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Using a variational method, we prove the existence of heteroclinic solutions for a 6-dimensional system of ordinary differential equations. We derive this system from the classical Bénard-Rayleigh problem near the convective instability threshold. The constructed heteroclinic solutions provide first order approximations for domain walls between two orthogonal convective rolls.

Introduction

We consider the following system of ordinary differential equations

d 4 A 0 dx 4 = A 0 (1 -|A 0 | 2 -g|B 0 | 2 ), (1.1) 
d 2 B 0 dx 2 = ε 2 B 0 (-1 + g|A 0 | 2 + |B 0 | 2 ), (1.2) 
in which A 0 and B 0 are complex-valued functions defined on R, and the parameters ε and g are real. The purpose of this work is twofold: to rigorously derive this system from the Bénard-Rayleigh convection problem and to prove that it possesses heteroclinic orbits. In the system derived in this way ε is a small positive bifurcation parameter and g g 0 for some g 0 > 1.

Beyond these values, the existence of heteroclinic solutions is a mathematically interesting question in itself and it could also be relevant in other applications.

The Bénard-Rayleigh convection problem is a classical problem in fluid mechanics. It concerns the flow of a three-dimensional viscous fluid layer situated between two horizontal parallel plates and heated from below. Upon increasing the difference of temperature between the two plates, the simple conduction state looses stability at a critical value of the temperature difference. In terms of nondimensional parameters this instability occurs at a critical value R c of the Rayleigh number. Beyond the instability threshold, a convective regime develops in which patterns are formed, such as convective rolls, hexagons, or squares. Observed patterns are often accompanied by defects, as for instance domain walls which occur between rolls with different orientations (see Figure 1.1). These patterns and defects are exten- sively studied in the Bénard-Rayleigh convection problem, but also in other pattern-forming systems. We refer to the works [START_REF] Bodenschatz | Recent developments in Rayleigh-Bénard convection[END_REF][START_REF] Manneville | Rayleigh-Bénard convection, thirty years of experimental, theoretical, and modeling work[END_REF], and the references therein, for experimental and analytical results, and detailed descriptions of these patterns and defects.

Mathematically, the governing equations are the Navier-Stokes equations coupled with an equation for the temperature, and completed by boundary conditions at the two plates (e.g., see [START_REF] Koschmieder | Bénard cells and Taylor vortices[END_REF]). Observed patterns are then found as particular steady solutions of these equations. Since the pioneering works of Yudovich [START_REF] Ukhovskii | On the equations of steady state convection[END_REF][START_REF] Yudovich | On the origin of convection[END_REF][START_REF] Yudovich | Free convection and bifurcation[END_REF][START_REF] Yudovich | Stability of convection flows[END_REF], Rabinowitz [START_REF] Rabinowitz | Existence and nonuniqueness of rectangular solutions of the Bénard problem[END_REF], and Görtler et al [START_REF] Görtler | Branching solutions of the Bénard problem. Problems of hydrodynamics and continuum mechanics[END_REF] in the sixties, the existence of patterns was studied in various works by different authors (e.g., see [START_REF] Golubitsky | Singularities and groups in bifurcation theory[END_REF][START_REF] Koschmieder | Bénard cells and Taylor vortices[END_REF][START_REF] Braaksma | Existence of bifurcating quasipatterns in steady Bénard-Rayleigh convection[END_REF] and the references therein). Very recently, the existence of symmetric domain walls has been shown in [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF][START_REF] Haragus | Domain walls for the Bénard-Rayleigh convection problem with "rigid-free" boundary conditions[END_REF], whereas the existence of asymmetric domain walls, and in particular of orthogonal domain walls, are open questions.

Handling the full governing equations being often technically challenging, alternative studies rely on simpler amplitude equations which provide approximate descriptions of solutions in particular parameter regimes. For instance, the amplitude equations describing symmetric domain walls are a particular case of the system considered in [START_REF] Van Den Berg | A domain-wall between single-mode and bimodal states[END_REF]. We adopt this type of approach for the existence problem for orthogonal domain walls.

As a first step, we rigorously derive the system of amplitude equations (1.1)-(1.2) in the parameter regime of Rayleigh numbers R slightly above the threshold of convective instability R c . We apply the reduction procedure used in [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF][START_REF] Haragus | Domain walls for the Bénard-Rayleigh convection problem with "rigid-free" boundary conditions[END_REF] for the analysis of symmetric domain walls. Starting from a formulation of the steady governing equations as an infinite-dimensional dynamical system in which the horizontal coordinate x plays the role of evolutionary variable, we apply a center manifold reduction and obtain a 12dimensional reduced dynamical system. Then, we compute a normal form for this reduced system and find the system (1.1)-(1.2) to leading order after an appropriate rescaling of the normal form. The unknowns A 0 and B 0 in the system (1.1)-(1.2) represent the rescaled amplitudes of the two critical eigenmodes at the instability threshold, the power ε 4 of the small parameter ε is proportional to the positive difference R 1/2 -R 1/2 c , which is the bifurcation parameter, and g depends on the physical parameters. A computation of g shows that g > g 0 for some g 0 > 1. This first step is carried out in Section 2. Solutions of the system (1.1)-(1.2) provide leading order approximations of solutions of the full governing equations. In particular, the equilibrium (A 0 , B 0 ) = (0, 1) of the system (1.1)-(1.2) gives an approximation of convection rolls bifurcating for Rayleigh numbers R > R c close to R c , whereas the equilibrium (A 0 , B 0 ) = (1, 0) of the system (1.1)-(1.2) gives the same convection rolls but rotated by an angle π/2. A heteroclinic orbit connecting these two equilibria provides then an approximation of orthogonal domain walls. Our main result shows the existence of such heteroclinic orbits for the system (1.1)-(1.2).

Theorem 1. For any ε > 0 and g > 1, the system (1.1)-(1.2) possesses a smooth real-valued heteroclinic solution (A 0 , B 0 ) = (A ε,g , B ε,g ) with the following properties:

(i) lim x→-∞ (A ε,g (x), B ε,g (x)) = (1, 0) and lim x→∞ (A ε,g (x), B ε,g (x)) = (0, 1); (ii) B ε,g (x) 0, for all x ∈ R; (iii) for fixed ε > 0, lim g→1 + sup x∈R |A ε,g (x) 2 + B ε,g (x) 2 -1| = 0.
After some rescaling, the limit ε = 0 is also considered, as it could give indications of how the heteroclinic orbits look like for small ε > 0. Our analysis of the system (1.1)-(1.2) is only valid for g > 1 and we don't know whether such heteroclinic solutions exist for g 1. The result in Theorem 1(iii) indicates that these heteroclinic solutions cease to exist at g = 1.

