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Open-loop stochastic optimal control of a passive
noise-rejection variable stiffness actuator:

application to unstable tasks
Bastien Berret, I Yung and Francesco Nori

Abstract—In this paper we propose a methodology to con-
trol a novel class of actuators that we called passive noise
rejection variable stiffness actuators (pnrVSA). Differently
from nowadays classical VSA designs, this novel class of
actuators mimics the human musculoskeletal ability to in-
crease noise rejection without relying on feedback. To fully
highlight the potentialities behind these actuators we con-
sider movement planning under two constraints: (1) absence
of feedback, i.e. purely open-loop planning1; (2) uncertain
dynamic model. Under these constraints, movement plan-
ning can be formalized as an open-loop stochastic optimal
control. Due to the lack of classical methods forcing the
open-loop nature of the computed solution, we used here
a slight modification of available methodologies based on
importance sampling of trajectories using forward diffusion
processes. Simulations show that the proposed algorithm
can be effectively used to plan open-loop movements with
pnrVSA. In particular, two different scenarios are consid-
ered: the control of a single joint pnrVSA and the control of
a two degrees of freedom planar arm equipped with antago-
nist pnrVSAs at each joint. In both cases, movement has to
be planned in presence of uncertain dynamics for unstable
tasks. It is shown that open-loop stochastic optimal control
can modulate the intrinsic stiffness of the system to cope
with both instability and noise.

Index Terms—open-loop stochastic optimal control, noise
rejection, variable stiffness actuator, unstable task

I. Introduction

Designing and controlling robots with rigid actuators is
an idealization that becomes limiting for some tasks or
applications. In the field of robotics, current interest in
variable stiffness actuators (i.e. actuators with adjustable
rigidity) has been mainly concentrated on safety, interac-
tion and mechanical robustness. Nowadays there is enough
evidence supporting the idea that humans exploit muscle
co-activation (which is related to rigidity regulation) to
cope with sensorimotor delays and noise in presence of in-
stabilities [1]. This aspect has been weakly explored in
robotics and the current article tries to explore its potential
by showing (in a stochastic scenario) that certain types of
variable stiffness actuators can cope with instabilities in an
open-loop manner (i.e. without relying on feedback). The
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1 A more realistic scenario would consider a mixture of open-loop
and closed-loop control but in this paper we stress on the first to
fully understand the features behind pnrVSA.

finding that monkeys actually specify the intrinsic muscu-
loskeletal impedance even when deafferented [2], further re-
inforced the idea that stiffness regulation is indeed a crucial
movement feature that (in biological systems) is not real-
ized with explicit feedback loops. Heavily relying on feed-
back in artificial agents (such as humanoid robots) might
not be a viable strategy especially considering the growing
amount of sensors (e.g. below the traditional ones: whole-
body distributed tactile sensors [3], whole-body distributed
force/torque sensors [4], whole-body distributed gyros and
accelerometers [5]) which are currently available and have
to be centrally acquired/processed to perform complex ac-
tions. Along this direction we recently proposed [6] a cou-
pling between variable stiffness actuation (VSA, e.g. [7])
and open-loop (e.g. [8]) stochastic optimal control (SOC;
e.g. [9,10]) as an attractive framework to circumvent prob-
lems related to temporal latencies in transmissions or noisy
state estimations related to feedback control.
In this paper we further proceed along this line of research.
The original contribution of this paper is the derivation of
a complete framework to efficiently control pnrVSA in a
stochastic optimal control context. First, we present a sim-
ple algorithm to compute open-loop controllers from the
formulation of generic stochastic optimal control (SOC)
problems. Quite a number of solutions exist for closed-loop
stochastic planning [11–13]; here we use a recent approach
called path-integral SOC to construct controllers that cope
with an issue which is often neglected for practical2 and
technical3 reasons: the absence of feedback (i.e. pure
open-loop planning). The effectiveness of the framework
is shown in the context of unstable tasks, for which coping
with uncertainties without explicitly relying on feedback is
very challenging.
The paper is organized as follows. Section II-B describes
the class of variable stiffness actuators considered in this
paper and gives its dynamical model. Section II-C presents
our modification of classical closed-loop approaches to deal
with open-loop planning. Section II-D discusses the con-
sidered tasks, a single joint and a two degrees of freedom
planar arm both controlled under stochastic and unstable
conditions. Section III presents the simulation results and

2 Robots nowadays rely on fast feedback loops with delays and
latencies of approximately 1ms; it makes therefore no sense to force
solutions which do not take into account this efficient feedback. Our
motivation is slightly different and therefore the request of open-loop
solutions becomes a necessity.

