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Abstract
Africa has undergone a progressive aridification during the last 20 My that presum-
ably impacted organisms and fostered the evolution of life history adaptations. We 
test the hypothesis that shift to living in ant nests and feeding on ant brood by lar-
vae of phyto-predaceous Lepidochrysops butterflies was an adaptive response to the 
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1  |  INTRODUC TION

Africa has undergone dramatic climatic changes since the Eocene 
(Axelrod & Raven, 1978). From being largely covered by tropical for-
ests, the landmass underwent cycles of drier and wetter climates 
and experienced a much more dramatic loss of forest cover than 
other continents, especially during the last 10 million years (Kissling 
et al., 2012). The combination of tectonic uplift (Jung et al., 2014; 
Sepulchre et al., 2006), expansion of the polar ice caps, decline in 
global temperatures (Zachos et al., 2001), shrinkage of the Tethys 
Sea (Zhang et al., 2014), and changes in oceanic circulation (Cane & 
Molnar, 2001; Haug & Tiedemann, 1998; Marlow et al., 2000) led to 
increasing climatic variability and aridification from the late Miocene 
onwards. As it got drier, grasses became more common, leading to 
increased grazing and more frequent fires, which further amplified 
aridification. The modern savanna and grassland biomes now domi-
nating much of the continent did not become fully established until 
between 8 and 3 Mya in the late Miocene and Pliocene (Edwards 
et al., 2010; Strömberg, 2011).

The increasing aridification had a strong impact on the organisms 
inhabiting these areas and on their diversification. This effect has 
primarily been studied in plants of the Greater Cape floristic region 
(GCFR), which includes mainly summer arid fynbos, succulent and 
Nama karoo biomes (Born et al., 2007). This area is a model system 
for studies of plant diversification because of its remarkably high 
plant species diversity and endemism. Despite their floral diversity, 

the current GCFR biomes originated only within the last 10 Myrs 
(fynbos), and the driest parts (succulent karoo) originated <5 Mya 
(deMenocal, 2004; Feakins & deMenocal, 2010; Linder, 2003). This 
aridification is hypothesized to have led to widespread extinction 
of earlier flora, opening up niches for the diverse communities 
seen today, dominated by lineages pre-adapted to an arid climate 
(Verboom et al., 2009).

In contrast to the flora, the insect diversity in the GCFR, in 
general, is not unusually high, with numbers comparable with that 
of neighboring biomes (Giliomee, 2003; Procheş & Cowling, 2006). 
Ant richness is not particularly high (Braschler et al., 2012), and 
the number of butterfly lineages is extremely underrepresented 
(Cottrell,  1985). On these grounds, mechanisms leading to high 
plant diversity are not thought to have had a strong influence 
on insects (Braschler et al.,  2012). There are, however, indica-
tions of co-divergence between plants and their pollinating flies 
in the GCFR (de Jager & Ellis, 2017), and similarly, the diversity 
of pollinating bees is high (Kuhlmann, 2009). Elsewhere in Africa, 
studies have concentrated largely on forest insects, which orig-
inated well before the Miocene when forests were still exten-
sive, and/or diversified during the retreat and isolation of forests 
from the Miocene towards the present (Aduse-Poku et al., 2009, 
2021; Eberle et al.,  2017; Sahoo et al.,  2018). Two notable ex-
ceptions are ant parasitic beetles (Carabidae: Paussus), which ra-
diated extensively also in drier areas in the Afrotropical region 
within the last 20 million years (Moore & Robertson, 2014), and 
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aridification of Africa that facilitated the subsequent radiation of butterflies in this 
genus. Using anchored hybrid enrichment we constructed a time-calibrated phylog-
eny for Lepidochrysops and its closest, non-parasitic relatives in the Euchrysops section 
(Poloyommatini). We estimated ancestral areas across the phylogeny with process-
based biogeographical models and diversification rates relying on time-variable and 
clade-heterogeneous birth-death models. The Euchrysops section originated with 
the emerging Miombo woodlands about 22 million years ago (Mya) and spread to 
drier biomes as they became available in the late Miocene. The diversification of the 
non-parasitic lineages decreased as aridification intensified around 10 Mya, culmi-
nating in diversity decline. In contrast, the diversification of the phyto-predaceous 
Lepidochrysops lineage proceeded rapidly from about 6.5 Mya when this unusual life 
history likely first evolved. The Miombo woodlands were the cradle for diversification 
of the Euchrysops section, and our findings are consistent with the hypothesis that 
aridification during the Miocene selected for a phyto-predaceous life history in spe-
cies of Lepidochrysops, with ant nests likely providing caterpillars a safe refuge from 
fire and a source of food when vegetation was scarce.
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ant-associated butterflies such as the lycaenid genera Chrysoritis, 
Aloeides, and Thestor, with a moderately large number of species in 
lineages found largely in Southern Africa (Heath et al., 2023; Quek 
et al., 2022; Rand et al., 2000; Talavera et al., 2020). This suggests 
that ant association may have played an important role in the per-
sistence and diversification of these insects, but how exactly ant 
association, and especially parasitism, might have influenced spe-
cies diversification is not known.

