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Abstract—The purpose of this study was to investigate the

nature of the variables and rules underlying the planning of

unrestrained 3D arm reaching. To identify whether the

brain uses kinematic, dynamic and energetic values in an

isolated manner or combines them in a flexible way, we

examined the effects of speed variations upon the chosen

arm trajectories during free arm movements. Within the

optimal control framework, we uncovered which (possibly

composite) optimality criterion underlays at best the

empirical data. Fifteen participants were asked to perform

free-endpoint reaching movements from a specific arm

configuration at slow, normal and fast speeds. Experimen-

tal results revealed that prominent features of observed

motor behaviors were significantly speed-dependent, such

as the chosen reach endpoint and the final arm posture.

Nevertheless, participants exhibited different arm trajecto-

ries and various degrees of speed dependence of their

reaching behavior. These inter-individual differences were

addressed using a numerical inverse optimal control

methodology. Simulation results revealed that a weighted

combination of kinematic, energetic and dynamic cost

functions was required to account for all the critical

features of the participants’ behavior. Furthermore, no

evidence for the existence of a speed-dependent tuning

of these weights was found, thereby suggesting subject-

specific but speed-invariant weightings of kinematic,

energetic and dynamic variables during the motor planning

process of free arm movements. This suggested that the

inter-individual difference of arm trajectories and speed

dependence was not only due to anthropometric singulari-

ties but also to critical differences in the composition of

the subjective cost function. � 2016 IBRO. Published by

Elsevier Ltd. All rights reserved.
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INTRODUCTION

Understanding how the brain controls 3D arm movement

is a long-standing issue in motor neuroscience. The

complexity of the musculoskeletal system is such that

the accurate achievement of athletic tasks but also of

the most basic daily life activity constitutes a challenging

problem. In particular, the anisotropic distribution of

mass, gravity, and interaction torques acting on all

degrees of freedom make the upper-limb dynamics

highly nonlinear but the brain seemingly overcomes

those difficulties effortlessly. Coping with such a

complexity requires efficient control strategies and,

therefore, the central nervous system (CNS) might

internally represent or monitor some critical variables to

implicitly value skilled movements such as baseball

pitching, overarm throwing or just placing a cup of coffee

on a table. What is the exact nature of these variables

and computational rules underlying the selection of one

trajectory among the infinity of possible trajectories, and

whether cells in the motor cortex encode dynamic,

kinematic separately or a combination rule of such

variables during movement planning remain

questionable even though the issue was extensively

investigated in neurophysiological studies (Georgopoulos

et al., 1982; Mussa-Ivaldi, 1988; Kalaska et al., 1989). In

general, tackling this problem is tricky because kinematic

and kinetic quantities are tightly linked by the equations

of motion and many sensorimotor transformations,

through internal models (Kawato et al., 1987; Wolpert

et al., 1995), may occur within the CNS before a goal-

directed movement is eventually triggered. This question

was nonetheless addressed in many behavioral and com-

putational studies, but whether the control of upper-limb

motion relies more upon geometrical properties pertaining

to the position of body segments and joint angles (i.e. kine-

matic variables) or upon mechanical properties pertaining

to the mass distribution and torques (i.e. dynamic vari-

ables) is still a matter of debate (Pagano and Turvey,

1995; Wolpert et al., 1995; Soechting and Flanders,

1998; Darling and Hondzinski, 1999). Isableu et al.

(2009) showed that, during a cyclical upper-limb rotation

task with a flexed arm (‘‘L-shaped”), subjects exhibited

spontaneous changes of rotation axis, switching from a

geometrical one (Shoulder–Elbow axis, SE, a kinematic-

related parameter) to an inertial one (minimum principal

inertia axis, e3, a dynamic-related parameter) when exe-

cuting the task at a larger speed. Hence, this suggested

that the variables represented by the brain to control unre-

strained 3D arm movement might combine both kinematic
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and dynamic parameters and that, importantly, their inter-

play may depend on speed.

Interestingly, the optimal control framework precisely

makes hypotheses about the variables potentially

represented by the brain during motor control (Todorov,

2004). Therefore, the question of which variables are

the subject of motor planning can be rephrased in a nor-

mative way as follows: what is the nature of the optimality

criterion underlying trajectory formation? (see Soechting

and Flanders, 1998). In this context, some researchers

have argued for kinematic-oriented motor planning (in

either extrinsic or intrinsic space) where the nonlinearities

of the motion dynamics are just compensated for or sup-

pressed by the brain to preserve limb’s stability

(Hollerbach and Flash, 1982; Atkeson and Hollerbach,

1985; Sainburg et al., 1995, 1999; Bastian et al., 1996;

Gribble and Ostry, 1999). The main advantage of using

a kinematic-based motor control would be to simplify con-

trol and allow the brain (re)using a common motor pattern

to perform movements at various speeds (i.e. ‘‘scaling

law”). This approach found some experimental support

in the literature (Atkeson and Hollerbach, 1985; Gribble

et al., 1998). According to this view, speed-independent

arm trajectories should be observed (and were actually

observed to some extent in several arm reaching studies,

e.g. Atkeson and Hollerbach, 1985; Gribble et al., 1998).

Other authors have instead argued for dynamic-oriented

motor planning where the mechanical limb properties

are taken into account and exploited to the greatest extent

possible (Dounskaia et al., 2002; Debicki et al., 2010,

2011; Hore et al., 2005, 2011). The advantage would be

to utilize all the non-muscular torques originating from

the nonlinearities of the limb’s dynamics for producing

least effort movements and somehow reducing the overall

amount of muscle torque (or its mechanical work) to a

minimum (Sainburg and Kalakanis, 2000; Dounskaia

et al., 2002; Galloway and Koshland, 2002; Hirashima

et al., 2007; Berret et al., 2008; Gaveau et al., 2011,

2014). In Wolpert et al. (1995), the authors directly

addressed the issue about whether the brain controls

movement in kinematic or dynamic coordinates for visu-

ally guided movements. They showed that the planning

of constrained planar arm reaches was associated with

the optimization of a kinematic cost function (i.e. Carte-

sian jerk) in order to perceive straight endpoint displace-

ments on a screen. However it is known that

unrestrained or 3D movements may have very different

characteristics(Desmurget et al., 1997; Gielen, 2009)

and whether the control of free arm movements also

relies more upon kinematic rather than upon dynamic

variables remained unclear. For 3D arm movements, evi-

dence was found for a dynamic level of planning as the

final arm posture was shown to depend on the initial

arm posture in a way that could not be accounted for by

any kinematic optimality criterion (Soechting et al.,

1995). However, the effect of speed onto the final posture

selection, which is a crucial assessment to distinguish

between kinematic and dynamic strategies, has not been

addressed in that study but experimental studies later

revealed an invariance of the final whole-arm configura-

tion with respect to motion velocity (Nishikawa et al.,
1999) despite the fact that dynamic motor planning may

potentially involve trajectory modifications with respect

to speed because of the complex velocity and

acceleration-dependent musculoskeletal dynamics.

To reconcile all these findings, the idea of composite

cost functions relying upon kinematic, energetic and

dynamic variables emerged as a possible avenue. Using

inverse optimal control techniques for unveiling

optimality criteria and/or rule from experimental

trajectories (Mombaur et al., 2009; Berret et al., 2011b)

and the free reach-endpoint paradigm for better discrimi-

nating between candidate cost functions (Berret et al.,

2011a,b, 2014), it was shown that vertical movements

starting from different initial positions and executed at a

relatively fast pace could be accounted for by a composite

cost mixing the angle jerk (i.e. a kinematic variable) and

the absolute work (i.e. an energetic variable). However,

it remained unclear whether these results would extend

to 3D motion and whether a single composite cost could

explain movements executed at different speeds. This

question is also critical in regards to the understanding

of self-paced movements where a cost of time may also

combine with trajectory costs and the extent to which

the latter varies according to speed instructions is a

related open question (see Shadmehr, 2010; Shadmehr

et al., 2010; Berret and Jean, 2016).

Here we combined a specific motor task with an

inverse optimal control methodology to address the

above questions. First, we considered free 3D arm

movements without a prescribed reach endpoint (the

hand could freely move in 3D), which differs from

classical point-to-point reaching paradigms; namely we

considered a planar target. Thus, participants were free

to choose any final finger position on the target plane

while only caring about the vertical error (i.e. the task

goal). Considering a 4-dof arm, the subjects were thus

left with three angles to choose at the movement end. A

real life example of this laboratory experiment would be

that of placing a cup on an empty table or pushing a door

for opening it. Furthermore, we varied the instructed

speed to emphasize differences between kinematic

versus dynamic control strategies or combination of them

and used inverse optimal control techniques to identify

the elementary components of the cost function among

kinematic, energetic and dynamic quantities as well as

their relative weights and speed dependence.
EXPERIMENTAL PROCEDURES

Experimental task
Participants. Fifteen healthy subjects (7 women and 8

men) voluntarily agreed to participate in the experiment.

Written informed consent was obtained from each

participant in the study as required by the Helsinki

declaration and the EA 4042 local Ethics Committee. All

of them were right-handed, free of sensory, perceptual

and motor disorder, aged 27 ± 4 years, weighted 66

± 8 kg and 167 ± 6 cm tall. All the participants were

naive to the purpose of the experiment.
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Free endpoint motor task. The motor task is illustrated

in Fig. 1. A small solid stick serving as a reference

position for the initial fingertip position was attached to a

vertical slider bar, allowing the experimenter to adjust

appropriately the height of this reference point relative to

the arm’s length of each participant. A uniform

horizontal surface, made of a thin and soft block of

foam, served as a target throughout this experiment. It

was positioned on a table just below the participant’s

chest. On the wall in front of the participants, a yellow

marker was positioned to fix gaze in a predefined

direction (looking straight ahead). Gaze was constrained

in order to reduce the influence of visuomotor

processing during arm movement control and to limit

possible inter-trial and inter-individual fluctuations due to

eye motion and eye-head-hand coordination.