3 To our knowledge, focus on open-loop control is difficult in this
kind of literature mainly because the Hamilton-Jacobi-Bellman equa-
tion naturally leads to a feedback solution.
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Figure 1. Variable stiffness actuator with passive noise rejection.
The variable θ1 and θ2 are the motor angles, the variable q is the
joint angle. The constants θ′1 and θ′2 are fixed angles of reference.

proves that the proposed VSA actuator model can deal
in open-loop with the extreme tasks considered. Finally
Section IV draws the conclusion.

II. Methods

A. Framework and rationale

This work relies on several conceptual considerations that
are important to describe. First, throughout this paper, we
shall consider a variable stiffness actuator allowing to em-
ulate the human-like property of muscle co-contraction in
order to reject disturbances. This VSA device has been al-
ready described thoroughly in [14–16] and thus only a brief
description of it will be given in Section B. The relevance
of such property for VSA can be exemplified in the context
of unknown dynamics/environment, for which uncertainty
is often model mathematically as noise. All physical and
biological systems are actually affected by such a noise to
some extent. We argue here that one fundamental advan-
tage of VSA is to cope with all unpredictable fluctuations
affecting such a stochastic control system. Additionally,
we will voluntarily prevent us from using feedback con-
trol in order to emphasize that VSA can play the role of
an immediate feedback via adequate co-contraction. We
choose this extreme scenario to prove the possible useful-
ness of noise-rejection VSA in the context of stochastic
dynamics. Therefore, we will focus on open-loop stochas-
tic control. Since co-contraction usually costs energy, an
additional goal is to minimize energy consumption and to
automatically find the minimal stiffness required to per-
form the task. Thus, the controller must optimally trade-
off stiffness and compliance depending on the task and the
noise magnitude. For all these reasons, our framework will
be the one of open-loop stochastic optimal control. The
chosen approach will be reviewed in Section C. Finally, all
the above-mentioned ideas will be emphasized in the case
of unstable tasks, i.e. tasks in which noise can make the
system diverge very rapidly if feedback is delayed. The ref-
erence case that motivated most of this work is presented
in [1]. Section D will present the unstable tasks we consider
here.

B. Variable stiffness actuator

Figure 2. Variable stiffness actuator with passive noise rejection. A
picture of the first prototype.

Here we consider the variable stiffness actuator that we
previously developed in [14–16] and that we named pas-
sive noise rejection variable stiffness actuator: pnrVSA.
A thorough discussion of various classes of VSA is out of
the scope of this article, but one crucial difference in the
chosen VSA design is its ability to “passively reject noise”
via co-contraction. See for instance [17] for a similar class
of VSA, yet lacking this property. Here, for one joint,
the actuation system is constituted of 4 non-linear flexible
transmission elements, two of which being connected to a
fixed reference. Figure 1 sketches the pnrVSA considered
in this paper.

Assuming cubic springs for simplicity, the dynamical sys-
tem can be derived from Lagrangian mechanics, and are
as follows:

Iq̈ = k1(θ1 − q)3 + k2(θ2 − q)3 − bθ̇ + τ,

I1θ̈1 = k1(q − θ1)3 + k′1(θ′1 − θ1)− b1θ̇1 + τ1,

I2θ̈2 = k2(q − θ2)3 + k′2(θ′2 − θ2)− b2θ̇2 + τ2.

(1)

Remarkably, in this formulation there is no direct control
on q which is anyway the variable to be controlled. The
quantity τ is only used to represent the external interaction
with the environment. The internal driving torques, which
are antagonist, are denoted by τ1 and τ2. Their combined
action is used to indirectly control q via the net torque
τq = k1(θ1 − q)3 + k2(θ2 − q)3 which in a sense represents
the internal torque acting on q. Remarkably the quantity
Kq = −∂τq/∂q = 3

(
k1(θ1 − q)2 + k2(θ2 − q)2) can be

used to represent the stiffness of the variable q due the
internal torques. The fact that this stiffness can be tuned
with the variables θ1 and θ2 accounts for the possibility to
reject disturbances by “co-contracting” the two antagonist
actuators.