While more than 99% of butterfly larvae feed on plants, ento-
mophagy (obligately feeding on other insects or their secretions, 
and in the case of ant parasitism, feeding on the brood directly 
or being fed by worker ants like cuckoos) has evolved many times 
independently in Lycaenidae. It occurs in at least 31 genera in 
four of the currently recognized subfamilies. Despite originating 
repeatedly, this life history has been largely viewed as an evolu-
tionary dead-end because of its tippy distribution (Cottrell, 1984; 
Pierce,  1995; Pierce et al.,  2002; Schär et al.,  2018). Phyto-
predation involves a particularly unusual form of entomophagy 
in which obligate plant associations have also been retained: cat-
erpillars initially feed on flower buds, but later switch to prey-
ing on ants. Phyto-predation has evolved independently at least 
twice in the butterflies: once in the Palaearctic genus Phengaris 
(=Maculinea, 11 described species) and once in the Afrotropical 
genus Lepidochrysops (137 described species) (Cottrell,  1984; 
Vila et al., 2011). The main differences between these two lin-
eages are the ant hosts—species of Myrmicinae in Phengaris and 
species of Formicinae in Lepidochrysops—and the time of entry 
into the ant nest, fourth instar in Phengaris and third instar in 
Lepidochrysops, where known. Caterpillars of species from both 
genera can be attacked by specialized parasitoids before and 
after entering the ant nests (Claassens, 1976; Elgar et al., 2016; 
Thomas & Elmes, 1993), so entering nests is likely not simply a 
result of acquiring enemy-free space. Rather, harsh conditions 
above ground such as fire or dry seasons, are hypothesized to 
have triggered shifts into ant nests (Cottrell, 1984; Fiedler, 1991, 
1998).

Understanding the origin and evolution of phyto-predation 
in Lepidochrysops requires examination of character evolution 
across this genus and its relatives in the Euchrysops section sensu 
Eliot  (1974) (Lycaenidae, Polyommatinae). This clade provides an 
excellent system to examine how life histories have been affected 
by the aridification of Africa. It contains approximately 210 fully 
Afrotropical species in five genera, with one exception occurring 
from India to Fiji (Williams,  2020). Species occur in all habitats 
from rainforest to semi-deserts and show various levels of ant as-
sociation from nearly none (Thermoniphas) to facultative and ob-
ligate mutualism (Euchrysops, Orachrysops, Oboronia) to obligate 
phyto-predation (Lepidochrysops) (Cottrell,  1984; Fiedler,  1991; 
Pierce, 1995; Williams, 2020). Different relationships between the 
genera have been hypothesized based on morphological and ecolog-
ical data, and the monophyly of genera has been questioned (Edge 
& Van Hamburg, 2010; Libert, 2001), but the section has never been 
included in molecular studies.

2  |  MATERIAL S AND METHODS

2.1  |  Taxon sampling

A total of 179 samples, representing 124 species of the Euchrysops 
section and seven outgroups, were included in our study. This 
includes 80 of 137 described Lepidochrysops species, nine of 11 
Orachrysops species, 14 of 28 Euchrysops species, six of seven 
Oboronia species, and seven of 15 Thermoniphas species. Many of 
the missing species are very scarce in collections or only known 
from the type locality. A specimen of Lycaena phlaeas (Lycaeninae) 
was included to root the trees. Sample information can be found in 
Data S1B.

2.2  |  Probe design

We developed enrichment probes targeting 200 Anchored Hybrid 
Enrichment (AHE) loci (Lemmon et al., 2012), 400 anonymous loci, 
and four legacy loci. We used the following genomic resources: 
(1) previously published assembled genomes (Danaus plexippus 
[Zhan et al., 2011] Heliconius melpomene [The Heliconius Genome 
Consortium, 2012]); and (2) ~20× coverage raw genomic reads from 
Espeland et al.  (2018) (Phengaris arion, Lepidochrysops patricia) and 
this study (Euchrysops cnejus, Jalmenus evagoras) (Data  S1C). We 
prepared libraries from DNA extracts of the four latter species 
(following Prum et al.,  2015) and sequenced the libraries with 
a paired-end 100 bp protocol (single, 8 bp indexing) on Illumina 
HiSeq2000 sequencers at the College of Medicine Transitional Lab 
at Florida State University and at the Hudson Alpha Institute for 
Biotechnology. More information about these genomic resources is 
available in Data S4.