The proof of Theorem 1 is given in Section 3. The heteroclinic solution being real-valued, it is a solution of the 6-dimensional system obtained by restricting the system (1.1)-(1.2) to real-valued functions A 0 and B 0 . We use a variational method in which the heteroclinic solution is found as a minimizer of a rescaled functional. A compactness by concentration type argument is used to prove the convergence of minimizing sequences towards the heteroclinic solution.

Our analysis also provides the first necessary steps towards an existence proof for orthogonal domain walls for the Rayleigh-Bénard convection problem. For a complete proof it remains to show that the heteroclinic orbit found in Theorem 1 persists as a perturbed heteroclinic solution for the full 12-dimensional reduced system, hence without restricting to the leading order system (1.1)-(1.2). Relying upon Implicit Function Theorem arguments such a proof was given for symmetric domain walls in [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF][START_REF] Haragus | Domain walls for the Bénard-Rayleigh convection problem with "rigid-free" boundary conditions[END_REF], but we were not able to obtain a full proof in the case of orthogonal domain walls so far. The main obstacle in the present case is the analysis of the kernel of the linear operator obtained by linearizing the (1.1)-(1.2) about the heteroclinic solutions found in Theorem 1. This is also related to the local uniqueness question which remains open as well.
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Derivation of the amplitude equations

Relying upon a center manifold reduction and a normal forms analysis, we derive the system of amplitude equations (1.1)-(1.2) from the Bénard-Rayleigh convection problem. This derivation being similar to that of the leading order systems in [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF][START_REF] Haragus | Domain walls for the Bénard-Rayleigh convection problem with "rigid-free" boundary conditions[END_REF], we recall the main steps, focus on differences, and refer to these works for further details.

Formulation of the hydrodynamic problem

We consider the formulation as a dynamical system of the governing equations for the steady convection problem from [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF]. In Cartesian coordinates (x, y, z) ∈ R 3 , where (x, y) are the horizontal coordinates and z is the vertical coordinate, after rescaling variables, the fluid occupies the domain R 2 ×(0, 1). The physical variables are the particle velocity V = (V x , V y , V z ), the deviation θ of the temperature from the conduction profile, and the pressure p. There are two dimensionless parameters, the Rayleigh number R and the Prandtl number P. We refer to [START_REF] Koschmieder | Bénard cells and Taylor vortices[END_REF] for more details on the governing equations.

Taking the horizontal coordinate x as evolutionary variable, the governing equations are written as a system of the form

∂ x U = L µ U + B µ (U, U), (2.1) 
with U = (V x , V ⊥ , W x , W ⊥ , θ, φ) an 8-components vector, in which V ⊥ = (V y , V z ), W ⊥ = (W y , W z ), and W = (W x , W ⊥ ) and φ are additional variables defined by

W = µ -1 ∂ x V -pe x , φ = ∂ x θ, (2.2) 
where e x = (1, 0, 0). The parameter µ is the square root of the Rayleigh number, µ = R 1/2 , and L µ and B µ in the right hand side of (2.1) are linear and quadratic operators, respectively, defined by

L µ U =           -∇ ⊥ • V ⊥ µW ⊥ -µ -1 ∆ ⊥ V x -µ -1 ∆ ⊥ V ⊥ -θe ⊥ z -µ -1 ∇ ⊥ (∇ ⊥ • V ⊥ ) -∇ ⊥ W x φ -∆ ⊥ θ -µV z           , B µ (U, U) =          0 0 P -1 (V ⊥ • ∇ ⊥ )V x -V x (∇ ⊥ • V ⊥ ) P -1 (V ⊥ • ∇ ⊥ )V ⊥ + µV x W ⊥ 0 µ (V ⊥ • ∇ ⊥ )θ + V x φ          , where ∆ ⊥ = ∂ yy + ∂ zz , ∇ ⊥ = (∂ y , ∂ z ),
and here e ⊥ z = (0, 1). The phase space X for the dynamical system (2.1) and the domain of definition Z of the linear operator L µ include the boundary conditions and a condition on the flux. We consider periodic boundary conditions in y and the case of "rigid-rigid" boundary conditions in z:

1 V| z=0,1 = 0, θ| z=0,1 = 0. (2.3)
Taking the period 2π/k in y, for some fixed k > 0, a direct calculation shows that the derivative of the flux

F(x) = Ωper V x dy dz, Ω per = (0, 2π/k y ) × (0, 1), (2.4) 
vanishes, hence F(x) is a constant function (see [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF]Section 3]).

Fixing the constant flux to 0, the phase space X is defined by

X = U ∈ X ; V x = V ⊥ = θ = 0 on z = 0, 1, and Ωper V x dy dz = 0 , where X = (H 1 per (Ω)) 3 × (L 2 per (Ω)) 3 × H 1 per (Ω) × L 2 per (Ω)
, and the subscript per means that the functions are 2π/k-periodic in y (for simplicity, we have written V x = V ⊥ = θ = 0 although these vectors do not have the same dimension). The boundary conditions (2.3) and the flux (2.4) being well-defined on X , they are included in the definition of the phase space X which is a closed subspace of X . Equipped with the scalar product of X , the phase space X is a Hilbert space.

The domain of definition Z of the linear operator L µ is defined by

Z = U ∈ X ∩ (H 2 per (Ω)) 3 × (H 1 per (Ω)) 3 × H 2 per (Ω) × H 1 per (Ω) ; ∇ ⊥ • V ⊥ = W ⊥ = φ = 0 on z = 0, 1 ,
such that L µ is a closed operator in X with dense and compactly embedded domain. An immediate consequence of the latter property is that the linear operator L µ has compact resolvent and therefore pure point spectrum consisting of isolated eigenvalues with finite algebraic multiplicity [10, p.187]. Finally, the quadratic operator B µ is well-defined on Z with values in X .

