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I. Introduction

Designing and controlling robots with rigid actuators is an idealization that becomes limiting for some tasks or applications. In the field of robotics, current interest in variable stiffness actuators (i.e. actuators with adjustable rigidity) has been mainly concentrated on safety, interaction and mechanical robustness. Nowadays there is enough evidence supporting the idea that humans exploit muscle co-activation (which is related to rigidity regulation) to cope with sensorimotor delays and noise in presence of instabilities [START_REF] Burdet | The central nervous system stabilizes unstable dynamics by learning optimal impedance[END_REF]. This aspect has been weakly explored in robotics and the current article tries to explore its potential by showing (in a stochastic scenario) that certain types of variable stiffness actuators can cope with instabilities in an open-loop manner (i.e. without relying on feedback). The
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1 A more realistic scenario would consider a mixture of open-loop and closed-loop control but in this paper we stress on the first to fully understand the features behind pnrVSA.

finding that monkeys actually specify the intrinsic musculoskeletal impedance even when deafferented [START_REF] Polit | Characteristics of motor programs underlying arm movements in monkeys[END_REF], further reinforced the idea that stiffness regulation is indeed a crucial movement feature that (in biological systems) is not realized with explicit feedback loops. Heavily relying on feedback in artificial agents (such as humanoid robots) might not be a viable strategy especially considering the growing amount of sensors (e.g. below the traditional ones: wholebody distributed tactile sensors [START_REF] Del Prete | Control of Contact Forces: the Role of Tactile Feedback for Contact Localization[END_REF], whole-body distributed force/torque sensors [START_REF] Fumagalli | Force feedback exploiting tactile and proximal force/torque sensing. Theory and implementation on the humanoid robot iCub[END_REF], whole-body distributed gyros and accelerometers [START_REF] Wieser | Accelerometer based robotic joint orientation estimation[END_REF]) which are currently available and have to be centrally acquired/processed to perform complex actions. Along this direction we recently proposed [START_REF] Berret | Stochastic optimal control with variable impedance manipulators in presence of uncertainties and delayed feedback[END_REF] a coupling between variable stiffness actuation (VSA, e.g. [START_REF] Schiavi | Vsa-ii: A novel prototype of variable stiffness actuator for safe and performing robots interacting with humans[END_REF]) and open-loop (e.g. [START_REF] Palmer | A hamiltonian approach using partial differential equations for open-loop stochastic optimal control[END_REF]) stochastic optimal control (SOC; e.g. [START_REF] Mitrovic | A computational model of limb impedance control based on principles of internal model uncertainty[END_REF][START_REF] Buchli | Learning variable impedance control[END_REF]) as an attractive framework to circumvent problems related to temporal latencies in transmissions or noisy state estimations related to feedback control.

In this paper we further proceed along this line of research. The original contribution of this paper is the derivation of a complete framework to efficiently control pnrVSA in a stochastic optimal control context. First, we present a simple algorithm to compute open-loop controllers from the formulation of generic stochastic optimal control (SOC) problems. Quite a number of solutions exist for closed-loop stochastic planning [START_REF] Kappen | A linear theory for control of non-linear stochastic systems[END_REF][START_REF] Todorov | Efficient computation of optimal actions[END_REF][START_REF] Theodorou | A generalized pathintegral control approach to reinforcement learning[END_REF]; here we use a recent approach called path-integral SOC to construct controllers that cope with an issue which is often neglected for practical2 and technical3 reasons: the absence of feedback (i.e. pure open-loop planning). The effectiveness of the framework is shown in the context of unstable tasks, for which coping with uncertainties without explicitly relying on feedback is very challenging.

The paper is organized as follows. Section II-B describes the class of variable stiffness actuators considered in this paper and gives its dynamical model. Section II-C presents our modification of classical closed-loop approaches to deal with open-loop planning. Section II-D discusses the considered tasks, a single joint and a two degrees of freedom planar arm both controlled under stochastic and unstable conditions. Section III presents the simulation results and The variable θ 1 and θ 2 are the motor angles, the variable q is the joint angle. The constants 1 and 2 are fixed angles of reference.

proves that the proposed VSA actuator model can deal in open-loop with the extreme tasks considered. Finally Section IV draws the conclusion.