Participants sat comfortably on a chair with their back

tighten upright against the chair’s splash to freeze

motion of other body parts during the execution of arm

movement. The initial arm configuration was setup such

that the shoulder–elbow axis was approximately

abducted to the horizontal while the flexion-extension

elbow angle was actively held at 90� and the fingertip

was kept strictly to the reference position. Participants

were free to rotate their shoulder and elbow in 3D space

during the motion, but their wrist rotation was

constrained by two lightweight bars attached to the

distal part of the forearm and the proximal part of hand.
Fig. 1. Illustration of the experimental paradigm. Fixed initial arm

position and horizontal target plane were tested, thereby defining a

free reach-endpoint motor task. The reach endpoint was one

prominent movement parameter. Two other relevant movement

parameters (rotation axis displacements, SE and e3) are depicted.

Gaze direction was controlled during the movement as indicated by

the arrow. Note that any possible path leading to any location onto the

surface was possible regarding task achievement. The task was thus

redundant (3 free joint angles for most endpoint locations) and 3D as

the arm could freely move in 3D space without any constraint, except

that of reaching the target plane at various instructed speeds (slow,

normal and fast, denoted by S, N and F respectively).
One of the two bars also froze the movement of the

index finger. Such constraints allowed to approximate

the forearm and the hand as a single rigid body and to

simplify the whole-arm model by reducing the actual

arm’s degrees-of-freedom (DoF) from seven to five

(three at shoulder and two at elbow). In practice, only

the first four DoFs were relevant because the elbow

pronation/supination rotation showed negligible

displacements in this study and was irrelevant to the

pointing task under consideration (fingertip end-effector).

We therefore considered a 4-DoF arm model in this

study. Note that with a 4-DoF arm and a planar target,

the task is redundant: for a given admissible fingertip

position of the target plane (which is chosen by the

subject himself), three joint angles can be freely

adjusted. If we had use a dot as a target, only one

angle could have been selected for the prescribed reach

endpoint. Hence the main originality of the present

protocol is to let subjects solve the ‘‘where to go”

problem as well as the ‘‘how to go there” problem at

once, which is a common situation (e.g. putting a cup of

coffee on an empty table is an analog of such a

laboratory experiment).

During the experiment, participants were instructed to

move their fingertip from the initial configuration to the

destination (i.e. a uniform planar target, with no

prescribed reach endpoint) by performing a smooth,

one-shot movement while looking at the eyes reference

marker. They were required to point to the planar

surface with their fingertip and stop their motion right

onto the surface but without hitting it. No instruction was

given to the participants regarding the final position of

the fingertip on the planar surface. As such, all reach

endpoints were equi-efficient regarding task

achievement but conceivably not equi-efficient regarding

the subjective values associated with the actual arm

trajectory leading to the chosen reach endpoint (see

also Berret et al., 2011a,b, 2014 for related studies). Here

and throughout the paper, subjective costs (i.e. costs not

imposed by the task but related to the subject or body) will

be contrasted with objective costs that are imposed by the

task itself (e.g. pointing error) (Berret et al., 2011b; Knill

et al., 2011).

For the purpose of this study, three different speeds

were examined: slow (S), comfortable/natural (N) and

fast (F). Before each trial, participants were verbally

instructed to move at one specific speed. Speed

instruction was randomized across trials in order to

prevent habituation and memorization effects (especially

regarding the endpoint reached in the previous trial).

Velocity constraints were hypothesized to reveal the

nature of the planning variables used in such 3D

movements, and the free reach-endpoint paradigm was

used to emphasize the possible differences of arm

trajectories as a function of the instructed speed.

Prior to the experiment, participants were trained to

become familiar with the task. They were told to move

their arm toward the target while the experimenter

verified that all the task instructions had been well

understood. The training process consisted of 20 trials

on average and at the end all the participants had the
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capability of executing their movement while satisfying the

experimental instructions, which were as follows: (i) place

consistently the fingertip at the initial reference position

while keeping the same initial ‘‘L-shaped” arm posture,

(ii) try to stop the movement right onto the horizontal

target surface, by minimizing errors along the vertical

axis, (iii) look at the reference marker during the whole

movement execution and (iv) mark a clear difference of

motion speed based upon the verbal instruction given

by the experimenter at the beginning of trial.

For each participant, 15 trials were recorded per

speed. Thus, a total number of 675 trials (15 trials � 3

speeds � 15 participants) were recorded and used for

subsequent analyses in the study. During the

experiment, participants were allowed to rest in order to

minimize fatigue effects. The duration of the experiment

was approximately 45 min per participant.

Data collection and processing
Materials. An optical motion capture system

consisting of eight high-speed cameras was used to

record the arm motion at a frequency of 250Hz (Vicon

motion system Inc. Oxford, UK). A set of plug-in-gait

markers was attached to the participant body. Precisely,

thirteen markers were placed at well-defined anatomical

locations on the dominant arm and the other parts of the

body, namely: seventh cervical vertebrae, 10th thoracic

vertebrae, clavicle, sternum, right and left acromion,

lateral and medial humeral epicondyles, ulnar and radial

styloids, 2nd and 5th metacarpal heads and 1st fingertip.

Motion analysis. All the analyses were performed with

custom software written in Matlab (Mathworks, Natick,

MA, USA) from the recorded three-dimensional position

of the markers. The recorded positional data were first

smoothed using a 2nd-order Butterworth low-pass filter

with cut-off frequency at 10Hz and then processed to

compute other kinematic and dynamic parameters, as

described hereafter.

Kinematic-level analysis. Hand kinematics. For

every recorded trial, the position of the fingertip marker

was numerically differentiated to obtain the

corresponding velocity profile. Based on this velocity

profile, the movement duration (MD) was estimated by

the time window where the velocity magnitude was

above 5% of the peak velocity. Other kinematic

parameters relevant to the purpose of the present study

were then computed and analyzed to check for

differences in hand kinematics with respect to the

instructed speed, as follows: the reach endpoint location

in 3D (RE, described by its Cartesian coordinates X, Y

and Z with respect to a frame whose origin is located at

the shoulder joint), the peak velocity (PV), accuracy and

precision along the vertical axis (denoted by Za and Zp,

respectively). In practice, Za was defined based on the

distance from the final finger position to the planar

target and Zp was defined as the standard deviation of

the vertical RE coordinates. They were used to verify

constant and variable errors along the vertical axis. Note

that, in the present task, Xa and Ya were undefined as
the task did not impose any final fingertip position in the

plane. Finally, Xp and Yp were analyzed via 95%

confidence ellipses showing the distributions of RE

within the target plane.

Joint kinematics. The 4-DoF arm configuration was

computed from the recorded motion data. To this aim,

we employed the method previously described in

Isableu et al. (2009). Briefly, this method considered the

3D arm as an articulated chain of rigid bodies connected

by joints. Then, a local segment coordinate system was

calculated based on the measured 3D position of the

markers in a way that was consistent with the Interna-

tional Society of Biomechanics (ISB) recommendation

(Wu et al., 2005). From the resulting coordinates, rotation

matrices converting a specific coordinate to its parent

coordinate were computed in accordance with the rotation

orders, which allowed angles to remain as close as possi-

ble to the clinical definition of joint and segment motion.

Based on these calculated rotation matrices, the values

of (Euler) rotation angles (internal/external, elevation/

depression, ulnar/radial at shoulder and extension/flexion

at elbow) were easily inferred. Again, the joint velocities

and accelerations were obtained by numerically time-

series differentiating the angular displacements.

Dynamic-level analysis. Inverse dynamic analysis

was used to estimate the muscle torques underlying the

observed motion kinematics. A dynamical model of the

arm was required to infer these movement parameters.

As mentioned above, the arm was viewed as the

combination of rigid bodies connected by series of

revolute joints. If such a model can be easily

established for planar systems (e.g. Berret et al.,

2011b), the task is more tedious in 3D especially when

computational efficiency really matters. Thus, special

considerations were taken into account. Firstly, the series

of arm rotation axes as well as the segment coordinates in

Wu’s model (Wu et al., 2005) were re-approached within

the standard robotic point of view wherein the four rotation

axes were re-described using Denavit–Hartenberg

parameters. The same description could be found for

instance in Asfour and Dillmann (2003), where the robotic

model of a humanoid arm was described. From this for-

malism, many of the advanced tools developed in robotics

could be applied to calculate both forward or inverse kine-

matic and dynamic parameters. Secondly, another crucial

piece was the anthropometric parameters. The parame-

ters reported in Dumas et al. (2007) were used, providing

us with an approximation of anthropometric values such

as mass, center of mass position and inertia matrix for

each segment. These parameters were adjusted for each

participant given his/her total mass and the lengths of the

body segments (measured via motion capture).

From a classical application of Lagrange mechanics,

the arm skeleton dynamics can be expressed as follows:

s ¼ MðhÞ€hþ Cðh; _hÞ þ GðhÞ þ Rðh; _hÞ; ð1Þ

where s is the muscle torque, M is the mass matrix (4 � 4

size here), C is the Coriolis and centripetal torque, G is the

gravitational torque. Note that computed in this way, the

muscle torque is actually affected by some term Rðh; _hÞ
reflecting frictional and viscous or elastic torques created
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by all soft tissues. In the current work, the latter term R
was neglected and assumed to be negligible compared

to the other torques. The vector h ¼ ðh1; . . . ; h4Þ denotes

the four angles describing the arm’s configuration and a

dot above a variable stands for its time derivative.