2.2.1  |  Selection of AHE target loci

The Lepidoptera-wide AHE probe design developed by Breinholt 
et al. (2018) targets 855 exons. We used the six genomic resources 
described above to increase the size of the target regions and to 
increase the representation of Lycaenidae. After merging overlap-
ping reads following (Rokyta et al., 2012), we mapped the merged 
reads to the Bombyx mori probe region sequences of Breinholt 
et al. (2018). The consensus sequence of the mapped reads at each 
locus for each species was then used as references that were ex-
tended 1000 bp further into each flank (see Hamilton et al., 2016 
for details). The two assembled genomes were scanned for the 
presence of the 855 B. mori AHE sequences and a 2000 bp region 
containing each AHE locus was extracted. For each locus, we 
aligned the six resulting sequences using MAFFT (v7.023b1; Katoh 
& Standley,  2013). Alignments were inspected in Geneious R9 
(Kearse et al., 2012), then trimmed and masked to remove regions 
that were poorly aligned, poorly represented by the six species, 
or potential paralogs. This process resulted in 496 candidate AHE 
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targets. Of these, 22 additional targets were removed because 
they were overlapping and 274 were found too short (<290 bp). 
The final AHE target set contained 200 loci, averaging 745 bp.

2.2.2  |  Selection of anonymous target loci

To ensure the resolution of shallow-scale relationships, we also 
developed anonymous loci following (Banker et al.,  2020). We 
profiled 30-mers from the E. cnejus and L. patricia merged reads to 
estimate copy number and selected 10,000 reads (per species) with 
less than 100-fold read coverage. Using 45-mers to establish a match, 
we extended these reads up to 2000 bp in each direction using the 
remainder of the reads (Hamilton et al., 2016). Only loci with the 
length between 500 bp and 4000 bp, GC content between 32% and 
42%, and average coverage between 18 and 35 (approximate range 
expected for single-copy genes given the sequencing effort) were 
kept, leading to 2790 E. cnejus and 2078 L. patricia candidate loci. 
To ensure that targets would work across Lycaenidae, we mapped 
merged reads from each species to the candidate locus sequences of 
the other. We extended the consensus of the mapped reads 2000 bp 
in each direction, then aligned the corresponding sequences for the 
two species using MAFFT (v7.023b). After selecting the best 1200-
bp region in Geneious, we selected 400 loci at random.

2.2.3  |  Incorporation of legacy loci

We also incorporated four loci that have been frequently used in 
other studies into the target set: cad, elongation factor 1 alpha, 
histone 3, and wingless. Alignments for these genes were obtained 
from GenBank and subsampled taxonomically to contain only 
four or five species representing the diversity of Lycaenidae. The 
four resulting alignments contained 745, 1171, 328, and 403 bp 
respectively.

2.2.4  |  Probe generation

We identified and masked repetitive regions in the alignments, 
following (Hamilton et al.,  2016). Probes were tiled uniformly at 
4× density across the six taxa in each alignment. A total of 52,749 
probes covered a target size of 631,529 bp. A key showing how the 
target loci correspond to the kit (Breinholt et al., 2018) and locus 
type can be found in Data S1D.

2.3  |  Molecular methods, data 
cleaning, and assembly

DNA was extracted from ethanol-preserved thorax or leg tissue, 
or dried legs using either the Qiagen Blood & Tissue kit or an 
AutoGenPrep 965 Tissue DNA Extraction Kit (Autogen). DNA 

concentration was measured using a Qubit dsDNA HS or BR 
Assay kit on a Qubit 2.0 fluorometer (ThermoFisher Scientific). 
We prepared dual-indexed Illumina libraries following (Meyer & 
Kircher, 2010), with adaptations in Prum et al.  (2015). In short, we 
sonicated extracted DNA using a Covaris ultrasonicator to a size of 
~300 bp. After adding adapters using a Beckman Coulter FxP liquid-
handling robot, we quantified, then pooled (in equal concentration) 
libraries into 16-sample pools. We enriched these library pools using 
the AHE probes described above (Agilent SureSelect XT probes), 
then quantified and pooled the resulting enriched library pools for 
sequencing. We sequenced the libraries on 11 Illumina HiSeq2500 
PE150 lanes (~450 Gb in raw data). Molecular work was carried out 
at Harvard University and Florida State University.

After demultiplexing raw reads using 8 bp dual indexes (no 
mismatches allowed), we removed adapters, corrected for se-
quencing errors, and merged overlapping reads following (Rokyta 
et al., 2012). We assembled the reads using sequences from all five 
probe-design species (see above) as divergent references in a quasi-
denovo reference assembly (as described in Hamilton et al., 2016). 
Assembly clusters containing fewer than 100 reads were removed 
to prevent any contaminated samples from being used down-
stream. We constructed a consensus sequence for each assembly 
cluster by statistically distinguishing between sequencing error and 
heterozygosity (Hamilton et al.,  2016). Haplotypes were phased 
following (Pyron et al.,  2016). We established orthology among 
homologous consensus sequences using alignment-free pairwise 
distances and a neighbor-joining approach, as outlined in Hamilton 
et al.  (2016). After aligning the corresponding orthologous haplo-
type sequences using MAFFT, we trimmed and masked the mis-
aligned regions following (Hamilton et al., 2016), but with masking 
parameters set to MINGOODSITES = 15, MINPROPSAME = 0.5 
and MISSINGALLOWED = 0.5. We visually inspected alignments in 
Geneious to ensure that the automated masker and trimmer settings 
were appropriate.