II. Methods

A. Framework and rationale

This work relies on several conceptual considerations that are important to describe. First, throughout this paper, we shall consider a variable stiffness actuator allowing to emulate the human-like property of muscle co-contraction in order to reject disturbances. This VSA device has been already described thoroughly in [START_REF] Berret | Design principles for muscle-like variable impedance actuators with noise rejection property via co-contraction[END_REF][START_REF] Fiorio | pnrvsa: human-like actuator with non-linear springs in agonistantagonist configuration[END_REF][START_REF] Nori | Control of a single degree of freedom noise-rejecting variable impedance[END_REF] and thus only a brief description of it will be given in Section B. The relevance of such property for VSA can be exemplified in the context of unknown dynamics/environment, for which uncertainty is often model mathematically as noise. All physical and biological systems are actually affected by such a noise to some extent. We argue here that one fundamental advantage of VSA is to cope with all unpredictable fluctuations affecting such a stochastic control system. Additionally, we will voluntarily prevent us from using feedback control in order to emphasize that VSA can play the role of an immediate feedback via adequate co-contraction. We choose this extreme scenario to prove the possible usefulness of noise-rejection VSA in the context of stochastic dynamics. Therefore, we will focus on open-loop stochastic control. Since co-contraction usually costs energy, an additional goal is to minimize energy consumption and to automatically find the minimal stiffness required to perform the task. Thus, the controller must optimally tradeoff stiffness and compliance depending on the task and the noise magnitude. For all these reasons, our framework will be the one of open-loop stochastic optimal control. The chosen approach will be reviewed in Section C. Finally, all the above-mentioned ideas will be emphasized in the case of unstable tasks, i.e. tasks in which noise can make the system diverge very rapidly if feedback is delayed. The reference case that motivated most of this work is presented in [START_REF] Burdet | The central nervous system stabilizes unstable dynamics by learning optimal impedance[END_REF]. Section D will present the unstable tasks we consider here. Here we consider the variable stiffness actuator that we previously developed in [START_REF] Berret | Design principles for muscle-like variable impedance actuators with noise rejection property via co-contraction[END_REF][START_REF] Fiorio | pnrvsa: human-like actuator with non-linear springs in agonistantagonist configuration[END_REF][START_REF] Nori | Control of a single degree of freedom noise-rejecting variable impedance[END_REF] and that we named passive noise rejection variable stiffness actuator: pnrVSA. A thorough discussion of various classes of VSA is out of the scope of this article, but one crucial difference in the chosen VSA design is its ability to "passively reject noise" via co-contraction. See for instance [START_REF] Schiavi | Vsa-ii: a novel prototype of variable stiffness actuator for safe and performing robots interacting with humans[END_REF] for a similar class of VSA, yet lacking this property. Here, for one joint, the actuation system is constituted of 4 non-linear flexible transmission elements, two of which being connected to a fixed reference. Figure 1 sketches the pnrVSA considered in this paper.

B. Variable stiffness actuator

Assuming cubic springs for simplicity, the dynamical system can be derived from Lagrangian mechanics, and are as follows:

I q = k 1 (θ 1 -q) 3 + k 2 (θ 2 -q) 3 -b θ + τ, I 1 θ1 = k 1 (q -θ 1 ) 3 + k 1 (θ 1 -θ 1 ) -b 1 θ1 + τ 1 , I 2 θ2 = k 2 (q -θ 2 ) 3 + k 2 (θ 2 -θ 2 ) -b 2 θ2 + τ 2 . (1)
Remarkably, in this formulation there is no direct control on q which is anyway the variable to be controlled. The quantity τ is only used to represent the external interaction with the environment. The internal driving torques, which are antagonist, are denoted by τ 1 and τ 2 . Their combined action is used to indirectly control q via the net torque 3 which in a sense represents the internal torque acting on q. Remarkably the quantity

τ q = k 1 (θ 1 -q) 3 + k 2 (θ 2 -q)
K q = -∂τ q /∂q = 3 k 1 (θ 1 -q) 2 + k 2 (θ 2 -q) 2
can be used to represent the stiffness of the variable q due the internal torques. The fact that this stiffness can be tuned with the variables θ 1 and θ 2 accounts for the possibility to reject disturbances by "co-contracting" the two antagonist actuators.

When dealing with a multi-joint system, each joint is equipped with such pnrVSA system. In the present work we neglect bi-articular actuators whose role will be investigated in future studies. In our simulations, we will consider a 2-joint planar arm equipped with two pnrVSA, as depicted in Figure 3.

Still considering cubic springs, the complete system dynamics writes as: 

M (q)q = τ 1 -τ 2 + τ ext -C(q, q) , τ i = k i1 (θ i1 -q i ) 3 + k i2 (θ i2 -q i ) 3 , I ij θij = k ij (q i -θ ij ) 3 + k 11 (θ ij -θ ij ) 3 -b ij θij + F ij , i = 1, 2
The first row represents a standard rigid body dynamics (with the mass matrix M and the Coriolis/centripetal/friction term C), the second row represents the torques caused by the spring elongations and the last row represents the internal actuation dynamics of the spring contraction. Importantly, the stiffness of variable q i will be expressed as

K qi = 3k i1 (θ i1 -q i ) 2 + 3k i2 (θ i2 -q i ) 2 for i = 1, 2.
It is straightforward to write these dynamical systems in state space and to see that they fall in the class of system considered in Subsection C.