We may subsequently define the muscle, net,

interaction and gravitational torques as follows:

smus ¼ s;
snet ¼ diag MðhÞð Þ€h;
sint ¼ � MðhÞ � diag MðhÞð Þð Þ€hþ Cðh; _hÞ� �

;

sgra ¼ �GðhÞ:

where diagðMðhÞÞ represents the diagonal matrix built

from the diagonal terms of the mass matrix. Then, Eq.

(1) can be rewritten as follows:

snet ¼ smus þ sint þ sgra; ð2Þ

which is similar to the description given in Yamasaki et al.

(2008) and Sande de Souza et al. (2009). In particular, this

shows that the net torque at each joint is produced by a

combination of muscle torque, interaction torque and grav-

itational torque.

In practice, the above analytic formulas are quite long

to evaluate explicitly and using them is therefore

computationally inefficient for intensive simulations.

Hence we used a recursive Newton-Euler algorithm to

compute the arm dynamics in our simulations. State-of-

the-art algorithms for rigid body dynamics can be found

in Featherstone and Orin (2000). Actually, by replacing

3D vectors by 6D spatial vectors in the classical

Newton-Euler recursive algorithm, efficiency of the arm’s

dynamics calculation could be largely improved (for both

direct and inverse dynamics). Computational efficiency

was especially crucial in the present study because opti-

mal control methods involve very intensive computations

and numerous evaluations of the arm’s dynamics (see

below). We actually checked that both methods to

calculate the dynamics (either based on Lagrangian or

Newton–Euler formalisms) gave the same result but the

latter was about 10 times faster than the former in our set-

tings (note that a compiled version of the code provided

by Featherstone and Orin (2000) was eventually used

for better efficiency).

Global motion parameters. In this study, three

indexes summarizing different aspects of the overall arm

motion were analyzed. Most of them were discussed in

previous papers (Pagano and Turvey, 1995; Riley and

Turvey, 2001; Sainburg and Kalakanis, 2000; Isableu

et al., 2009), which is the reason why our analysis will rely

upon them. The first parameter is the reach endpoint

index (RE index); the second and third indexes respec-

tively the average deviation of the shoulder–elbow axis

(SE index, i.e. kinematic parameters) and the average

deviation of the minimum inertia axis (e3 index, i.e. a

kinetic parameter).

Antero-posterior reach endpoint position (RE index).
The RE index was defined as the final fingertip position

on the planar target along the AP axis (XAP) normalized

by the maximal distance that the participant could

reach to without moving/bending the trunk (Dmax,
corresponding to a fully extended arm such that the

fingertip was on the target plane).

RE index ¼ XAP

Dmax

� 100: ð3Þ

Minimum principal inertia axis deviation (e3 index).

This dynamic parameter is based on the minimum

principal inertia axis (referred to as e3 in previous

studies). A method to calculate the instantaneous e3

axis during a 4-DoF arm movement was described in

Isableu et al. (2009). Importantly, it is worth noting that

e3 definition only relies on the instantaneous whole-arm

configuration and its anthropometric characteristics. At

each time step, the angle between the current e3 axis

direction and its initial (t ¼ 0) one, ae3ðtÞ, was computed

and the e3 index was calculated as in Eq. (4).

e3 index ¼ 1

T

Z T

0

jae3ðtÞjdt: ð4Þ

A strict rotation around e3 axis would thus indicate a

strategy exploiting the inertial properties of the arm

(when viewed as a single ‘‘L-shaped” rigid body).

Indeed, the task could be performed by strictly rotating

the arm around e3 axis, with no forearm flexion/

extension. Intuitively, such a strategy could facilitate the

production of large angular accelerations at equivalent

muscle torque magnitude. For instance, rotating the arm

around the maximum principal inertia axis would lead to

smaller acceleration for similar muscle torque, which is

just the result of the intrinsic inertial properties of an arm

in such a L-shape configuration. Moreover, rotating

around e3 may be advantageous because the angular

momentum then becomes parallel to the angular

velocity vector of the rigid body and therefore a muscle

torque around e3 only produces angular acceleration

around e3 without inducing accelerations around other

axis (i.e. interaction torques).

Shoulder–elbow deviation index (SE index). The SE

index was defined as the mean integral of the absolute

shoulder–elbow axis deviation. At each time step, the

angle between the current shoulder–elbow axis direction

and its initial (at t ¼ 0) one, aSEðtÞ, was computed and

the SE index was calculated as reported in Eq. (5):

SE index ¼ 1

T

Z T

0

jaSEðtÞjdt ð5Þ

where T was the total movement duration (obtained

experimentally for each trial). A strict rotation around this

axis when performing the task was possible, yielding a

SE index equal to zero. In turn, this would indicate the

use of a kinematic control strategy possibly aiming at

stabilizing the upper arm segment during the whole

motion (Isableu et al., 2009).

Optimal control modeling and inverse optimal control
method

In this section, we describe the optimal control methods

and the numerical inverse optimal control approach that

we used. The method follows the works of Mombaur

et al. (2009) and Berret et al. (2011b), and aims at

accounting for the 3D arm motion from an optimal control



Table 1. Cost functions considered in this article. Their overall class

(kinematic, energetic or dynamic), the chosen representative element

of each class with its classical name, the mathematical definition of the

cost and the references which proposed them

Class Criterion Cost function References

Kinematic Angle jerk CKine ¼ R T

0

P4
i¼1h

...
2
i dt

Wada et al.

(2001)

Energetic Absolute work CEner ¼
R T

0

P4
i¼1j _hisijdt Nishii and

Murakami

(2002) and

Berret et al.

(2008)

Dynamic Torque change CDyna ¼ R T

0

P4
i¼1

_s2i dt Uno et al.

(1989) and

Nakano

et al. (1999)
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standpoint by finding the subjective costs underlying the

experimental trajectories. The control dynamics, denoted

by noted (R), is formed of the skeletal dynamics given in

Eq. (1) and some basic muscle dynamics. Muscle dynam-

ics was added here to account for the smoothness of

velocity and acceleration signals and was not assumed

to be an accurate model of the muscle–tendon complex.

Therefore, we used a simple model accounting for the

low-pass filter property of muscles, as it is quite common

in optimal control studies (e.g. Uno et al., 1989; Guigon

et al., 2007; Berret et al., 2011a). Precisely, we assumed

that the motor command (i.e. control signal) was simply

the derivative of the muscle torque, as follows:

_s ¼ l ð6Þ

where the control l can be thought as the overall motor

input given to the muscle.

Solving an optimal control problem with non-linear

dynamics and non-quadratic cost functions is generally

a difficult problem especially for problems with large

dimensions (here the state vector had 12 dimensions

and the control vector had 4 dimensions). One could

however observe that the limb and muscle dynamics

together form a fully-actuated control system that is

feedback linearizable. Therefore, it was possible to

effectively change the nonlinear control problem into a

linear control problem by directly controlling the

derivative of the angular acceleration vector instead of

the derivative of the muscle torque. This mathematical

change of control variable allowed us to replace Eq. (6)

with the following one:

h
...

¼ l ð7Þ
The muscle torque (and its derivative) could then be

recovered via inverse dynamics (see above). Even

though we could control l directly, we generally

observed that such approach yielded faster and more

robust convergence during the numerical resolution of

the optimal control problems under consideration. The

numerical difficulties were then left to the possible non-

quadraticity of the cost function.

In the literature, several cost functions were proposed

by different authors. It is useful to distinguish subjective

and objective cost functions. Subjective costs differ from

objective ones in that the former reflect a subject’s

decision/choice while the latter are imposed by the task

(e.g. accuracy). Here we focus on the identification of

subjective costs only. Various subjective cost functions

were proven useful and relevant as it often replicated at

least some experimental observations. Briefly,

previously proposed cost functions may be grouped into

three main categories: kinematic, energetic and

dynamic. All classes with one relevant representative

cost are listed in Table 1. Here we considered the

minimum angle jerk (Wada et al., 2001) to represent the

kinematic cost family (we could have used a minimum

acceleration criterion (Ben-Itzhak and Karniel, 2008) but

the predictions of the two models only differed slightly).

For the dynamic class, we considered the minimum tor-

que change model (Uno et al., 1989). We also tested

the minimum torque model (Nelson, 1983) but we found
that the torque change model was more relevant for the

present motor task. At last, at the interface between kine-

matic and dynamic variables are energetic costs that

measure actual energy expenditures associated with the

movements. We chose the minimum absolute work of

muscle torques here (Berret et al., 2008; Gauthier et al.,

2010; Gaveau et al., 2014). The geodesic (Biess et al.,

2007) or the minimum peak work model (Soechting

et al., 1995) are other models that could have been con-

sidered within this class but their exact formulation is less

easily integrable within a generic optimal control scheme,

which may be problematic for running inverse optimal

control (see below).

Although each of the above cost function was proved

to be effective under specific conditions, it is actually very

difficult and likely impossible to identify a unique and

generic cost function that will account well for all

possible human arm movements. It may thus seem

reasonable to widen the optimal control hypothesis and

investigate the idea of composite cost functions. In this

vein, recent work (Berret et al., 2011b) showed that free

arm pointing movement could not be explained by any

single cost among a variety of 7 possible candidates but

by the combination of mainly two of them, namely angle

jerk and absolute work optimality criteria. Based on these

prior findings and because of the computational load and

complexity of the present 4-DoF arm model we restricted

our analysis to the combination of the three cost functions

listed in Table 1, which we shortly refer to as kinematic

(Kine), energetic (Ener) and dynamic (Dyna) throughout

the study. Thus, the composite cost function may be writ-

ten as:

C að Þ ¼ CKine þ a1CEner þ a2CDyna ð8Þ
The triplet a ¼ ð1;a1;a2Þ uniquely determines the

composite cost function. We will refer to a as the

weighting vector (whose elements are non-negative).

The factor 1 in the first component of the triplet is due to

the fact that the composite cost can be normalized (see

Mombaur et al., 2009; Berret et al., 2011b). Our investiga-

tions showed that the kinematic cost was relevant and

necessarily present to account for the subject’s behavior.

