinite
and disjoint sets of variables X and W . Variables in X are used to refer e.g. to input messages, and
variables in W , called handles, are used as pointers to messages learned by the attacker. Lastly, we



consider two disjoint sets of constant symbols, denoted Σ0 and Σerr. Constants in Σ0 represent
public values, e.g. identities, nonces or keys drawn by the attacker. This set is assumed to be
infinite. Constants in Σerr will typically refer to error messages. We fix a signature Σ = Σc ∪ Σd
consisting of a finite set of function symbols together with their arity. We distinguish between
constructors in Σc and destructors in Σd. We denote Σ+ = Σc ] Σ0 ] Σerr. We note T (F ,D) the
set of terms built from elements in D by applying function symbols in the signature F . The set of
names (resp. variables) occurring in a term t is denoted names(t) (resp. var(t)). A term t is ground
if var(t) = ∅. We refer to elements of T (Σ+,N ) as messages.

Example 1. We consider the signature Σerr = {errvote, errinvalid} to model error messages. The
signature Σlist = {nil, hd, tl, ::} allows us to model lists of arbitrary size. We often write [t1, . . . , tn]
for t1 :: · · · :: tn :: nil. The operators hd and tl are used to retrieve the head and the tail of
a list. Lastly, we consider Σex = {aenc, adec, pk, zkp, checkzkp, true, 〈 〉3, proj31, proj32, proj33, yes, no}
to model asymmetric encryption, zero-knowledge proofs, and pairing operators. As a running
example, we will consider a model of the Helios protocol (in its original version, as seen in [5])
and ΣHelios = Σex ∪ Σlist where symbols in ΣHelios are constructors.
Let idH ∈ Σ0, r, sk ∈ N , and pk = pk(sk). Intuitively, idH represents the identity of a honest

voter, and yes her vote (these data are known to the attacker), whereas r and sk are private names,
modelling respectively the randomness used in the encryption and the private key of the authority.
Let eyes = aenc(yes, pk, r), and bidHyes = 〈idH, eyes, zkp(eyes, yes, r, pk)〉3. The first term encrypts the
vote, and the second one is the ballot sent by the voter in the voting phase of Helios.

An element of T (Σ+ ∪ Σd,W) is called a recipe and models a computation performed by the
attacker using his knowledge. A substitution σ is a mapping from variables to messages, and tσ is
the application of σ to term t, which consists in replacing each variable x in t with σ(x). A frame φ
is a substitution that maps variables from W to messages, and is used to store an attacker’s
knowledge.

Example 2. Continuing Example 1, we consider the equational theory Eex given below and
Elist := {hd(x :: y) = x, tl(x :: y) = y}.

Eex =
{

adec(aenc(x, pk(y), z), y) = x proj3i (〈x1, x2, x3〉3) = xi with i ∈ {1, 2, 3}
checkzkp(zkp(aenc(x, y, z), x, z, y), aenc(x, y, z), y) = true

}

We have adec(eyes, sk) =Eex v, and checkzkp(proj33(bidHyes ), v, r, pk) =Eex true.

In order to provide a meaning to constructor symbols, we equip (constructor) terms with an
equational theory. We assume a set E of equations over T (Σc,X ), and define =E as the smallest
congruence containing E that is closed under substitutions.
In addition, the semantics of destructor symbols is given by a set R of ordered rewriting rules of

the form g(M1, . . . ,Mn)→M0 with M0,M1, . . . ,Mn ∈ T (Σc,X ). A ground expression D can be
rewritten in D′ if there is a position p in D, a rewrite rule g(M1, . . . ,Mn)→M0 and a substitution
θ from variables to ground terms such that D|p =E g(M1θ, . . . ,Mnθ), and D′ =E D[M0θ]p, i.e. D
in which the subterm at position p has been replaced with M0θ. In case more than one rule may
be applied at position p, only the first such rule can be effectively used. Moreover, we assume that



the last rewriting rule defining a destructor g is of the form g(x1, . . . , xn)→M0 with x1, . . . , xn
distinct variables, and thus always applies. Given a ground expression D, it may be possible to
rewrite it (in an arbitrary number of steps) into a ground (constructor) term M : in that case, this
term is noted D⇓, and we say that D evaluates to D⇓. Note that, in our setting, a computation
never fails.
We extend the notation =E to terms that may contain destructor symbols (that never fail). We

write u =E v when u⇓ =E v⇓.

Example 3. Consider Σd = {ite} where ite is a destructor symbol of arity 4 that can be used to
model conditional branching with the following ordered rewriting rules:

ite(x, x, y, z)→ y ite(x, x′, y, z)→ z

The destructor defined in Example 3 may seem of little use, since it does not let an attacker
compute any value he did not already know. It does indeed not bring extra power to the attacker.
However, when dealing with the case of a dishonest ballot box, having such a construction will
make it easier to write recipes used in our reduction result.
In the following, we consider an arbitrary signature Σ = Σc ∪ Σd, and we simply assume that

the equational theory E (equations built over Σc only), contains at least the formalisation of lists
given in Example 1 and Example 2, i.e. Σlist ⊆ Σ and Elist ⊆ E.

2.2. Processes

We model protocols using a process calculus. We consider an infinite set of channel names
Ch = Chpub ] Chpri, partitioned into infinite sets of public and private channel names. We also
assume an infinite set M of names to represent memory cells (used to store states). The syntax of
processes is:

P,Q ::= 0
| P | Q
| !P
| new n. P
| new d. P

| out(c, u). P
| in(c, x). P
| ! new d. out(c, d). P
| let x = u in P
| if u = v then P else Q

|m := u. P
| read m as x. P
| append(c, u,m). P
| phase i. P

where n ∈ N , x ∈ X , m ∈M, u ∈ T (Σ+,X ∪N ), d ∈ Chpri, c ∈ Ch, i ∈ N.
This syntax is rather standard, except for the memory cell operations. Intuitively, read m as x

stores the content of m in the variable x, whereas append(c, u,m) represents the agent with
channel c appending u to memory m. In addition, we use a special construct ! new d. out(c, d). P ,
to generate as many times as needed a new public channel d and link it to channel c, in a single
step. This could be encoded using the other instructions, but having a separate construction lets
us mark it in the execution traces, which is convenient for the proofs. The constructs in(c, x).P ,
let x = u in;P , and read m as x. P bind x in P . Note that destructor symbols are not allowed in
the syntax of processes. In case the recipe used by the attacker contains such a destructor, the
hypothesis imposing that a computation never fails ensures that the resulting term is indeed a
message. Given a process P , fv(P ) denotes its free variables, and we say that it is ground when
fv(P ) = ∅. Moreover, we usually omit the final 0 in processes.



Example 4. Continuing our running example, we consider the process P :

P = in(c, b). if 〈checkzkp(proj33(b), proj32(b), pk(sk)), proj31(b)〉 = 〈true, idD〉
then out(c, b). append(c, b,mbb) else out(b, errinvalid).

where b ∈ X , sk ∈ N , and idD ∈ Σ0. This represents an agent that receives a ballot b as input, and
then checks the validity of the zero knowledge proof contained in b, as well as the identity of the
voter. Depending on the outcome of this test, it either outputs the ballot and appends it in the
cell mbb modelling the ballot box, or simply outputs an error message.

Definition 1. A configuration is a tuple (i;P;φ;M), composed of an integer i, a multiset P of
ground processes, a frame φ, and a mapping M from a subset of memory names M to messages.
We write P instead of (0;P ; ∅; ∅).

The semantics of our calculus is defined as a transition relation a=⇒ on configurations. Each
transition step is labelled with an action a representing what the attacker can observe when
performing it (it can be an input, an output, an append action, or a silent action ε). This relation
is defined in a standard manner, and is fully displayed in Figure 1.
For instance, considering an input on a public channel, i.e. the rule In, the attacker can inject

any message Rφ he is able to build using his current knowledge φ. The outputs performed on
a public channel are made available to the attacker either directly through the label when it
corresponds to an error message (rule Out-Err), or indirectly through the frame (rule Out).
The rule Append corresponding to our new append action append(c, u,m) simply consists in
appending a term u to the memory cell m.

Definition 2. The set of traces of a configuration K is defined as
traces(K) = {(tr, φ) | ∃i,P ,M such that K tr=⇒

?
(i;P ;φ;M)}

where ·=⇒? is the reflexive transitive closure of ·=⇒, concatenating all (non-silent) actions into the
sequence tr.

Example 5. Continuing Example 4 with φyes = {w0 7→ pk(sk),w1 7→ bidHyes}, and the configuration
Kyes

0 = (2; {P};φyes; {mbb 7→ nil}). We have:

Kyes
0

in(c,w1).out(c,errinvalid)==============⇒ (2; ∅; {w0 7→ pk(sk),w1 7→ bidHyes}; {mbb 7→ nil})

Kyes
0

in(c,R0).out(c,w2).append(c)=================⇒ (2; ∅; {w0 7→ pk(sk),w1 7→ bidHyes ,w2 7→ bidDyes}; {mbb 7→ b})

with R0 = 〈idD, proj32(w1), proj33(w1)〉3, and bidDyes = R0φ
idHyes =Eex 〈idD, eyes, zkp〉3. The term zkp here

denotes the zero-knowledge proof from bidHyes . It does not contain the identity of the voter who
computes it, and can therefore be reused by a dishonest voter to cast the ballot in her own name.

2.3. Equivalences

Our definition of the BPRIV property relies on two usual notions of equivalence in the symbolic
model: static equivalence, for the indistinguishability of sequences of messages, and trace equivalence,
for the indistinguishability of processes.



Par (i; {|P1 | P2|} ∪ P ;φ;M) ε=⇒ (i; {|P1, P2|} ∪ P ;φ;M)
Zero (i; {|0|} ∪ P ;φ;M) ε=⇒ (i;P ;φ;M)
New-N (i; {|new n. P |} ∪ P ;φ) ε=⇒ (i; {|P{n 7→ n′}|} ∪ P ;φ;M)

if n ∈ N , and n′ ∈ N is a fresh name not occurring in any message considered

New-Ch (i; {|new c. P |} ∪ P ;φ) ε=⇒ (i; {|P{c 7→ c′}|} ∪ P ;φ;M)
if c ∈ Chpri, and c′ ∈ Chpri is a fresh channel not occurring in any process considered

Out-Err (i; {|out(c, cerr). P |} ∪ P ;φ;M) out(c,cerr)======⇒ (i; {|P |} ∪ P ;φ;M)
if c ∈ Chpub, cerr ∈ Σerr

Out (i; {|out(c, u). P |} ∪ P ;φ;M) out(c,w)=====⇒ (i; {|P |} ∪ P ;φ ∪ {w 7→ u};M)
if c ∈ Chpub, u ground term not equal (modulo E) to a constant in Σerr, w ∈W \ dom(φ)

In (i; {|in(c, x). P |} ∪ P ;φ;M) in(c,R)====⇒ (i; {|P{x 7→ Rφ⇓}|} ∪ P ;φ;M)
if c ∈ Chpub, and R is a recipe such that var(R) ⊆ dom(φ)

Priv (i; {|out(c, u). P, in(c, x). Q|} ∪ P ;φ;M) ε=⇒ (i; {|P,Q{x 7→ u}|} ∪ P ;φ;M)
if c ∈ Chpri, and u is a ground term

Let (i; {|let x = u in P |} ∪ P ;φ;M) ε=⇒ (i; {|P{x 7→ u}|} ∪ P ;φ;M) if u is ground
Then (i; {|if u = v then P else Q|} ∪ P ;φ;M) ε=⇒ (i; {|P |} ∪ P ;φ;M)

if u, v are ground and u =E v

Else (i; {|if u = v then P else Q|} ∪ P ;φ;M) ε=⇒ (i; {|Q|} ∪ P ;φ;M)
if u, v are ground and u 6=E v

Repl-Ch
(i; {|! new d.out(c, d).P |} ∪ P ;φ;M) sess(c,d′)=====⇒ (i; {|P{d 7→ d′}, ! new d.out(c, d).P |} ∪ P ;φ;M)

Repl (i; {|!P |} ∪ P ;φ;M) ε=⇒ (i; {|P, !P |} ∪ P ;φ;M)

Write (i; {|m := u. P |} ∪ P ;φ;M) ε=⇒ (i; {|P |} ∪ P ;φ;M{m 7→ u}) if u is ground

Read (i; {|read m as x. P |} ∪ P ;φ;M) ε=⇒ (i; {|P{x 7→ u}|} ∪ P ;φ;M)
if M(m) is a message

Append
(i; {|append(c, u,m)|}. P ∪ P ;φ;M) append(c)======⇒ (i; {|P |} ∪ P ;φ;M{m 7→ u :: M(m)})

if m ∈ dom(M)
Phase (i;P ;φ;M) phase i+1======⇒ (i+ 1;P ′;φ;M)

where P ′ = {|P | phase i+ 1. P ∈ P|} ∪ {|phase j. P | phase j. P ∈ P ∧ j > i+ 1|}
(keeping multiplicity)

Figure 1. Semantics of our calculus



Definition 3. Two frames φ and φ′ are statically equivalent, denoted by φ ∼ φ′, if dom(φ) =
dom(φ′) and for any recipes R1, R2 ∈ T (Σ+ ∪ Σd, dom(φ)), we have:

R1φ =E R2φ ⇔ R1φ
′ =E R2φ

′.

When establishing our reduction result, we will reason on the notion of static equivalence. In
particular, we will assume an attack trace exists, and that this attack comes from publishing
the result of the election, i.e. that the two processes are in trace equivalence until the result is
output. In such cases, we will deduce that the results output by the tally on either side are different
(modulo E). This result is formally stated and proved below and will be used in the proof of our
main result.

Lemma 1. Let tL and tR be two public terms, i.e. tL, tR ∈ T (Σc,Σ0). Let φL, φR be two frames
such that φL ∼ φR, and wtall ∈W r dom(φL). We have:

φL ∪ {wtall 7→ tL} 6∼ φR ∪ {wtall 7→ tR} if, and only if, tL 6=E tR.

Proof. First, assume that tL 6=E tR. In such a case, let M = wtall, and N = tL ∈ T (Σc,Σ0). We
have that the test M = N holds in φL ∪ {wtall 7→ tL}, and not in φR ∪ {wtall 7→ tR}. Indeed, we
have that: MφL = wtallφL = tL = NφL; and MφR = wtallφR = tR 6=E tL = NφR. Therefore, we have
that φL ∪ {wtall 7→ tL} 6∼ φR ∪ {wtall 7→ tR}.
Now, we assume that φL ∼ φR, and tL =E tR. Consider w.l.o.g. a test M = N that holds in

φL ∪ {wtall 7→ tL}. Let M ′ = M{wtall 7→ tL}, and N ′ = N{wtall 7→ tL}. Then M ′ = N ′ is a test that
holds in φL, and thus in φR (thanks to our hypothesis φL ∼ φR). Since, tL =E tR, we easily conclude
that M = N holds in φR ∪ {wtall 7→ tR}. This allows us to conclude. �

Trace equivalence is the active counterpart of static equivalence. Two configurations are in trace
equivalence if, however the attacker behaves, the resulting sequences of messages observed by the
attacker are in static equivalence.

