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 9 

In their target article, Torricelli and colleagues present a comprehensive overview of the kinematic 10 

motor invariants consolidated in the literature to date (1). As stated by the authors, “because 11 

kinematic invariants are (by definition) the most stable traits of our movements, they should be also 12 

the most stable information that we are able to perceive and decode during action observation”. This 13 

reasoning leads the authors to propose that those fundamental motor invariants may offer a unified 14 

framework “for the investigation of higher-order phenomena such as interpersonal coordination, 15 

sensorimotor communication, action perception or intention decoding”. Interestingly, the authors 16 

begin their argument about motor cognition by reviewing the celebrated Fitts' law, a robust 17 

mathematical description of the (affine) increase of movement duration with the index of difficulty 18 

(ID) of a task (2). In a Fitts’ task, participants are incentivized to move as fast as possible and to be as 19 

accurate as possible. Arguably, this only represents a small proportion of our daily movements as 20 

humans (or animals) do not always move at their maximal speed for a given accuracy demand. Hence 21 

investigating the underpinnings of social interaction from motor invariants must also involve the 22 

consideration of less constrained behaviors. In our commentary, we will thus focus on the motor 23 

invariants underlying the spontaneous (or natural/self-chosen) speed of movement in goal-directed 24 

behaviors, that is, the vigor of movement. As we shall see, movement vigor is subjected to 25 

mathematical laws that are reminiscent of Fitts’ law, but with a potentially broader impact as far as we 26 

are concerned with the role of the motor system in social interaction. Furthermore, the stable traits 27 

referred to by Torricelli and colleagues are also very relevant to the notion of movement vigor because 28 

it generally exhibits large yet consistent inter-individual variations. These idiosyncrasies can 29 

conceivably drive many of our decisions in a social environment where our own vigor is confronted 30 

with that of others. In this commentary, we will therefore complement the authors’ view by focusing 31 

on an additional set of motor invariants that has been somewhat overlooked until recently. 32 

 33 

A closer examination of Fitts’ law suggests that movement duration must be constant when ID is 34 

constant. This leads to a form of isochrony principle, which has long been considered as another 35 

kinematic motor invariant (3). Viviani and Flash observed that average speed tends to increase with 36 

distance so that the duration of movement remains nearly constant. However, the elegant work of 37 

Young and colleagues showed that isochrony is only observed for goal-directed movements performed 38 

at maximum velocity; there was no isochrony for movements performed at a natural or quick velocity 39 

(4). Therefore, Fitts’ law appears as a limit case that is not representative of everyday movements. For 40 

reaching movements at sub-maximal velocity, not only average speed but also duration increase with 41 

distance. For eye saccades, a similar relationship was described decades ago and is well known as the 42 

main sequence (5). Numerous studies on arm and eye movements have actually reported such a 43 

concomitant increase of velocity and duration with movement amplitude (6–10). This phenomenon 44 

has also been observed when walking different distances (10,11). The speed spontaneously chosen by 45 

an individual when performing a goal-directed action has been subsumed under the term vigor in the 46 

literature (12–14), so that we used the term vigor law to refer to this class of motor invariants that 47 

pertain to self-paced movements (15). The remaining part of our commentary will focus on the 48 

implications of that law and its underpinnings, from action to perception. 49 

 50 

The first question to ask may be about the origin of the vigor law, which is only descriptive as it stands: 51 

why would humans increase both the speed and duration of their movements with distance? Seminal 52 
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works explained the emergence of a preferred speed from movement energetics. For any distance, 53 

there seems to be an optimal speed that minimizes the metabolic energy rate (11,16). However, 54 

departures from an energetic minimum have been observed in several works and additional subjective 55 

factors like comfort and reward seem to play a role (17–19). Recent accounts of movement vigor 56 

hypothesize that it may also be linked to the general tendency of our brain to discount the value of 57 

future reward (14,20). In this vein, Shadmehr (14) proposed a neuro-economic theory of vigor, based 58 

on behavioral studies in psycho-economics showing a subjective devaluation of (monetary) reward 59 

over time (21). This theory, sometimes referred to as the cost of time theory in motor control, states 60 

that the passage of time entails a cost that the brain would seek to balance against effort or inaccuracy. 61 

On the one hand, this theory readily explains why movements cannot be too slow if duration is viewed 62 

as a delay that separates the individual from the achievement of the action’s goal and its associated 63 

reward (whether it be explicit or implicit). On the other hand, movements cannot be too fast for 64 

energetic and accuracy reasons. Interestingly, optimal control models based on this theory predict this 65 

concomitant increase of speed and duration as a function of movement amplitude. Evidence for such 66 

a cognitive cost of time has been reported in several works (22–25). By extension, this theory links 67 

vigor to decision-making processes related to neural circuits of reward (26). Movement vigor has been 68 

shown to depend on the motivation in the task at hand and an increased sensitivity to effort (12,18,27). 69 