Considering 3 costs (and thus having only 2 free parame-

ters) also enabled convenient visualization possibilities

(see Results).
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It is noteworthy that for each participant three different

speeds (S, N, F) were studied in the current work. In order

to find the composite cost functions that best replicated

the recorded data, two solutions were available. Firstly,

one could try to find a composite cost corresponding for

each speed, thereby assuming that task instructions

could affect the weights of the subjective cost. We thus

termed this type of cost ‘‘speed-dependent composite

costs” and denoted it by SDComp. Alternatively, one

could also try to find a single composite cost accounting

for all speeds at once. We termed this type of cost

‘‘speed-independent composite cost” and denoted it by

SIComp. These two possible hypotheses make

divergent assumptions regarding the flexibility of

subjective costs with respect to task instructions. The

results of both SDComp and SIComp costs will be

compared to determine which one is the more plausible

following Occam’s razor principle (for similar accuracy,

the most parsimonious model should be retained).

Optimal control problem (OCP). The OCP

corresponding to the cost CðaÞ can be stated as follows:

Find an optimal control uH
a and its corresponding optimal

trajectory qH>
a ¼ ðh>; _h>; €h>Þ of system ðRÞ, connecting a

source point qs to a final point on the target plane in

time T and yielding a minimal value of the cost CðaÞ
(then denoted by CHðaÞ).

To solve this problem, the Matlab software GPOPS

(Rao et al., 2010) was used. This method employs an

orthogonal collocation technique to convert the continu-

ous time OCP into a nonlinear programming problem

(NLP) with constraints. The well-established numerical

software SNOPT was used to solve the NLP problem.

For each simulation, the angular velocity and acceleration

at initial and final times were set to zero since the partic-

ipants were required to start and stop their motion with a

static state. The other parameters such as the initial angu-

lar configuration h0 and the motion duration T were

directly estimated from the recorded data. The anthropo-

metric parameters such as inertia, mass, center of mass,

segment length were customized for each participant,

thereby accounting for physical inter-individual

differences.

Inverse optimal control (IOC). Inverse optimal control

problem was stated as a bi-level problem with an outer

loop seeking for the a best fitting the recorded

trajectories, and an inner loop that finds the optimal

trajectory for the current a (see also Mombaur et al.,

2009; Berret et al., 2011b for details).

Importantly, a function (or metric, denoted by U) to

compare simulated and recorded arm trajectories is

needed. Here, we sought for a vector a allowing to

replicate at best the recorded four angles in the joint

space. At the initial time, the simulated and recorded

angles (respectively denoted by qH
a and qmeas) coincided

perfectly, but differences typically appeared during the

course of motion. The function used to measure this

discrepancy was defined as the maximal deviation of

the simulated angular displacements from the reference

ones (simply taken as the average experimental values

observed for each speed condition). Note that this

metric was quite conservative as it involved the maximal
deviation and not the averaged one. Eventually, four

deviations corresponding to the four joint angles were

obtained, which were averaged to get a single overall

error in joint space, denoted by EJointðaÞ. Different values
of EJoint were obtained for different values of a1 and a2,

hence this error could be visualized using 3D plots (see

Results).

Therefore, by definition, UðqH
a ;q

measÞ ¼ EJointðaÞ for

the SDComp case. For the SIComp case, the metric

was modified to minimize the error for all 3 speeds

together (the average was simply used). The purpose of

the outer loop is to minimize this error (U) by finding the

best a, that is, the best-fitting cost combination for

replicating the experimental data (for each speed

separately for SDComp and for all speeds

simultaneously for SIComp).

To solve this part of the problem, a method called

CONDOR standing for Constrained, Non linear, Direct,

parallel optimization was used. A re-scaling method

described in Berret et al. (2011b) was also needed in

the present work to improve the efficiency of the algorithm

(due to the different units and order of magnitudes of the

costs). In addition, the value of a or �a was initialized with

random non-negative values and 10 random restarts were

considered for each inverse optimal control problem and

for each participant in order to limit the issue of being

stuck at a local minimum. The best a were eventually cho-

sen as the ones that made the function U as small as pos-

sible. In total applying this procedure to all the participants

required solving 450 IOC problems (10 restarts � 3

speeds � 15 participants) for the SDComp case and

150 IOC problems (10 restarts � 15 participants) for the

SIComp case.

Cost contribution calculation. We used the formula

originally described by Berret et al. (2011b) to evaluate

the contribution of each cost function to the total cost.

Investigating cost contributions was interesting because

the components of the vector a could not be straightfor-

ward to interpret: the largest ai could potentially be of

minor importance with respect to trajectory fitting depend-

ing on the units or order of magnitudes of each elemen-

tary cost.

Comparison between simulated and experimental
trajectories. Simulated and experimental trajectories

were compared in two ways: first, absolute errors were

computed and, second, relative errors linked to speed

variations were estimated to assess how each cost

could predict the speed dependence of motor strategies.

Cartesian error of the finger trajectory. In order to

estimate the accuracy of trajectory reconstructions also

in Cartesian space, we computed the maximal deviation

between experimental and simulated 3D finger

trajectories and this Cartesian error was denoted by ECart.

Reach endpoint index error (ERE). The reach endpoint

error measured the distance between the recorded RE

index (REexp) (simply taken as the average experimental

values observed for each speed condition) and the

simulated one (REsim) generated by either SDComp or

SIComp or each of the three elementary costs. The

ERE values were computed for each speed and each

subject.



Table 2. Experimental movement parameters (mean ± std across

subjects)

S N F

MD (s) 0.90 ± 0.20 0.54 ± 0.12 0.30 ± 0.06

PV (m/s) 1.0 ± 0.3 2.1 ± 0.4 3.4 ± 0.7

Shinternal=external (�) 10.4 ± 7.9 11.9 ± 8.8 12.6 ± 8.5

Shelevation=depression (�) 10.1 ± 6.4 10.4 ± 6.0 10.4 ± 6.2

Shulnar=radial (�) 92.6 ± 15.8 94.8 ± 15.8 96.2 ± 15.2

Elextension=flexion (�) 27.2 ± 8.3 25.7 ± 9.1 24.1 ± 9.0

RE index (%) 83.1 ± 9.1 81.2 ± 9.6 79.8 ± 8.7

e3 index (�) 19.3 ± 5.1 18.2 ± 5.2 17.6 ± 5.8

SE index (�) 7.6 ± 3.9 8.1 ± 3.5 8.3 ± 3.3

Za (cm) 0.6 ± 0.4 0.7 ± 0.4 0.6 ± 0.5

Zp (cm) 0.4 ± 0.3 0.3 ± 0.2 0.4 ± 0.3
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e3 index error (Ee3). Similarly to the ERE, the e3 index

error measured the distance between the recorded e3

index (e3exp) and the simulated one ðe3simÞ.
RE or e3 slope errors (E

KRE
or E

Ke3
). In order to

evaluate whether simulated results were able to

replicate hypothetical speed-dependences of RE and e3

for each subject, we also compared the experimental

and simulated slopes resulting from a linear regression

of each parameter with respect to the instructed speed.

To normalize slope values across subjects, we did not

use the value of K resulting from a regression against

the real speeds of subjects because it could differ

substantially across them. Instead, we used the value K
obtained when regressing against the instructed speed,

i.e. S, N, and F labels. We then defined the speed-

dependence error as the absolute difference between

Kexp and Ksim. The analysis was done for both RE and

e3 parameters, thus leading to the definition of E
KRE

and

E
Ke3

for parameters RE and e3 respectively.
Statistical analyses

Repeated-measures one-way ANOVAs were performed

to assess the effect of speed on relevant movement

parameters. The ANOVA’s sphericity assumption (using

Mauchly test) was checked, and p-values and degrees

of freedom were corrected using estimates of sphericity

(Greenhouse–Geisser/Huynh–Feldt). Post-hoc tests

were conducted with Bonferroni corrections when

appropriate (the chosen threshold was 0.05 and

analyses were conducted using SPSS). We used

quantile-quantile plots to visually check whether the data

were normally distributed (qqplot Matlab function).

Shapiro–Wilk’s test was used to quantify these

observations for the relevant parameters.
RESULTS

Experimental observations

Inter-individual analysis. Peak velocity and Movement
duration. Repeated-measures ANOVAs were used to

statistically check that subjects yielded significant

differences with respect to the instructed speed.

Recorded peak velocities were significantly different

across S, N and F speed conditions (F(2,28) = 74.8,

p< 0.001). This confirmed that the verbal instruction of

speed was effective. Post-hoc analyses showed that all

speeds were significantly distinct. Quantitative values

are given in Table 2. The mean and standard deviation

across subjects for the S, N, and F conditions were 1.0

± 0.3 m/s, 2.1 ± 0.4 m/s and 3.4 ± 0.7 m/s

respectively. A similar statistical analysis performed on

movement duration showed similar results (F(2,28)
= 21.1, p< 0.001).

Reach accuracy and precision. Although the task did

not impose any particular point to reach to, the subjects

had to control the constant error along the vertical axis.

One objective of the task was thus to position the

fingertip onto the target surface. Constant errors along

the vertical (Za) were relatively small and independent

of the speed, indicating that the final position constraint
was fulfilled by all the participants. Regarding the

variable error along the Zp axis, they were of

comparable magnitude with no speed effect. For Xp and

Yp, giving the distributions of reach endpoint in the

target plane, analyses via confidence ellipses were

conducted (see below for the RE index).