Definition 4. Two ground processes P , Q are in trace inclusion, denoted by P vt Q, if for all
(tr, φ) ∈ traces(P ), there exists φ′ such that (tr, φ′) ∈ traces(Q) and φ ∼ φ′. We say that P and Q
are trace equivalent, denoted by P ≈t Q, if P vt Q and Q vt P .

Example 6. We can consider a configuration Kno
0 similar to Kyes

0 but with no instead of yes in
the initial frame. We can establish that Kno

0 ≈t K
yes
0 . This is a non trivial equivalence. Now, let

us replace P with P+ in both configurations, adding a simple process modelling the tally (for one
vote), e.g.

P+ = P | phase 3. read mbb as bb. let res = adec(proj32(bb), sk) in out(cr, res).
The resulting trace equivalence does not hold. This is simply due to the fact that tr =

in(c, R0).out(c,w2).append(c).phase 3.out(cr,w3) can be executed starting from both configurations,
and the resulting frames contains w3 7→ no on the left, and w3 7→ yes on the right. This breach
of equivalence is not, strictly speaking, an attack, as the processes do not formalise the BPRIV
property. However it follows the same idea as the ballot copy attack against Helios from [5]: a



dishonest voter copies a honest voter’s ballot, introducing an observable difference in the result.
This attack can be prevented by patching Helios, either by weeding out duplicate ballots from the
ballot box, or by adding the voter’s id to the ZKP, which then becomes invalid for any other voter.

In the following, we will consider action-deterministic configurations. Intuitively, for an action-
deterministic configuration K, once the trace tr is fixed, the configurations that are reachable
following the trace tr are equal up to some α-renaming.

Definition 5. A configuration K is action-deterministic if for any tr, any configurations K1 =
(i1;P1;φ1;M1) and K2 = (i2;P2;φ2;M2) such that K tr=⇒ K1 and K tr=⇒ K2, we have i1 = i2, and
φ1 and φ2 are equal modulo α-renaming of names generated during the execution.

Consider two ground processes P and Q whose associated configurations (0; {P}; ∅; ∅) and
(0; {Q}; ∅; ∅) are action-deterministic. A witness of non-inclusion for P 6vt Q is actually a trace tr
for which there exists φP such that (tr, φP ) ∈ traces(PP ), and

• either there does not exist φQ such that (tr, φQ) ∈ traces(PQ);
• or such a φQ exists and φP 6∼ φQ.

Indeed, once tr is fixed, the resulting configuration is unique up to α-renaming, thus there is no
need to consider all the frames φQ such that (tr, φQ) ∈ traces(Q) to establish that they are not in
static equivalence with φQ. It is sufficient to consider one representative.

3. Modelling the general BPRIV notion

In this section, we present our formal model of e-voting protocols, and our BPRIV privacy notion.
While BPRIV itself is not novel, our symbolic formalisation is.

3.1. Modelling e-voting protocols

When modelling voting systems, we often need to encode some computations (e.g. performed by
the ballot box) that cannot be represented by recipes (e.g. iterating through an arbitrary-sized list).
We encode these computations as processes, that do not share any names, channels, or memory
cells with the rest of the process, except for a channel to return the result of the computation.

Definition 6. A computation is a process Cd( #„p ) without free names, channels, or variables (not
counting those in d, #„p ), without memory cell operations, and without phases. It is parametrised by
a channel d, and terms #„p , meant to be the channel where the result is output, and the terms given
as input parameters.
This process must be such that for all inputs #„p , there exists a ground term t0 such that for all

channel name d, we have

traces(Cd( #„p )) = {(ε, ∅)} ∪ {(out(d,w), {w 7→ t0}) | w ∈W}.

We then call t0 the result of the computation. As it does not depend on the channel, we will often
omit it and let C( #„p ) denote the result.



To use such a process to compute a term inside a process P , we will typically run it in parallel
with an input waiting to retrieve the result on d, followed by the continuation process. We will
write as a shortcut let x = C( #„p ) in P for new d. (Cd( #„p ) | in(d, x). P ), where d is a fresh private
channel name (i.e. that does not appear anywhere else in the ambiant process).

We assume a set Votes ⊆ T (Σ,Σ0) of public ground terms representing the possible values of the
votes. A voting system is modelled as a collection of processes that model the behaviour of voters,
and a process representing the tallying authority. The election process is composed of several
phases.

Phases 0 and 1: Setup. In the first two phases of the process, the election material is generated
and published. More precisely, the election public key is published in the initial phase, and the
public credentials of voters in phase 1.

Phase 2: Casting. The voters send their ballots to the ballot box. In our model, a memory mbb
will play the role of the ballot box, recording all ballots received by the voting server. This ballot
box will be tallied at the end of the election. In fact, as we will see later on, when writing the
BPRIV property, we will rather store the lists of ballots (bb0, bbobs) in mbb, containing real and
“observable” (sometimes fake) ballots. The voters’ processes will first publish their ballot on a
dedicated public channel, and then append it to the memory cell mbb. This models the fact that
voters are authenticated when they submit their ballot, and the ballot cannot be modified on its
way to the ballot box. While the attacker can modify messages on the public channel, he cannot
directly access the memory cell, and thus he cannot impersonate the voter to submit a different
ballot. However, the attacker is able to block a ballot before it reaches the ballot box.
Each voter has a private credential cr ∈ N , with an associated public credential computed by a

recipe Pub(cr , u), that may use a random value u. Some protocols, such as Civitas, use this value
to randomise the public credential, while others, such as Belenios, do not use it – in such cases we
can omit it. We will, in addition, use different channel names for the public channels used by each
voter. This is more convenient when reasoning about traces, as it makes it easier to observe which
voters have voted in a given trace.
To model the construction of ballots, we assume a recipe Vote with 5 variables: the term

Vote(pk, id, cr , v, r) represents a ballot generated for voter id with credential cr , public election
key pk, randomness r, and containing a vote v.
When modelling vote privacy, the attacker chooses the vote v he wants the voter to use to

construct the ballot. Hence, we will need to check that v is indeed a possible value for a vote, i.e.
v ∈ Votes. If the set of candidates is finite, this can be tested exhaustively. In other cases, such as
write-in votes, it can be done e.g. if legal votes have a specific format (start with a tag, etc.), or
trivially if any value is legal. In a voting scheme, once a ballot is received by the voting server,
another check is performed to ensure the ballot is valid, i.e. correctly constructed. The exact nature
of this validity test depends on the construction of the ballot, and thus on the protocol considered.
Typically, it can consist in verifying signatures or zero-knowledge proofs included in the ballot. To
keep our model generic, we simply assume a recipe Valid with four variables: Valid(id, pcr, b, pk)
represents the validity test performed for the agent id, whose public credential is pcr, who submits
a ballot b. The term it computes is meant to be equal to true if, and only if, ballot b cast by id is
valid w.r.t. her public credential pcr and the election public key pk. We incorporate this validity
check directly in the process modelling the voter, before publishing and adding the ballot to mbb.



In reality, it is performed by the ballot box, but this modelling choice is both simpler (no need for
an extra process) and closer to the cryptographic game (where the voting oracle performs the test).
The formal definition of the voter’s process is given in Section 3.2 as it incorporates elements

specific to the modelling of the property.

Example 7. Continuing Example 2, for Helios, we use the following recipes:
VoteHelios(pk, id, v, r) = 〈id, aenc(v, pk, r), zkp(aenc(v, pk, r), v, r, pk)〉3

ValidHelios(id, b, pk) = checkzkp(proj33(b), proj32(b), pk).

Phase 3: Tallying. In the final phase, the Tally(sk) process is in charge of reading the contents of
the ballot box, and using the key sk to compute and publish the result on a dedicated channel cr.
To leave it as generic as possible, we simply assume a computation CTally(bb, sk), that takes as
parameters a list bb of ballots, and sk, and computes the result as specified by the protocol. We
then assume the following form for Tally:

Tally(sk) = read mbb as bb. let res = CTally(bb, sk) in out(cr, res).

Example 8. We continue Example 7 and we consider for simplicity the case of a referendum
with two possible votes yes and no. We assume function symbols zero/0 and incr/1, without any
associated equations, that we use to count in unary. Slightly abusing notations with the use of
pattern-matching in input, the tallying computation can be written as follows:

CTally(bb, sk) =
new c.

(
out(c, 〈zero, zero, bb〉3)
| in(c, 〈x, y, nil〉3). out(cr, 〈x, y〉)
| ! in(c, 〈x, y, 〈id, b, p〉3 :: l)〉3). let v = adec(b, sk) in

if v = yes then out(c, 〈incr(x), y, l〉3) else out(c, 〈x, incr(y), l〉3).
)

3.2. A symbolic definition of BPRIV

We model vote privacy by adapting the BPRIV notion, originally formulated as a cryptographic
game [11], to our symbolic setting. The idea remains the same as for the original notion: an
attacker should not learn any information on the votes contained in the ballots, other than the
final result of the election. This is modelled by letting the attacker suggest two possible values for
the vote of each honest voter: a “real” one and a “fake” one. The attacker then sees the honest
voters’ ballots, containing either the real or fake votes, and then in the end the real result of the
election, computed on the real votes. We model the behaviour of honest voter id, who uses channel
c, private and public credentials cr , pcr , and election public key pk in these two scenarios by the



two following processes.

HVoterL(c, id, cr , pcr , pk) =
in(c, z).
let (v0, v1) = (proj21(z), proj22(z)) in
if v0, v1 ∈ Votes then

new r0. new r1.
let b0 = Vote(pk, id, cr , v0, r0) in
let b1 = Vote(pk, id, cr , v1, r1) in
if Valid(id, pcr , b0, pk) = true

then out(c, b0). append(c, b0,mbb)
else out(c, errinvalid)

else out(c, errvote)

HVoterR(c, id, cr , pcr , pk) =
in(c, z).
let (v0, v1) = (proj21(z), proj22(z)) in
if v0, v1 ∈ Votes then

new r0. new r1.
let b0 = Vote(pk, id, cr , v0, r0) in
let b1 = Vote(pk, id, cr , v1, r1) in
if Valid(id, pcr , b1, pk) = true

then out(c, b1). append(c, b0,mbb)
else out(c, errinvalid)

else out(c, errvote)

In both cases, the process receives the two possible vote instructions (v0, v1) from the attacker,
and constructs two corresponding ballots b0, b1. It then tests for validity, and publishes, either the
real b0 (on the left), or the fake b1 (on the right). However, since the result is always computed on
the real votes, the ballot secretly added to the ballot box mbb is always b0. If any of the tests fail,
we return error messages errinvalid, errvote ∈ Σerr.
The attacker has complete control over the ballots submitted by dishonest voters. Hence, we

model them by a process that receives an arbitrary ballot from the attacker, and adds it to the
ballot box mbb after checking its validity:

DVoter(c, id, cr , pcr , pk) = in(c, b). if Valid(id, pcr , b, pk) = true
then out(c, b). append(c, b,mbb) else out(c, errinvalid).

To a reader used to symbolic modelling of protocols, it may seem strange that dishonest voters
are modelled by a process, rather than being left completely under the control of the attacker.
It may similarly be surprising that the voters’ processes include the validity checks and write
directly to the ballot box, while these operations are not actually performed by the voter but by an
independent entity (typically the server storing the ballot box). While not essential for our results,
we decided to adopt this style of modelling to follow more closely the original formulation as a
cryptographic game. In that formalism, the protocol and the scenario considered are modelled as
oracles. The attacker has access to an oracle for each voter, and the oracle takes care of everything
that happens when the voter votes. For honest voters, the attacker may submit two possible votes
to the oracle, and the oracle constructs ballots accordingly, checks their validity, and records them
in the ballot box. For dishonest voters, he may submit any ballot, and the oracle checks its validity
and adds it to the box. Our symbolic processes are written in the same spirit: they should be
seen as models of what happens when a voter votes, rather than directly models of the voter’s
behaviour.
We then consider n voters: for each i ∈ J1, nK, we let #„vi = (ci, id i, cr i, pcr i), where ci ∈ Chpub is

a dedicated public channel, id i ∈ Σ0 is the voter’s identity, cr i ∈ N her private credential, and
pcr i = Pub(cr i, ui) her public credential randomised with ui ∈ N . We will say that for i 6= j, #„vi
and #„vj are distinct voters, to signify that they have different identities, credentials, and channels,
i.e. ci 6= cj ∧ id i 6= idj ∧ cr i 6= cr j ∧ ui 6= uj ∧ ui 6= cr j ∧ cr i 6= uj .



We then define the BPRIV property as follows.

Definition 7. A voting scheme is BPRIV for p honest voters and n− p dishonest voters, written
BPRIV(p, n− p), if ElectionL

p,n−p( #„v1, . . . ,
#„vn) ≈t ElectionR

p,n−p( #„v1, . . . ,
#„vn) where

ElectionX
p,n−p( #„v1, . . . ,

#„vn) = new sk. mbb := nil. out(ch, pk(sk)).(
phase 1. out(c1, pcr1). phase 2. HVoterX( #„v1, pk(sk))
| . . .
| phase 1. out(cp, pcrp). phase 2. HVoterX( #„vp, pk(sk))
| phase 1. out(cp+1, 〈crp+1, pcrp+1〉). phase 2. DVoter( #„v p+1, pk(sk))
| . . .
| phase 1. out(cn, 〈crn, pcrn〉). phase 2. DVoter( #„vn, pk(sk))
| phase 3. Tally(sk)

)
with ch ∈ Chpub, X ∈ {L,R}.

While we designed our symbolic definition to follow as closely as possible the original computational
formulation of the property, there are two notable differences.
First, in the original notion, the oracle modelling honest voters was executed atomically: once

the adversary submits his vote instructions, the generated ballot is immediately placed in the
ballot box. In contrast, in our formalism, we allow executions where the process HVoter is not
executed until its end: the attacker could send vote instructions, receive the ballot on the public
channel, and leave the process at that point, without executing the end, so that the ballot is never
added to the ballot box. This difference is an important one, and is fully intentional: we wanted to
model a scenario where the attacker can intercept and block ballots on their way to the ballot box.
This gives him more power, and thus makes for a stronger privacy property. A consequence of
that choice however, is that our definition is not suited to studying protocols that rely on weeding
out duplicate ballots from the ballot box (e.g. some fixed versions of Helios). Indeed, the weeding
operation only makes sense when assuming that all generated ballots have reached the ballot box –
otherwise, some duplicates could be missed, if the original was blocked.
Second, many voting schemes include mechanisms allowing everyone to check that the tallying

authority computed the result correctly. Typically, the talliers publish, alongside the result itself,
zero-knowledge proofs showing that they e.g. correctly decrypted the ballots in the ballot box.
In BPRIV however, having them output this proof would immediately break the property. The
proof only holds for the actual ballots being tallied, so the attacker could just check it against the
ballots he saw, which would succeed on the left but fail on the right. The original formalisation
handles this by using a simulator for the proof on the right. This sort of operation does not really
have a counterpart in the symbolic model, and we decided (for now) to simply abstract this proof
away and not model it.

3.3. Auxiliary properties

In [11], the authors propose two companion properties to BPRIV, called strong correctness and
strong consistency. Together with BPRIV, they imply a strong simulation-based notion of vote
privacy. Although we do not prove such a simulation – these are not really used in the symbolic



model – we still define symbolic counterparts to the original computational side-conditions. They
are useful when establishing our reduction result, and we will from now on assume they hold.