As a consequence of the symmetries of the hydrodynamic problem, the dynamical system (2.1) is reversible with reversibility symmetry

S 1 U (y, z) = (-V x , V ⊥ , W x , -W ⊥ , θ, -φ)(y, z), U ∈ X ,
which anti-commutes with L µ and B µ , and O(2)-equivariant with discrete symmetry

S 2 U (y, z) = (V x , -V y , V z , W x , -W y , W z , θ, φ)(-y, z), U ∈ X , and continuous symmetry (τ a ) a∈ R/2πZ , τ a U (y, z) = U (y + a/k y , z), U ∈ X ,
which commute with L µ and B µ and satisfy

τ a S 2 = S 2 τ -a , τ 0 = τ 2π = I.
The symmetries S 1 and S 2 follow from the reflections x → -x and y → -y, respectively, whereas the continuous symmetry τ a is a consequence of the invariance under translations in y of the governing equations. 2 In addition, the system does not change when adding any constant to the new variable W x , i.e., it is invariant under the action of the one-parameter family of maps (T b ) b∈R defined by

T b U = U + bϕ 0 , ϕ 0 = (0, 0, 0, 1, 0, 0, 0, 0) t , U ∈ X .
(2.5)

We keep track of these symmetries at each step of our reduction procedure, hence ensuring that they are correctly reproduced by the amplitude equations (1.1)-(1.2). In this setting, the classical convection rolls are equilibria of the dynamical system (2.1). As explained in [7, Section 4], these rolls provide a circle of equilibria τ a (U * k,µ ), for a ∈ R/2πZ, of the dynamical system (2.1) which bifurcate for µ > µ 0 (k) sufficiently close to a critical value µ 0 (k), for any fixed wavenumber k. Due to the rotation invariance of the hydrodynamic problem, horizontally rotated rolls are solutions of the dynamical system (2.1). In particular, for the rotation angle of π/2, we obtain solutions which are 2π/k-periodic in x and constant in y. Orthogonal domain walls could then be constructed as heteroclinic orbits connecting these latter periodic solutions with the equilibria U * k,µ . According to the classical theory, the map k → µ 0 (k) is analytic in k and has a strict global minimum at k = k c where µ 0 (k c ) > 0. The values k c , µ 0 (k c ) and µ 0 (k c ) depend on the imposed boundary conditions at z = 0, 1 and can be computed numerically. We refer to [7, Section 2.1] for a more detailed discussion of these properties.

Reduced dynamics

We consider the parameter regime with (k, µ) close to (k c , µ c ), where

µ c = µ 0 (k c ). We set µ = µ c + µ, k = k c (1 + k), (2.6) 
in which µ and k are small parameters. We also eliminate the dependence on k of the phase space X of the dynamical system (2.1) by normalizing to 2π/k c the period in y of the solutions. The resulting system is of the form (2.1) in which now

∆ ⊥ = (1 + k) 2 ∂ yy + ∂ zz , ∇ ⊥ = ((1 + k)∂ y , ∂ z )
, and its phase space is X with k = k c . We write this system in the form

∂ x U = L c U + R(U, µ, k), (2.7) 
where

L c = L µc k=0 , R(U, µ, k) = (L µ -L µc k=0 )U + B µ (U, U), (2.8) 
and

R is a smooth map from Z × (-µ c , ∞) × R into X satisfying R(0, µ, k) = 0, D U R(0, 0, 0) = 0. (2.9)
We apply a center manifold theorem to obtain a reduced system of ordinary differential equations which describes the dynamics of (2.7) in a neighborhood of the equilibrium U = 0 for small ( µ, k). The arguments are the same as the ones from [7, Section 5], except for the center spectrum (the set of eigenvalues with zero real part) of the linear operator L c which is different. The following result is obtained by taking the limit α = 0 in the result from [7, Lemma 4.2].

Lemma 2.1. The center spectrum of the linear operator L c consists of the three eigenvalues 0, ±ik c with the following properties.

(i) The eigenvalue 0 has algebraic multiplicity 9 and geometric multiplicity 3, and the complex conjugated eigenvalues ±ik c are algebraically double and geometrically simple. (ii) For the eigenvalue 0, there are three linearly independent eigenvectors: ϕ 0 given by (2.5), ζ 0 of the form ζ 0 (y, z) = U kc (z)e ikcy , with U kc (z) ∈ C 8 , and the complex conjugated vector ζ0 , and two chains of generalized eigenvectors:

ζ 1 , ζ 2 , ζ 3 associated to ζ 0 , 3 L c ζ 1 = ζ 0 , L c ζ 2 = ζ 1 , L c ζ 3 = ζ 2 ,
and the conjugated vectors

ζ 1 , ζ 2 , ζ 3 associated to ζ 0 .
The eigenvector ϕ 0 is invariant under the actions of S 1 , S 2 , and τ a , and the other generalized eigenvectors satisfy:

S 1 ζ 0 = ζ 0 , S 2 ζ 0 = ζ 0 , τ a ζ 0 = e ia ζ 0 , S 1 ζ 1 = -ζ 1 , S 2 ζ 1 = ζ 1 , τ a ζ 1 = e ia ζ 1 , S 1 ζ 2 = ζ 2 , S 2 ζ 2 = ζ 2 , τ a ζ 2 = e ia ζ 2 , S 1 ζ 3 = -ζ 3 , S 2 ζ 3 = ζ 3 , τ a ζ 3 = e ia ζ 3 .
(iii) For the eigenvalue ik c , there is one eigenvector ξ 0 of the form ξ 0 (y, z) = U 0 (z) ∈ C 8 , and an associated generalized eigenvector ξ 1 with the properties

(L c -ik c )ξ 1 = ξ 0 ,
and

S 1 ξ 0 = ξ 0 , S 2 ξ 0 = ξ 0 , τ a ξ 0 = ξ 0 , S 1 ξ 1 = -ξ 1 , S 2 ξ 1 = ξ 1 , τ a ξ 1 = ξ 1 .
The complex conjugated vectors ξ 0 and ξ 1 are eigenvector and generalized eigenvector, respectively, for the eigenvalue -ik c .

As a consequence of this lemma, the spectral subspace associated with the center spectrum of the linear operator L c has dimension 13 and as a result of the center manifold theorem, the infinite-dimensional dynamical system (2.7) possesses a 13-dimensional local center manifold, for any sufficiently small µ and k. Solutions U : R → Z of the dynamical system (2.7) which are bounded on R and sufficiently small belong to this local center manifold, and are of the form

U (x) = w(x)ϕ 0 + A 0 (x)ζ 0 + A 1 (x)ζ 1 + A 2 (x)ζ 2 + A 3 (x)ζ 3 +A 0 (x)ζ 0 + A 1 (x)ζ 1 + A 2 (x)ζ 2 + A 3 (x)ζ 3 +B 0 (x)ξ 0 + B 1 (x)ξ 1 + B 0 (x)ξ 0 + B 1 (x)ξ 1 +Φ(w(x), X(x), X(x), µ, k), (2.10) 
in which the x-dependent functions w and X = (A 0 , A 1 , A 2 , A 3 , B 0 , B 1 ) take values in R and C 6 , respectively. The eigenvectors, except ϕ 0 , and the generalized eigenvalues in Lemma 2.1 being complex-valued, it is convenient to use the complex variables (X, X), instead of 12 real variables, hence identifying R 12 with the space

C 6 × C 6 = {(Z, Z) ; Z ∈ C 6 }. The map Φ is defined on R × C 6 × C 6 × (-µ c , ∞) × R
and can be chosen of class C m for any arbitrary, but fixed, m 1.