Angular excursions. The four angle excursions

(shoulder’s internal/external, elevation/depression, ulnar/

radial, elbow’s extension/flexion), averaged across

subjects, are given in Table 2. The magnitude of

angular displacements tended to depend on the

instructed speed. Precisely, when speed increased, the

shoulder angles (internal/external angle, elevation/

depression angle, ulnar/radial angle) tended to increase

while the elbow’s extension/flexion angle tended to

decrease. Repeated-measures ANOVAs did not show

any significant effect of speed for the two first shoulder

angles (F(2,28) = 2.3, p= 0.139; F(2,28) = 0.08,

p= 0.92) but a significant effect was observed for the

third shoulder and the elbow angles (F(2,28) = 4.5,

p< 0.05; F(2,28) = 16.3, p< 0.001, respectively).

Regarding the magnitude of angular excursions, it is

interesting to note that although subjects could

accomplish the task by simply rotating their arm only

about the shoulder ulnar/radial axis, all subjects actually

chose more complex joint displacements. Actually, while

the movement was mainly achieved by rotating around

the shoulder ulnar/radial axis (considered as a major

axis), we also measured quite large displacements of

elbow extension/flexion (about 1/3 of shoulder ulnar/

radial excursion), and non-negligible amounts of

shoulder internal/external, elevation/depression angular

rotations. Therefore, the movement chosen by the

subjects generally involved the coordinated

displacement of several joints in different proportions.

SE, e3 and RE indexes. The above observations were

further analyzed in terms of the global movement

parameters described in the Materials and Methods.

The mean ± std values of SE/e3/RE indexes across all

the subject were reported in Table 2. In agreement with

the joint excursions, the SE index was relatively small

for all speed conditions (7:6� 3:9� for S; 8:1� 3:5� for

N; 8:3� 3:3� for F), although it tended to slightly

increase with respect to speed. Repeated-measures
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ANOVAs did not reveal any significant differences

for this global movement parameter index (p= 0.23). In

contrast, both e3 and RE indexes tended to decrease

with respect to speed and obtained the values of

19:3� 5:1�; 18:2� 5:2�, 17:6� 5:8� and 83:1� 9:1%;
81:2� 9:6%, 79:8� 8:7% for S, N, F respectively. For

those parameters, repeated-measures ANOVAs

revealed significant changes with respect to speed

(F(1.4,20.1) = 7.4, p< 0.01; F(2,28) = 14.8, p< 0.001

for e3 and RE indexes respectively). A finer examination

of RE and e3 indexes showed that some subjects

exhibited more speed dependencies than others, which

is analyzed below.

Intra-individual analysis. Reach endpoints. The

distribution of reach endpoints projected onto the

transverse plane is illustrated in Fig. 2. The data of two

representative subjects were reported (S5 and S14

represent speed-sensitive subjects and speed-

insensitive subjects, respectively). A qualitative

inspection revealed an effect of speed for S5 but not in
Fig. 2. Reach endpoint positions of two subjects (S5 and S14) for the

three different speeds (S, N and F). The 95% confidence ellipses of

reach endpoints in the S, N and F speed conditions are drawn in thick,

thin and dotted lines, respectively. Note that along the antero-

posterior (AP) axis, the distributions of finger positions of S14 remain

relatively constant regardless of movement speed while those of S5

tend to decrease when movement speed increases.
S14. Precisely, for S5, increase of speed was

accompanied by reach endpoints that tended to get

closer to the shoulder location in the AP direction.

Correlation analyses performed for the RE index

confirmed these observations (Fig. 3). Indeed, while the

RE index for S5 showed a significant negative

correlation with respect to speed (R= �0.76,

p< 0.001), the correlation for S14 was not significant

(p= 0.48). The data of individual subjects are reported

in Table 3 (R values, p values and K slopes are given).

e3 and SE indexes. The variations of e3 with respect

to the movement speed for the two typical subjects (S5

and S14) are shown in Fig. 3 (bottom panel). Similarly

to RE indexes, it is visible that the e3 index was

independent of speed for S14 (p= 0.50) while it clearly

decreased with speed increments for S5 (R= �0.85,

p< 0.001). Regarding SE index (not depicted), it was

increasing according to speed for S5 while speed

invariant for S14 (values). The data of individual

subjects are again reported in Table 3 (R values, p
values and K slopes are given).

In summary, the above investigations revealed

idiosyncratic behavioral strategies, with some

participants using speed-dependent reach endpoints

and joint trajectories while others conserved the same

arm trajectories irrespective of speed instructions. Note

that the use of a pointing task with unconstrained reach

endpoints was essential to uncover the existence of

speed-dependent strategies in some subjects. Next, to

account for these experimental observations, an inverse

optimal control approach is presented, which aimed at

identifying the costs underlying the arm trajectories of

each individual for every speed. This will prove to be

useful to explain the inter-individual divergences within a

unique normative framework.

Optimal control results

Reach endpoint location and rotation axis
displacement as predicted by kinematic, energetic
and dynamic elementary cost functions. In order to

provide preliminary insights about the predictions of

each elementary cost function for the present pointing

task, optimal control simulation results for a subject

(here S5) are shown in Fig. 4. The dependence of each

single cost with respect to the required speed is also

emphasized. The left panel depicts the finger’s

simulated movement paths while the right panel displays

the variation of two global parameters (RE and e3) with

respect to three speeds (S, N, F). It is noteworthy that

the initialized parameters (such as the initial

configuration of arm, movement durations, position of

planar target) were imported directly from recorded data

and kept fixed during the simulation processes.

Importantly, the simulated results showed that each cost

function produced different movement paths to the

planar target, leading to different RE locations. For a

specific movement speed (e.g. N), the kinematic cost

would generate the farthest movement (i.e. more distant

RE location with respect to the vertical projection of

shoulder position on the planar target). Between the

energetic/dynamic costs, the dynamic cost tended to



Fig. 3. Dependence of RE and e3 indexes on movement speed for the two subjects S5 (left) and S14 (right). For each examined index, linear

correlation and regression lines (thin black lines) were computed based on all recorded data (each dot of the graphs corresponds to a single trial).

For S14, RE and e3 indexes appear to be nearly independent of speed variations while those of S5 decrease clearly when movement speed

increases.
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produce the less distant RE index. Furthermore, in terms

of speed dependencies, the three costs made distinct

predictions: the kinematic cost did not depend on speed

at all, in agreement with its theoretical foundation.

However, energetic and dynamic costs exhibited some

dependence on speed in both hand path curvatures and

RE location. Visually, when the speed increased from S

to F, the energetic cost generated quite distinguishable

movement paths (smallest RE location at F speed)

while the dynamic cost generated slightly different

movements between speeds (but the curvature

noticeably decreased with respect to speed increments).

A quantitative analysis showed that the kinematic cost

always produced constant RE/e3 indexes across

movement speed while the energetic/dynamic costs

reduced RE or e3 indexes at high or low rates when

movements sped up. A finer examination of arm posture

showed that the movements generated by kinematic

cost mainly involved rotation about the shoulder ulnar/

radial axis and negligible displacements about the other

axes regardless of speed, accounting for the low values

of SE index for this cost. On the contrary, the

energetic/dynamic costs generated the movements that

associated with all the rotational axes, yielding quite

large displacements around the shoulder internal/

external, elevation/depression, elbow extension/flexion
axes. Thus, one could conclude that the optimization of

movement based on the sole kinematic cost could only

account for speed-insensitive strategies while the

optimization of pure energetic/dynamic costs should

produce speed-dependent arm trajectories.

Composite cost identification. Overall fitting errors.

Composite costs were fitted to the data of each subject in

order to uncover the optimality criteria underlying their

experimental behaviors. In order to evaluate the

performance of composite costs, their performance was

systematically compared to what would be obtained

using the three elementary costs separately (Kine, Ener

and Dyna). For composite costs, two competing

hypotheses were tested: speed-dependent vs. speed-

independent composite costs (SDComp vs. SIComp,

respectively). The joint space and Cartesian space

fitting errors (EJoint/ECart, mean ± std values across

subjects) are reported in Fig. 5. As expected, errors

obtained from the best-fitting composite costs were

constantly smaller than for each of the elementary

costs. In joint space, the maximal angular deviations

between simulated and experimental displacements

were 5:5� 3:2� and 6:6� 2:9� for SDComp and

SIComp, respectively. Those values were nearly half

smaller than those of Kine cost and much smaller than

those of Ener/Dyna costs. Repeated-measures



a
b
le

3
.
C
o
rr
e
la
ti
o
n
a
n
a
ly
s
e
s
fo
r
R
E
a
n
d
e
3
in
d
e
x
e
s
fo
r
a
ll
th
e
p
a
rt
ic
ip
a
n
ts
.
C
o
rr
e
la
ti
o
n
c
o
e
ffi
c
ie
n
ts

R
,
s
ta
ti
s
ti
c
a
l
s
ig
n
ifi
c
a
n
c
e
p
a
n
d
s
lo
p
e
s
o
f
lin
e
a
r
re
g
re
s
s
io
n
(K