C. Open-loop stochastic optimal control

In all the reported simulations, we consider stochastic nonlinear control-affine systems:

dx = a(x(t), t)dt + B(x(t), t)u(x(t), t)dt + C(x, t)dw, ( 2 
)
where the variable w denotes a standard m-dimensional Brownian motion, x(t) ∈ R n is the state of the system and u(x, t) ∈ R m is the control (at this point, the control is a function of both the time and the state). The controlled stochastic differential Equation ( 2) is defined in the sense of Itō's integral. In the following, we will often omit explicit dependencies on x or t to simplify notations.

Additionally, we consider an expected cost of the form:

J(x 0 , t 0 ) = E[φ x(t f ) + t f t0 q(x, t) + 1 2 u Ru dt], (3) 
in which the source state x 0 and initial time t 0 are assumed to be known and fixed.

Equations ( 2)-( 3) form a quite general class of stochastic optimal control (SOC) problems, whose optimal control u can be expressed as u = -R -1 B ∇ x J(x, t), where the optimal cost-to-go function J satisfies the stochastic version of the Hamilton-Jacobi-Bellman equation:

-J t = min u [q + 1 2 u Ru + (a + Bu) J x + 1 2 tr(CC J xx )]. (4) 
It is now well-known (see [START_REF] Kappen | A linear theory for control of non-linear stochastic systems[END_REF][START_REF] Todorov | Efficient computation of optimal actions[END_REF][START_REF] Theodorou | A generalized pathintegral control approach to reinforcement learning[END_REF]) that this partial differential equation can be made linear if we rewrite it in terms of the desirability function ψ = exp(-1 λ J) and we further assume that C = B √ λR -1 for some chosen λ. It can be then shown that the optimal control can be expressed at each state/time as a path integral [START_REF] Kappen | A linear theory for control of non-linear stochastic systems[END_REF][START_REF] Feynman | Statistical Mechanics: A Set Of Lectures (Advanced Books Classics)[END_REF], that can be approximated via importance sampling methods. This is in this framework that the PI 2 algorithm was developed [START_REF] Theodorou | A generalized pathintegral control approach to reinforcement learning[END_REF]. Here we use a pretty similar algorithm, though we will not make use of the dynamic movement primitives. Although the optimal control is theoretically a feedback control law, the algorithm is designed such as to find an open-loop control policy. In order to present the numerical algorithm used to derive open-loop controls, we now consider a discrete-time representation of Eq. ( 2):

x i+1 = x i + a i dt + B i u i dt + √ dtC i i , (5) 
with i = N (0, I m ) (centered and normalized Gaussian noise) and with i = N (0, I m ) (centered and normalized

Gaussian noise) and dt

= T n , T = t f -t 0 , x i = x(idt + t 0 ) with i ∈ [0, n].
We denote a path starting at state x i by τ i = (x i , ..., x n ).

Algorithm 1 Main steps of the path integral SOC algorithm used in simulations.

1. Initialize u = (u 0 , ..., u n-1 ).

Sample K paths τ

(k) 0 starting from x 0 using Eq. 5 (forward sampling using the guided diffusion) 3. For all i = 0..n-1, compute the control update

δu i = K k=1 P (τ (k) i )u L (τ (k) i ) given: • S(τ (k) i ) = φ(x (k) n ) + n-1 j=i u j B j H -1 j [C j (k) j √ dt + 1 2 B j u j dt)] + n-1 j=i q (k) j dt] (generalized cost) • P (τ (k) i ) = exp -1 λ S(τ (k) i ) K k=1 exp -1 λ S(τ (k) i )
(probability of a path)

• u L (τ (k) i ) = R -1 B i H -1 i (k) i √ dt and H j = B j R -1 B j (local control induced by noise instance) 4. Update u i using u i dt ← M i u i dt + δu i , with M i = R -1 B i H -1 i B i .

Reiterate from step 2 and continue until convergence

or maximum number of iterations Justifications for the above algorithm can be found in [START_REF] Kappen | A linear theory for control of non-linear stochastic systems[END_REF] and [START_REF] Theodorou | A generalized pathintegral control approach to reinforcement learning[END_REF].