Strong correctness. Honest voters should always be able to cast their vote, i.e. their bal-
lots are always valid. Formally, for any id, cr , r, u, sk ∈ Σ0 ∪ N , v ∈ Votes, we must have:
Valid(id,Pub(cr , u),Vote(pk(sk), id, cr , v, r), pk(sk)) =E true.

Strong consistency. The tally itself should only compute the result of the election, and nothing
else – it cannot accept hidden commands from the attacker coded as special ballots, etc. Formally
we assume two functions extract and count:

• extract(b, sk) is meant to extract the vote, and the voter’s id and credential from b, using
key sk, or return ⊥ if b is not readable (ill-formed, etc.).
• count is the counting function, meant to compute the result from the list of votes. It is
assumed to always return a public term in T (Σ,Σ0).

We assume that: if Valid(id,Pub(cr , u), b, pk(sk)) =E true then extract(b, sk) = (id, cr , v) for
some v ∈ Votes. In other words, extraction always succeeds on valid ballots. Moreover, extract
must behave as expected on honestly generated ballots, i.e. v = v0 when b = Vote(pk(sk), cr , v0, r).
We let extract([b1, . . . , bn], sk) be the list of non-⊥ values in [extract(b1, sk), . . . , extract(bn, sk)].
Lastly, we assume that these functions characterise the behaviour of the CTally computation, i.e.

for all list bb of messages, for all sk ∈ N , we have:
CTally(bb, sk) = count(lst(extract(bb, sk)))

where lst is a function that only keeps the vote in each tuple returned by extract. Later on, when
considering the case of revote, lst will be replaced with a function applying a revoting policy to
determine which vote to keep for each voter.

Example 9. The Valid recipe and Ctally computation from Examples 7 and 8 satisfy these assump-
tions, where extract simply decrypts the ciphertext in the ballot, and count returns the pair of the
numbers of votes for yes and no.

4. Reduction result

We first establish our reduction in the case where voters vote only once. Some systems allow
voters to vote again by submitting a new ballot that will e.g. replace their previous one, in the
interest of coercion-resistance. We extend our result to that setting in Section 5. Our BPRIV
definition stated in Section 3 is parametrized by the number n of voters among which p are
assumed to be honest. We prove our reduction result in two main steps. We first establish that
it is enough to consider the case where p = 1, i.e. one honest voter is enough (see Section 4.3),
and then we prove that the number of dishonest voters can be bounded as well (see Section 4.4).
Before detailing these two parts, we first formally state our reduction result in Section 4.1, and
we give in Section 4.2 a precise characterisation of an attack trace regrding the property BPRIV
(when such a trace exists).



4.1. Main result

In order to reduce the number of dishonest voters needed to mount an attack against BPRIV,
we need an additional assumption on the counting function used in the e-voting protocol. Roughly,
as formally stated below, we have to ensure that when there is a difference in the result when
considering n votes, then a difference still exists when considering at most k votes.

Definition 8. A counting function count is k-bounded if for all n, for all lists ltally = [v1, . . . , vn]
and l′tally = [v′1, . . . , v′n] of size n > k of elements in Votes, such that count(ltally) 6=E count(l′tally),
there exist k′ 6 k, and i1 < . . . < ik′ , such that count([vi1 , . . . , vik′ ]) 6=E count([v′i1 , . . . , v

′
ik′ ]).

This assumption needed to establish our reduction results captures the most common counting
functions such as multiset, sum, majority presented below.

Multiset. The result is the multiset of all votes. Formally, in our setting, a term representing that
multiset is computed: for all n, count#([v1, . . . , vn]) = f({|v1, . . . , vn|}) where f is a function such
that f(M1) =E f(M2) (equality on terms) iff M1 =# M2 (equality on multisets). For instance, if
we just output the list of all votes, the order cannot matter, i.e. count#([a, b]) =E count#([b, a]).

Sum. A total of points total is given to each voter who decides to distribute them among the
candidates of his choice. The result is a vector of integers representing the total of points obtained
by each candidate. Assuming c candidates, for all n, we have: countΣ([v1, . . . , vn]) = f(

∑n
i=1 vi)

where vi = (p1, . . . , pc) with 1 6 i 6 n, and p1, . . . , pc ∈ N with p1 + . . . + pc 6 total, and f is
a function from vectors of c integers to terms such that f( #„u1) =E f( #„u2) (equality on terms) iff
#„u1 = #„u2 (equality on vectors of integers).

Majority. The majority function between two choices yes and no simply outputs yes if #yes > n/2
where n is the number of votes, and no otherwise. For all n, countMaj([v1, . . . , vn]) = yes if
#{i | vi = yes} > n/2; and countMaj([v1, . . . , vn]) = no otherwise. Here, yes and no are two public
constants (yes 6=E no).

Lemma 2. The functions count#, countΣ, and countMaj are 1-bounded.

Proof. Let [v1, . . . , vn] and [v′1, . . . , v′n] be two lists of votes with n > 1, such that
count#([v1, . . . , vn]) 6= count#([v′1, . . . v′n]). Since count# is a function, we have {|v1, . . . , vn|} 6=
{|v′1, . . . , v′n|}, and thus there exists i0 such that vi0 6= v′i0 . Hence, count([vi0 ]) 6= count([v′i0 ]), which
concludes the proof for count#. A similar reasoning applies for countΣ, and countMaj. �

We can now state our main reduction theorem establishing that to study BPRIV, it suffices
to consider one honest voter, and at most k dishonest ones, as soon as the counting function is
k-bounded.

Theorem 1. Let V be a voting scheme whose associated counting function is k-bounded for some
k > 1, and p, n be two integers such that 1 6 p 6 n. If V does not satisfy BPRIV(p, n− p), then V
does not satisfies BPRIV(1, k). Moreover, in that case there exists a witness of this attack where no
more than k ballots reached the ballot box.



This theorem is an easy consequence of Proposition 2 and Proposition 3 stated and proved in
Section 4.3 and in Section 4.4.

Example 10. The ballot copy attack on Helios (with the 1-bounded multiset count) from [5],
mentioned in Example 6, can be performed against BPRIV(p, n − p): a honest voter is told to
vote yes or no, her ballot is copied by a dishonest voter but remains valid, and the result is then
{|yes, yes|} on the left (as the “yes” ballot was seen and copied), and {|yes, no|} on the right (as the
“no” ballot was seen).

In accordance with Theorem 1, one honest voter, one dishonest, and one accepted ballot are
actually sufficient: the attacker can simply block the honest ballot, so that only the copy is counted
leading to {|yes|} on the left and {|no|} on the right, which suffices for the attack.

4.2. Characterisation of an attack trace

In the proofs in the next two sections (i.e. Sections 4.3 and 4.4), we will start with an attack trace
on the election process involving n voters, and show that an attack trace still exists considering
less (honest) voters. To ease the proofs of these reduction results, we start by giving a precise
characterisation of an attack trace (when such a trace exists). This characterisation is stated in
Proposition 1. We first show that the election processes we study are action-deterministic.

Lemma 3. The two ground processes ElectionL
p,n−p( #„v1,

#„v2, . . . ,
#„vn) and ElectionR

p,n−p( #„v1,
#„v2, . . . ,

#„vn)
are action-deterministic for any n, and any p 6 n.

Proof. For these two processes, until phase 3, each process in parallel has its own public dedicated
channel. Thus, the action mentioned on the trace tr indicates which action will be triggered, there
is no ambiguity, and it is therefore clear that the resulting frames are equal up to α-renaming.
Now, when reaching phase 3, the process Tally is a computation process that may involved

private channels, and thus leads to non-determinism. However, by definition of a computation
process, we know that this process will result on a unique output on the public channel cr, and
the value of this output only depends on the parameters given to the computation process, here sk
and the content of mbb. The content of mbb is entirely determined by tr and the content of the
frame. When considering the same trace tr, we obtain frame which are equal up to α-renaming,
and we will obtain the same public term for the tally. �

We can now show that when considering an attack trace tr, i.e. a witness of non-inclusion between
two election processes, the attack trace can be considered w.l.o.g. to be Σerr-free. That is, tr does
not contain any occurrence of cerr for any cerr ∈ Σerr. We can also assume that the non-equivalence
comes from static non-equivalence, and that inputs in phase 2 are messages representing valid
voting options.

Proposition 1. Let V be a voting scheme such that

ElectionL
p,n−p( #„v1,

#„v2, . . . ,
#„vn) 6≈t ElectionR

p,n−p( #„v1,
#„v2, . . . ,

#„vn).

Let tr be a witness of this non-equivalence of minimal length. Then tr is such that:



• ElectionL
p,n−p( #„v1,

#„v2, . . . ,
#„vn) tr=⇒ (iL;PL;φL;ML) for some (iL;PL;φL;ML);

• ElectionR
p,n−p( #„v1,

#„v2, . . . ,
#„vn) tr=⇒ (iR;PR;φR;MR) for some (iR;PR;φR;MR);

• iL = iR, φL 6∼ φR, and tr is Σerr-free.

Moreover, for any i ∈ {1, . . . , p}, if in(ci, R) occurrs in tr in phase 2 (for some R), then there
exists (v0, v1) ∈ Votes× Votes such that RφL =E RφR =E (v0, v1).

Proof. Assume first that the minimal witness of this non-equivalence is actually a witness for
the following non-inclusion: ElectionL

p,n−p( #„v1,
#„v2, . . . ,

#„vn) 6vt ElectionR
p,n−p( #„v1,

#„v2, . . . ,
#„vn). As the

processes under consideration are action-deterministic (Lemma 3), this witness is a trace tr such
that ElectionL

p,n−p( #„v1, . . . ,
#„vn) tr=⇒ (iL;PL;φL;ML), and for which:

(1) there does not exist (iR;PR;φR;MR) such that ElectionR
p,n−p( #„v1, . . . ,

#„vn) tr=⇒ (iR;PR;φR;MR);
or

(2) such a trace exists, i.e. ElectionR
p,n−p( #„v1, . . . ,

#„vn) tr=⇒ (iR;PR;φR;MR) but φL 6∼ φR (note that
we necessarily have that iL = iR).

We first assume that such a witness of minimal length satsifies the requirements stated in item 1,
i.e. there does not exist (iR;PR;φR;MR) such that ElectionR

1,n( #„v0,
#„v1, . . . ,

#„vn) tr=⇒ (iR;PR;φR;MR).
Note that it means that, at some point, the outcome of a test is not the same on both sides,
and this leads to an output that can not be mimicked on the other side. When the test under
consideration is public (i.e. corresponds to a computation that can be performed by the attacker),
we get a contradiction since the trace tr without its last output will already lead to a witness of
non-inclusion. The only remaining case is the validity test performed by the honest voter but here
we know that such a test can not failed. Indeed, we have assumed strong correctness, i.e.:

Valid(id,Pub(cr , u),Vote(pk(sk), id, cr , v, r), pk(sk)) =E true.

Therefore, we know that such a minimal witness is due to a problem regarding static equivalence:
there exists (iL;PL;φL;ML) such that ElectionR

1,n( #„v0,
#„v1, . . . ,

#„vn) tr=⇒ (iR;PR;φR;MR) but φL 6∼ φR.
It remains to establish that tr can be considered to be Σerr-free. Assume that tr contains an

action of the form out(ci, cerr) for some ci and some cerr ∈ Σerr. Then, the trace tr′ without this
action still passes on both sides, and leads to the exact same frames. Indeed, in the processes
considered, the errors are always placed at the end of a branch, and hence not executing them
does not change the remaining trace. Therefore such an action can not occur in a minimal witness.
Finally, for any honest voter i, if in(ci, R) occurs in tr in phase 2, it must be that the test

“if v0, v1 ∈ Votes” succeeds on the left and eventually the corresponding output is performed, or
the test fails on the left and eventually an error message is output. In the first case, there exist
(v0, v1) ∈ Votes2 such that RφL =E (v0, v1), and thus by minimality of the witness RφR =E (v0, v1).
In the second case, we have RφL 6=E (v0, v1) for any (v0, v1) ∈ Votes2, and, again by minimality of
the witness, RφR 6=E (v0, v1) for any (v0, v1). Since tr is Σerr-free, we know that the corresponding
error message is not output in the trace, but in this case, by minimality of tr, we know that this
input is not useful to get a witness of non-equivalence. �



4.3. Reduction to one honest voter

When designing symbolic definitions that formalise security properties, even when an arbitrary
number of participants are involved, a common modelling choice is to particularise the definition on
a small number of honest agents, on which the property should hold. For instance, a key agreement
property is often formalised by requiring that two fixed (but arbitrary) honest agents agree on
the key at the end of their session, even in presence of arbitrarily many dishonest agents. A more
general definition would require that the same holds for any number of honest agents running
the protocol in parallel, so that any two honest agent agree on a key once they finish a session
together. The choice of fixing the honest agents when formalising the property produces a simpler
property, with less honest sessions in parallel, which is usually easier on the automated tools. It is
usually justified by arguing (more or less formally) that it implies the more general version: given
an arbitrary number of honest agents, for any pair of agents, we can see from their point of view all
other agents as potentially corrupted, and thus the simpler property applies and shows they agree.
A similar choice is implicitly made when considering the swapping definition for vote privacy.

Indeed, the more general version would require that two scenarios, where the votes of any number
of honest voters have been permuted, are always indistinguishable. This general formulation would
in fact be closer to the one used in the computational setting. In contrast, the symbolic swapping
definition consider two particular honest voters Alice and Bob, whose votes are exchanged. To
justify this choice, it could be argued that, as any permutation can be decomposed in a finite
sequence of swaps of two elements, by applying the seemingly weaker property as many times as
needed, we can recover the general version. This argument is however not often formalised.
In order to remain faithful to the original computational BPRIV notion, and to define a strong

privacy property, we decided to write our symbolic BPRIV property in a general way, i.e. considering
an arbitrary number of honest voters. Each voter receives two vote instructions (v0, v1) from the
attacker, and shows him the ballot for one or the other. Reducing the number of honest voters by
replacing them with dishonest ones is non trivial as the behaviour of an honest voter can not be
mimicked by a dishonest one, or simply compensated by some steps performed by the attacker.
This comes from the fact the behaviour of an honest voter is not exactly the same on both sides of
the equivalence, as it is the case for a dishonest voter. Nevertheless, we establish the following
result: one honest voter is enough.

Proposition 2. Consider a voting scheme V, and p, n such that 1 6 p 6 n. If V does not satisfy
BPRIV(p, n− p), then it does not satisfy BPRIV(1, n− 1).