2.4  |  Molecular data, phylogeny, and dating

The final dataset contained 179 taxa, 419 loci (196 anchored and 223 
anonymous loci), and 256,998 bp (average locus length, 613 bp), with 
14.1% missing data. Summary statistics for each locus alignment 
were calculated using AMAS (Borowiec, 2016) (Data S1A). In the con-
catenation approach, one allele for each taxon was chosen randomly 
following (Barrow et al., 2014). Trees were inferred with IQ-TREE 
1.6.7 (Nguyen et al., 2015), using ModelFinder (Kalyaanamoorthy 
et al., 2017) for finding the best partition scheme (greedy algorithm) 
and model selection. Alignments and the selected models for each 
partition can be found on Zenodo (DOI: 10.5281/zenodo.4590738). 
Ten likelihood searches were performed and the tree with the high-
est likelihood was selected. Branch support was calculated using ul-
trafast bootstrap support (Hoang et al., 2018) with the -bnni option 
to reduce the risk of overestimating support, and using the SH-like 
approximate likelihood ratio test (Guindon et al., 2010), both with 
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1000 replicates. A species tree was inferred in ASTRAL-III (Zhang 
et al., 2017) with the method by Rabiee et al. (2019) for multi-allele 
data. Gene trees were generated for each locus based on phased 
data in IQ-TREE, as above, and used as input. Local posterior proba-
bilities (LPP) (Sayyari & Mirarab, 2016) were calculated as a measure 
of support. Molecular dating was performed with a reduced, un-
phased, unpartitioned, dataset with one representative per species 
(124 spp.) in MCMCtree 4.9g (Yang, 2007) using approximate likeli-
hood estimation and an independent clock. The topology obtained 
from the concatenation analyses above, reduced to only include 
one member per species, was used as fixed input topology. Model 
selection on this unpartitioned dataset was run in ModelFinder as 
above, but only allowing the models available in MCMCtree, and 
the selected model (HKY85) was used in dating analyses. No fossils 
are available for the family Lycaenidae, and we, therefore, used sec-
ondary calibrations from a recent, dated genus-level butterfly tree 
(Chazot et al., 2019). Based on that study, we set the split between 
Euchrysops and Lepidochrysops as a uniform prior with a lower bound 
of 9 My and an upper bound of 21 My. Finally, the root calibration 
was set as a uniform prior with lower bound of 44 My and an upper 
bound of 69 My based on the age of Lycaeninae + Theclinae + Polyo
mmatinae from Chazot et al.  (2019). Other priors were kept as de-
fault. We ran four runs with a burn-in of 100,000, sample frequency 
of 1000 and number of samples set to 10,000. Convergence was 
assessed in Tracer 1.7.1 (Rambaut et al., 2018) and by plotting the 
mean ages and the 95% highest posterior density (HPD) credibility 
intervals from the posterior distribution of all four runs against each 
other. Plots showing convergence of runs are available on Zenodo 
(DOI: 10.5281/zenodo.4590738). The dated tree with credibility in-
tervals (ci) can be found in Figure S3.

2.5  |  Historical biogeography

We inferred ancestral areas using DECX (Beeravolu & 
Condamine, 2016), a C++ implementation of the dispersal-extinction-
cladogenesis (DEC) model (Ree & Smith,  2008). Biogeographical 
areas were defined based on a simplified classification of the eco-
systems of Africa by Dinerstein et al. (2017), including a total of 16 
biomes (Figure  1, Data S1E). The map showing these biomes was 
produced using QGIS v. 3.14 (QGIS Development Team, 2020). The 
single included species from Madagascar, Lepidochrysops cf. azureus, 
as well as the only non-Afrotropical species, Euchrysops cnejus, were 
both excluded from the biogeographical analyses to reduce the num-
ber of biomes. Similarly, Oboronia bueronica, the only species found 
in the East African coastal forests, which is a separate biome, was 
added to the “East African forest” category. We designed a time-
stratified model in which areas and ranges possibly occupied varied 
across four different time periods: 0–5, 5–8, 8–11, and 11–25 Mya 
(Data S1F). The maximum ancestral range size was set to four areas.

Ancestral area estimation was used to calculate the relative fre-
quency of lineages in large biome categories through time. We first 
identified branches along which dispersal occurred by comparing 

the ranges with the highest probability between ancestral and de-
scendent nodes. When a dispersal event was detected, we assigned 
the branch mid-point as the timing for the dispersal event. Time was 
then divided into 0.5 My intervals, and within each interval, the num-
ber and relative frequency of lineages in each biome was calculated. 
Rather than working with the 16 areas, we combined them into the 
following functional categories: forests, woodland and grassland, 
and Fynbos and Karoo. Within each category we also separated the 
lineages belonging to Lepidochrysops from the rest of the tree (back-
bone), to calculate, for example, the frequency of forest species ver-
sus non-forest species within each part of the tree.