The reduced 13-dimensional system for w, X, and X inherits the symmetries of the infinite-dimensional dynamical system (2.1) listed in Section 2.1. The invariance of (2.1) under the action of T b , implies that the reduced vector field is invariant under the action of the induced transformation w → w + b, for any b ∈ R, and therefore does not depend on w. Consequently, the equations for w and (X, X) in the reduced system are decoupled,

dw dx = h(X, X, µ, k), (2.11 
)

dX dx = F (X, X, µ, k), dX dx = F (X, X, µ, k).
(2.12) so that we can restrict to the system (2.12) for (X, X), the component w being computed by directly integrating (2.11). Next, from the symmetry properties of the eigenvectors and generalized eigenvectors in Lemma 2.1, we deduce their actions on the variable X = (A 0 , A 1 , A 2 , A 3 , B 0 , B 1 ),

S 1 (A 0 , A 1 , A 2 , A 3 , B 0 , B 1 ) = (A 0 , -A 1 , A 2 , -A 3 , B 0 , -B 1 ), (2.13) S 2 (A 0 , A 1 , A 2 , A 3 , B 0 , B 1 ) = (A 0 , A 1 , A 2 , A 3 , B 0 , B 1 ),
(2.14) τ a (A 0 , A 1 , A 2 , A 3 , B 0 , B 1 ) = (e ia A 0 , e ia A 1 , e ia A 2 , e ia A 3 , B 0 , B 1 ). (2.15)

Then, the vector field in the reduced system (2.12) anti-commutes with S 1 and commutes with S 2 and τ a . Notice that the equivariance under the action of S 2 implies that the reduced system leaves invariant the 8-dimensional subspace {(X, X) ; A j = A j , j = 0, 1, 2, 3}. Solutions in this subspace correspond to solutions of (2.1) which are even in y. There is a second invariant subspace {(X, X) ; A j = 0, j = 0, 1, 2, 3}, which corresponds to solutions of (2.1) which do not depend on y.

Finally, from the properties (2.8)-(2.9) and the result in Lemma 2.1 we obtain that

F (0, 0, µ, k) = 0, D X F (0, 0, 0, 0) = L c , D X F (0, 0, 0, 0) = 0, (2.16) 
where L c is the 6 × 6 Jordan matrix

L c = L 0 0 0 L 1 , L 0 =     0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0     , L 1 = ik c 1 0 ik c . (2 
.17)

Leading order dynamics

The next step consists in a normal form transformation of the reduced system (2.12). In Appendix A we compute a normal form for 12-dimensional vector fields which satisfy the properties (2.16)-(2.17) and have the symmetries (2.13)- (2.15). Applying this result to the system (2.12), we then prove that the coefficients of the polynomials P 3 , Q 0 , and Q 1 appearing in the vector field N from Lemma A1(iii) satisfy

d 0 = α 0 = β 0 = 0, d 0 = -4k 2 c β 0 > 0, d 1 = -4k 2 c β 5 < 0, β 1 β 5 = d 5 d 1 > 1.
These properties are obtained after long, but standard, computations (see [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF]Appendix B.2] and [8, Appendix A]).

Following [7, Section 6.3] and [8, Section 4], we assume that µ given by (2.6) is positive and rescale variables in the normal form (A.1) by

x = 1 2εkc x, µ = 4k 2 c -β 0 ε 4 , k = ε 2 k, (2.18) 
A 0 (x) = 2kc √ β 5 ε 2 A 0 ( x), A 1 (x) = 4k 2 c √ β 5 ε 3 A 1 ( x), (2.19) 
A 2 (x) = 8k 3 c √ β 5 ε 4 A 2 ( x), A 3 (x) = 16k 4 c √ β 5 ε 5 A 3 ( x), (2.20) 
B 0 (x) = 2kc √ β 5 ε 2 e i 2ε x B 0 ( x), B 1 (x) = 4k 2 c √ β 5 ε 3 e i 2ε x B 1 ( x). (2.21)
Notice here the exponential factor e i 2ε x in the formulas for B 0 and B 1 . Then, taking into account the properties of the coefficients above we obtain the rescaled system

d A 0 d x = A 1 + O(|ε| 2 (| k| 2 + |ε| 2 )), d A 1 d x = A 2 + O(| k| + |ε| 2 ), d A 2 d x = A 3 + O(| k| + |ε| 2 ), d A 3 d x = A 0 (1 -| A 0 | 2 -g| B 0 | 2 ) + O(| k| + |ε|), d B 0 d x = B 1 + O(|ε|(| k| + |ε| 2 )), d B 1 d x = ε 2 B 0 (-1 + g| A 0 | 2 + | B 0 | 2 ) + O(|ε| 2 (| k| + |ε|)).
Keeping only the leading order terms in each equation, the resulting system is equivalent to the system (1.1)-(1.2) in which

g := β 1 β 5 = d 5 d 1 > 1.
Interestingly, the computation of g shows that it is equal to the ratio g computed in [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF] in the particular case of symmetric domain walls when the angle between the rotated rolls is equal to π/2 (rotation angle α = π/4 in that work). As a result, we find that g is a function of the Prandtl number P and satisfies g > g 0 for some constant g 0 > 1. 4The real equilibrium M + = (0, 1) of the system (1.1)-(1.2) corresponds to the roll solution U * k,µ of the dynamical system (2.1), whereas the real equilibrium M -= (1, 0) corresponds to the same roll solution rotated by an angle π/2. Consequently, a domain wall connecting these two orthogonal rolls in the Bénard-Rayleigh problem corresponds to a heteroclinic connection between these two real equilibria of the system (1.1)-(1.2) (for further details, see [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF]Section 6.3] and [8, Section 4.2]).