The general idea of this proof is to show we can isolate one specific honest voter whose ballot is
the one causing BPRIV(p, n− p) to break. We then leave that voter as the only honest one, and
use dishonest voters to simulate the p− 1 others, and obtain an attack against BPRIV(1, n− 1).
The difficulties are (i) how to find this particular voter, and (ii) how to simulate the honest

voters with dishonest ones. The simulation would be easy for a honest voter id voting for the same
candidate v on both sides: simply use the dishonest voter to submit a ballot Vote(pk, id, cr , v, r) for
some random r, and the correct credential cr . However, in the Election processes, id uses different
values v0, v1 on the left and on the right, so that we cannot easily construct a single dishonest
ballot simulating id’s on both sides at the same time.
To solve both issues, the main idea is to go gradually from the ElectionL process, where all HVoters

are HVoterL and use the real vote (their v0), to the ElectionR process, where they are HVoterR and



We fix n distinct voters #„v1, . . . ,
#„vn, with for all i #„vi = (ci, id i, cr i, pcr i), pcr i = Pub(cr i, ui), and

p ∈ {1, . . . , n}. For any i ∈ {0, . . . , p}, we define:

Pi = new sk. mbb := nil. out(ch, pk(sk)).(
phase 1.out(c1, pcr1). phase 2. HVoterR( #„v1, pk(sk))
| . . .
| phase 1.out(ci, pcr i). phase 2. HVoterR( #„vi, pk(sk))
| phase 1.out(ci+1, pcr i+1). phase 2. HVoterL( #     „vi+1, pk(sk))
| . . .
| phase 1.out(cp, pcrp). phase 2. HVoterL( #„vp, pk(sk))
| phase 1.out(cp+1, 〈crp+1, pcrp+1〉). phase 2. DVoter( #      „vp+1, pk(sk))
| . . .
| phase 1.out(cn, 〈crn, pcrn〉). phase 2. DVoter( #„vn, pk(sk))
| phase 3. Tally(sk)

)
Figure 2. Proof of Proposition 2 - Intermediate processes Pi

use the fake one (their v1). We consider intermediate processes P0, . . . , Pp: as displayed in Figure 2,
in Pi, the first i HVoters are HVoterR, and the others are HVoterL. Since BPRIV(p, n− p) does not
hold, P0 = ElectionL and Pp = ElectionR are not equivalent. Hence, there must exist some i0 such
that Pi0+1 and Pi0 are not equivalent. These two processes differ only by the i0 + 1th HVoter, who
is HVoterL in Pi0 , and HVoterR in Pi0+1. This voter will be our particular voter, who will remain
honest, solving issue (i). All other HVoters behave the same in Pi0 and Pi0+1: they vote with their
right vote for the first i0, and their left for the last p− i0 − 1. For them, issue (ii) is thus solved,
and we can simulate them with dishonest voters. This way, we recover an attack with only one
honest voter, and (n− p) + (p− 1) = n− 1 dishonest voters.

Note that, in the case of the earlier reduction result from [6] for the SWAP definition, a simple
version of vote privacy is used from the start. They consider only two honest voters who swap their
votes, and not the general definition (as stated e.g. in [10, 11]) involving an arbitrary permutation
between an arbitrary number of honest voters. Due to this, in [6], this first step was trivial. The
argument in our case is more involved, as we start from the general notion.

Before proving the reduction result, let us first observe that since the Valid recipe and the CTally
computation process do not use any private names, and always return public values, their output
cannot depend on the random values used in the ballots/credentials. More precisely, these random
values can be renamed and/or replaced with public fresh names without changing the outcome
of Valid or CTally. This property, which we will refer to as randomness independence, is a direct
consequence of the construction of terms and semantics of processes in our symbolic model. We
will use it in the proof of the reduction theorem, and for this reason we state it formally below.

Lemma 4. Consider a key sk ∈ N , with the associated pk = pk(sk), and n distinct voters
id1, . . . , idp, idp+1, . . . , idn ∈ Σ0, meant to represent p honest voters and n− p dishonest ones, each



with their credential cr i ∈ N . Let φ0 denote the frame of public keys and credentials

φ0 = { w0 7→ pk, w1 7→ Pub(cr1, u1), . . . , wp 7→ Pub(crp, up)),
wp+1 7→ 〈crp+1,Pub(crp+1, up+1)〉, . . . , wn 7→ 〈crp+1,Pub(crp+1, up+1)〉}.

Consider a frame φ1 of m ballots, honestly generated by honest voters id i1 , . . . , id im (two ballots
can potentially be generated by the same voter):

φ1 = {w′1 7→ Vote(pk, id i1 , cr i1 , v1, r1), . . . ,w′m 7→ Vote(pk, id im , cr im , vm, rm)}

with votes v1, . . . , vn ∈ Votes, using distinct random values r1, . . . , rm ∈ N \ {sk, u1, . . . , un}. Let
φ denote φ0 ∪ φ1. Consider recipes R1, R2, R3, R4 on dom(φ). Also consider an arbitrary injective
renaming σ : {r1, . . . , rm, u1, . . . , um} → Σ0 ∪N \ {sk}, such that for any r in its domain, σ(r)
does not appear in any R1, R2, R3, R4,Valid, CTally. Then we have:

• Valid(R1φ,R2φ,R3φ, pk) =E true ⇔ Valid(R1φσ,R2φσ,R3φσ, pk) =E true; and

• Ctally(R4φ, sk) =E Ctally(R4φσ, sk).

We can now recall and give a detailed proof of Proposition 2.

Proposition 2. Consider a voting scheme V, and p, n such that 1 6 p 6 n. If V does not satisfy
BPRIV(p, n− p), then it does not satisfy BPRIV(1, n− 1).

Proof. We will show that under our assumptions we have Pi ≈t Pi+1 for any i ∈ {0, . . . , p− 1}
where Pi are the processes displayed in Figure 2. Since P0 = ElectionLp,n−p( #„v1, . . . ,

#„vn) and
Pp = ElectionRp,n−p( #„v1, . . . ,

#„vn), by transitivity of ≈t, this property suffices to prove the theorem.

Fix some index i ∈ {0, . . . , p− 1}. Observe that Pi and Pi+1 differ only in the behaviour of the
(i + 1)th voter id i+1, which is modelled by the process HVoterL( #     „vi+1, pk(sk)) in process Pi, and
by the process HVoterR( #     „vi+1, pk(sk)) in Pi+1. All other honest voters are identical in Pi and Pi+1:
they always follow the attacker’s instructions in the same way, either always voting for the right
vote (for voters idj , j 6 i) or the left vote (for voters idj , j > i+ 2). Therefore, the main idea of
the proof is that all these other voters can be simulated by the attacker, since their behaviour is
known and the same on both sides. The only remaining honest voter will be id i+1, to which we
will apply the assumption that BPRIV holds for one honest voter.

To prepare the terrain for applying this assumption later on, we define two additional processes
QL, QR, where this “simulation” is performed, i.e. where all voters except id i+1 are controlled by
the attacker. Formally, the processes for these voters are replaced by instances of process DVoter.



The process QX with X ∈ {L,R} is as follows:

QX = new sk. mbb := nil. out(ch, pk(sk)).(
phase 1.out(c1, 〈cr1, pcr1〉). phase 2. DVoter( #„v1, pk(sk))
| . . .
| phase 1.out(ci, 〈cr i, pcr i〉). phase 2. DVoter( #„vi, pk(sk))
| phase 1.out(ci+1, pcr i+1). phase 2. HVoterX( #     „vi+1, pk(sk))
| phase 1.out(ci+2, 〈cr i+2, pcr i+2〉). phase 2. DVoter( #     „vi+2, pk(sk))
| . . .
| phase 1.out(cn, 〈crn, pcrn〉). phase 2. DVoter( #„vn, pk(sk))
| phase 3. Tally(sk)

)
In fact, up to permutation of the parallel branches, these two processes are instances of the

generic election process, with one honest voter (id i+1) and n− 1 dishonest voters (idj , j 6= i+ 1):

QX = ElectionX1,n−1( #     „vi+1,
#„v1, . . . ,

#„vi,
#     „vi+2, . . . ,

#„vn)

Thanks to the assumption that BPRIV holds for one honest voter, we have QL ≈t QR.

By contradiction, let us now assume that Pi 6≈t Pi+1. Using Lemma 3, Pi, Pi+1, QL, QR are
action-determinate. Let tr be a witness of this non-equivalence of minimal length. Thanks to
Proposition 1, tr is such that:

• Pi
tr=⇒ (i;PL;φL;ML) for some i,PL, φL,ML;

• Pi+1
tr=⇒ (i;PR;φR;MR) for some PR, φR,MR;

• φL 6∼ φR, and tr is Σerr-free.

Moreover, for any j ∈ {1, p}, if in(cj , R) occurs in tr in phase 2 (for some R), then there exist
(v0, v1) ∈ Votes× Votes such that RφL = RφR =E (v0, v1). When such an input exists, let instr(j)
denote this pair of votes, which is the instruction given by the attacker to voter j in tr.
In addition, by action-determinacy, φL and φR are unique up to α-renaming of fresh names –

without loss of generality, let us assume that the same symbols are used for matching private fresh
names in both frames, i.e. the random values used for constructing a honest ballot on either side
are given the same name, and similarly for the election key.
Our next step is to construct a sequence of actions tr, that describes how to simulate the

execution tr of Pi (resp. Pi+1) in an execution of QL (resp. QR).
Intuitively, the attacker interacting with QL or QR performs the same actions as the original one

interacting with Pi or Pi+1, except that all honest voters but id i+1 are simulated using dishonest
voters. Hence, whenever the attacker (for Pi, Pi+1) provides two votes (v0, v1) to an honest voter idj
(with 1 6 j 6 p and j 6= i+1), we instead let the attacker (for QL, QR) construct the corresponding
ballot Vote(pk, idj , cr j , v0, r0) and provide it to the process for idj , who is now dishonest. Note
that, since the result computed in the end by the tally always counts the “left” vote v0, we must
construct the ballot containing that vote, so that the result obtained in the end is the right one.
A subtle detail is that when constructing this ballot, the attacker will not be able to use the

same private name r0 originally used by the honest voter in tr. He must instead use a public name.



To keep notations relatively light, we introduce, for each private name r generated by the process
for an honest voter other than id i+1 in Pi or Pi+1 an associated public name, that the attacker
may use instead, which we will call r̃. This name must be fresh, i.e. not appear in any of the
processes or recipes considered until now (including those used in the inputs in tr). We also let σ
denote the function mapping each such public r̃ to the corresponding private r.

Due to the form of the processes, we can assume w.l.o.g. that tr is a prefix of:

out(ch,w0).phase 1.out(ci1 ,wi1). . . . .out(cip ,wip).phase 2.trcast.phase 3.out(cres,wtall)

where trcast contains only inputs and outputs on the channels {ci}16i6n, with at most one input on
each ci, and, when this input is present, at most one output on ci, placed after the input. Without
loss of generality, call Ri the recipe provided in the input on ci in trcast, and w′i the frame variable
recording the output on ci (if they exist).

We now define recipes that we will use to let the attacker compute ballots for honest voters
simulated by dishonest ones. For any j ∈ J1, pK with j 6= i+ 1 such that an input in(cj , Rj) occurs
in trcast, we let B0

j = Vote(w0, idj , proj21(wj), v0, r̃0) and B1
j = Vote(w0, idj , proj21(wj), v1, r̃1) where

(v0, v1) = instr(j) and r̃0, r̃1 are fresh public names associated by σ to the private names r0, r1
used to construct the ballots for voter j in Pi and Pi+1.

Let tr be the trace containing the same actions as tr, except that in trcast (if tr reaches trcast),

• any input in(cj , Rj) for 1 6 j 6 p, j 6= i+ 1, i.e. the input of the attacker’s instructions for
honest voter j, is replaced with in(cj , B0

j ).
• any input in(cj , Rj) for j > p, i.e. the attacker’s instruction for dishonest voter j, os replaced
with in(cj , Sj), where

Sj = Rj
{

w′k 7→ B1
k

}
16k6i

{
w′k 7→ B0

k

}
i+1<k6p.

By construction of t, and from the shape of the processes QL, QR, it is clear that t is executable
in QL and QR. All inputs and outputs in phases 0, 1, and 3 can be performed as expected. There
are only two points where t might a priori be non-executable in phase 2, that are related to the
validity checks:

• If the validity check in a DVoter process for a voter idj with j > p failed, preventing an
output on cj that was possible in tr: by construction, the ballot b′ on which the validity
check fails in tr and the ballot b output by this voter in tr, on which the test succeeds, are
obtained by the same recipe applied to two frames of honest ballots that differ only on the
random values used (the r̃ or the r). By the randomness independence property (Lemma 4),
this is not possible.
• If the validity check in a DVoter process for a voter idj with j 6 p failed, preventing an
output on cj that was possible in tr: by the consistency assumption (Section 3.3), validity
tests always succeed on honestly generated ballots, and this is not possible.



Executing tr in QL and QR respectively produces frames φL, φR. By action-determinacy, they
are unique up to α-renaming fresh names – without loss of generality, let us assume that the same
symbols are used for matching private fresh names in both frames, i.e. the random values used for
constructing a honest ballot on either side are given the same name, and similarly for the election
key. In addition, we will also assume these symbols are the same as for the corresponding names
in φL, φR.
Note that, by construction, the recipes B0

j , B1
j from earlier, when applied to φL and φR, compute

ballots b0, b1 such that b0σ and b1σ are the two ballots computed by honest voter j in tr in Pi and
Pi+1 respectively. Similarly, the recipe Sj used in tr to compute dishonest ballots produces, when
applied to φL and φR, a ballot b such that bσ is the ballot provided by the attacker to dishonest
voter j in tr in Pi and Pi+1 respectively.
The last step of our proof will be to describe the relation between φL, φR, and φL, φR. As we

will see, this will bring out a contradiction, as the first two are assumed statically equivalent and
the other two are not.
We construct a frame of recipes R, giving for each variable w ∈ dom(φL) = dom(φR) a recipe

R(w) with variables in dom(φL) = dom(φR), such that φL = (RφL)σ and φR = (RφR)σ, i.e.

∀w ∈ dom(φL). φL(w) = (R(w)φL)σ ∧ φR(w) = (R(w)φR)σ (1)

R is constructed as follows:

• For w0, storing the election key output in phase 0: this output is also performed in tr, and
R(w0) = w0 is adequate.

• For all wj present in dom(φL), storing credentials output in phase 1:
∗ if j = i+ 1, φL and φR as well as φL, φR contain the public credential pcr j in wj , and
thus R(wj) = wj works;

∗ if 1 6 j 6 p and j 6= i+ 1, φL and φR contain the public credential pcr j in wj , while φL
and φR contain 〈cr j , pcr j〉; thus R(wj) = proj22(wj) works;

∗ if j > p, φL and φR as well as φL, φR contain the credentials 〈cr j , pcr j〉 in wj , and thus
R(wj) = wj works.

• For all w′j present in dom(φL), storing all ballots output during phase 2:
∗ if j < i + 1, according to the processes, φL and φR contain in w′j the ballot

Vote(pk, idj , cr j , v1, r1), where (v0, v1) = instr(j), and r1 is the nonce generated by
the voter. Thus R(w′j) = B1

j is adequate.
∗ if j = i + 1, according to the processes, φL as well as φL contain in w′j the ballot

Vote(pk, idj , cr j , v0, r0), while φR and φR contain the ballot Vote(pk, idj , cr j , v1, r1),
where (v0, v1) = instr(j), and r0, r1 the random values used. Thus R(w′j) = w′j is
appropriate.

∗ if i+ 1 < j 6 p, according to the processes, φL and φR contain Vote(pk, idj , cr j , v0, r0)
in w′j , where (v0, v1) = instr(j) and r0 is the nonce generated by the voter. Thus
R(w′j) = B0

j is adequate.



∗ if j > p, according to the processes, φL, φR, φL, φR each contain in w′j the ballot received
as an input from the attacker earlier by voter j’s process. As explained earlier, the recipe
used in tr to construct that input is such that this ballot verifies φL(w′j)σ = φL(w′j) and
φR(w′j)σ = φR(w′j). Hence, picking R(w′j) = w′j satisfies (1).