We also compared the number of transitions between biomes. 
We identified branches along which dispersal occurred by compar-
ing the ranges with the highest probability between ancestral and 
descendent nodes. For each branch with a dispersal event, we ran-
domly sampled a time for the event along the branch. In case of mul-
tiple source areas for a dispersal event, we used the time-stratified 
matrix of areas allowed to narrow the possible sources down to only 
those permitted during each time period. If multiple sources were 
still possible, we sampled one of these randomly. We repeated this 
procedure 1000 times, and each time, we summed the number of 
transitions between all pairs of areas. The mean number of tran-
sitions was then calculated and represented using the R package 
qgraph (Epskamp et al., 2012).

2.6  |  Diversification dynamics

We are aware that these diversification models are controversial 
(see also Discussion part in Section 3), and while we recognize the 
shortcomings, we nevertheless wanted to see how multiple models 
compare with each other and think that it is still valuable to report 
these results. The hypothesis-driven model selection framework 
used here is suitable for investigating speciation and extinction 
dynamics with appropriate assumptions (Helmstetter et al., 2021; 
Louca & Pennell, 2020).

We estimated the dynamics of speciation and extinction 
rates through time using three different birth-death models 
to cross-validate the results: First, we used the model TreePar 
(Stadler, 2011). The timing of divergence between the backbone and 
the Lepidochrysops was included in the backbone analysis. We iso-
lated the Lepidochrysops clade from the rest of the tree (the ‘back-
bone’ throughout this paper) and modeled diversification for each 
partitioned tree independently. For each partition and 100 trees 
randomly sampled from the posterior distribution of our dating 
analysis, we fitted TreePar using fixed time bins of 4 My. Second, we 
used the model proposed by Morlon et al. (2011) and implemented 
in the R-package RPANDA v.1.8 (Morlon et al., 2016). As above the 
phylogenetic tree was partitioned into the Lepidochrysops clade and 
the backbone. Speciation and extinction rates were modeled using 
both linear and exponential functions of time. For each partition of 
the tree, we fitted 12 models: constant speciation, no extinction; 
constant speciation, constant extinction; time-dependent speciation 
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F I G U R E  1 Dated phylogeny of the Euchrysops section from MCMCtree with results from the biogeographical analysis as pie charts on the 
nodes. Colored boxes to the right of the tree show the biomes currently occupied by the included extant species as shown on the map. The 
various montane grasslands and the West African montane forests are scattered within other biomes, and only partially visible on the map. 
Pictured butterflies are from top to bottom: Lepidochrysops abyssiniensis loveni, Lepidochrysops peculiaris, Euchrysops subpallida, and Oboronia 
punctatus. All photos by M. Espeland.
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    |  7 of 15ESPELAND et al.

(exponential or linear), no extinction; time-dependent speciation 
(exponential or linear), constant extinction; constant speciation, 
time-dependent extinction (exponential or linear); time-dependent 
speciation (exponential or linear); and time-dependent extinction 
(exponential or linear). For the backbone, the models accounted for 
the divergence event between the backbone and Lepidochrysops. 
However, the stem of the Lepidochrysops clade was included in the 
Lepidochrysops model of diversification, following the original imple-
mentation of the method. Sampling fractions were specified for each 
tree partition. Models were fitted on 100 trees randomly sampled 
from the posterior distribution of the dating analysis. Models were 
ranked according to their AIC scores averaged across the posterior 
distribution (Table S1). Third, the results of both the above methods 
indicated a consistent pattern of extinction around 10 Mya. Hence, 
we fitted the model CoMET (May et al., 2016) using the R-package 
TESS v. 2.1.0 (Höhna et al., 2016) on the full tree (no partitioning) to 
assess the support for a tree-wide extinction event. We performed 
a reversible-jump MCMC analysis assuming constant speciation and 
extinction rates through time. We set the number of expected sud-
den extinctions to 1, with an expected survival probability of 0.1. 
We ran the rjMCMC for 10 million generations, removing the first 
10,000 as burn-in.

3  |  RESULTS AND DISCUSSION

3.1  |  Diversification during the aridification of 
Africa

We inferred a molecular phylogeny for 179 members of the 
Euchrysops section, plus seven outgroups, based on 419 loci 
obtained from anchored hybrid enrichment. Concatenation and 
summary coalescent approaches produced similar topologies 
(Figures  S1 and S2). Our dated phylogeny including 124 species 
showed that the Euchrysops section originated in the early Miocene, 
around 22 Mya (ci: 19–24 Mya) (Figure 1, Figure S3), congruent with 
the onset of African environmental change. The phyto-predaceous 
Lepidochrysops originated much later at around 6.4 Mya (ci: 5.5–
7.5 Mya), a time characterized by increased aridification (Herbert 
et al., 2016).

3.2  |  Increasing occupation of drier biomes

We estimated that the Euchrysops section (Lycaenidae, 
Polyommatinae) likely originated in the emerging Miombo woodlands 
(Jacobs, 2004), now covering large parts of southern-central Africa 
(Figure 1).