D. Unstable tasks

We shall illustrate the effectiveness of pnrVSA for unstable tasks. The first task is a simple proof-of-concept example involving a single-joint system evolving a divergent force field as inspired by [START_REF] Burdet | The central nervous system stabilizes unstable dynamics by learning optimal impedance[END_REF]. The second task is a multi-joint arm that is pushing against a wall with its endpoint. This more complex example can be viewed as a simplified modeling of screw driving, which is a typical daily life unstable task. Note that all simulations will be conducted in the framework of open-loop stochastic optimal control.

The first task thus involves stabilizing one joint in a divergent force-field environment and in open-loop. In state space, setting x = (q, θ 1 , θ 2 , q, θ1 , θ2 ) we can rewrite the system given by Eq. ( 1) in the control-affine form given by Eq. 2. We consider a state-dependent cost φ(x) = q(x) = x T Qx, with Q = diag(10 5 , 0, 0, 10 3 , 10 3 , 10 3 ), which essentially penalizes deviations of the variable q from zero. We set λ = 0.1. The initial and final configurations were defined as x(t f ) = (0.5, 0, 0, 0, 0) and x(0) = (0, -0.5, 0.5, 0, 0, 0) and the task duration was t f = 1 s. The nonlinear transmission elements (i.e. cubic springs) were characterized by the following parameters:

I = I i = 0.1, k i = k i = 2 and b = b i = 2, i = 1, 2.
The ground position was set to θ 1 = θ 2 = 0. Note that we also added a cost to penalize unrealistic behaviors, such as having a spring crossing the reference into the term q(x).

For the simulations we chose a step size dt = 0.01 s. We used K = 1000 samples at each update for a total of 200 main iterations. We checked that the number of iterations was large enough to get a stabilized solution (a posteriori).

The task was made more challenging by introducing a specific force field acting on the end-effector composed of a divergent torque and a constant one: τ = K div q + τ c with K div = 5 N.m/rad and τ c = -5 N.m. The goal of the task was to move from the initial state to a final end-effector resting position (the choice of θ 1 (t f ) and θ 2 (t f ) being free and found automatically) using an open-loop control and minimizing the amount of control effort.

The second task is a simplification of screw driving and was illustrated in The wall reaction force enters into the dynamics via a term τ ext = J y (q)λ physical . The task is defined such as to push against the wall with a constant force equal to 10 N in the y-axis and this constraint is added to the state-dependent 

= k 1 (θ 1 - q) 3 + k 2 (θ 2 -q) 3 and Kq = 3 k 1 (θ 1 -q) 2 + k 2 (θ 2 -q) 2 .
cost, along with the constraint of maintaining the endeffector at the position x = 0.3 and y = 0.4. The goal is to maintain this arm configuration for two seconds in open-loop and by minimizing the amount of control energy in order to find the minimal level of co-contraction. Instability in this case results from the fact that pushing against the wall with a constant normal force causes unwanted tangential dragging when the link is not normal to the wall itself.

III. Results

A. Open-loop single-joint stabilization in an unstable task

Before describing the simulation results, we should stress that minimizing the control energy makes perfectly sense for pnrVSA because a large stiffness implies a large control energy which turns into passive noise-rejection property: this is not available in other VSA designs. This feature is similar to the large metabolic energy expenditure associated with co-contraction of human muscles, which thus motivates the design of "just stiff enough" control laws. The fact that we stick to open-loop control laws is just to illustrate the properties of pnrVSA for such an extreme case, but this does not prevent the use of feedback laws or model predictive control in real applications. The simulation results presented below can just be improved by using feedback laws.

Note that in the method we used the relationship C = B √ λR -1 is required, and therefore we have a link between the control cost and the noise magnitude. In Figure 4 we tested different levels of noise affecting the system by changing R. A decrease of R results in an increase of the noise magnitude, but also reduces the control cost, thus reinforcing the relative weight of state-dependent costs. In other words, the more the noise the more co-contraction is allowed at equivalent control-cost. Another way to vary the noise but without affecting the cost is to vary λ directly. Similar behaviors can be observed, the main observation being that the intrinsic stiffness of the system is significantly increased when uncertainty and/or instability increase. This low-dimensional example illustrates the possibility to perform challenging tasks in open-loop, while this would not be possible without the pnrVSA. This also show that the controller can adapt the degree of uncertainty/noise by adjusting the stiffness optimally.

The second task is the case of an 2-dof arm equipped with our pnrVSA pushing against a wall. In this case, we set R = Id 4×4 and λ = 1, thus fixing the noise covariance matrix via the above-mentioned equation for C. The results of depicted in Figure 5.