• Finally, the only remaining variable is wtall, storing the result output in phase 3. Our argument
is that the tally actually outputs the same result in the execution of tr in Pi and tr in QL,
and similarly for Pi+1 and QR. Indeed, consider the inputs received by Tally on the private
channel containing the internal state. In Pi and tr, these are the “left” ballots computed by
all honest voters, and the dishonest ballots. In QL and tr, they are

∗ the left ballot of voter i+ 1
∗ the ballots given as input to dishonest voters j ∈ J1, pK computed using B0

j , which, as
explained earlier, are the left ballots of the original honest voters where r0 is replaced
with r′0

∗ the ballots given as input to dishonest voters j > p, computed using RRj , which, as
explained earlier, are computed in the same way as the ballots of the original dishonest
voters, from the list of honest ballots where all random values r are replaced with the
corresponding r̃.

Hence, the randomness-independence property (Lemma 4) applies, and guarantees that
tallying the ballots in Pi with tr, and in QL with tr produces the same result. The same
argument applies to Pi+1 and QR. Thus, R(wtall) = wtall satisfies (1).

Using property (1), we can now conclude the proof. Indeed, we know that QL ≈t QR, which,
applied to tr, implies that that φL ∼ φR. Since R is a frame of recipes, it follows immediately from
the definition of static equivalence that RφL ∼ RφR.
On the other hand, tr was obtained as a non-equivalence witness for Pi and Pi+1, meaning that

φL 6∼ φR. Thus there exist recipes M , N such that MφL = NφL and MφR 6= NφR, i.e.

M
(
(RφL)σ

)
= N

(
(RφL)σ

)
and M

(
(RφR)σ

)
6= N

(
(RφR)σ

)
.

Since none of the public names r′ appear in φL or φR, we may always w.l.o.g. choose M and N
that do not contain these names either. We then have

(
M(RφL)

)
σ =

(
N(RφL)

)
σ and

(
M(RφR)σ

)
6=
(
N(RφR)σ

)
.

Since σ is a bijective renaming, this means

M(RφL) = N(RφL) and M(RφR) 6= N(RφR),

i.e. MR
?=NR is a test distinguishing φL and φR. This contradicts the fact QL ≈t QR. Therefore,

our assumption was false, i.e. Pi ≈t Pi+1, which concludes the proof. �



4.4. Bounding the number of dishonest voters

This second reduction result allows one to bound the number of dishonest voters when considering
BPRIV. More precisely, we consider a unique honest voter, and we show that k dishonest voters
are sufficient to mount an attack against vote privacy (if such an attack exists). Here, we reduce
the number of voters from n to k + 1 (k dishonest voters plus one honest voter), and the resulting
bound depends on the counting function.

Proposition 3. Let V be a voting scheme whose associated counting function is k-bounded for
k > 1. If V does not satisfy BPRIV(1, n) for some n > 0, then V does not satisfy BPRIV(1, k)
Moreover, in that case there exists a witness of this attack where no more than k ballots reached
the ballot box.

Roughly, if BPRIV(1, n − 1) does not hold, the difference appears either (i) when the honest
voter outputs her ballot, or (ii) when outputting the result. Indeed, the behaviour of a dishonest
voter who simply outputs the message he received does not help to mount an attack. Moreover,
the only test that a dishonest voter performs is a public test from which the attacker will not infer
anything. In case (i), no dishonest voters are even needed, and the claim holds.
In case (ii), we know that that the public terms representing the final result are different on both

sides. We apply our k-boundedness hypothesis, and we know that a difference is still there when
considering k voters (or even less). Removing the corresponding actions performed by dishonest
voters, the trace still corresponds to an execution assuming that the validity tests do not depend
on the the other ballots on the bulletin board. Hence, we have a witness of non-equivalence with
at most k ballots, and thus at most k dishonest voters.
We now give a detailed proof of Proposition 3.

Proof. First, relying on Lemma 3, we know that the processes under study are action-deterministic,
and therefore, thanks to Proposition 1, we can assume that a witness of an attack of minimal
length has some specific shape. Following the notation introduced in Section 3, we consider n+ 1
distinct voters #„v0, . . . ,

#„vn, and we consider a witness tr of non-equivalence of minimal length. We
know that:

• ElectionL
1,n( #„v0,

#„v1, . . . ,
#„vn) tr=⇒ (iL;PL;φL;ML) for some (iL;PL;φL;ML);

• ElectionR
1,n( #„v0,

#„v1, . . . ,
#„vn) tr=⇒ (iR;PR;φR;MR) for some (iR;PR;φR;MR);

• iL = iR, φL 6∼ φR, and tr is Σerr-free.

We are going to show that this minimal witness tr is also a witness of the following non-equivalence:
ElectionL

1,k( #„v0,
#„v1, . . . ,

#„vk) 6≈t ElectionR
1,k( #„v0,

#„v1, . . . ,
#„vk).

In the following, we will distinguish cases depending on the form of tr. Due to the form of the
processes, we can assume w.l.o.g. that tr is a prefix of:

out(ch,w0).phase 1.out(ci1 ,wi1). . . . .out(cip ,wip).phase 2.trcast.phase 3.out(cres,wtall)

Case 1: tr only contains actions from phase 0 and phase 1. In such a case, tr cannot be a witness
of non-equivalence. Indeed, the frames on both sides are necessarily in static equivalence.



Case 2: tr contains actions from phases 0, 1, and 2 (but no action from phase 3). We distinguish
two cases.

• We first consider the case where some actions in phase 2 are performed by a dishonest
voter idj , i.e. there is in(cj , Rj) ∈ tr and possibly out(cj ,wj) ∈ tr, and append(cj) as well.
Then, we consider tr′ = tr{wj 7→ Rj} where tr is tr in which the input, output, and append
actions performed during phase 2 on channel cj have been removed. The resulting trace tr′
is smaller than tr. To conclude, it remains to show that tr′ is a witness of non equivalence,
thus contradicting the minimality of the witness tr.
It is easy to see that this trace tr′ still passes in ElectionL

1,n( #„v0,
#„v1, . . . ,

#„vn). Note that the
action append(cj) has no impact since the tallying phase has not been executed. The frame
φ′L resulting from this new execution tr′ is such that φL = φ′L ∪ {wj 7→ b0

L} where b0
L = Rjφ

′
L

and Rj is the recipe mentioned above such that vars(Rj) ⊆ dom(φ′L).
Similarly to the reasoning performed on the left side, this trace tr′ also passes in
ElectionR

1,n( #„v0,
#„v1, . . . ,

#„vn) (since tr passes too). Moreover, the frame φ′R resulting from this
execution tr′ is such that φR = φ′R ∪ {wj 7→ b0

R} where b0
R = Rjφ

′
R ↓ considering the exact

same recipe Rj as the one mentioned above. We know that φ′L ∼ φ′R implies that φL ∼ φR,
and thus since φL 6∼ φR, we deduce that φ′L 6∼ φ′R. This allows us to conclude that tr′ is a
witness of non-inclusion, and this leads to a contradiction as tr′ is smaller than tr.
• We now assume that there is no input/output/append action performed by a dishonest
voter during the casting phase (phase 2). In such a case, we have that either trcast =
in(c0, R0).out(c0,w0).append(c0) or trcast = in(c0, R0).out(c0,w0) or trcast = in(c0, R0). Note
that actually the first and the last case are impossible since the input and the append actions
do not modify the frame, and thus are not necessary to obtain a witness of non-equivalence
(of the shape mentioned above) leading a contradiction regarding minimality.
In case phase 1 contains an output on ci with i > 0, i.e. out(ci,wi) occurs in phase 1, and
wiφL = 〈cr i,Pub(cr i, ui)〉, we consider tr′ = tr{wi 7→ 〈cr ′i,Pub(cr ′i, u′i)〉}, where tr is tr in
which this output has been removed, and cr ′i and u′i are fresh public constants. Then tr′
passes in ElectionL

1,n( #„v0,
#„v1, . . . ,

#„vn) and also in ElectionR
1,n( #„v0,

#„v1, . . . ,
#„vn). Indeed, cr i and ui

do not occur anymore in the remaining process to be executed since DVoter is not executed
for idj .
This trace tr′ leads to the frames φ′L (on the left) and φ′R (on the right) such that φX =
φ′X{cr ′i 7→ cr i}{u′i 7→ ui} ∪ {wi 7→ 〈cr i,Pub(cr i, ui)〉} for X ∈ {L,R}. Since, we know
that φL 6∼ φR, we conclude that φ′L 6∼ φ′R, which proves this case. Note that, in case
the distinguishing test relies on wi, we can easily reconstruct the corresponding term
〈cr ′i,Pub(cr ′i, u′i)〉 to obtain a witness of φ′L 6∼ φ′R.
Otherwise (no output on ci with i > 0 during phase 1), the trace tr also passes
starting from ElectionL

1,k( #„v0,
#„v1, . . . ,

#„vk), or from ElectionR
1,k( #„v0,

#„v1, . . . ,
#„vk), and the re-

sulting frames are the same as those obtained when starting the executions from
ElectionL

1,n( #„v0,
#„v1, . . . ,

#„vn), and ElectionR
1,k( #„v0,

#„v1, . . . ,
#„vn). Therefore, tr is a witness of non-

equivalence for ElectionL
1,k( #„v0,

#„v1, . . . ,
#„vk) 6≈t ElectionR

1,k( #„v0,
#„v1, . . . ,

#„vk) contradicting our main
hypothesis.

Case 3: tr contains actions from phase 3 (actually only one). We distinguish three cases.



• If during phase 2, some action occurs on channel ci with i > 0 – in(ci, R), and out(ci,w)
but not the append(ci) one – then we can consider tr′ = tr{w 7→ R} where tr is equal to tr
without these actions (input and output) on channel ci, and we can show that this trace tr′
is a witness of non-equivalence obtaining a contradiction regarding the minimality of tr.
• Otherwise, if phase 1 contains an action of the form out(ci,wi) corresponding to the output
of a credential of a dishonest voter id i (i.e. i > 0), whereas there is no in(ci, Ri) during
phase 2 for this particular (dishonest) voter, then we consider the trace tr′ which is equal
to tr without this output out(ci,wi), and we also replace the occurrences of wi in tr by
〈cr ′i,Pub(cr ′i, u′i)〉 where cr ′i and u′i are fresh public constants. As before, we conclude that
tr′ is a smaller witness.
• We now consider the case of a trace tr that is composed of phase 1 during which only dishonest
voters who cast their ballot (action append) participate to phase 1, then phase 2, and then
phase 3 containing the output on channel cres. We also know that the last output (the one
on cres) is needed to get a witness of non-equivalence, and that φL 6∼ φR where φL and φR are
the two resulting frames. Thus, the test distinguishing these two frames relies on wtall (the
message output on cres). Actually, relying on Lemma 1, we have wtallφL 6=E wtallφR. Moreover,
we know that wtallφL = count(extract(BBL)) and wtallφR = count(extract(BBR)) where BBL
(resp. BBR) is the bulletin board (i.e. the content of the memory cell mbb) resulting from
trace tr on the left (resp. on the right).
If at most k voters voted (i.e. cast their vote - action append), then, as we know that
only the dishonest voters who cast a vote output their credential during the initialisation
phase, we can deduce that this witness tr is also a witness of ElectionL

1,k( #„v0,
#„v1, . . . ,

#„vk) 6≈t
ElectionR

1,k( #„v0,
#„v1, . . . ,

#„vk).

Otherwise, we know that n′ voters with n′ > k have cast their vote. Thanks to our k-bounded
hypothesis, we know that there exists k′ 6 k, and 0 6 i1 < . . . < ik′ 6 n such that counting
the votes of id i1 , . . . , id ik′ still leads to a difference in the result.
In the trace tr, we know that there are actions append(ci1), . . . , append(cik′ ) correspond-
ing to the append actions of these voters id i1 , . . . , id ik′ . We consider tr′ obtained from tr
by removing all these actions. It is easy to see that this smaller trace tr′ still passes in
ElectionL

1,n( #„v0,
#„v1, . . . ,

#„vn) and in ElectionR
1,n( #„v0,

#„v1, . . . ,
#„vn). The resulting bulletin board BB′L

(resp. BB′R) contain less ballots than before, and these ballots have been chosen such that:

count(extract(BB′L)) 6= count(extract(BB′R))

Therefore, the resulting frames φ′L and φ′R are almost the same as φL and φR, except for the
result output during the tallying phase, which we know are different public terms. As our
processes are action-deterministic (Lemma 3), there is no other choice to obtain another frame,
and thus tr′ is a smaller witness of ElectionL

1,n( #„v0,
#„v1, . . . ,

#„vn) 6≈t ElectionR
1,n( #„v0,

#„v1, . . . ,
#„vn),

leading again to a contradiction.

Hence the result. �



5. Dealing with revoting

We now consider the case where re-voting is allowed. We first adapt the BPRIV definition to
this setting (see Section 5.1) before stating and discussing our reduction result in Section 5.2 and
Section 5.3.

5.1. Modelling BPRIV with re-voting

The processes HVoter, DVoter, and Tally are left unchanged. Only the main Election processes,
and the consistency assumption change. The tallying now takes into account a revote policy,
indicating how to proceed when a voter casts multiple votes. A revote policy is a function:

policy : (Σ0 ×Npriv × Votes) list→ Votes list.

This policy function replaces lst in the strong consistency assumption (Section 3.3). We consider
here the two most common revote policies. The last and first policies, that select resp. the last or
the first vote from each voter.
We reuse the notations from Section 3.2, and we introduce in addition # „wi = (di, idi, cr i, pcri)

for each i ∈ {1, . . . , n} where di are different private channel names. The privacy property
BPRIVR(p, n− p) is written as follows:

ElectionRevoteL
p,n−p( #„v1, . . . ,

#„vn) ≈t ElectionRevoteR
p,n−p( #„v1, . . . ,

#„vn)

where ElectionRevoteX
p,n−p( #„v1, . . . ,

#„vn) = new sk. mbb := nil. out(ch, pk(sk)).(
phase 1. out(c1, pcr1). phase 2. ! new d1. out(c1, d1). HVoterX( #„v1, pk(sk))
| . . .
| phase 1. out(cp, pcrp). phase 2. ! new dp. out(cp, dp). HVoterX( # „wp, pk(sk))
| phase 1. out(cp+1, pcrp+1). phase 2. ! new dp+1. out(cp+1, dp+1).DVoter( #       „wp+1, pk(sk))
| . . .
| phase 1. out(cn, pcrn). phase 2. ! new dn. out(cn, dn). DVoter( #  „wn, pk(sk))
| phase 3. Tally(sk)

)
with ch ∈ Chpub, X ∈ {L,R}.

Note that a replication operator has been added in front of the voter processes to model the fact
that revote is now possible.

5.2. Reduction result with re-voting

We are now able to state our reduction result when considering re-voting.

Theorem 2. Let V be a voting scheme whose associated counting function is k-bounded for
some k > 1, and p, n be two integers such that 1 6 p 6 n. If V does not satisfy BPRIVR(p, n− p),
then V does not satisfy BPRIVR(1, k). Moreover, in that case there exists a witness of this attack
where no more than k ballots reached the ballot box (each from a different voter).