Remark 2.1. An approximate qualitative, but also quantitative, description of orthogonal domain walls could be obtained from the formula (2.10) for the solutions U(x) on the center manifold provided the heteroclinic solution of the system (1.1)-(1.2) is known explicitly through analytical formulas or numerically. Indeed, taking into account the scaling (2.18)-(2.21), a leading order approximation of the physical variables V = (V x , V y , V z ) and θ is given by the first three components and the seventh component, respectively, of the vector in the expression

2k c √ β 5 ε 2 A 0 (2εk c x)ζ 0 + B 0 (2εk c x)e ikcx ξ 0 + c.c. ,
where c.c. stands for the complex conjugated terms, ( A 0 , B 0 ) is the heteroclinic solution of the system (1.1)-(1.2), and the other quantities (k c , β 5 and the eigenvectors ζ 0 , ξ 0 ) can be found from the results in [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF][START_REF] Haragus | Domain walls for the Bénard-Rayleigh convection problem with "rigid-free" boundary conditions[END_REF], after some more computations. This computation of domain walls is outside the scope of the present work.

Existence of a heteroclinic orbit

In this section we prove the result in Theorem 1. We restrict to real-valued solutions and choose new scales by taking

= ε 4 > 0, x = 1/4 x, A 0 (x) = Ā(x), B 0 (x) = B(x).
Then the system (1.1)-(1.2) becomes d 4 Ā

dx 4 = Ā(1 -Ā2 -g B2 ), d 2 B dx 2 = B(-1 + g Ā2 + B2 ),
and, after suppression of bars (for simplicity),

d 4 A dx 4 = A(1 -A 2 -gB 2 ), (3.1)
d 2 B dx 2 = B(-1 + gA 2 + B 2 ). (3.2)
We construct the heteroclinic orbit as a minimizer of the functional For any > 0 and g > 1 this functional is nonnegative, J (A, B) ∈ [0, ∞]. In fact J is more generally defined on H 2 loc (R) × H 1 loc (R) with values in [0, +∞], that is, without restricting ourselves to functions satisfying (3.3). A delicate issue will be, once a solution (A,

J (A, B) := R 2 A 2 + 1 2 B 2 + 1 4 (A 2 + B 2 -1) 2 + 1 2 (g -1)A 2 B 2 dx, on the set X of real-valued functions (A, B) ∈ H 2 loc (R) × H 1 loc (R) such that
B) ∈ H 2 loc (R) × H 1 loc (R) is obtained with J (A, B) < ∞, to check that indeed (3.3) is satisfied. Setting P (A, B) = 1 4 A 2 + B 2 -1 2 + 1 2 (g -1)A 2 B 2 ,
a stationary point (A, B) ∈ X of J satisfies the system

A + ∂ A P (A, B) = 0, -B + ∂ B P (A, B) = 0,
in the sense of distributions. This system is precisely the system (3.1)-(3.2). Notice that a standard bootstrap argument shows that any solution (A, B) ∈

H 2 loc (R) × H 1 loc (R) is smooth if > 0 (by 'smooth' we mean ' C ∞ ').
3.1. The case = 0 Although the case = 0 is not part of the statement of Theorem 1, we nevertheless mention this case, because it could give an additional insight on the problem when > 0 is small. From our point of view, the main interest of the case = 0 is the possibility to obtain an explicit heteroclinic orbit (the second order differential equation (3.5) for B has the explicit increasing solution (3.7), A being then given by (3.6)). Besides the attractive aspect of an explicit formula, there is also the hope that, from this explicit solution, a perturbative argument could be set up. Conversely, it is natural to ask whether the solutions we obtain for > 0 converge in some sense to the explicit solution obtained for = 0, but to start such a discussion here would be beyond the scope of the present paper.

For = 0 and g > 1, we have the functional

J 0 (A, B) = R 1 2 B 2 + 1 4 (A 2 + B 2 -1) 2 + 1 2 (g -1)A 2 B 2 dx ∈ [0, ∞],
For fixed B, one can minimize with respect to A. Differentiating the map

A → f (A) := 1 4 (A 2 + B 2 -1) 2 + 1 2 (g -1)A 2 B 2 ,
one gets the equation for A:

(A 2 + gB 2 -1)A = 0.
Hence critical points satisfy A = 0 or

A 2 = 1 -gB 2 if 1 -gB 2 0. As f (A) = 3A 2 -(1 -gB 2 ), we see that if 1 -gB 2 > 0, then f (0) < 0 and the minimum of f is reached at A = ± 1 -gB 2 . Consequently, A = 0 if 1 -gB 2 0, and A = ± 1 -gB 2 if 1 -gB 2 0, or equivalently, A 2 = max{0, 1 -gB 2 } = (1 -gB 2 ) + . (3.4) 
Substituting A 2 above in J 0 (A, B), one gets the reduced functional

J red (B) = R 1 2 B 2 + 1 4 ((1-gB 2 ) + +B 2 -1) 2 + 1 2 (g-1)(1-gB 2 ) + B 2 dx ∈ [0, ∞],
which depends on B ∈ H 1 loc (R), only. Observe that A does no more appear in J 0 and this is why we let (A, B) be a priori in C(R)×H 1 loc (R) when dealing with J 0 . The explicit solution (A, B) ∈ C(R) × H 1 loc (R) given below by (3.7) and (3.6) 

is such that A is not C 1 . A stationary point (A, B) ∈ C(R) × H 1 loc (R) of J 0 satisfies ∂ A P (A, B) = 0, -B + ∂ B P (A, B) = 0,
or equivalently,

A(A 2 + gB 2 -1) = 0, -B + B(gA 2 + B 2 -1) = 0,
in the sense of distributions for the second equation, together with the property (3.3) for the limits at x = ±∞. Consequently, A = 0 or A 2 = 1 -gB 2 if B 2 1/g, hence leading to the equation for B (we use more precisely (3.4)) 

B = -B + B 3 if B 2 1/g, (g -1)B + (1 -g 2 )B 3 if B 2 1/g. ( 3 
| 2 + (1 -g)B 2 -(1 -g 2 ) 1 2 B 4
, which is 0 at the equilibrium B = 0. Let us study the curves for B = ± 1/g in the plane (B, B ).

From |B | 2 + 1 g -1 2g 2 = 1/2 that corresponds to the first equation, one gets |B | 2 = 1 2 -1 g + 1 2g
2 . This is the same value of |B | 2 that one gets by solving the second equation: |B | 2 + 1-g g -1-g 2 2g 2 = 0. This shows that B is continuous (if its sign does not jump) at the junction of the two curves in the (B, B ) plane. Hence there is a heteroclinic solution coming from (B, B ) = (0, 0), staying on the set

|B | 2 + (1 -g)B 2 -(1 -g 2 ) 1 2 B 4 = 0 for B ∈ [0, 1/ √ g],
then on the set

|B | 2 + B 2 -1 2 B 4 = 1/2 for B ∈ [1/ √ g, 1]
, and finally tending to (B, B ) = (1, 0), thus providing a solution (A, B) ∈ C(R) × C 2 (R) of our problem.