)
fo
r
tw
o
e
x
a
m
in
e
d
p
a
ra
m
e
te
rs

(R
E
,
e
3
)
w
it
h

e
s
p
e
c
t
to

th
e
p
e
a
k
o
f
v
e
lo
c
it
y
(i
n
m
/s
)
a
re

re
p
o
rt
e
d
fo
r
e
a
c
h
o
f
th
e
1
5
s
u
b
je
c
ts
.
C
o
rr
e
la
ti
o
n
c
o
e
ffi
c
ie
n
ts

s
ig
n
ifi
c
a
n
tl
y
d
iff
e
re
n
t
fr
o
m

0
a
re

e
m
p
h
a
s
iz
e
d
in

b
o
ld

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
1
0

S
1
1

S
1
2

S
1
3

S
1
4

S
1
5

R
E

R
�0

.6
3

�0
.1
7

�0
.1
2

�0
.5
0

�0
.7
6

�0
.1
7

�0
.2
6

�0
.7
6

�0
.6
2

�0
.1
0

�0
.4
3

�0
.1
4

�0
.0
5

0
.1
0

0
.0
6

p
p
<
0
.0
0
1

0
.1
7

0
.4
6

p
<

0
.0
0
1

p
<
0
.0
0
1

0
.1
9

p
<
0
.0
5

p
<

0
.0
0
1

p
<
0
.0
0
1

0
.4
9

p
<
0
.0
1

0
.3
2

0
.7
0

0
.4
8

0
.6
2

K
R
E

�1
.9
3

�0
.8
2

�0
.3
8

�2
.6
0

�1
.3
3

�0
.5
1

�0
.5
9

�1
.9
8

�1
.2
1

�1
.6
1

�1
.9
8

�0
.6
9

�0
.1
7

0
.2
0

0
.3
8

e
3

R
�0

.6
1

�0
.1
5

�0
.4
6

�0
.3
9

�0
.8
5

0
.0
2

0
.1
4

�0
.6
8

�0
.8
8

�0
.3
5

�0
.4
8

�0
.0
6

�0
.2
1

0
.1
0

0
.2
0

p
p
<
0
.0
0
1

0
.2
4

p
<
0
.0
1

p
<

0
.0
1

p
<
0
.0
0
1

0
.8
2

0
.2
7

p
<

0
.0
0
1

p
<
0
.0
0
1

p
<
0
.0
5

p
<
0
.0
0
1

0
.6
5

0
.1
1

0
.5
0

0
.1
2

K
e
3

�1
.2
1

�0
.3
2

�0
.8
0

�1
.1
8

�1
.5
3

0
.0
8

0
.2
2

�0
.8
0

�1
.3

�0
.9
7

�0
.8
7

�0
.1
9

�0
.4
1

0
.1
3

0
.9
3

V. H. Vu et al. / Neuroscience 328 (2016) 127–146 137
T r
ANOVAs indicated the significant differences in EJoint

between costs (F(2.6,116.5) = 112.1, p< 0.001). Post-

hoc analysis revealed that the EJoint of SDComp/SIComp

were significantly smaller than those of three elementary

costs but between the two composite costs there was

no significant difference. Similar results were observed

for ECart. The maximal deviations of simulated 3D finger

paths from experimental ones were 5.1 ± 3.4 cm and

5.0 ± 3.2 cm for SDComp and SIComp respectively,

while those of the three elementary costs were 8.9

± 6.5 cm, 17.6 ± 9.2, and 20.4 ± 4.5 cm for Kine, Ener

and Dyna, respectively. Repeated-measures ANOVAs

and Post-hoc analysis also showed significant

differences in ECart between SDComp/SIComp and the

three elementary costs but no significant differences

between SDComp and SIComp. The chosen error was

quite conservative given that it was based on maximal

deviations. For the sake of comparison, the average

deviation for the SIComp cost was 2.6 ± 2.0 cm,

suggesting that average deviations were about half ECart

in general. As such, this confirmed that the composite

costs were significantly better to improve the goodness

of fit by producing arm trajectories that matched quite

accurately the recorded ones. Here, in order to visualize

how well the simulated trajectories fit the empirical data,

real and simulated arm trajectories using the uncovered

speed-independent composite cost are plotted in Fig. 6.

Absolute and relative predictions of RE and e3

indexes across speeds. We quantified whether the

identified composite costs could also replicate the

movement parameters investigated above better than

the elementary costs. The absolute reconstruction errors

ERE and Ee3 for all examined costs are depicted in

Fig. 7. In terms of ERE (top left panel), a visual

inspection revealed a quite large difference between the

value of Dyna cost with respective to the others, thus

implying that the reach endpoints predicted by such a

dynamical criteria were quite far from the recorded ones

regardless of the speed. For the other costs, the two

composite costs SDComp/SIComp obtained relatively

smaller values than Kine/Ener costs. Indeed, those

values of these two costs were approximately three

times smaller than those of Kine cost and five times

smaller than those of Ener cost. Repeated-measures

ANOVAs and Post-hoc analysis confirmed significant

differences of ERE between the two composite costs

(SDComp/SIComp) and the three elementary costs

(Kine/Ener/Dyna) (F(2.8,121.5) = 81.3, p< 0.001), but

no significant difference between SDComp and SIComp

(p= 1.0).

A similar analysis was carried out for e3 index (Fig. 7,

bottom left panel). In agreement with the above results, a

large difference for Ee3 between Dyna cost and the others

were still observed. Between composite costs (SDComp/

SIComp) and the two elementary costs (Kine/Ener), the

Ee3 differences were smaller (approximately two third of

the values for Kine/Ener costs). However, repeated-

measures ANOVAs and Post-hoc analyses still

indicated significant differences for Ee3 between

SDComp/SIComp and the three elementary costs

(F(2.2,95.9) = 17.7, p< 0.001). Between the two



Fig. 4. Movement parameters predicted by each elementary cost (kinematic, energetic and dynamic) during the plane-reaching task at three

different speeds (S, N and F). Left.Movement paths of the fingertip start from the same position (black circle) but end at different reach endpoints on

the target surface. Right. Variation of RE and e3 indexes with respect to speed. The kinematic cost generated speed-invariant trajectories (constant

movement path as well as RE and e3 indexes), whereas the dynamic and energetic costs generated relatively small and large speed-dependent

trajectories respectively. RE and e3 indexes varied accordingly for the two latter costs. These two costs exhibited some degree of speed

dependence because they both involved dynamic variables such as muscle torques and the musculoskeletal dynamics was highly nonlinear.
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composite costs, no significant difference was observed

(p= 1.0).

In order to assess whether costs could reproduce the

speed-dependence (or independence) exhibited by each

subject for e3 and RE indexes, the prediction of slopes

given in Table 3 was investigated. The right panels in

Fig. 7 shows the errors E
KRE

and E
Ke3

. In terms of RE

index, it appeared that the Ener cost were quite large

(about 2 times larger than Kine/Dyna and 3times larger

than SDComp/SIComp), thus implying that the Ener

cost tended to overestimate the speed-dependence of

arm trajectories across subjects. Among the other costs

tested, the Kine and Dyna costs obtained quite similar

slope errors but these values were larger than those of

SDComp/SIComp. Repeated-measures ANOVAs and

Post-hoc analysis showed significant differences

between the E
KRE

of SDComp and Kine/Ener/Dyna

(F(2.4,33.8) = 4.7, p< 0.05) but no significant

difference between SDComp and SIComp (p= 1.0).

Similar observations were obtained for E
Ke3

. Repeated-

measures ANOVAs and Post-hoc analysis showed a

significant difference between SDComp/SIComp and

Ener cost (p<0.05). However, between SDComp/

SIComp and Kine/Dyna, we did not observe any

significant distinctions. Between SDComp and SIComp,

again no significant difference was observed.

In summary, our results showed that only composite

costs could reproduce both the absolute and speed-

relative behaviors of the 15 participants. Furthermore,

no significant gain was found when tuning the weights

of the composite cost according motion speed

compared to the assumption of a speed-independent

composite cost. But if each subject relies upon an

idiosyncratic composite cost function, a question

remains about how to explain the emergence of speed-

dependent and speed-independent arm trajectories.

This issue is addressed hereafter.
Idiosyncrasy of composite costs. On average,

composite costs were a1 ¼ 4:84� 10
3 � 3:15� 10

3
and

a2 ¼ 0:46� 10
2 � 0:43� 10

2
, but these weights varied

across participants and appeared to be crucial to

account for the arm trajectories across speeds. For

instance, the coefficients characterizing the best-fitting

composite cost for S5 was a ¼ ½1; 4:23 � 10
3;

0:43 � 102� and was a ¼ ½1; 2:71 � 103; 0 � 102� for
S14. To get a more representative account of these

costs, the contribution of each element was computed

(see Materials and Methods). This analysis revealed

that the Kine cost contributed on average across

speeds and subjects to 80 ± 15% of the total cost while

the Ener and Dyna costs were about 6 ± 5% and 13

± 12% respectively. Although small, the previous

analyses suggested that these contributions of energetic

and dynamical costs were crucial to replicate the speed-

dependences observed several subjects. Yet, although

they used a composite cost, some other subjects did

not exhibit speed-dependent behaviors.

To better understand the role of the weights onto the

speed-dependence of arm trajectories for each subject,

we varied the energetic (a1) and dynamic (a2)

coefficients of the composite cost (CðaÞ ¼ CKineþ
a1CEner þ a2CDyna) and evaluated the speed-dependence

of trajectories predicted from forward optimal control

simulations. The resulting slopes KRE, Ke3 and joint

space fitting error EJoint (the minimized quantity during

inverse optimal control) for the two subjects S5 (left)
and S14 (right) were computed and depicted in Fig. 8. It

is noteworthy that these two subjects had different

anthropometric parameters, thus allowing to test

whether anthropometric discrepancies could explain

differences in speed sensitivity at fixed composite cost.

For both subjects, the patterns of KRE and Ke3 were

relatively similar but the speed-dependence of S5

appeared to be much larger in terms of magnitudes.



Fig. 5. Reconstruction errors in joint space (EJoint) and Cartesian

space (ECart) for the best-fitting speed-dependent composite cost

(SDComp) and speed-independent composite cost (SIComp) as well

as each of the three cost elements taken separately, for the different

speeds (S, N and F). Error values were averaged across subjects

(with standard errors indicated by error bars). Noticeably, in terms of

both joint and Cartesian errors, the composite costs (SDComp and

SIComp) performed better than each elementary cost taken alone

(Kine, Ener and Dyna). Horizontal bars with stars indicate the results

of post-hoc analysis. One, two and three stars stand for p< 0.05,

p< 0.01 and p< 0.001 respectively.