The proof of this Theorem follows the same lines as the one when re-vote is not allowed,
and is composed of two main reduction steps. Before performing these two reduction steps, we
may note that our election processes are still action-deterministic. Actually, the construction
new d.out(c, d).P is there for that, and Proposition 1 charaterizing the form of a minimal attack
trace is still valid for these election processes where re-vote is allowed. Rather than redoing the
proof completely, we highlight the differences with the “no revote” case for these two steps.
Step 1: Reducing the number of honest voters to 1. We show that if BPRIVR(1, n − 1)
holds, then so does BPRIV(p, n− p). The proof for this step has the same structure as the one for
Proposition 2. The only difference, essentially, is that instead of each honest voter only submitting
one ballot, which we have to simulate for a dishonest voter, they may submit any number of ballots.
Thanks to the actions sess(cj , d) added to the trace, we know however which voter each ballot
belongs to. Using this information, we can simulate the honest ballots, just as in the previous
proof. As in the “no revote” proof, we define intermediate processes Pi for i ∈ {0, . . . , p}), and we
assume by contradiction that there exists i0 such that Pi0 6≈t Pi0+1. We consider a minimal trace
tr witnessing Pi 6≈t Pi+1, with associated frames φL, φR. Its shape is slightly different from the
one in the previous proof, because of the sess(cj , d) actions added whenever voter j is replicated
for a new session. However the ideas are the same.

Step 2: Reducing the number of dishonest voters to k. Again, the shape of the witness of
non-equivalence that we consider is a bit different from the one used in Proposition 3 as we now
have sess(cj , d) actions that will occur. Nevertheless the reasoning remains the same. We only focus
on the case where tr contains actions from phase 3 (actually only one), and we distinguish 3 cases:

• If, during phase 2, some actions (e.g. sess(ci, d), in(d,R), out(d,w)) occur on channel ci (with
i > 0) but not the corresponding append(d) actions, then we can consider tr′ = tr{w 7→ R}
where tr is equal to tr without these actions, and we can show that tr′ is a witness of
non-equivalence obtaining a contradiction regarding the minimality of tr.
• Now, in case phase 1 contains an action of the form out(ci,wi) with i > 0, whereas there is
no sess(ci, d) in phase 2, then we can consider the trace tr′ which is equal to tr without this
output out(ci,wi), and where the occurrences of wi are replaced with 〈cr ′i,Pub(cr ′i, u′i)〉 for
fresh public constants cr ′i and u′i. As before, we conclude that tr′ is a smaller witness.
• We now consider the case of a trace tr composed of a phase 1 (only voters who outputs a
ballot participate to this phase 1), then a phase 2, and then the output of the result during
phase 3. We have φL 6∼ φR where φL and φR are the two resulting frames, and in fact, relying
on Lemma 1, we have wtallφL 6=E wtallφR. Moreover, we know that:

wtallφL = count(policy(extract(BBL))) and wtallφR = count(policy(extract(BBR)))

where BBL (resp. BBR) is the bulletin board (i.e. the content of the memory cell mbb) resulting
from the trace tr on the left (resp. on the right).
If at most k distinct voters cast their vote (action append), then we know that only these
dishonest voters have output their credential during the initialisation phase, and thus this
witness is also a witness of

ElectionRevoteL
1,k( #„v0,

#„v1, . . . ,
#„vk) 6≈t ElectionRevoteR

1,k( #„v0,
#„v1, . . . ,

#„vk).



Moreover, this witness satisfies our requirements, which concludes the proof for this case.
Otherwise, we know that n′ votes with n′ > k have been cast (possibly by the same voter),
i.e. that BBL = [bL

1, . . . , b
L
n′ ] and BBR = [bR

1 , . . . , b
R
n′ ]. Moreover, we know that for each pair

of ballots (bL
j , b

R
j ), there exists id, cr , vL, and vR such that: extract(bL

j ) = (id, cr , vL) and
extract(bR

j ) = (id, cr , vR). In case a voter cast more than one ballot, then we know that only
one has been taken into account due to the revote policy, and thus there is i0 such that bL

i0
and bR

i0 do not influence the result (since it has been removed by the revote policy). Therefore,
we can remove the corresponding append(d) action, and we obtain a smaller trace tr′ leading
to the exact same frames, and same result.
Otherwise, each voter has voted only once, but n′ > k. Therefore the policy will consider
all ballots to compute the result. Thanks to our k-bounded hypothesis, we know that there
exists k′ 6 k, and 0 6 i1 < . . . < ik′ 6 n such that

count(extract([bL
i1 , . . . , b

L
ik′ ])) 6= count(extract([bR

i1 , . . . , b
R
ik′ ]))

Note that, since each voter only votes once, this implies that

count(policy(extract([bL
i1 , . . . , b

L
ik′ ]))) 6= count(policy(extract([bR

i1 , . . . , b
R
ik′ ]))).

We now consider tr′ which is tr without the actions append(d) corresponding to all the ballots
that have been removed. Note that, if we want to remove the ith0 ballot from the bulletin
board, this corresponds to removing the ith0 append actions from the trace tr. The resulting
trace tr′ is smaller than tr, and leads to the exact same frames, except for their last element
corresponding to the output of the result. We have ensured a difference is maintained between
the two sides, and thus tr′ is still a witness of non-equivalence, which concludes the proof.

5.3. Discussion

Even after applying our reduction result, we may note that replication operators are still there,
and thus establishing such an equivalence property (even when p = 1, and k = 1) is not trivial.
Traces of unbounded length still must be considered. However, as we are able to establish that, in
a minimal attack trace, at most k ballots reached the ballot box (each by a different voter), we can
easily remove the replication operator in front of a dishonest voter. This reasoning does not apply
for the honest voter, as the output she performed may be useful to mount an attack (contrary
to the output of a dishonest voter who outputs a term known by the attacker). This has been
overlooked in the reduction result presented in [6]. The security analysis of Helios with revote has
been done without considering this replication operator, leading to erroneous security analysis.

6. Extension to the case of a dishonest ballot box

We now consider the case where the ballot box is no longer trusted. As in the previous section,
we first adapt the BPRIV definition to this setting before stating and proving our reduction result.



6.1. Symbolic BPRIV with a dishonest ballot box

The symbolic definition we propose in Section 3.2, based on the original game-based formulation
of [11], considers a setting where the ballot box is trusted. Indeed, it does not give the attacker
complete control over the contents of the ballot box: the attacker cannot arbitrarily write to the
ballot box, but rather can only see and block honest ballots, and cast ballots in the name of
dishonest voters only.
In [12], an extension of BPRIV that features a fully dishonest ballot box is introduced: the

attacker can arbitrarily choose the content of the ballot box. This creates additional difficulties
compared to the honest ballot box case. In BPRIV, on the left-hand side, the attacker is shown the
“real” ballots, i.e. the ones that will be tallied. On the right-hand side, he sees a “fake” ballot for
each honest voter, while using the corresponding “real” ballot when tallying. Adapting naïvely
this behaviour to the dishonest ballot box setting produces an unsatisfiable definition. Indeed,
if the attacker can modify arbitrarily the “fake” ballots he received before sending them to be
tallied, simply using (on the right-hand side) the unmodified “real” ballots to compute the election
result would let him trivially distinguish the two sides. Instead, [12] proposes to observe how the
attacker modified the “fake” ballots, and to apply the same modifications to the “real” ballots
before tallying. This leads [12] to an extension of BPRIV, in the form of a cryptographic game,
that relies on a so-called recovery algorithm, which performs the operation of finding out what
modifications the attacker did on the “fake” ballots.
We propose here an adaptation of our symbolic BPRIV definition, that incorporates this idea.

To simplify the presentation, we restrict ourselves to the case where voters do not revote.

Voter processes. We update the HVoterL and HVoterR processes as follows.

HVoterL(c, id, cr , pcr , pk) =
in(c, z).
let (v0, v1) = (proj21(z), proj22(z)) in
if v0, v1 ∈ Votes then

new r0. new r1.
let b0 = Vote(pk, id, cr , v0, r0) in
let b1 = Vote(pk, id, cr , v1, r1) in
if Valid(id, pcr , b0, pk) = true

then append(c, 〈id,⊥,⊥〉3,mref
bb ).

out(c, b0)
else out(c, errinvalid)

else out(c, errvote)

HVoterR(c, id, cr , pcr , pk) =
in(c, z).
let (v0, v1) = (proj21(z), proj22(z)) in
if v0, v1 ∈ Votes then

new r0. new r1.
let b0 = Vote(pk, id, cr , v0, r0) in
let b1 = Vote(pk, id, cr , v1, r1) in
if Valid(id, pcr , b1, pk) = true

then append(c, 〈id, b0, b1〉3,mref
bb ).

out(c, b1)
else out(c, errinvalid)

else out(c, errvote)

They are very similar to the honest ballot box case, except that the mbb list, which was used to
store the list of “real” ballots to be tallied, is replaced with a list mref

bb , that stores no information
on the left-hand side, and the correspondence between “real” and “fake” ballots on the right-hand
side. Note that ballots are added to mref

bb before being publicly output: indeed, we wish mref
bb to

store the list of all generated ballots, even ones the attacker may block later by choosing not to
add them to the ballot box he will compute.



Since we give the attacker complete control over the ballot box, there is no longer need for a
DVoter process to cast ballots in the name of dishonest voters.
Validity check. The ballot box to be tallied will be input directly from the attacker. Since the
attacker has direct write access to the ballot box, we first check he has not added invalid ballots to
it, and that only one ballot has been submitted per voter (as we exclude revote here). To do so, we
will use the Valid(id, pcr , b, pk) recipe. To make the processes more legible, we ask that the attacker
provides for each ballot the identity of the voter allegedly casting it. This information is public, so
asking that does not restrict the attacker. We thus consider a computation CValid(bb, creds, pk), that
takes as parameters a list bb of pairs (id, b) of an identity and a ballot, a list creds of pairs (id, pcr)
of all identities and public credentials, and the public election key pk. The computation CValid
iterates through list bb, and for each element (id, b) of bb (an element not of that form causes it to
fail), goes through creds to:

i) check that id is indeed the identity of an actual voter,
ii) retrieve the associated pcr ,
iii) check that Valid(id, pcr , b, pk) = true.

In addition, for each (id, b) in bb, it checks that no other (id, b′) (with the same id) is present
in bb. We do not extensively write the process CValid here – we have already shown earlier how all
the operations it performs (iteration on lists, comparisons) can be implemented as computation
processes.
Recovery. Before actually performing the tally, the recovery operation must be performed on the
right-hand side. Depending on the way this recovery is done, the resulting definition expresses
stronger or weaker guarantees. For this reason, the computational BPRIVD notion from [12] is
defined parametrically w.r.t. the recovery algorithm.
In order to keep our symbolic definition similarly generic, we simply assume a computation

CRec(bb, bbref). It takes as parameter a list bb of pairs 〈id, b〉 of identities and ballots (to be
instantiated with the list produced by the attacker), and a list bbref of tuples 〈id, b0, b1〉3 (where
b0, b1 are ballots or ⊥), and computes the list bbtal to be tallied. The recovery and tallying will
then be performed in the following process:

TallyRecover(c, sk) = in(c, bb).
if CValid(bb, pk(sk)) = true then

read mref
bb as bbref .

let bbtal = CRec(bb, bbref) in
let res = CTally(bbtal, sk) in

out(cr, res)
else out(c, errvote).

Example 11. A typical recovery algorithm consists in going through the list submitted by the
attacker, and, for each ballot, checking if it is equal to a “fake” ballot generated by an honest voter.
If so, the ballot is replaced with the corresponding “real” ballot for that voter, otherwise it is left



unchanged. That algorithm, as discussed in [12], leads to a property expressing that the attacker
cannot modify honest ballots, but only choose to include them or to remove them – essentially, the
ballots must be non-malleable.
We can encode it as the following recovery computation C0

Rec(bb, bbref)2.

C0
Rec(bb, bbref) =

new c.

(
out(c, 〈bb, nil〉)

| in(c, 〈nil, bbtal〉). out(cb, rev(bbtal))
| ! in(c, 〈〈id, b〉3 :: l, bbtal〉).

new c′.
(

out(c′, bbref).
| in(c′, nil). out(c, 〈l, b :: bbtal〉)
| ! in(c′, 〈id ′, b0, b1〉3 :: ll).

if b1 = b ∧ 〈b0, b1〉 6= 〈⊥,⊥〉 then out(c, 〈l, b0 :: bbtal〉)

else out(c′, ll)
))

As another example, we could encode a variant of that algorithm, useful e.g. in the case of the
original Helios protocol, where instead of comparing the entire ballot b to ballots in bbref , only the
ciphertext proj2(b) is compared. (Recall that in our model of Helios, ballots are (id, ciphertext) –
see Example 7). This would express a weaker property overall, as discussed in [12]: the ciphertexts
are non-malleable, but the identity included in the ballot is – which makes for a very weak notion
of privacy, but accurately characterises the level of security provided by the unpatched Helios.

Assumptions on the recovery computation. Verification tools tend to reason more easily on
processes with a similar structure: for this reason, we include the recovery computation on both
sides of the equivalence. On the left-hand side, bbref will only contain 〈id,⊥,⊥〉3 elements, and the
recovery should not change the provided ballot box. Hence, we require that ⊥ values are ignored:
CRec(bb, bbref) and CRec(bb, bb′ref) should return the same result if bbref and bb′ref are equal up to
〈id,⊥,⊥〉3 elements, and CRec(bb, nil) must return bb.

Moreover, we will need for our reduction result to assume that CRec has the following property,
which we call partial recovery. Consider a list bb of terms, and a list

bbref = [(id1, b
0
1, b

1
1); . . . ; (idn, b0

n, b
1
n)]

containing n honestly generated ballots for distinct voters id i (i.e., computed by the Vote recipe,
with fresh randoms each time). Then we assume
• for any permutation bb′ref of bbref , CRec(bb, bb′ref) = CRec(bb, bbref);
• for any partition bbref = bbref1@bbref2, CRec(bb, bbref) = CRec(CRec(bb, bbref1), bbref2).

2To keep the order of the list unchanged, which is required later on, we write C0
Rec using a rev computation that

reverses a list, which is straightforward to construct.



Intuitively, that property means that the recovery operation does not depend on the order in which
ballots are cast, and can be computed piecewise on a partition of the ballots.

In addition, we assume that CRec is computable by recipes, in the sense that for any integers l1,
l2, there exists a recipe Rl1,l2 with only two variables xbb, xref , such that for all bb of length l1 and
bbref of length l2, the result returned by the computation CRec(bb, bbref) is equal to Rl1,l2 [xbb 7→
bb, xref 7→ bbref ]. The recipe Rl1,l2 may of course depend on the length of the lists – typically, if
CRec iterates through the list bb, it will likely use hd(tln(xbb)) to access the n-th

Finally, we add another, more restrictive assumption on the recovery computation.
• CRec preserves the length of the list of ballots it is given: for all bb, bbref , CRec(bb, bbref) has
the same length as bb;
• CRec is stable by sub-list: for any bb, bbref , any sequence s of distinct integers in
{1, . . . , length(bb)}, if we denote “·|s” the operation of keeping in a list only the elements at
the positions indicated by the indices in s, then CRec(bb|s, bbref) = CRec(bb, bbref)|s.