Under the additional condition B(0) = 1/ √ g, the solution is given explicitly by

B(x) = 2 g+1 sech √ g -1 (x + x 1 ) , x 0, B(x) = tanh x+x 2 √ 2 , x 0, (3.7) 
with the constants x 1 < 0 and x 2 > 0 such that

2 g + 1 sech 2 g -1 x 1 = 1 g = tanh 2 x 2 √ 2 .

Estimates

From now on we assume that > 0 and g > 1. Let us first observe that, for all (A, B) ∈ R 2 ,

P (A, B) K min{(B -1) 2 +A 2 , (B +1) 2 +A 2 , B 2 +(A-1) 2 , B 2 +(A+1) 2 }
for some constant K > 0. This is because the Hessian

P (A, B) = 3A 2 + gB 2 -1 2gAB 2gAB gA 2 + 3B 2 -1
is positive definite at (A, B) ∈ {(±1, 0), (0, ±1)} and the growth of P is quartic at infinity. Therefore (ii) Let κ > 0 be any given constant. For all µ > 0, there exists ν > 0 such that, for all closed interval I of length 1 and all (A, B) ∈ H 2 (I)×H 1 (I), the inequalities

( (A, B) -1) 2 min{(B ± 1) 2 + A 2 , B 2 + (A ± 
I 2 |A | 2 + 1 2 |B | 2 dx < κ and I P (A, B)dx < ν (3.9) 
imply that max

I P (A, B) + |A | < µ.
Proof. For all x 1 < x 2 in I, one has

A(x 2 ) -A(x 1 ) = A (x 1 )(x 2 -x 1 ) + x 2 x 1 (x 2 -s)A (s)ds and thus |A(x 2 ) -A(x 1 ) -A (x 1 )(x 2 -x 1 )| x 2 x 1 (x 2 -s) 2 ds 1/2 • x 2 x 1 A (s) 2 ds 1/2 3 -1/2 |x 2 -x 1 | 3/2 2M 1 .
This remains true if x 2 x 1 in I.

As I P (A(x), B(x))dx M 2 and the integrand is nonnegative, there exists x 1 ∈ I such that P (A(x 1 ), B(x 1 )) M 2 . Thus

(A(x 1 ), B(x 1 )) 1 + M 2 /K thanks to (3.8). Let us check that |A (x 1 )| 8 2M 1 /3 + 2 + 2 M 2 /K .
After a possible translation in x, let us assume that I = [-1/2, 1/2]. Let us also assume to be in the case x 1 ∈ [-1/2, 0] and A (x 1 ) 0. For x 1/4, one has A(x) A(x 1 ) + A (x 1 )(1/4) -2M 1 /3.

If moreover A (x 1 )(1/4) 2 2M 1 /3 + 2 + M 2 /K , then A(x) 1 for x ∈ [1/4, 1/2] and I P (A, B)dx 1/2 1/4 K(A -1) 2 dx (3.10) 1/2 1/4 K -|A(x 1 )| + A (x 1 )(1/4) -2M 1 /3 -1 2 dx 1/2 1/4 KA (x 1 ) 2 (1/64)dx KA (x 1 ) 2 (1/256).
Hence, if at the same time

A (x 1 )(1/4) 2 2M 1 /3 + 2 + M 2 /K and KA (x 1 ) 2 (1/256) > M 2 , we would get the contradiction M 2 I P (A, B)dx > M 2 . This shows that A (x 1 ) 8 2M 1 /3 + 2 + 2 M 2 /K if I = [-1/2, 1/2],
x 1 0 and A (x 1 ) 0. More generally, if I is any closed interval of length 1,

|A (x 1 )| 8 2M 1 /3 + 2 + 2 M 2 /K .
Part (ii) is now proven ad absurdum by assuming the opposite. Let κ > 0 be given. For I = [-1/2, 1/2] (after possible translations in x), there would exist µ > 0 such that, for all integers n 1, one could find

(A n , B n ) ∈ H 2 (I) × H 1 (I) such that I P (A n , B n )dx < 1/n and max I P (A n , B n ) + |A n | µ.
From this, one also gets min 

I (A n , B n ) 1 + 1/(
P (A, B) + |A | µ. Corollary 3.2. If (A, B) ∈ H 2 loc (R) × H 1 loc (R) satisfies J (A, B) < ∞, then lim x→∞ P (A(x), B(x)) = lim x→-∞ P (A(x), B(x)) = 0 and lim x→∞ A (x) = lim x→-∞ A (x) = 0.
Therefore the two limits lim x→∞ (A(x), B(x)) and lim x→-∞ (A(x), B(x)) exist and belong to the set {(±1, 0), (0, ±1)}.

Minimizing sequences

Let {(A n , B n )} ⊂ X be a minimizing sequence of J . Taking a subsequence if needed, it can be assumed to converge weakly in H 2 loc (R) × H 1 loc (R), and strongly in

C 1 loc (R) × C loc (R), to some (A, B) ∈ H 2 loc (R) × H 1 loc (R) such that R 2 |A | 2 + 1 2 |B | 2 + P (A, B) dx inf X J . (3.11) 
As inf X J < ∞, clearly J (A, B) < ∞. However property (3.3) (that appears in the definition of X) is in general not preserved by weak limits in H 2 loc (R) × H 1 loc (R). Hence the weak limit (A, B) could a priori be in H 2 loc (R) × H 1 loc (R) \X and J (A, B) could be strictly smaller than inf X J . Thus it is not yet possible to replace the inequality in (3.11) by an equality.