Biome occupation was characterized by extensive turnover 
during the last 7 My (Figure 2a). Between 20 and 8 Mya, ~30% of lin-
eages occupied forests. With the diversification of Lepidochrysops, 
this fraction decreased to 10% in the last 8 My, coinciding with 
the dramatically decreasing rainforest cover in Africa during the 

Miocene (Kissling et al., 2012) (Figure 2a). No extant mainland-Africa 
Lepidochrysops currently inhabit forests (a few species occur in 
forest-savanna transition). The only forest Lepidochrysops are found 
in Madagascar where five species occur in dry spiny forest or rain-
forest, only one of which could be included in this study (Figure S1). 
We excluded this one from the biogeographical analyses in order to 
reduce the number of areas in the analysis. This should not have a 
strong impact on our analyses since these Malagasy species form a 
single, small radiation (Espeland, in preparation).

Miombo woodlands played a key role as the source for many dis-
persal events toward other woodland and grassland biomes, both 
for the clade as a whole (Figure  3) and for Lepidochrysops alone 
(Figure S4). Adding additional outgroups would not change this re-
sult, since the most closely related clades are largely non-African 
(Tonini et al., in prep.). Likewise, South African temperate grass-
lands constituted an important stepping-stone toward the more arid 
Fynbos and Karoo biomes for the phyto-predaceous Lepidochrysops 
lineages. These arid biomes were not reached by any phytophagous 
lineages in the clade, with the exception of the genus Orachrysops, 
where two species are found in wetter parts of coastal and mon-
tane Fynbos, but the remaining nine species exclusively occur in the 
South African montane grasslands. Orachrysops are phytophagous 
(feeding on Indigofera, Fabaceae) and the larvae are either facul-
tatively or obligately ant associated. The larvae of several species 
feed on the rootstocks of Indigofera from the third instar onwards, 
tended by Camponotus ants, and thus spend most of their time un-
derground tightly associated with ants (Edge & Van Hamburg, 2010; 
Lu & Samways, 2001). Interestingly, this genus, previously placed in 
Lepidochrysops, is sister to the rest of the section, and appears to 
have diversified within the last 5 My, coincident with the origin of 
the grassland biome (Jacobs et al., 1999).

Little dispersal has taken place between forests and drier biomes 
(Figure 3). The forest lineages Oboronia and Thermoniphas are sister 
groups, whose ancestor likely originated in the Congolian rainfor-
est after dispersing from the Miombo woodlands. Oboronia feeds 
exclusively on Costus (Zingiberaceae) and is obligately mutualistic 
with Pheidole ants (Lamborn, 1914; Sourakov & Emmel, 1997). Little 
is known about the life history of Thermoniphas, but it is thought 
that ant association is limited, and one species is known to feed on 
Melastomataceae (Congdon et al., 2017; Heath et al., 2002).

Euchrysops is polyphyletic and consists of at least four different 
clades: the cnejus, barkeri, albistriata, and dolorosa groups (Figure S1). 
All four groups likely originated in the Miombo woodlands, although 
E. barkeri, which is sister to Oboronia and Thermoniphas (Figure S1), 
might have originated in the forest before dispersing back to the 
Miombo woodlands and subsequently becoming widespread but lo-
calized across savannas and woodlands. The E. dolorosa group is sister 
to Lepidochrysops, and widespread, occurring in most biomes except 
forests, Fynbos and Karoo. E. dolorosa group members largely feed 
on Ocimum (Lamiaceae), which is also used by many Lepidochrysops 
species, and have an apparently mutualistic association with ants 
(e.g. Larsen, 2005, personal observation ME), indicating a transition 
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8 of 15  |     ESPELAND et al.

from mutualism to parasitism in the ancestor of Lepidochrysops, but 
no host-plant shift.

The genus Lepidochrysops is monophyletic. Although the group 
diverged more than 15 Mya (Figure 1), the last common ancestor 
of the extant lineages is only ~6.4 My old. Parasitism of ant asso-
ciates arose along the 10 My-long stem branch, likely just prior to 
Lepidochrysops' rapid radiation. The genus consists of two major 
clades: one originated in the Southern African montane grasslands 
and dispersed from there to the Fynbos and Karoo biomes. The 
other originated further north, likely in the Miombo woodlands, 
and from there spread throughout the woodland and grassland 
biomes. Interestingly, a few species also in this clade reached 
the Southern African montane grasslands, before a single disper-
sal to the Fynbos, further underscoring the importance of these 

grasslands as a source of phyto-predaceous taxa in the summer 
arid biomes.

3.3  |  Extinction and rise of phyto-predation

In TreePar analyses, the backbone showed a pattern of decreasing net 
diversification from the root, reaching its minimum around 10 Mya 
and increasing again towards the present. For the Lepidochrysops 
(stem branch excluded; Figure 2b) we estimated an overall constant 
positive net diversification rate.