These assumptions, up to the last one, do not seem overly restrictive, and hold for all recovery
algorithms considered in [12]. The final assumption on the other hand is much more restrictive: it
typically prevents the recovery computation from adding back to the ballot box some ballots that
may have been removed by the attacker. [12] makes use of such recovery when modelling variants
of the property that express additional verifiability guarantees – basically, by having the recovery
add all ballots from the voters who check their vote. We forbid such recovery computations here,
meaning that our reduction result does not hold when considering verifiability guarantees. These
typically require that a subset of honest voters perform verifications, and get additional assurance
that their vote is counted. It is not particularly surprising that these guarantees cannot be captured
by only one honest voter.

Example 12. The computation C0
Rec(bb, bbref) given in Example 11 satisfies these assumptions.

That is clear from its construction for most of them: the partial recovery, ignoring ⊥ values,
length preservation and stability by sublists. The condition that it is computable by recipes is less
obvious. In practical examples, such as this one, it is convenient, in order to establish that property,
to use an equational theory that includes the term-level if-then-else ite equation introduced in
section 2.1. Indeed, with that construction, it becomes quite clear how to construct a (very large)
recipe that compares each element of bb with each element of bbref (for fixed-size lists), and keeps
the appropriate ballots. Note that, when the processes we consider do not rely on the term-level
ite equation (but only the recipes), adding it does not actually give more distinguishing power to
the attacker. Indeed, the attacker could only gain power by using it to produce a recipe that takes
different branches on either side, but in that case, only considering the condition of the construction
would already produce a boolean that distinguishes the two sides.

BPRIVD against a dishonest ballot box. Overall, the BPRIVD property against a dishonest ballot
box is as follows.



Definition 9. A voting scheme is BPRIVD for p honest voters and n− p dishonest voters, written
BPRIVD(p, n− p), if ElectionDL

p,n−p( #„v1, . . . ,
#„vn) ≈t ElectionDR

p,n−p( #„v1, . . . ,
#„vn) where

ElectionDX
p,n−p( #„v1, . . . ,

#„vn) = new sk. mref
bb := nil. out(ch, pk(sk)).(

phase 1. out(c1, pcr1). phase 2. HVoterX( #„v1, pk(sk))
| . . .
| phase 1. out(cp, pcrp). phase 2. HVoterX( #„vp, pk(sk))
| phase 1. out(cp+1, 〈crp+1, pcrp+1〉)
| . . .
| phase 1. out(cn, 〈crn, pcrn〉)
| phase 3. TallyRecover(ch, sk)

)

with ch ∈ Chpub, X ∈ {L,R}.

6.2. Reduction result with dishonest ballot box

We are now able to state our reduction result when considering a dishonest ballot box.

Theorem 3. Let V be a voting scheme whose associated counting function is k-bounded for
some k > 1, and p, n be two integers such that 1 6 p 6 n. If V does not satisfy BPRIVD(p, n− p),
then V does not satisfy BPRIVD(1, k). Moreover, in that case there exists a witness of this attack
where no more than k ballots are present in the ballot box computed by the attacker (each from a
different voter).

The proof of this result follows the same steps as the one for the honest ballot box, with the
same two main reductions. Note first that the election processes we defined for the dishonest ballot
box case are still action-deterministic. In fact, Proposition 1 still holds for these new election
processes. Rather than re-doing the entire reduction proof, we detail here only the differences with
the honest ballot box case.

Step 1: Reducing the number of honest voters to 1. We first show that, assuming
BPRIVD(1, n− 1) holds, then BPRIVD(p, n− p) also does. The main idea for this proof is similar
to the one for Proposition 2: we define hybrid election processes Pi, where the first i honest
voters behave like HVoterR, while the other p − i behave like HVoterL, going gradually from
ElectionDL

p,n−p to ElectionDR
p,n−p as i increases. Formally, fixing n distinct voters #„v1, . . . ,

#„vn, with



#„vi = (ci, id i, cr i, pcr i), pcr i = Pub(cr i, ui) for all i, and p ∈ {1, . . . , n}, we define:

Pi = new sk. mref
bb := nil. out(ch, pk(sk)).(

phase 1.out(c1, pcr1). phase 2. HVoterR( #„v1, pk(sk))
| . . .
| phase 1.out(ci, pcr i). phase 2. HVoterR( #„vi, pk(sk))
| phase 1.out(ci+1, pcr i+1). phase 2. HVoterL( #     „vi+1, pk(sk))
| . . .
| phase 1.out(cp, pcrp). phase 2. HVoterL( #„vp, pk(sk))
| phase 1.out(cp+1, 〈crp+1, pcrp+1〉)
| . . .
| phase 1.out(cn, 〈crn, pcrn〉)
| phase 3. TallyRecover(ch, sk)

)
We then show that for all i ∈ {0, . . . , p− 1}, we have that Pi ≈t Pi+1. Since the two extreme

processes P0, Pp are in fact ElectionDL
p,n−p and ElectionDR

p,n−p, this will prove by transitivity that
BPRIVD(p, n−p) holds. Let i ∈ {0, . . . , p−1}, andQX = ElectionDX

1,n−1( #     „vi+1,
#„v1, . . . ,

#„vi,
#     „vi+2, . . . ,

#„vn)
for X = L,R. By assumption, BPRIVD(1, n−1) holds, and thus QL ≈t QR. To prove that Pi ≈t Pi+1,
we will show that from a (minimal) witness tr of non-equivalence of these two processes, we can
construct a trace tr showing the non-equivalence of QL and QR. The construction of tr is quite
similar to the one in the proof of Proposition 2, with some added difficulties. In the honest case, we
had to show that the attacker can use dishonest voters to simulate the behaviour of the honest ones,
and cast the appropriate ballots to obtain the same election result in QX as in Pi, Pi+1. In the case
of the dishonest ballot box, this part of the proof is easier: the attacker can reconstruct the ballots
from honest voters, except #     „vi+1, in the same way as in the honest case, and simply use these in the
recipe that constructs the final ballot box bb. The difficulty comes next: in ElectionDX(1, n− 1),
for all these simulated honest voters, no binding will be added to mref

bb . Thus, the recovered ballot
box bbtal, obtained after the recovery computation, will differ from the one obtained in Pi. To avoid
this issue, the attacker needs to apply part of the recovery computation himself before submitting
the ballot box.

From Proposition 1, tr is Σerr-free, is executable in Pi, Pi+1, and produces frames φL, φR such
that φL 6∼ φR. From the form of the processes, we may w.l.o.g. assume that tr is (a prefix of)

out(ch,w0).phase 1.out(ci1 ,wi1). . . . .out(cip ,wip).phase 2.trcast.phase 3.in(ch,Rbb). out(cres,wtall)

where trcast only contains at most one input (recipe Ri) then one output (frame variable w′i) on
each channel ci, and no operation on other channels.
We can define for each j ∈ {1, . . . , p} with j 6= i+ 1 recipes B0

j , B1
j , that compute the ballots

b0, and b1 produced by the honest voter #„vj . We omit the details of that construction, as they are
similar to the honest ballot box case. Note that Lemma 4, regarding randomness independence,
extends to the CRec computation, and allows us to rename all private names with fresh public
names, as in the previous proof – we will omit the details of that renaming from now on, for better
legibility.



Just as in the previous proof, we let tr be the trace containing the same actions as tr, except
that in trcast, all inputs on cj with j 6= i+ 1 are removed, and the recipe Rbb used by the attacker
to compute the ballot box for the input in phase 3 is replaced with a new recipe Rbb which we will
define shortly. Note, first, that regardless of how Rbb is defined, tr is executable in QL, QR up to
the input in phase 3, and produces at that stage frames φ′L, φ

′
R.

We first let R′bb = Rbb{w′j 7→ B1
j }16j6i{w′j 7→ B0

k}i+16j6p. Intuitively, R′bb represents the same
computation as Rbb, except that all ballots produced by the honest voters #„vj , with j 6= i+ 1, are
replaced with the appropriate recipe (recall that these voters vote the same way in Pi, Pi+1). Just
as in the honest case proof, it can be shown that the recipes B0

j , B1
j produce the expected ballots

when applied to both φ′L and φ′R, and thus R′bb, applied to these frames, produces the same ballot
boxes bbL, bbR that Rbb computes on φL, φR.
Our goal is to choose Rbb in such a way that the ballot boxes bbL, bbR it produces on φ′L, φ

′
R will

lead, when given to the TallyRecover process, to the same result being output in QX as the one for
bbL, bbR in Pi, Pi+1. The TallyRecover part in these processes differs only in the CRec computation.
Indeed, in Pi, Pi+1, that computation operates on a list bbref,L, bbref,R (read from mref

bb ), containing
all honest ballots from #„v1, . . . ,

#„vp. In QL (resp. QR), the list bbref,L (resp. bbref,R) only contains
the honest ballot for voter #     „vi+1. Let bb′ref be the list obtained from bbref,L, bbref,R by removing the
ballot for #     „vi+1. Note that by construction of Pi, Pi+1, that list only contains ballots from voters
that behave the same in both processes, and is thus the same starting from bbref,L or bbref,R. By
the partial recovery assumption, the recovery computation can be performed first on bbref,X, (for
X = L,R) and then on bb′ref :

CRec(bbX, bbref,X) = CRec(CRec(bbX, bb′ref), bbref,X).

Thus, our goal is achieved if we find a Rbb that produces the list CRec(bbX, bb′ref) when applied to φX.
By assumption, CRec is computable by recipes, and thus there exists a recipe R with two variables
xbb, xref such that CRec(bbX, bb′ref) = R[xbb 7→ bbX, xref 7→ bb′ref ] for X = L,R. We have already
constructed a recipe R′bb producing bbX from φX. Using the recipes B0

j , B1
j , and variable w′i+1, we can

easily construct a recipe R2 that produces bb′ref from φX. Choosing Rbb = R[xbb 7→ R′bb, xref 7→ R2]
then achieves our goal. The trace tr obtained using Rbb as input in phase 3 is executable in QL,
QR, and produces frames φL, φR. Moreover it leads to the same result being output in φL (resp.
φR) as in φL (resp. φR).

The end of the proof is then just as in the honest ballot box case: we show that φL and φR can
be reconstructed from φL, φR using the same recipe, and thus deduce that since φL 6∼ φR, we have
φL 6∼ φR, meaning that tr is indeed a witness of non-equivalence of QL, QR.

Step 2: Reducing the number of dishonest voters to k. The second step of the proof is to
show that for a k-bounded counting function, if BPRIVD(1, n) does not hold, then neither does
BPRIVD(1, k). We in fact show that there is then a witness of an attack against BPRIVD(1, k)
where the ballot box submitted for tallying by the attacker contains at most k ballots.
The proof is very similar to the one for Proposition 3, in the case of an honest ballot box.



Consider a minimal-length attack trace tr on BPRIVD(1, n), i.e. one that distinguishes
ElectionDL

1,n( #„v0, . . . ,
#„vn) and ElectionDR

1,n( #„v0, . . . ,
#„vn) for some distinct voters #„v0, . . . ,

#„vn. By Propo-
sition 1, we know that the sequence of actions tr is Σerr-free, is executable (and reaches the same
phase) in both elections processes, where it produces respectively frames φL, φR such that φL 6∼ φR.
Moreover, from the form of the processes, we may assume w.l.o.g. that tr is a prefix of

out(ch,w0).phase 1.out(ci1 ,wi1). . . . .out(cip ,wip).phase 2.trcast.phase 3.in(ch,Rbb). out(cres,wtall)

where trcast only contains at most one input (recipe R0), then one append, then one output (frame
variable w′0) on channel c0, and no operation on other channels.

We will now show that tr is in fact also a witness that ElectionDL
1,k( #„v0, . . . ,

#„vk) 6≈t
ElectionDR

1,k( #„v0, . . . ,
#„vk), which will conclude the proof.

As in the case of the honest ballot box, we can distinguish three cases, depending on which
point of the execution tr reaches.

Case 1: tr only contains actions in phases 0 and 1. That is not possible: all messages output in
these phases are the same on both sides, and thus tr could not be a witness of non-equivalence.

Case 2: tr contains actions in phases 0, 1, 2, and potentially the input in phase 3, but not
the output in phase 3. In other words, it reaches the casting phase, and the attacker maybe
submits a ballot box, but the execution stops before the result is received. We can immediately
discard the case where the input in phase 3 is performed: if that were so, then stopping the
execution just before that input would still be an attack witness, since the input itself does
not gain the attacker any new information. Hence, tr would not be minimal. In addition, trcast
necessarily contains an output on c0: otherwise, simply removing it and stopping tr at the end
of phase 1 would yield a shorter attack trace, as inputs and appends do not modify the frame.
Thus, trcast = in(c0, R0). append(c0). out(c0,w′0). We then conclude by the same argument as in the
honest ballot box case. In summary, any dishonest voters outputting their credentials in phase 1 are
not needed to construct the frame, as the attacker could obtain the same frame (up to renaming)
by using a credential he generated himself. Removing them would produce a shorter attack trace,
hence by minimality there are none in tr. Thus the attack only involves one honest voter, and tr is
already an attack trace witnessing ElectionDL

1,k( #„v0, . . . ,
#„vk) 6≈t ElectionDR

1,k( #„v0, . . . ,
#„vk).

Case 3: tr contains all actions from phase 3, i.e. reaches the final output of the election result. Let
us call Rbb the recipe provided by the attacker in phase 3, and bbL = RbbφL, bbR = RbbφR the ballot
boxes submitted on the left and right side. Let also bbref,L, bbref,R be the lists recording the (only)
honest ballot on the left and on the right. With these notations, the election results output on each
side are wtallφL = count(extract(CRec(bbL, bbref,L)) and wtallφR = count(extract(CRec(bbR, bbref,R))).
By construction of the election process, both ballot boxes pass the validity checks of CValid. Thus,

bbL and bbR are two lists of pairs 〈id, b〉, where id is one of the voters’ identities, and b a valid
ballot for the credential output for id in phase 1. Moreover, the CValid computation ensures that
all identities in each list are distinct.
By the same reasoning as in the honest ballot box case, the static non-equivalence of φL

and φR necessarily comes from the result of the election: count(extract(CRec(bbL, bbref,L)) 6=
count(extract(CRec(bbR, bbref,R))).