After possible translations in x, one can suppose that B n (0) = 1/2 for all n ∈ N, because (A n , B n ) ∈ X, and thus B(0) = 1/2. It remains to show that, up to a subsequence, Moreover, for all 1 k k,

R (B k ) B n (• + w k n ) - k =1 (B ) (• + w k n -w n ) dx = R (B k ) B n (•+w k n )dx- R (B k ) (B k ) dx- k -1 =1 R (B k ) (B ) (•+w k n -w n )dx → 0,
by (3.15) and (3.18), which implies that

lim n→∞ B n - k -1 =1 (B ) (• -w n ) 2 L 2 (R) = lim n→∞ (B k ) (• -w k n ) + B n - k =1 (B ) (• -w n ) 2 L 2 (R) = lim n→∞ (B k ) + B n (• + w k n ) - k =1 (B ) (• + w k n -w n ) 2 L 2 (R) = (B k ) 2 L 2 (R) + lim n→∞ B n - k =1 (B ) (• -w n ) 2 L 2 (R)
and thus

k k =1 (B k ) 2 L 2 (R) lim n→∞ B n 2 L 2 (R) .
In the same way 3.4. Limit g → 1 It remains to prove the last property in Theorem 1. We show below that any heteroclinic orbit connecting the equilibria (1, 0) and (0, 1) which minimizes the functional J in the space X remains in a neighborhood of the circle A 2 + B 2 = 1 as g → 1 + .

k k =1 (A k ) 2 L 2 (R) lim n→∞ A n 2 L 2 (R)
Let us first estimate min X J as g → 1 + . We introduce the "test function" (A 1 , B 1 ) defined as follows:

(A 1 , B For a suitably chosen positive constant C, we obtain the estimates:

|B 1 (x) -1| C 1 x , ∀ x -1, 0 < B 1 (x) C 1 x , ∀ x 1, 0 < A 1 (x) C 1 x , ∀ x -1, |A 1 (x) -1| C 1 x , ∀ x 1.
For γ > 0, let (A γ , B γ ) ∈ X be defined by (A γ , B γ )(x) = (A 1 (γx), B 1 (γx)), ∀ x ∈ R.

Then min X J ,g J ,g (A γ , B γ ) = R 2

|A γ | 2 + 1 2 |B γ | 2 + g -1 2 A 2 γ B 2 γ dx

Figure 1 . 1 :

 11 Figure 1.1: From left to right, schematic plots of the projections on the horizontal plane of: convective rolls, a symmetric domain wall between two sets of rolls rotated by opposite angles, and an orthogonal domain wall.
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 5 Observe that the right-hand side is continuous. This problem has an increasing solution B > 0 of class C 2 such that lim x→-∞ B(x) = 0 and lim x→∞ B(x) = 1, which gives a solution of (3.1)-(3.2) by taking A = 1 -gB 2 if 0 < B 1/ √ g and A = 0 if B 1/ √ g. (3.6) Indeed B = 1 is an hyperbolic equilibrium of the first equation in (3.5) and B = 0 is an hyperbolic equilibrium of the second equation in (3.5) because g > 1. On the other hand, the first equation possesses the invariant |B | 2 + B 2 -1 2 B 4 , which is 1/2 at the equilibrium B = 1, and the second equation possesses the invariant |B

2

 2 I be a closed interval of length 1 and • I be its interior. For simplicity, we shall use the notation H m (I) for the Sobolev space H m ( • I). For all (A, B) ∈ H 2 (I) × H 1 (I), the functions A, B and the derivative A are continuous. Lemma 3.1. (i) Assume that I 1 |A (x)| 2 dx M 1 and I P (A(x), B(x))dx M 2 for some closed interval I of length 1, (A, B) ∈ H 2 (I) × H 1 (I) and M 1 , M 2 ∈ [0, ∞). Then there exists x ∈ I such that P (A(x), B(x)) M 2 , (A(x), B(x)) 1 + M 2 /K and |A (x)| 8 2M 1 /3 + 2 + 2 M 2 /K .

  lim x→-∞ (A(x), B(x)) = (1, 0) and lim x→∞ (A(x), B(x)) = (0, 1) for ∈ {1, . . . , k}. The equation (3.17) gives k =1 R P (A , B )dx lim n→∞ R P (A n , B n )dx.

  Hence the sequence {(A n , B n )} is bounded in H 2 (I) × H 1 (I). Taking a subsequence instead if needed, it converges weakly in H 2 (I) × H 1 (I), and thus strongly in C 1 (I) × C(I), to some (A, B) ∈ H 2 (I) × H 1 (I). One gets the contradiction

	and		
	min I	|A n | 8	2κ/(3 ) + 2 + 2 1/(Kn) .
			Kn)

I P (A, B)dx = 0 and max I

  Then (A 1 , B 1 ) belongs to the space X, and we have the formulas for the first and second order derivatives:

	1 )(x) = cos	π 4	+	arctan(x) 2	, sin	π 4	+	arctan(x) 2	, x ∈ R.
	(A 1 , B 1 )(x) = -sin	π 4		+	arctan(x) 2	, cos	π 4	+	arctan(x) 2	1 2(x 2 + 1)	,
	(A 1 , B 1 )(x) = -cos	π 4	+	arctan(x) 2	, -sin	π 4	+	arctan(x) 2	1 4(x 2 + 1) 2
	--sin	π 4	+	arctan(x) 2	, cos	π 4	+	arctan(x) 2	x (x 2 + 1) 2 .

The subsequent analysis remains valid for other types of boundary conditions in z; see[START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF] Section 8] and[START_REF] Haragus | Domain walls for the Bénard-Rayleigh convection problem with "rigid-free" boundary conditions[END_REF] Section 

2] for the definition of the spaces X and Z in the cases of "free-free" and "rigid-free" boundary conditions, respectively.

In the case of "rigid-rigid" and "free-free" boundary conditions, there is an additional vertical reflection symmetry z → 1 -z leading to the symmetry

S 3 U(y, z) = (V x , V y , -V z , W x , W y , -W z , -θ, -φ)(y, 1 -z)which commutes with L µ and B µ . Aiming for a result which is also valid in the case of "rigid-free" boundary conditions, we do not make use of this symmetry.

For our purposes, we do not need the explicit formulas for eigenvectors and generalized eigenvectors which can be obtained from[START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF] Section 

4].

The precise value of g 0 depends on the considered boundary conditions: g 0 ≈ 1.227 for "rigid-rigid" boundary conditions, g 0 = 673/473 for "free-free" boundary conditions, and g 0 ≈ 1.332 for "rigid-free" boundary conditions.

(that is, (3.3)). Observe that lim Consider the Hilbert space H = L 2 ((0, 1)) and define {u n } n 1 ⊂ l 2 (Z, H) by u n = (u n,j ) j∈Z with u n,j = P 1/2 (A n (• + j), B n (• + j)) (0,1) .

We use the following compactness by concentration result that is a special case of the appendix in [START_REF] Buffoni | A variational reduction and the existence of a fully-localised solitary wave for the three-dimensional waterwave problem with weak surface tension[END_REF] and that is inspired by [START_REF] Benci | Positive solutions of some nonlinear elliptic problems in exterior domains[END_REF]: Lemma 3.3. Consider a sequence {u n } in l 2 (Z, H), where H is a Hilbert space. Writing u n = (u n,j ) j∈Z , where u n,j ∈ H, suppose that (i) {u n } is bounded in l 2 (Z, H), (ii) S = {u n,j : n ∈ N, j ∈ Z} is relatively compact in H, (iii) lim sup n→∞ u n l ∞ (Z,H) > 0.

