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ABSTRACT

This work aims to develop a fast and easy-to-use pro-
gram for the prediction of brass instrument bifurcation di-
agrams, with minimal supervision from the user. Using
numerical continuation, more than ten thousand bifurca-
tion diagrams are generated to train a machine learning
model with trumpet impedances as inputs, and descrip-
tors associated with the bifurcation diagrams as outputs.
Our approach is based on the definition of virtual players
and virtual trumpets to generate the training data. Differ-
ent regression models are then considered and their per-
formance is compared. The model finally selected shows
high speed and great accuracy in predicting the descrip-
tors. Moreover, the regression approach includes regular-
ization which promotes sparsity, hence improving the in-
terpretability of the model. This program then constitutes
a potential tool for music instrument designers to easily
predict the dynamical behavior of numerical prototypes.
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1. BIFURCATION DIAGRAM OF A MODEL OF
BRASS INSTRUMENT

The use of artificial intelligence in musical acoustics is a
growing field of interest, with some recent examples of
computational optimization or machine learning applica-
tions to design problematics in brass or bowed string in-
struments [1, 2]. In this study we evaluate the benefits of
machine learning in order to elaborate a surrogate model
for the prediction of the dynamical behaviour of trumpets.

In previous work, numerical continuation of a phys-
ical model of brass instrument was performed using the
Asymptotic Numerical Method (ANM) [3]. Bifurcation
diagrams could be computed, showing the evolution of
periodic solutions with respect to the blowing pressure
for different Bb trumpets defined by their acoustic input
impedance (Fig. 1). Different ”performance descriptors”
could then be extracted from the bifurcation diagrams
to characterize objectively the instrument. They include
information about minimum blowing pressures, hystere-
sis behaviours, dynamic range, minimum and maximum
acoustic pressure in the instrument over a given blowing
pressure range. In the present study, given p0 the quasi-
static mouth pressure and p the acoustic pressure in the
mouthpiece, we particularly focus on the following de-
scriptors (Fig. 1):

• Pmin1: mouth pressure at the Hopf bifurcation

• Pmin2: mouth pressure at the fold bifurcation
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• H: hysteresis (difference between Pmin1 and
Pmin2)

• pmin: minimum value of the amplitude of p

• pmax: amplitude of p at a given offset mouth pres-
sure from Pmin2

• D: dynamic range calculated as the difference be-
tween pmax and pmin.

• S: slope of the stable part of solution branch over
the p0 range covered between pmin and pmax

Figure 1. Bifurcation diagram (amplitude of p with
respect to p0) of a Bb trumpet for a Bb4 as presented
in [3], with six performance descriptors highlighted.

Furthermore, to take into account the influence of the
player’s parameters (lip-model parameters) on the calcula-
tion results, bifurcation diagrams were also computed for
several virtual players in this previous study [3]. This ap-
proach is interesting to quantify the robustness of the dif-
ferences in performance descriptors between instruments,
as well as to assess the sensitivity of each performance de-
scriptor and each instrument to these variations. Besides,
these numerical predictions offer some interesting per-
spectives for brass instrument designers, as they may pro-
vide some insights on the behaviour of prototypes of mu-
sical instruments, and contribute to guide design choices.

Nevertheless, these calculations remain computation-
ally costly, and require a certain know-how in order to op-
erate the continuation calculation. The question is there-
fore, the following: could we train a machine learning

model to compute the bifurcation diagrams and the per-
formance descriptors from trumpet input impedances, and
then provide a fast and easy-to-use tool that could be used
in the context of trumpet development?

2. MACHINE LEARNING APPROACH

To tackle this problem, a supervised approach is used to
train a machine learning model in order to compute the
performance descriptors over a batch of virtual musicians.

2.1 Dataset creation

Supervised approaches need a large amount of data to
learn a given task. For the descriptor prediction, we used
n = 199 virtual instruments and 47 virtual players. Each
instrument is defined by m = 44 modal parameters that
are associated to the 11 poles sk and 11 residues Ck ex-
tracted from the the input impedance [3]:

Z(ω) = Zc

11∑
k=1

Ck

jω − sk
+

C∗
k

jω − s∗k
, (1)

where Zc is the characteristic impedance of the instru-
ment.

For each virtual instrument/player pair, we computed
the bifurcation diagram and performance descriptors for
a Bb4 (f0 ≃ 466 Hz), using the continuation method de-
scribed in [3]. Here, the regression task consists in pre-
dicting from the modal parameters of the impedance of
any instrument, a descriptor value for each of the 47 vir-
tual players. It can be formalized in the following way:

For each musician-descriptor pair, we want to solve

min
w∈Rm

1

2n
∥y −Xw∥22, (2)

where X ∈ Rn×m is the matrix containing the modal pa-
rameters of the instruments, y ∈ Rn is the vector contain-
ing the descriptor values associated to each instrument,
and w ∈ Rm contains the weights of the regression model.

2.2 Model training

Different methods were evaluated, including Xgboost [4],
Support Vector Regression [5] and Least-Angle Regres-
sion [6].