When dealing with a multi-joint system, each joint is
equipped with such pnrVSA system. In the present work
we neglect bi-articular actuators whose role will be inves-
tigated in future studies. In our simulations, we will con-
sider a 2-joint planar arm equipped with two pnrVSA, as
depicted in Figure 3.

Still considering cubic springs, the complete system dy-
namics writes as:
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Figure 3. 2-dof arm equipped with antagonist pnrVSAs and illus-
tration of the unstable task considered in Subsection D.

M(q)q̈ =
(
τ1 − τ2 + τext −C(q, q̇)

)
,

τi = ki1(θi1 − qi)3 + ki2(θi2 − qi)3,

Iij θ̈ij = kij(qi − θij)3 + k′11(θ′ij − θij)3 − bij θ̇ij + Fij ,
i = 1, 2

The first row represents a standard rigid body dy-
namics (with the mass matrix M and the Corio-
lis/centripetal/friction term C), the second row repre-
sents the torques caused by the spring elongations and the
last row represents the internal actuation dynamics of the
spring contraction. Importantly, the stiffness of variable qi
will be expressed as Kqi

= 3ki1(θi1 − qi)2 + 3ki2(θi2 − qi)2

for i = 1, 2.

It is straightforward to write these dynamical systems in
state space and to see that they fall in the class of system
considered in Subsection C.

C. Open-loop stochastic optimal control

In all the reported simulations, we consider stochastic non-
linear control-affine systems:

dx = a(x(t), t)dt+B(x(t), t)u(x(t), t)dt+C(x, t)dw, (2)

where the variable w denotes a standard m-dimensional
Brownian motion, x(t) ∈ Rn is the state of the system and
u(x, t) ∈ Rm is the control (at this point, the control is a
function of both the time and the state). The controlled
stochastic differential Equation (2) is defined in the sense of
Itō’s integral. In the following, we will often omit explicit
dependencies on x or t to simplify notations.

Additionally, we consider an expected cost of the form:

J(x0, t0) = E[φ
(
x(tf )

)
+

tf∫
t0

q(x, t) + 1
2u>Ru dt], (3)

in which the source state x0 and initial time t0 are assumed
to be known and fixed.

Equations (2)-(3) form a quite general class of stochastic
optimal control (SOC) problems, whose optimal control u

can be expressed as u = −R−1B>∇xJ(x, t), where the op-
timal cost-to-go function J satisfies the stochastic version
of the Hamilton-Jacobi-Bellman equation:

−Jt = min
u

[q + 1
2u>Ru + (a +Bu)>Jx + 1

2 tr(CC
>Jxx)].

(4)

It is now well-known (see [11–13]) that this partial dif-
ferential equation can be made linear if we rewrite it in
terms of the desirability function ψ = exp(− 1

λJ) and if
we further assume that C = B

√
λR−1 for some chosen

λ. It can be then shown that the optimal control can be
expressed at each state/time as a path integral [11, 18],
that can be approximated via importance sampling meth-
ods. This is in this framework that the PI2 algorithm was
developed [13]. Here we use a pretty similar algorithm,
though we will not make use of the dynamic movement
primitives. Although the optimal control is theoretically a
feedback control law, the algorithm is designed such as to
find an open-loop control policy. In order to present the
numerical algorithm used to derive open-loop controls, we
now consider a discrete-time representation of Eq. (2):

xi+1 = xi + aidt+Biuidt+
√
dtCiεi, (5)

with εi = N (0, Im) (centered and normalized Gaussian
noise) and with εi = N (0, Im) (centered and normalized
Gaussian noise) and dt = T

n
, T = tf − t0, xi = x(idt+ t0)

with i ∈ [0, n]. We denote a path starting at state xi by
τ i = (xi, ...,xn).