V. H. Vu et al. / Neuroscience 328 (2016) 127–146 139
This implied that if both subjects had used the same

composite cost, S5 would intrinsically appear to be more

speed-dependent than S14 just because of

anthropometric peculiarities. On the other hand, by

changing the weights of the composite cost, subject S5

had the possibility to be more or less speed-dependent.

Similarly, subject S14 could be speed-dependent if

increasing the weights of the energy and dynamic

coefficients. Nevertheless, this would have changed

their arm trajectories (and the minimum in Ejoint graphs)

and this is why it was not found by the inverse optimal

control algorithm in the present data.

In summary, these 3D plots show that anthropometry

partly explains why a given composite costs may lead to

differences in terms of speed dependence of behaviors.

However, the composition of composite costs was

clearly idiosyncratic, thereby implying that different arm
trajectories also emerged across subjects because of

differences in the weighting of kinematic, energetic and

dynamic variables.
DISCUSSION

In this work, we examined the nature of motor planning

variables during free-endpoint arm reaching task. Three-

dimensional arm movements without a prescribed reach

endpoint location were investigated and how speed

instructions affected the chosen arm trajectories was

measured. The experimental results showed that the

reach endpoint (RE) and rotation axis displacements

(e3/SE) significantly varied with speed to an extent that

depended on individual factors. These idiosyncratic

behaviors were accounted for in the framework of

optimal control as the outcome of the minimization of a

cost weighting kinematic, energetic and dynamic

variables. The latter quantities were assumed to

represent (a priori) internal values guiding motor

decision within the brain and were essentially found to

be subject-specific but speed independent. These

results are discussed in more detail hereafter.
Unrestrained 3D arm trajectories: speed dependence
or independence

Our findings revealed significant speed-related changes

in both arm trajectories during the free 3D arm

movements under consideration, which contrasts with

classical conclusions drawn in point-to-point movement

studies. Whether the brain controls movement using

speed-sensitive or speed-insensitive planning strategies

is a long-standing issue in motor control. The term

speed-insensitive is used when prominent aspects of

the motor strategy (e.g. hand path, time-course

of velocity or acceleration) remain invariant in spite of

speed differences and/or when simple scaling rules

apply to the motor patterns. This question has been

extensively investigated for horizontal or vertical planar

point-to-point 2D movements (Soechting and Lacquaniti,

1981; Atkeson and Hollerbach, 1985; Flash and Hogan,

1985; Ostry et al., 1987; Gordon et al., 1994; Soechting

et al., 1995; Flanders et al., 1996). In those seminal stud-

ies, hand paths were generally considered as straight or

slightly curved and velocity profiles bell-shaped regard-

less of motion speed, as if a scaling law applied to an

unique movement pattern. Finer analyses however

revealed that the timing of velocity profiles was signifi-

cantly affected by the speed at which movements were

executed (Nagasaki, 1989; Papaxanthis et al., 1998,

2003), in agreement with the well-known fact that deceler-

ation duration increases when maximal accuracy and

speed are together required, such as in Fitts-like experi-

ments (Woodworth, 1899; Fitts, 1954; MacKenzie and

Iberall, 1994; Elliott et al., 2001. Even in those such set-

tings, however, the shape of hand paths was widely

accepted to be speed-invariant. Further studies extended

planar point-to-point reaching paradigms to the 3D case

to better tackle the speed-dependence question and lead

to the conclusion that, given an initial arm posture and a

final target position, neither the final arm posture nor the



Fig. 6. Simulated finger paths predicted from the best-fitting composite cost (SIComp) and average experimental finger paths for subject S5. Left.
3D finger paths for the three speeds for experimental (plain traces) and simulated (dotted lines) data. Right. The zoomed-in projections of finger

paths on the sagittal plane (top) and the transverse plane (bottom) for the last part of the movement, in order to emphasize differences. In general,

fitting errors mainly arose from the discrepancy of trajectories along the ML axis while along the AP axis (main axis of interest here), the simulated

trajectories better matched the recorded ones and clearly exhibited a speed dependence.

Fig. 7. Reconstruction errors for some relevant movement parameters (Ee3;ERE;EKe3
, E

KRE
) for the SDComp, SIComp costs and the three cost

elements taken separately. Error values were first averaged across speeds and then across subjects (with standard errors indicated by error bars).

Visual inspection reveals that in terms of both ERE and Ee3 the dynamic cost performs quite poorly compared to the other costs. In terms of E
KRE

and

E
Ke3

, the energy cost overestimates the speed dependence of RE and e3 parameters. Overall, the kinematic cost performs relatively well but the

composite costs perform significantly better than the latter. Importantly, the kinematic cost is also unable to account for any speed-dependence as it

predicts constant movement parameters for all speeds. Finally, no significant difference was found between the SDComp and SIComp.
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hand path curvature depended significantly on movement

speed (Nishikawa et al., 1999; Zhang and Chaffin, 1999).

This lack of significant differences may have been due to
the specification of a precise target to reach to, which

could have limited the expression or the finding of

speed-dependent arm trajectories. Indeed our protocol



Fig. 8. 3D plots of KRE;Ke3 and EJoint for the two typical subjects S5 (left) and S14 (right) as a function of the weights of the composite cost CðaÞ. In
these graphs, a1 and a2 where varied to visualize how the speed dependence as well as the error minimized during inverse optimal control varied

according to the chosen weights. Remind that CðaÞ ¼ CKine þ a1CEner þ a2CDyna. The squares indicated on each 3D plot show the position of the

best-fitting speed-independent composite cost (SIComp) found during inverse optimal control. S5 and S14 have different anthropometric

characteristics. Interestingly, by choosing appropriate a1 and a2 weights, subjects could exhibit different degree of speed dependence (almost zero

KRE/Ke3 or negative KRE/Ke3). For example, S14 could have been speed dependent if he/she chose a different cost combination (but this was not

uncovered here because his/her trajectories were not compatible with such a cost function.
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defined looser task constraints in terms of the final hand

position, which may be the reason why the reach endpoint

as well as certain joint displacements depended signifi-

cantly on the motion speed. Dealing with tasks involving
undefined reach endpoints is nevertheless ecological

and occurs in many tasks. For example catching a ball

(e.g. Cesqui et al., 2012) is a task involving an infinity of

possible reach endpoints along the ball’s trajectory. The
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existence of differences between constrained and uncon-

strained tasks was already noticed in Desmurget et al.

(1997). The speed dependence found here for discrete

movements is also consistent with what Isableu et al.

(2009) observed during a cyclical yet comparable arm

movement task in which a similar speed-dependent tun-

ing of motor strategy was observed for some subjects.

To account for the experimental arm trajectories, we

had recourse to inverse optimal control as it makes

hypotheses about the nature of the variables possibly rel-

evant to motor planning.

Motor planning variables: kinematic, energetic,
dynamic or composite

The above issue about the speed dependence of motor

strategies is actually tightly linked with the nature of

hypothetical cost functions involved in motor planning,

as already noticed in Soechting and Flanders (1998).

The former problem actually gains at being rephrased

within the normative framework of optimal control as it

simplifies both its formulation and analysis. Indeed, ana-

lyzing the subjects’ behavior in terms of cost functions

instead of a bunch of 3D arm trajectories can be seen

as a dimensionality reduction since a cost function sum-

marizes the spatiotemporal characteristics of an infinity

of joint trajectories at once (see Berniker and Kording,

2015). In the optimal control context, the issue of kine-

matic versus dynamic motor planning has been the topic

of several investigations (Flanagan and Rao, 1995;

Soechting et al., 1995; Wolpert et al., 1995; Soechting

and Flanders, 1998; Vetter et al., 2002; Hermens and

Gielen, 2004). Here, solely optimizing an energetic or a

dynamic criterion was not adequate for replicating the

basic features of arm trajectories: the reach endpoints

and the final postures were just too discrepant with the

data (see Fig. 7). In contrast, optimizing a kinematic cost

performed quite well at a first sight. Accordingly, it was

found to be the primary cost accounting for the arm dis-

placement of subjects and the dominant humeral rota-

tions. Rotations around the humeral axis (i.e. SE axis)

were interpreted in Soechting et al. (1995) as cues of a

planning of energetically efficient arm trajectories but

the present task shows that strictly rotating around the

humeral axis was not energetically optimal (at least when

energy expenditure is measured by the absolute work of

muscle torques and not as the peak of positive work as

in Soechting et al. (1995)). The kinematic cost was how-

ever not appropriate if one considers the speed-

dependence of behaviors. Indeed, such a kinematic cost

predicts invariant patterns of joint trajectories when speed

varies. Hence, speed does not affect hand path in such

models, which was not compatible with the behavior of

most participants. From a computational standpoint, kine-

matic models may be appealing as they do not require

new inverse internal model to extract adequate motor

commands matching a wide range of velocities. Indeed,

taking gravitational and frictional torques apart, the struc-

ture of rigid body dynamics is such that movements of dif-

ferent speeds can be generated from a single torque

pattern s despite the non-linearity of the arm dynamics

by means of a simple scaling law of the type
~sðtÞ ¼ r2sðrtÞ (see Hollerbach and Flash, 1982 for details).

More generally, any strategy relying on such a spatiotem-

poral rescaling of a reference torque pattern (be it initially

based upon kinematic, kinetic or any composite optimality

criteria) would yield the same hand paths and final pos-

tures. Even though experimental evidence was provided

for a separation between tonic versus speed-related pha-

sic muscle activity during point-to-point motor tasks

(Flanders and Herrmann, 1992; Flanders et al., 1996),

the fact that the reach endpoints or other parameters

depended significantly upon speed in our data made

impossible such a basic scaling principle. The systematic

and consistent speed-dependent changes of arm trajecto-

ries observed in the present study rather supported the

existence of a composite cost underlying the formation

of arm trajectories for the range of speeds under consid-

eration. Furthermore, geometric models such as the geo-

desic model (Biess et al., 2007) would not be able to

account for these experimental findings as they hypothe-

size a decoupling between the geometric and temporal

properties of movement, which is at odds with our exper-

imental findings. Therefore, taken together, our findings

revealed the composite nature of the cost function under-

lying arm movement. These findings extended those

found for planar motion in Berret et al. (2011b). Other

studies using a different motor task (landing after a verti-

cal jump) reached very similar conclusions about the com-

bination of energetic/dynamic criteria with other factors

such as comfort or smoothness (Zelik and Kuo, 2012;

Skinner et al., 2015).