Using the Morlon et al. model for the backbone, we found three 
models falling within an AIC interval of two (Table  S1A–C), and 
all inferred a decline of diversity. The model with speciation and 

F I G U R E  2 (a) Estimated relative 
frequency of lineages in different biomes 
through time (left Y-axis). The purple 
line shows the reduction of rainforest 
cover (in 106 km2) through time in Africa, 
based on data from Kissling et al. (2012) 
(right Y-axis). (b) Net diversification rate 
for Lepidochrysops and the backbone 
using TreePar. (c) Net diversification rate 
according to the best models identified 
for Lepidochrysops and the backbone 
using Morlon et al. (2011) (left Y-axis). 
The histogram shows the posterior 
probabilities of a sudden extinction 
event through time, estimated using 
the model CoMET (right Y-axis). Black 
arrows at the bottom denote the Middle 
Miocene Cooling event (MMCO) and the 
Late Miocene Cooling event (LMCO), 
respectively.
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    |  9 of 15ESPELAND et al.

extinction as exponential and linear functions of time, respectively, 
was remarkably similar to the results from TreePar (Figure 2C). Net 
diversification declined rapidly, reaching a minimum around 10 Mya, 
before increasing again towards the present. Negative net diversi-
fication rates between 15 and 5 Mya indicated declining diversity. 
The other two models suggested either a global decrease of diversi-
fication through time with a negative net diversification rate during 
the last 8 My, or an earlier decline with a negative net diversification 
rate for the last 15 My. In Lepidochrysops (including stem branch) the 
best model corresponded to linear speciation and extinction func-
tions of time (Table S1D–F). Net diversification increased through 
time but remained negative along the stem of the Lepidochrysops 
clade until ~10 Mya (Figure 2C). This result is unsurprising consider-
ing the length of the stem (10.2 My), which most likely results from 
past extinction events. Net diversification was positive during the 
last 10 My.

Finally, CoMET (Figure 2c) found a signal of tree-wide extinction 
around 6–8 Mya, with moderate support. The timing matches well 
with the pattern of declining diversity identified by both TreePar and 
Morlon et al. analyses during the late Miocene. It also coincides with 
the late Miocene cooling event, a time with increased aridification 
and a marked decrease in temperature (Herbert et al., 2016).

Our hypothesis that the Miocene aridification of Africa strongly 
influenced the Euchrysops section is supported by the consis-
tent signal of extinction in the phytophagous backbone lineages 

during the middle-  to late Miocene, and the rapid radiation of the 
phyto-predaceous Lepidochrysops lineages shortly thereafter. Our 
repeated finding of a pattern of extinction suggests that our phy-
logeny does carry some signal of extinction. Estimating extinction 
rates or diversity decline from phylogenies without fossils is, how-
ever, challenging and controversial (Beaulieu & O'Meara,  2015; 
Burin et al.,  2019; Louca & Pennell,  2020; Morlon,  2014; Nee 
et al.,  1994; Paradis,  2004), and phylogenetic studies have been 
criticized for showing low extinction rates compared with the fos-
sil record (Burin et al., 2019; Louca & Pennell, 2020; Paradis, 2004; 
Quental & Marshall, 2011). This may result from use of inappropriate 
methods that preclude negative diversification estimates (Magallon 
& Sanderson,  2001; Rabosky,  2006), failure to properly consider 
time and clade heterogeneity (Morlon, 2014) or problems inherent 
to the models themselves (Louca & Pennell, 2020). Unfortunately, 
in groups where fossil information is largely unavailable, like butter-
flies, birth-death models currently provide the only resource avail-
able to assess past diversification.

Another important caveat is that our analysis is based only on lin-
eages included in our phylogeny, which are necessarily extant taxa. 
High levels of extinction between 15 and 5 Mya, may well be obscur-
ing the actual number of lineages during this period. If forest taxa 
were the most affected by extinctions as their habitats retreated, it 
is possible that forest biome lineages represented an even greater 
proportion of the diversity in the past.

F I G U R E  3 (a) Sum of transitions between biomes by members of the Euchrysops section and their ancestors as estimated from 
biogeographical analyses. Thicker arrows/higher numbers indicate more transitions between biomes. E, Eastern; EA, East African; Mal., 
Malawi; Tan., Tanzania; trans., transition zone; W, Western; Zim., Zimbabwe. Photos of the biomes include (b) Succulent Karoo, (c) Fynbos, 
(d) Malawian, Zimbabwean, southern Tanzanian montane grasslands, (e) Southern African montane grasslands, (f) Bushveld, (g) Miombo 
woodland, (h) East African forest, and (i) Congolean rainforest. All photos by M. Espeland.
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3.4  |  Aphytophagy: A rare and risky life history 
strategy in Lepidoptera

The success of phyto-predation in the Lepidochrysops radiation is 
highly unusual: over 99% of Lepidoptera caterpillars are exclusively 
phytophagous (Pierce, 1995). The few butterfly species feeding on 
resources other than plants (i.e., aphytophagous lineages) are found 
primarily in Lycaenidae and Riodinidae, which have independently 
evolved high degrees of ant association (Espeland et al., 2018; Pierce 
et al., 2002). Symbiotic ant association is thought to have promoted 
diversification in the Lycaenidae as a whole (Pellissier et al., 2017; 
Pierce et al.,  2002; Schär et al.,  2018). However, even though 
entomophagy has evolved many times independently in Lycaenidae, 
this strategy generally appears to be an evolutionary dead-end since 
it has rarely led to diversification (Cottrell, 1984; Pierce, 1995; Pierce 
et al., 2002; Schär et al., 2018), with Lepidochrysops as the striking 
exception.