Algorithm 1 Main steps of the path integral SOC algo-
rithm used in simulations.
1. Initialize u = (u0, ...,un−1).
2. Sample K paths τ

(k)
0 starting from x0 using Eq. 5

(forward sampling using the guided diffusion)
3. For all i = 0..n−1, compute the control update δui =

K∑
k=1

P (τ (k)
i )uL(τ (k)

i ) given:

• S(τ (k)
i ) = φ(x(k)

n ) +
n−1∑
j=i

u>j B>j H−1
j [Cjε(k)

j

√
dt +

1
2Bjujdt)] +

n−1∑
j=i

q
(k)
j dt] (generalized cost)

• P (τ (k)
i ) =

exp
(
− 1

λS(τ (k)
i )
)

K∑
k=1

exp
(
− 1

λS(τ (k)
i )
) (probability of a

path)
• uL(τ (k)

i ) = R−1B>i H
−1
i ε

(k)
i

√
dt and Hj = BjR

−1B>j
(local control induced by noise instance)

4. Update ui using uidt ← Miuidt + δui, with Mi =
R−1B>i H

−1
i Bi.

5. Reiterate from step 2 and continue until convergence
or maximum number of iterations
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Justifications for the above algorithm can be found in [11]
and [13].

D. Unstable tasks

We shall illustrate the effectiveness of pnrVSA for unstable
tasks. The first task is a simple proof-of-concept example
involving a single-joint system evolving a divergent force
field as inspired by [1]. The second task is a multi-joint
arm that is pushing against a wall with its endpoint. This
more complex example can be viewed as a simplified mod-
eling of screw driving, which is a typical daily life unstable
task. Note that all simulations will be conducted in the
framework of open-loop stochastic optimal control.

The first task thus involves stabilizing one joint in a di-
vergent force-field environment and in open-loop. In state
space, setting x = (q, θ1, θ2, q̇, θ̇1, θ̇2)> we can rewrite the
system given by Eq. (1) in the control-affine form given
by Eq. 2. We consider a state-dependent cost φ(x) =
q(x) = xTQx, with Q = diag(105, 0, 0, 103, 103, 103),
which essentially penalizes deviations of the variable q
from zero. We set λ = 0.1. The initial and final con-
figurations were defined as x(tf ) = (0.5, 0, 0, 0, 0)> and
x(0) = (0,−0.5, 0.5, 0, 0, 0)> and the task duration was
tf = 1 s. The nonlinear transmission elements (i.e. cubic
springs) were characterized by the following parameters:
I = Ii = 0.1, ki = k′i = 2 and b = bi = 2, i = 1, 2. The
ground position was set to θ′1 = θ′2 = 0. Note that we
also added a cost to penalize unrealistic behaviors, such as
having a spring crossing the reference into the term q(x).

For the simulations we chose a step size dt = 0.01 s. We
used K = 1000 samples at each update for a total of 200
main iterations. We checked that the number of iterations
was large enough to get a stabilized solution (a posteriori).
The task was made more challenging by introducing a spe-
cific force field acting on the end-effector composed of a
divergent torque and a constant one: τ = Kdivq + τc with
Kdiv = 5 N.m/rad and τc = −5 N.m. The goal of the task
was to move from the initial state to a final end-effector
resting position (the choice of θ1(tf ) and θ2(tf ) being free
and found automatically) using an open-loop control and
minimizing the amount of control effort.

The second task is a simplification of screw driving and
was illustrated in Figure 3. The properties of 2-dof arm
are based on human-like measures: l1 = 0.3 m, l2 =
0.4 m, m1 = 1.4 kg, m2 = 1.1 kg, center of mass posi-
tions lc1 = 0.11 m, lc2 = 0.16 m, and moment of inertia
of each joint is computed by milc

2
i . The friction of in-

ternal motors are chosen to reduce the oscillation in the
system, b11 = b12 = b21 = b22 = 4Nm/sec and the inertia
of the motors are assumed to be 2 Nm/sec2. The springs
stiffness are k11 = k12 = k21 = k22 = 100 Nm/rad The
wall reaction force enters into the dynamics via a term
τext = J>y (q)λphysical. The task is defined such as to push
against the wall with a constant force equal to 10 N in the
y-axis and this constraint is added to the state-dependent

Figure 4. Control of the pnrVSA in an unstable task. 1st row:
position and speed of the end-effector. 2nd row: Intrinsic rotational
stiffness and feedforward torque applying to the end-effector. 3rd
row: Displacements of the internal motors. Red: R = 0.1 × Id2×2,
Blue: R = 0.01 × Id2×2 (higher noise entering into the system and
cheaper control cost). The mean trajectories across 50 trials are
depicted (shaded areas are standard errors). Note that τq = k1(θ1 −
q)3 + k2(θ2 − q)3 and Kq = 3

(
k1(θ1 − q)2 + k2(θ2 − q)2

)
.

cost, along with the constraint of maintaining the end-
effector at the position x = 0.3 and y = 0.4. The goal
is to maintain this arm configuration for two seconds in
open-loop and by minimizing the amount of control en-
ergy in order to find the minimal level of co-contraction.
Instability in this case results from the fact that pushing
against the wall with a constant normal force causes un-
wanted tangential dragging when the link is not normal to
the wall itself.