Let T w : l 2 (Z, H) → l 2 (Z, H), w ∈ Z, denotes the translation operator T w (u j ) = (u j-w ). Then, for each δ > 0, the sequence {u n } admits a subsequence with the following properties. There exist a finite number k of nonzero vectors u 1 , . . . , u k ∈ l 2 (Z, H) and sequences {w 1 n }, . . . , {w k n } ⊂ Z such that

and

Here the weak convergence is understood in l 2 (Z, H). Finally the sequences {w 1 n }, . . . , {w k n } satisfy

so that in particular

Remark. Let us briefly compare with the usual version of the concentrationcompactness method of P.L. Lions (see e.g. [START_REF] Struwe | Variational Methods[END_REF]) and its three standard possibilities: compactness, vanishing and dichotomy. Hypothesis (iii) can be interpreted as forbidding the 'vanishing' case. The case k = 1 would be analogous to the 'compactness' case, and the case k 2 could be interpreted as 'dichotomy' occurring iteratively.

In our example, the sequence {u n } is bounded in l 2 (Z, H), the set {u n,j : j ∈ Z, n 1} is relatively compact in H and lim inf n→∞ u n,0 H > 0.

Hence we can apply Lemma 3.3. Note that (3.12) 

(3.17)

If k 2, taking a subsequence if needed and relabelling u 1 , . . . , u k , one can also assume that

By (3.16), up to a subsequence, there exists, for ∈ {1, . . . , k}, (A , B ) ∈

weakly in H 2 loc (R) × H 1 loc (R) and strongly in C 1 loc (R) × C loc (R), and

From (3.13) and the fact that lim |j|→∞ u j H = 0 for all ∈ {1, . . . , k}, one gets sup u n,j H :

Given µ > 0 and , one chooses κ = 2 inf X J in (3.9) and then δ = ν/2, with ν > 0 as in (3.9), which gives lim p→∞ lim sup

Let ρ > 0 be such that the open set {(a, b) ∈ R 2 : P (a, b) < ρ} is the union of four open sets V (0,±1) and V (±1,0) with disjoint adherence, containing the points (0, ±1) and (±1, 0), respectively. One can also suppose that the line

If one chooses µ = ρ/2, then p large enough, one gets for all n large enough, up to a subsequence,

for all ∈ {2, . . . , k}. In the two first cases, as well as in the last case for each ∈ {2, . . . , k}, (A n (x), B n (x)) not only satisfies

can change in each case and one uses the continuity of (A n , B n )). As (A n , B n ) ∈ X, one has the following additional information:

and

Hence there exists ˆ ∈ {1, . . . , k} such that

and

with the understanding that w 0 n = -∞ and

As, with the right choice of signs, one has (±A

As u = 0 for all ∈ {1, . . . , k}, this is only possible if k = 1 and

This shows that (A 1 , B 1 ) ∈ X minimizes J . In addition, up to a translation in x, it is equal to (A, [START_REF] Koschmieder | Bénard cells and Taylor vortices[END_REF], which therefore indeed belongs to X.

Finally, notice that (A, |B|) is also a minimal pair and therefore one can assume that B 0 on R. However (A, B) tends to (0, 1) as x → ∞ in a way such that A oscillates around 0. This behavior is given by the linearization at (A, B) = (0, 1), because this equilibrium is hyperbolic.

By choosing γ = (g -1) 1/2 , we get min X J ,g → 0 as g → 1 + (for fixed > 0). Let now (A g , B g ) denote a minimizing heteroclinic orbit, where > 0 is still fixed, but we insist on the dependence on the parameter g > 1. In the first part of Lemma 3.1, the constant K > 0 can be chosen independent of g > 1; this is due the explicit inequalities

and

(see respectively (3.8) and (3.10) used in the proof of Lemma 3.1). Hence, for some new constant K > 0 and each closed interval I of length 1, there exists x 0 ∈ I such that

The constant K > 0 can be chosen independent of g > 1 with g -1 as small as needed. Let us show that

Suppose not. Then there exist χ > 0 and a strictly decreasing sequence

(up to translations in x). Moreover J ,gn (A gn , B gn ) → 0 and thus

. See also the estimates just above on x 0 .

Hence, up to a subsequence, it converges in

and thus P (A 1 (0), B 1 (0))

This is in contradiction with the continuity of P (A 1 (x), B 1 (x)) at x = 0. We conclude that lim

This completes the proof of Theorem 1.

Appendix A. A cubic normal form for 12-dimensional vector fields with symmetries

In this Appendix, we obtain a cubic normal form for 12-dimensional vector fields having the properties (2.16)-(2.17) and the symmetries (2.13)-(2.15). Lemma A1. Consider a system of ordinary differential equations of the form (2.12) in which the vector field F is of class C m , for some m 4, in a neighborhood

the origin. Assume that the properties (2.16)-(2.17) hold and that F anti-commutes with S 1 in (2.13) and commutes with S 2 in (2.14) and τ a in (2.15).

There exist neighborhoods V 1 and V 2 of 0 in C 6 and R 2 , respectively, such that for any ( µ, k) ∈ V 2 , there is a polynomial

transforms the equation (2.12) into the normal form

with the following properties:

(ii) both N (•, •, µ, k) and ρ(•, •, µ, k) anti-commute with S 1 and commute with S 2 and τ a , for any ( µ, k) ∈ V 2 ; (iii) the six components (N 0 , N 1 , N 2 , N 3 , M 0 , M 1 ) of N are of the form

where (A 0 , A 1 , A 2 , A 3 , B 0 , B 1 ) are the six components of Z, the coefficients a j , b j , c j , d j , α j , and β j are all real, and

We closely follow the arguments in the proofs from [7, Lemma 6.1] and [8, Theorem 2]. The first part of the lemma and the properties (i) and (ii) are obtained exactly in the same way from general normal form theorems. It remains to determine the properties (iii) of the six components of the polynomial N . As in the proofs mentioned above, the problem is reduced to the one of determining the homogeneous monomials

which appear in each of the six components of N . Restricting to monomials of degrees 1, 2, and 3, the nonnegative exponents from (A.2) satisfy (p 0 + p 1 + p 2 + p 3 ) + (q 0 + q 1 + q 2 + q 3 ) + (r 0 + r 1 ) + (s 0 + s 1 ) = m, (A. which must hold for all (Z, µ, k) ∈ C 6 × V 2 . Differences with the proofs mentioned above being only at the computational level, we skip the details of the remaining arguments.