Hence vigor may depend on the associated brain circuits, starting with the basal ganglia structures 70 

responsible for dopamine production (12,13,28). It is worth noting that a reduced sensitivity to time 71 

may equally explain an abnormal movement slowness. In sum, this cognitive view of movement vigor 72 

extends the more classical mechanistic views and offers a potential link with the psycho-economical 73 

traits of an individual. In particular, one’s relationship to the passage of time may be a higher-level 74 

characteristic that shapes one’s movement vigor.  75 

 76 

Several studies have investigated this premise and tested if there is a link between movement vigor 77 

and cognitive factors during goal-directed actions. Often, a vigor score was assigned to each participant 78 

in the task (e.g., based on their peak or average velocity). Whether those scores were proper to an 79 

individual and correlated with various personality traits or decision-making variables was assessed. It 80 

turned out that certain individuals were much more vigorous than others in the same motor task, and 81 

a normally-distributed continuum was observed throughout the population (6–8,10). Vigorous 82 

participants were also those having the fastest reaction times (17,29). Whether vigor was a trait-like 83 

(i.e., stable) characteristic of an individual was also analyzed. Berret et al. (6) found that intra-individual 84 

variations of vigor (within/across days) were much smaller than inter-individual variations in a reaching 85 

task. Similar results were obtained by Choi et al. (7) for eye saccades. Other studies have shown large 86 

but consistent inter-individual variations in vigor across different action modalities and effectors 87 

(8,10). Interestingly, vigor did not appear to correlate neither with the biomechanical characteristics 88 

of the individual (e.g., overall size or segment length (10)) nor with other physiological characteristics 89 

(e.g., maximum force (30)). Reppert et al. (8) investigated the hypothesis that inter-individual 90 

variations in vigor could be explained by an idiosyncratic sensitivity to accuracy. In their experimental 91 

settings, however, individuals with high vigor were as accurate as less vigorous individuals. It was 92 

concluded that the vigor of movements rather comes from an individual’s choice to provide the 93 

necessary effort. Using techniques from differential psychology, it was further shown that vigor scores 94 

were correlated with some personality traits (assessed by questionnaires). High boredom proneness 95 

scores were significantly and positively correlated with high vigor scores for reaching (6). Similar 96 

trends, although not significant, were obtained between impulsivity and reach vigor (6), and between 97 

impulsivity and eye saccade vigor (7). Although personality traits accounted only for a small portion of 98 

the total variance of vigor scores, these results were coherent with the hypothetical link between a 99 

subjective time-effort tradeoff and the idiosyncrasy found in movement vigor.  100 

 101 

The above cognitive theory of movement vigor offers a potential window to study social interaction 102 

through the lens of the kinematic invariants that underlie it. As vigor is a key characteristic of any 103 

action, it could also be a key characteristic of social interaction. Indeed, the integration of the vigor law 104 
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at the cognitive level could allow us to judge, anticipate and adapt our speed to that of others, and to 105 

interact appropriately with them in our environment. Many daily decisions we make are based on our 106 

appreciation of others’ movement pace (e.g., choosing to pass someone on the street). Numerous 107 

works have been done on the relationship between action, action perception and motor imagery, 108 

especially since the discovery of the mirror neuron system that links the action that an individual 109 

observes with a motor representation of that same action (31). Since the same neural subsystem is 110 

used to produce and perceive the same action, mentalizing the actions of others helps the observer 111 

understand and judge the behavior or intentions of others (32). In this vein, Rizzolatti and colleagues 112 

(33) formulated the direct-matching hypothesis, which states that an individual observing a movement 113 

compares it to the motor representation they have of it. Thus, the individual’s motor repertoire may 114 

be used to gain insight into the observed action. Accordingly, several of the kinematic motor invariants 115 

reviewed by Torricelli and colleagues, such as the two-thirds power law (34,35) and Fitts’ law (36,37), 116 

also seem at work when judging observed movements and imagining them, thus constituting cognitive 117 

laws. Along the same lines, our recent work investigated whether the vigor law is at work in judging 118 

the quickness or slowness of others’ movements (displayed as a dot on a screen) (15). Another 119 

objective of this same set of experiments was to determine whether the basis of this judgment was 120 

the observer’s own vigor law or a more generic motor representation formed from population 121 

statistics (i.e., average vigor law of the population). The results showed that the speed and duration of 122 

movements perceived as moving at natural speed (i.e., perceived as neither fast nor slow) both 123 

increased with distance, demonstrating that the vigor law applies to perception. The results further 124 

revealed that there was no correlation between the vigor produced and the vigor perceived by the 125 

participants, and that the judgments seemed to be based on a populational rather than an individual 126 

reference. This finding may be interesting to refine the nature of the motor representation possibly 127 

encoded in the mirror system. The vigor law, which is a modernization of the historical isochrony 128 

principle, thus has a close analogue in perception, which might reflect the statistics of the individual's 129 

social environment more than their own vigor. 130 

 131 

In summary, we stressed that the vigor law is another type of kinematic invariant that might be 132 

critically involved in higher-order phenomena such as social interaction and decision-making. This 133 

kinematic invariant has a theoretical ground based on the subjective sensitivity to time and effort, 134 

which readily suggests that it could constitute a cognitive law. Recent evidence confirms that the vigor 135 

law also holds in perception and may serve as a basis for judging whether another person's movement 136 

is abnormally fast or slow, and behaving accordingly.  137 
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