III. Results

A. Open-loop single-joint stabilization in an unstable task

Before describing the simulation results, we should stress
that minimizing the control energy makes perfectly sense
for pnrVSA because a large stiffness implies a large control
energy which turns into passive noise-rejection property:
this is not available in other VSA designs. This feature
is similar to the large metabolic energy expenditure asso-
ciated with co-contraction of human muscles, which thus
motivates the design of “just stiff enough” control laws.
The fact that we stick to open-loop control laws is just to
illustrate the properties of pnrVSA for such an extreme
case, but this does not prevent the use of feedback laws or
model predictive control in real applications. The simula-
tion results presented below can just be improved by using
feedback laws.
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Note that in the method we used the relationship C =
B
√
λR−1 is required, and therefore we have a link between

the control cost and the noise magnitude. In Figure 4
we tested different levels of noise affecting the system by
changing R. A decrease of R results in an increase of the
noise magnitude, but also reduces the control cost, thus
reinforcing the relative weight of state-dependent costs. In
other words, the more the noise the more co-contraction
is allowed at equivalent control-cost. Another way to vary
the noise but without affecting the cost is to vary λ di-
rectly. Similar behaviors can be observed, the main ob-
servation being that the intrinsic stiffness of the system is
significantly increased when uncertainty and/or instabil-
ity increase. This low-dimensional example illustrates the
possibility to perform challenging tasks in open-loop, while
this would not be possible without the pnrVSA. This also
show that the controller can adapt the degree of uncer-
tainty/noise by adjusting the stiffness optimally.

The second task is the case of an 2-dof arm equipped with
our pnrVSA pushing against a wall. In this case, we set
R = Id4×4 and λ = 1, thus fixing the noise covariance ma-
trix via the above-mentioned equation for C. The results
of depicted in Figure 5.

The simulations showed that the task could be approx-
imately performed in open-loop with a minimal level of
stiffness of the system despite the additive noise acting
on the system. Of course, a greater accuracy could be
achieved if we used feedback control as well. Neverthe-
less, our framework provides good reasons to optimally
set stiffness of such systems in order to optimally reject
noise disturbances and ensure a reasonable behavior even
in open-loop.

IV. Conclusion

Recently, a number of novel actuator designs with vari-
able passive properties have been proposed. One of the
proposed designs (pnrVIA; [15]) allows for simultaneous
control [16] of passive stiffness and passive noise rejection.
The specific features of this new actuator principle calls for
novel models for movement planning: in this paper we pro-
posed open-loop stochastic optimal control. Given the lack
of available algorithms for numerically solving this class of
problems, the paper relied on a slight modification of avail-
able methodologies. The proposed methodology falls into
a class which relies on stochastic sampling of diffusion pro-
cesses to approximate path integrals. To our knowledge,
focus on open-loop control is unique in this kind of liter-
ature, mainly because the Hamilton-Jacobi-Bellman equa-
tion naturally leads to a feedback solution. The proposed
algorithm has been used for open-loop movement and stiff-
ness planning with pnrVSA. Experiments have shown that
the idea of open-loop controllers nicely fits with the pro-
posed numerical simulation, where unstable and uncertain
tasks were performed by exploiting the nice property of a
class of VSA actuators, nominally the ability to change the

system passive stiffness and noise rejection by actuators co-
activation (and therefore without relying on sensory feed-
back). The development of such actuators providing in-
trinsic and immediate feedback via co-contraction stresses
the need for developing more specific methods of open-
loop stochastic optimal control. This could be done in the
spirit of the present work, by making use of an infinite-
dimensional Pontryagin Maximum Principle [8] or by using
the Stochastic Maximum Principle [19].
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