The simulations showed that the task could be approximately performed in open-loop with a minimal level of stiffness of the system despite the additive noise acting on the system. Of course, a greater accuracy could be achieved if we used feedback control as well. Nevertheless, our framework provides good reasons to optimally set stiffness of such systems in order to optimally reject noise disturbances and ensure a reasonable behavior even in open-loop.

IV. Conclusion

Recently, a number of novel actuator designs with variable passive properties have been proposed. One of the proposed designs (pnrVIA; [START_REF] Fiorio | pnrvsa: human-like actuator with non-linear springs in agonistantagonist configuration[END_REF]) allows for simultaneous control [START_REF] Nori | Control of a single degree of freedom noise-rejecting variable impedance[END_REF] of passive stiffness and passive noise rejection. The specific features of this new actuator principle calls for novel models for movement planning: in this paper we proposed open-loop stochastic optimal control. Given the lack of available algorithms for numerically solving this class of problems, the paper relied on a slight modification of available methodologies. The proposed methodology falls into a class which relies on stochastic sampling of diffusion processes to approximate path integrals. To our knowledge, focus on open-loop control is unique in this kind of literature, mainly because the Hamilton-Jacobi-Bellman equation naturally leads to a feedback solution. The proposed algorithm has been used for open-loop movement and stiffness planning with pnrVSA. Experiments have shown that the idea of open-loop controllers nicely fits with the proposed numerical simulation, where unstable and uncertain tasks were performed by exploiting the nice property of a class of VSA actuators, nominally the ability to change the system passive stiffness and noise rejection by actuators coactivation (and therefore without relying on sensory feedback). The development of such actuators providing intrinsic and immediate feedback via co-contraction stresses the need for developing more specific methods of openloop stochastic optimal control. This could be done in the spirit of the present work, by making use of an infinitedimensional Pontryagin Maximum Principle [START_REF] Palmer | A hamiltonian approach using partial differential equations for open-loop stochastic optimal control[END_REF] or by using the Stochastic Maximum Principle [START_REF] Yong | Stochastic Controls: Hamiltonian Systems and HJB Equations[END_REF].
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 1 Figure 1. Variable stiffness actuator with passive noise rejection.The variable θ 1 and θ 2 are the motor angles, the variable q is the joint angle. The constants 1 and 2 are fixed angles of reference.
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 2 Figure 2. Variable stiffness actuator with passive noise rejection. A picture of the first prototype.
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 32 Figure 3. 2-dof arm equipped with antagonist pnrVSAs and illustration of the unstable task considered in Subsection D.

Figure 3 .

 3 The properties of 2-dof arm are based on human-like measures: l 1 = 0.3 m, l 2 = 0.4 m, m 1 = 1.4 kg, m 2 = 1.1 kg, center of mass positions lc 1 = 0.11 m, lc 2 = 0.16 m, and moment of inertia of each joint is computed by m i lc 2 i . The friction of internal motors are chosen to reduce the oscillation in the system, b 11 = b 12 = b 21 = b 22 = 4Nm/sec and the inertia of the motors are assumed to be 2 Nm/sec 2 . The springs stiffness are k 11 = k 12 = k 21 = k 22 = 100 Nm/rad

Figure 4 .

 4 Figure 4. Control of the pnrVSA in an unstable task. 1st row: position and speed of the end-effector. 2nd row: Intrinsic rotational stiffness and feedforward torque applying to the end-effector. 3rd row: Displacements of the internal motors. Red: R = 0.1 × Id 2×2 , Blue: R = 0.01 × Id 2×2 (higher noise entering into the system and cheaper control cost). The mean trajectories across 50 trials are depicted (shaded areas are standard errors). Note that τq = k 1 (θ 1q) 3 + k 2 (θ 2 -q)3 and Kq = 3 k 1 (θ 1 -q) 2 + k 2 (θ 2 -q) 2 .

NFigure 5 .

 5 Figure5. Control of a 2-dof arm equipped with pnrVSA during an unstable task (pushing against a wall). With low stiffness, a diverging behavior was initially observed after 2 seconds. By setting adequately the joint stiffness thanks to co-activation of the antagonist actuators, divergence can be annihilated and the pushing force can be approximately maintained. Note that the goal of keeping a constant pushing force of 10 N is weighted with the goal of preserving the end-effector position at the original location.

Robots nowadays rely on fast feedback loops with delays and latencies of approximately 1ms; it makes therefore no sense to force solutions which do not take into account this efficient feedback. Our motivation is slightly different and therefore the request of open-loop solutions becomes a necessity.

To our knowledge, focus on open-loop control is difficult in this kind of literature mainly because the Hamilton-Jacobi-Bellman equation naturally leads to a feedback solution.