The two lists bbL, bbR have the same length – otherwise, checking their length instead of submitting
them as input would let the attacker obtain a smaller non-equivalence witness. Thus, by assumption
on CRec, so do CRec(bbL, bbref,L) and CRec(bbR, bbref,R). Thus, by the k-boundedness assumption on
count, there exists a sequence s of k′ 6 k indices, such that count(extract(CRec(bbL, bbref,L)|s) 6=
count(extract(CRec(bbR, bbref,R)|s)) (recall that “l|s” denotes the list obtained by keeping only the
elements of indices in s of a list l).
Then, by assumption on CRec, we get that keeping only the ballots pointed by s in the ballot

box submitted by the attacker leads to a different result: count(extract(CRec(bbL|s, bbref,L)) 6=
count(extract(CRec(bbR|s, bbref,R))). Let R′bb denote the recipe that constructs the list of elements
of Rbb pointed by indices in s.
These indices point to k′ elements of bbL, bbR, each of the form (id, b), where the ids are

distinct voter identities (in #„v0, . . . ,
#„vn). Moreover, for each index i, the ith elements of bbL and bbR

necessarily contain the same id – otherwise, again, as the identities are public values, the attacker
could build a shorter attack witness by simply looking at that element. Consequently, the ballots
in R′bbφL and R′bbφR are recorded for the same k′ distinct voter identities.
Consider the trace tr, obtained from tr by keeping in phase 1 only the actions related to those k′

voters, and replacing Rbb with R′bb – using public names instead of wi variables for removed voters,
if they were used in that recipe.
Consider also the ElectionDL

1,k and ElectionDR
1,k processes featuring the k′ voters we kept, plus #„v0

(if that voter was not already one of the k′), and k−k′ additional dishonest voters (that are unused
in tr). tr can be executed in those processes. That is clear up to the input in phase 3. That input is
instantiated with bbL|s on the left, and bbR|s on the right. The validity test is then performed on
that ballot box, and succeeds – indeed, it succeeded on bbL and bbR in tr, and by construction the
removal of some of the dishonest voters cannot make it fail. The final result election output when
executed tr is count(extract(CRec(bbL|s, bbref,L)) on the left, and count(extract(CRec(bbR|s, bbref,R))
on the right – two different public values. tr is therefore an attack witness on BPRIVD(1, k), in
which the submitted ballot box has length k′ 6 k, which concludes the proof.

7. Applications and case studies

To illustrate the generality of our result, and to showcase how useful it can be in practice, we
apply it to several well-known voting protocols from the literature considering different counting
functions. In this section, we first present the counting functions, as well as the e-voting protocols
that we consider for our analysis. Then, we discuss the results we obtained relying on the Proverif
tool. Note that the analysis performed using Proverif is only render possible thanks to our reduction
results that allows one to obtain a bound on the number of voters and on the number of ballots
that reach the ballot box.

7.1. Counting functions under study

We apply our results on several case studies considering different counting functions. We have
already introduced some classical counting functions in Section 4.1, namely multiset, sum, and
majority, and we have shown that they are 1-bounded. We now add an example of a more involved
counting functions: Single Transferable Vote (STV), used e.g. in the Australian legislative elections,
for which we establish that it is 5-bounded when considering 3 candidates for 1 seat.



Single Transferable Vote (STV) is a system where each voter casts a single ballot containing
a total ordering of all candidates. A vote goes to the voter’s first choice. If that choice is later
eliminated, instead of being thrown away, the vote is transferred to her second choice, and so on.
In each round, the least popular candidate is eliminated. His votes are transferred based on voters’
subsequent choices. The process is repeated until one candidate remains, who is declared the
winner. We assume a total order ≺ on candidates is picked beforehand, and is used to break ties.
The STV counting function outputs a term representing the winning candidate; it is parametrised
by the set of candidates and the order ≺. Let Count3

STV the STV function for candidates {a, b, c}
with a ≺ b ≺ c. Votes are 3-tuples: (c1; c2; c3) where {c1, c2, c3} = {a, b, c} and ci denotes the ith
choice.

Example 13. Let v = (a; b; c) and v′ = (a; c; b). We have v 6= v′, however Count3
STV([v]) =

Count3
STV([v′]) = a. Thus, the previous reasoning to establish 1-boundedness does not apply here.

Lemma 5. Count3
STV is 5-bounded.

Proof. We assume that a ≺ b ≺ c. Let ` = [v1, . . . , vn] and `′ = [v′1, . . . , v′n] be two lists of Votes
such that Count3

STV(`) 6= Count3
STV(`′). For each 1 6 i 6 n, we denote (ci,1; ci,2; ci,3) the vote vi

and (c′i,1; c′i,2; c′i,3) the vote v′i.
Case 1: There exists 1 6 i0 6 n such that vi0 = (ci0,1; ci0,2; ci0,3) and v′i0 = (c′i0,1; c′i0,2; c′i0,3) with
ci0,1 6= c′i0,1. In such a case, we keep this vote, and we have

ci0,1 = Count3
STV([vi0 ]) 6= Count3

STV([v′i0 ]) = c′i0,1.

Case 2: Otherwise, for 1 6 i 6 n, we have ci,1 = c′i,1. Thus, at the first round, the eliminated
candidate is the same on both sides. Call it c0. If c0 does not occur as the first choice on a vote,
i.e. c0 6= ci,1 for all i (and thus c0 6= c′i,1, as ci,1 = c′i,1), then the eliminated candidate at the second
round will be the same on both sides, and the winner as well, contradicting our hypothesis.
Hence, c0 occurs as the first choice in some votes. Let i0, . . . , ik denote the indices of all such

votes. We have cij ,1 = c′ij ,1 = c0 for any j ∈ {0, . . . , k}. If the second choice is the same in all these
votes, i.e. for j ∈ {0, . . . , k}, we have cij ,2 = c′ij ,2, then the eliminated candidate at the second
round, and thus the winner, would be the same on both sides, which contradicts our hypothesis.
Therefore, there exists j ∈ {i0, . . . , ik} such that vj = (c0, c1, c2), v′j = (c0, c2, c1) where
{c0, c1, c2} = {a, b, c}. We keep vj , but we need more, as Count3

STV([vj ]) = Count3
STV([v′j ]) = c0.

Since c0 is eliminated at the first round:

(1) Either c0 = a and there exist j1, j2 such that cj1,1 = c′j1,1 = b, and cj2,1 = c′j2,1 = c. Keeping
these two votes in addition to vj/v′j , we get Count3

STV([vj , vj1 , vj2 ]) 6= Count3
STV([v′j , v′j1 , v

′
j2 ]).

(2) Or c0 = b and there exist j1, j2, j3 (all distinct) such that cj1,1 = c′j1,1 = a, cj2,1 =
c′j2,1 = a, and cj3,1 = c′j3,1 = c. Keeping these three votes in addition to vj/v′j , we have
Count3

STV([vj , vj1 , vj2 , vj3 ]) 6= Count3
STV([v′j , v′j1 , v

′
j2 , v

′
j3 ]).

(3) Or c0 = c and there exist distinct j1, j2, j3, j4 such that cj1,1 = c′j1,1 = a, cj2,1 = c′j2,1 = a,
cj3,1 = c′j3,1 = b, and cj4,1 = c′j4,1 = b. Keeping these four votes in addition to vj/v′j , we get
Count3

STV([vj , vj1 , vj2 , vj3 , vj4 ]) 6= Count3
STV([v′j , v′j1 , v

′
j2 , v

′
j3 , v

′
j4 ]).

We conclude that at most 5 votes are needed to ensure the result will be different. �



In the following, we consider majority, multiset, sum, and STV (restricted to 3 candidates).

7.2. E-voting protocols under study

For our case study, we chose the following protocols: two variants of Helios [1], corresponding to its
original version, subject to the attack discussed earlier, and a fixed version that includes identities
in the ZKP; Belenios [28], and the related BeleniosRF [29] and BeleniosVS [20]; Civitas [30];
and Prêt-à-Voter [31, 32]. Some of the protocols (notably Helios, Belenios) can make use of
homomorphic encryption, so that all encrypted votes can be summed before decryption. In our
case study however, we only consider the mixnet version of these protocols, where ballots are
instead mixed in a random order before decryption. Indeed, even if our reduction results apply in
presence of homomorphic encryption, Proverif does not support the equations needed to define
such a primitive.
Several versions of Helios. We consider several versions of the Helios protocol depending on
whether the identity of the voter is part of the zero-knowledge proof (ZKP) or not [1]. The original
version of Helios is the one without the identity of the voter in the ZKP, which we described in
our running example. Note that this protocol is subject to a replay attack, described in [5], where
the attacker submits, in the name of a dishonest voter, a copy of a honest voter’s ballot, which
lets him break that voter’s privacy. We do indeed find this attack, even with two voters.
This attack can be mitigated in two ways. The first one consists in adding the voter’s identity to

the ZKP, preventing the attacker to replay it in his name. The second one is weeding, i.e. adding a
mechanism allowing the server to remove duplicate ballots. However, this operation is only effective
if we assume that the ballots emitted by honest voters correctly reach the ballot box. Indeed,
the attacker can otherwise simply block the original ballot, and still break the privacy property
without the server being able to detect the copy. In our communication model, we decided not
to make such a strong assumption, and the attacker is thus able to block messages. herefore, in
our framework, weeding is not a solution to prevent the replay attack mentioned above. We do
not study this version of Helios, as the validity test with weeding does not fall in our framework
described in Section 3, since we require that the validity test does not depend on the current
content of the ballot box.
Note that the framework proposed in [6] makes the assumption that the ballots meant to be

counted for each honest voter (typically the last one emitted), which are the ones swapped to
express the privacy property, reach the ballot box. Against that weaker attacker, Helios with
weeding is secure, as long as voters only vote once. It is not, though, if they revote: the replay
could be performed using a previous ballot, which the attacker is allowed to block. Their security
analysis correctly finds Helios with weeding secure when revote is disallowed. However, due to a
misunderstanding of the reduction result, a replication operator is missing in the case of revote,
which leads to the attack being missed in that case.
Several versions of Belenios. The Belenios system [28] builds on Helios and relies on an
additional authority who is in charge of distributing to each voter a key pair. The signature
key is given to each voter, and the list of associated public keys constitutes the list of eligible
voters. Recently, a variant of Belenios, BeleniosRF, designed to ensure receipt-freeness has been
proposed [29]. It is based on a cryptographic primitive called signatures on randomizable ciphertexts.
We also propose an analysis of BeleniosVS that has been designed to achieve both privacy and
verifiability against a dishonest voting server [20].



Table 1
Summary of our results. 3: Proverif proves the property. 7: Proverif finds an attack trace. ? Proverif answers
“cannot be proved”. �: timeout (> 1h). Execution times are on an Intel i7-1068NG7 CPU.

Protocols
Counting Multiset/Maj/Sum Single Transferable Vote

(2 voters/1 ballot) (6 voters/5 ballots)

w
ith

ou
t
re
vo

te

Helios (id in ZKP) 3 6 1s 3 ∼ 24 min
Helios (ZKP without id) 7 6 1s 7 ∼ 27 min
Belenios 3 6 1s 3 ∼ 27 min
BeleniosRF 3 ∼ 3s �

BeleniosVS 3 ∼ 3s �

Civitas 3 6 1s 3 ∼ 39 min
Prêt-à-Voter 3 6 1s �

re
vo
te Helios (id in ZKP) 3 6 1s 3 ∼ 23 min

Helios (ZKP without id) 7 6 1s 7 ∼ 42 min
Belenios 3 6 1s 3 ∼ 23 min

di
sh
on

es
t

ba
llo

t
bo

x Helios (id in ZKP) 3 6 2s - -
Helios (ZKP without id) ? 6 3s - -
Belenios 3 6 9s - -

Civitas [30, 33]. This system relies on anonymous credential to enforce privacy. They consist
of random values encrypted with the public key of the election authority. Comparison between
credentials (e.g. the one used to cast a ballot and those composing the list of legitimate voters) is
done relying on plaintext equivalence tests.

Prêt-à-Voter [34]. The ballot contains a detachable list of candidate names, given in a random
order (usually the left part), and their corresponding encryption in the same order on the right.
Once the voter marked the candidate of his choice, he posts the encrypted part of the ballot (the
right part) on the bulleting board. Then, the design of Prêt-à-Voter is similar to other voting
systems.

7.3. Results

We conduct the analysis for different counting functions, using our result to bound the number
of agents and ballots. We considered majority, multiset, sum, and STV (restricted to 3 candidates).
In fact, in the case of 1-bounded functions, since only one ballot needs to be accepted by the
ballot box, the tallying is trivial, and ends up being the same for different functions (majority,
multiset, etc.). Thus, a single Proverif file is enough to model several counting functions as once.
The encoding for modelling STV (5-bounded for 3 candidates) is more complex, with 6 voters
and 5 ballots. We only model this counting function when considering an honest ballot box (with
or without revote). In presence of a dishonest ballot box, the recovery process for 6 voters and
5 ballots will require several nested conditionals, and we anticipate that Proverif (or rather, the
recent prototype developed to go beyond diff-equivalence, which is required to conclude on this
case) will not be able to obtain results in less than 1 hour (the timeout we consider here).



We modelled the protocols briefly presented in Section 7.2 as processes satisfying our assumptions,
and analysed them using Proverif. We only prove BPRIV itself with Proverif. Strong correctness
only involves terms, and can easily be proved by hand. Strong consistency requires to show that the
tallying process rightly computes the tally, which Proverif is not well-suited to do, as it requires 1)
modelling the tally in the general case, i.e. with no bounds on the lengths of lists, and 2) comparing
it to the abstract definition of the counting function, which Proverif cannot really manipulate.
The property clearly holds though, and could be proved by hand. We considered both the cases
without and with revote, for protocols that support revoting (except Civitas, which in that case
uses rather complex mechanisms that do not fit our setting 3). As mentioned earlier, when revote
is allowed, our result does not get rid of the replication operator. Bounding the number of voters
is still useful in that case, as it simplifies our models. More importantly, bounding the number of
ballots means we can encode the ballot box as a fixed-length list, which is very helpful as Proverif
does not support arbitrary length lists. We also performed case studies considering a dishonest
ballot box. In that case, our Proverif models are more complex, and we rely on a recent extension
of the tool that goes beyond the notion of diff-equivalence [35]. Note that this extension of Proverif
is a prototype, which is currently unable to exhibit attack traces. Therefore, in case the equivalence
does not hold, the result returned is always “cannot be proved”.
In some cases, we made slight adjustments to the protocols, so that they fit our framework.

Detailed explanations on these modelling choices can be found in the files. All model files for our
case study are available at [36]. The results are presented in Table 1.
Overall, as can be seen in the table, our result allows for efficient verification of all protocols

we considered. Thanks to the small bounds we establish, we get even better performance than
previous work [6] in scenarios where that result applies – i.e. the first column, for multiset counting.
In that case, some analyses took several hours/days in [6], due to the higher bounds. Our result is
more general and can handle e.g. STV counting. On most tested protocols, performance remains
acceptable in that case. However Proverif did not terminate on three files after 1h: this is likely
due to the combination of the complex equational theories used by these protocols, and the theory
for STV, which is itself large. As expected, we find the attack on Helios from [5].

8. Conclusion

We have proposed a symbolic version of the BPRIV vote privacy notion, and established reduction
results that help us efficiently verify it on several voting protocols, with different counting functions,
using automated tools. We have shown how to extend it to produce a symbolic vote privacy notion
against an untrusted ballot box in the symbolic model, and proved that our reduction results still
hold in that setting.
As mentioned earlier, a limitation of our definition is the modelling of the correct tallying proofs,

which we abstracted away. In the computational definition, they are handled using simulators. It
remains to be seen whether such techniques can be adapted to the symbolic setting, and how.
Vote privacy is considered a fundamental security property for electronic voting schemes. It is of

course not the only desirable one: in particular, receipt-freeness and coercion-resistance can be
seen as stronger variants of privacy, that require that an attacker should be unable to ascertain

3While Civitas does support revote, it uses rather complex mechanisms in that case to determine which ballot
replaces which, that we chose not to model in our case study.



the voters’ choice, even when they are willing, or coerced, to reveal their vote. Computational
game-based definitions [30] as well as symbolic ones [3] have been proposed for these properties.
They are however written in the same spirit as SWAP. Proposing formalisations in the style of
BPRIV, and establishing similar reduction results to ours for these properties are open questions
for future work.
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