For Lepidochrysops, our results suggest that harsh conditions 
above ground, such as fire or long dry seasons, favored shifts into 
ant nests and contributed to the evolutionary success of phyto-
predation (Cottrell,  1984; Fiedler,  1991, 1998). This hypothesis 
parallels findings that burrowing mammals better cope with climate 
change in arid environments than animals that do not live under-
ground (Riddell et al., 2021), and that plants in fire-prone savannas 
repeatedly evolve underground life forms (Maurin et al., 2014).

Consistent with aphytophagy being evolutionarily precarious, 
it is over-represented among species with threatened conservation 
status on the IUCN Red List of Threatened Species and accounts for 
approximately 15% of the butterflies listed in the highest catego-
ries (IUCN, 2020), despite making up considerably less than 1% of 
butterfly species overall. Even in Lepidochrysops, which have adap-
tations to survive climate change, most of the assessed species are 
listed as endangered to rare, one is recorded as extinct, and others 
are thought to be extinct (Mecenero et al., 2020).

3.5  |  Ant association and adaptation to the 
aridification of Africa

Few studies have investigated the influence of the Miocene 
aridification (but see Aduse-Poku et al., 2021; Kergoat et al., 2018). 
Several of the few notable radiations in drier areas are, however, 
associated with ants. In addition to Lepidochrysops, these include 
the ant-parasitic Paussus beetles (>350 species) (Moore & 
Robertson,  2014), and ant-associated butterflies in the lycaenid 
genera Chrysoritis, Aloeides, and Thestor, with a moderate number of 
lineages (27–57 described species) found mainly in southern Africa 
(Heath et al., 2023; Quek et al., 2022; Rand et al., 2000; Talavera 
et al., 2020).

Larvae of Chrysoritis and Aloeides are strongly ant associated 
and belong to the Aphnaeinae, a largely African subfamily with 
about 300 species, where ant parasitism has evolved multiple times 
independently (Boyle et al., 2015; Pierce et al., 2002). Potential 

adaptations to life in arid biomes thus most likely evolved after 
they arrived in these areas. Chrysoritis occurs within a variety of 
biomes from semi-desert to forest (Talavera et al., 2020) in south-
ern Africa, originating around 17 Mya but, like Lepidochrysops, only 
radiating rapidly in the Fynbos and the Succulent Karoo within the 
last 2.5 My (Talavera et al., 2020). The genera Aloeides and Thestor 
both arose between 5 and 10 My and have undergone limited radi-
ation only in the GCFR (Boyle et al., 2015; Kaliszewska et al., 2015). 
Differently from Chrysoritis and Aloeides, Lepidochrysops species 
were already phyto-predaceous when they reached the Fynbos 
and Karoo and were thus pre-adapted to these arid environ-
ments. This is also the case for Thestor species, since all species 
in the subfamily Miletinae are aphytophagous where known, par-
asitizing either ants or ant-associated homopterans (Kaliszewska 
et al., 2015).

4  |  CONCLUSIONS

We show that phytophagous lineages in the Euchrysops section of 
the butterfly family Lycaenidae experienced high levels of extinction 
during the aridification of Africa between 15 and 5 Mya. In contrast, 
the radiation of the aphytophagous genus Lepidochrysops originated 
around 6.5 Mya, shortly after aphytophagy evolved. The Miombo 
woodlands were likely the cradle for diversification of the Euchrysops 
section, and our findings are consistent with the hypothesis that 
aridification during the Miocene selected for a phyto-predaceous 
life history, with ant nests providing caterpillars a safe refuge from 
fire and a source of food when vegetation was scarce. Reproductive 
diapause during the dry season is thought to be another important 
adaptation for the survival of butterflies in African savannas 
(Halali et al., 2020). Phyto-predation can be seen as an even more 
extreme strategy to avoid unfavorable conditions, and seemingly 
facilitated radiations even in more arid biomes. Penetration of ant 
nests must have required the evolution of a suite of pheromones 
and behaviors to mimic and manipulate ant hosts, of which little has 
yet been learned for this group. Since phyto-predaceous behavior 
in Lepidochrysops and Phengaris evolved independently, a genomic 
comparison of these convergent systems could help illuminate 
constraints and contingencies influencing the evolution of these 
iconic butterflies.
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