Flexibility of the composite optimality criterion

Within the theory of composite cost functions, there exist

intriguing questions pertaining to the degree of flexibility of

the combinations. In particular, whether speed affects or

not the way elementary costs are weighted was an open

question. If results indicate that kinematic, energetic and

dynamic costs must be combined to fit the data to the

greatest possible extent, the relative relevance of each

of these quantities may differ as their order of

magnitude also vary with speed. It could be possible

that at large speeds, limiting angular jerk because more

important than minimizing energy expenditure. In Berret

et al. (2011b), arm trajectories starting from several initial

postures were studied and a single composite cost was

assumed to account for movements starting from all posi-

tions at once. However, the study only considered a single

movement pace, namely a quick speed. Thus, whether a

single combination of costs would also be valid for move-

ments performed at various speeds was uncertain even

though, within the composite cost hypothesis, under-

standing the extent to which the weights depend on exter-

nal or internal factors seems crucial. The question is also

relevant when attempting to predict the pace of natural

movements (Shadmehr, 2010; Shadmehr et al., 2010;

Berret and Jean, 2016). In these works, a cost of time

was assumed to be combined with trajectory costs (i.e.

the subjective costs studied here) and other objective

costs. How speed instructions affect such mixtures of

costs is not clear especially if the exact nature of the tra-

jectory costs changes with speed instructions. When
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instructed a subject to move fast or slow, which weights

are exactly modified is hard to identify in general. Here

we addressed this problem (without considering the cost

of time as it does not matter when movement time is taken

directly from experimental data as we did here) and

assessed whether the weights depended or not on the

instructed speed. Our results supported the fact that the

speed dependence of arm trajectories of each participant

could be accounted for by a unique composite cost (i.e.

with invariant weights). Indeed, no significant gain was

found when tuning the weights according to the instructed

speed. This is especially if one considers the addition of

new fitting parameters when doing so. Following Occam’s

razor principle, we could not retain the more complex

model consisting of adjusting the weights according to

movement speed. While we cannot exclude that the

weights of objective costs such as accuracy or precision

did not change when speed increased because we did

not model sensorimotor noise, our conclusions only con-

cern the subjective optimality criterion. Simulations con-

ducted within the stochastic optimal control framework

would be required to address such questions (Todorov,

2006), but the numerical tools are not as advanced as

in the deterministic settings and therefore treating the

stochastic case was not considered. We cannot exclude

neither the existence of other subjective costs (there is

infinity of movement-related costs and other costs less

quantifiable such as discomfort, pain, gracefulness etc.)

but the present findings nonetheless argued for a

subject-specific composite nature of motor planning vari-

ables. It could still be argued that the participants exhibit-

ing the strongest speed dependences of arm trajectories

simply suffered from inaccurate sensorimotor control,

which would just be emphasized at large speeds. How-

ever, the consistency of speed-related fluctuations across

trials for these participants tends to disagree with this

hypothesis. Moreover, the CNS is known to have good

capabilities to predict and anticipate interaction torques

(Gribble and Ostry, 1999) and the inertial anisotropy of

the human arm (Gordon et al., 1994; van Beers et al.,

2004) during motor planning as well as gravity (Berret

et al., 2008; Gaveau et al., 2011, 2014). Therefore, rather

than interpreting their behaviors as the realization of inef-

ficient motor control, we instead interpret them as the out-

come of efficient motor control, which may be the

signature of a composite cost proper to each individual.
Inter-individual differences

Interesting inter-individual differences were pointed out

throughout the study, especially with respect to speed

instruction. Motivated by applications in neuro-

rehabilitation, neuro-prosthetics and related areas, the

study of inter-individual differences has developed as a

hot topic of research in recent years. Many researchers

tried to find whether idiosyncrasy arises from a

peripheral or central origin and tried to elaborate on

principles that could account for them. In this vein, initial

assumptions were related to a different involvement and

exploitation of frames of reference (e.g. visual versus

kinesthetic) and to changes from one frame of reference
to another with respect to execution speed (Pozzo

et al., 1991; Isableu et al., 2003; Bernardin et al., 2005).

Recently, Isableu et al. (2009) provided evidence of indi-

vidual differences in a task where cyclical 3D arm move-

ments were experimented. These authors showed that

different subjects moved preferentially around different

rotation axes: some participants always rotated their

arm around the geometrical articular axis (termed as

‘‘kinematicians”) or around the minimum inertia axis

regardless of speed (termed as ‘‘dynamicians”) while

other switched from the geometrical to the minimum iner-

tia axis when movement speed increased. It was pro-

posed that these rotational axis preferences could

originate from prior sensorimotor strategies experienced

by the subjects. These strategies indeed allowed subjects

to differentially exploit the dynamical arm properties and

the passive torques (e.g. interaction or gravity torques)

in order to minimize the inertial resistance as well as the

muscle torque input to the movement. It is however hard

to separate differences due to anthropomorphic or periph-

eral specificity from those arising from different motor

planning principles. The current results thus extend these

previous findings for a discrete task and refined them

within the context of optimal control. In particular, our

results further showed that the subject-specific motor

strategies actually correspond to different subjective com-

posite costs. In fact, optimal control simulations take into

account the anthropometric characteristics of each partic-

ipant and if differences between subjects could be

explained by such body-related peculiarities then the

same composite cost function would have been identified

using inverse optimal control. Since different subjects

appeared to weight very differently the cost elements,

our results rather argue in favor of divergences in the cen-

tral representation of movement and the subjective values

actually attributed to the motor task (smoothness,

mechanical energy, muscle torques. . .). The importance

of individual factors when the task constraints are loose,

as during such a free-endpoint reaching task, was already

pointed out by Cesqui et al. (2012) in a ball catching task.

In this task, equally successful yet very different motor

solutions were adopted by subjects. We showed that such

different solutions were not fully due to musculoskeletal

discrepancies across participants but may rather reflect

different subjective costs that can operate vicariously.

More precisely here our results revealed that the subjects

who presented relatively invariant trajectories generally

relied upon a kinematic objective or a combination of kine-

matic and a small amount of energetic objectives regard-

less of speed (Fig. 8), while other participants who

presented a change of trajectories often relied upon a

combination of kinematic, energetic and dynamic objec-

tives. Depending on the composite cost chosen, varying

the anthropometric characteristics could change the

degree of speed-dependence of an individual. On the

other hand, for fixed anthropometric characteristics, the

relative weights defining the composite cost were critical

to explain the degree of speed-dependence of each par-

ticipant, which proved that inter-individual differences

were not only due to anthropometric divergences but also

to central factors. These factors may be encoded and
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traded-off through the cortex-basal ganglia network (e.g.

Scott, 2004; Turner and Desmurget, 2010 for reviews)

where these variables shaping arm movement trajectories

would be valued and might guide motor planning in terms

of objective and subjective costs or rewards.

Research limitations

One could wonder whether the reconstruction errors we

obtained are small enough to conclude that the

composite cost really constitutes a high-level

representation of motor planning objectives. It is indeed

undeniable that there might still exist a more universal

cost accounting better for the present experimental

data. Finding such a ubiquitous cost function would be

appealing for motor control but what would be its nature

and shape is still an open question. Thus far, the

existing literature has reported the relevance of several

cost functions in the exact same way that

neurophysiological studies have reported cortical

representation of a large variety of movement-related

parameters ranging from kinematic (spatial or

nonspatial) to dynamic or muscular. Therefore,

assuming composite cost functions is a solution

compatible with previous findings that may moreover

reconcile prior computational and empirical studies.

Within this composite cost hypothesis, knowing which

elementary cost should be included may nevertheless

be tricky as candidate costs are numerous. The

situation is even more complex with regards to the

number of DoFs of the system. Precisely, any cost such

as the angle jerk is intrinsically composite since different

weights could be attributed to different DoFs. In general,

researchers have assumed that all those weights are

equal to one (including in the present study) for the

sake of simplicity but one can easily imagine that such

weights actually vary across DoFs. Throughout our

analyses, we thus conducted supplementary tests to

evaluate whether reconstruction error could be improved

by (i) adding other elementary costs or (ii) tuning the

weights of the kinematic, energetic and dynamic costs

for each DoF separately. To test (i) we added costs

such as acceleration, geodesic and muscle torque as in

Berret et al. (2011b). In this case, the best-fitting speed-

independent composite cost yielded maximal Cartesian

deviations (i.e.ECart values) of 4.3 ± 2.6 cm, which is not

much smaller than when dealing with three costs as we

did in our study. Hence the three costs we retained in

the current study were quite relevant to account for the

present data. This was confirmed when looking at (ii).

When we allowed optimization of the weights associated

to each DoF separately we found ECart values of 3.1

± 2.1 cm. Compared to the 5 cm in our main results,

the improvement seems notable even though this

approach required 11 variables to be adjusted during

the inverse optimal control process (instead of 2 other-

wise). This finding suggests that a fine tuning of the

weight at each DoF would allow a better replication of

the real arm trajectories. However, this approach would

drastically complicate the analysis unless one groups

the weights according to the underlying type of cost, i.e.

kinematic, energetic and dynamic, as we eventually did
here. As such, these considerations show that our main

conclusions about the compositeness and speed-

dependence of optimality criteria would not differ if choos-

ing slightly different modeling approaches.
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