By regularizing the problem (2) with the ℓ1-norm, we
obtain the Least Absolute Shrinkage and Selection Oper-
ator (LASSO) [7] formulation of the regression problem:

min
w∈Rm

1

2n
∥y −Xw∥22 + λ∥w∥1,
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where λ ∈ R+ is the regularization strength. The best
performances were obtained on the regularized regression
problem solved with the Least-Angle Regression (LARS)
algorithm. One benefit of this method is also to promote
interpretability. We trained one LASSO model using the
LARS and a 5-fold cross-validation procedure for each
descriptor/player pair in order to select the best parameters
for the model – less than 10 minutes on a regular laptop
computer. Thus, the regression task consists in asking a
model trained for a specific player, to predict a descriptor
value from the modal parameters of any given instrument.

2.3 Performance on the test set

To ensure stability and reduce biases, we cross-validated
the results using a 5-fold cross-validation procedure.
Therefore, 80% of the 199 instruments are used as a train
set to train the models. The remaining 20% of the in-
struments, not seen by the models, are used as a test set
to compute performances. We compare the LASSO with
a baseline. This baseline predicts the value of a specific
descriptor by using the mean of this descriptor value in
the training set. Tab. 1 shows averaged prediction perfor-
mances for the LASSO models and the baseline.

Table 1. Relative error percentage mean and stan-
dard deviation for all virtual players and instruments
for each descriptor. Performances are computed over
the test set for the LASSO models and the baseline
(mean of the train set).

Descriptor LASSO (%) Baseline (%)
Pmin2 0.54 ± 0.06 4.53 ± 0.43
D 0.56 ± 0.06 1.14 ± 0.10
pmaxL2 0.66 ± 0.07 1.58 ± 0.13
Pmin1 0.72 ± 0.11 5.72 ± 0.35
slope 0.86 ± 0.10 1.40 ± 0.13
pminL2 0.96 ± 0.10 4.08 ± 0.35
H 5.17 ± 1.41 35.49 ± 8.51

Although the baseline performances are relatively
high, more accurate and consistent predictions are ob-
tained for all performance descriptors with a mean rela-
tive error below 1% for most of them. Since the hysteresis
H can be calculated from Pmin1 and Pmin2, we find a
high prediction error since different values of Pmin1 and

Pmin2 can lead to a same value of H . Therefore, this
high raw error in H prediction can be compensated by
taking the difference between the predicted Pmin1 and
Pmin2.

An example of a prediction of Pmin1 descriptor for
the 47 virtual players on three virtual instruments is de-
picted in Fig. 2. In terms of computational time, predict-
ing all descriptors for 100 trumpets takes less than 5 sec-
onds on a regular laptop computer. This figure highlights
the ability of the proposed approach to exploit the diver-
sity of virtual musicians to precisely estimate the distribu-
tion of each performance descriptor for new instruments.

Figure 2. Box plot of Pmin1 descriptor prediction
for the 47 virtual players on 3 test instruments (un-
seen during the model training).

2.4 Interpretability

The LASSO promotes sparsity in the selected variables to
make the prediction. This makes the models easy to inter-
pret as explained in [7]. Tab. 2 shows the importance of
each modal coefficient in the prediction of the descriptor
Pmin1 averaged over the 47 virtual players.

This table shows that the fourth and fifth poles and
residues are the most important parameters for predict-
ing Pmin1: more than 60% of the descriptor value is de-
duced from these parameters. This result seems coherent
with the underlying mechanisms of sound production in
the trumpet, since Bb4 corresponds to the 4th register of
the instrument, with a fundamental frequency around 466
Hz lying between the fourth and fifth resonance peaks of
the input impedance. Nevertheless, this trend – impor-
tance of the modal coefficients associated to the 4th and
5th impedance peaks – is not necessarily observed for all
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Table 2. Mean and standard deviation of the im-
portance of each modal coefficient in the prediction
of the descriptor Pmin1 for the 47 virtual players.
Only the seven most important modal coefficients are
displayed.

Modal coefficient Mean (%) Std (%)
Re(C4) 17.89 0.79
Re(s5) 12.14 0.35
Re(s4) 11.21 0.32
Re(C5) 9.77 0.19
Im(s4) 6.15 0.27
Re(C6) 4.55 0.07
Im(c4) 4.03 0.10

the other descriptors, which suggests more complex rela-
tionships with the input impedance of the instrument.

3. CONCLUSIONS

We designed a simple, accurate, fast and interpretable ma-
chine learning approach able to predict trumpet perfor-
mance descriptors using a set of virtual musicians. One
particular limitation concerns the generalization of this
approach to other dynamical behaviours such as direct bi-
furcations, that were not considered in this study. In future
work, we then hope to extend this study to more notes and
performance descriptors, which may involve different ma-
chine learning methods. We therefore wish to be able to
predict bifurcation diagrams over a larger playing range,
thus providing a global overview of the behaviour of the
instrument.

4. REFERENCES

[1] R. Tournemenne, J.-F. Petiot, B. Talgorn, M. Kokko-
laras, and J. Gilbert, “Brass instruments design
using physics-based sound simulation models and
surrogate-assisted derivative-free optimization,” Jour-
nal of Mechanical Design, vol. 139, pp. 0141401–1–
011401–9, 2017.

[2] S. Gonzales, D. Salvi, D. Baeza, F. Antonacci, and
A. Sarti, “A data-driven approach to violin making,”
Sci Rep, vol. 11, 9455, 2021.
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