Linear Realisability and Cobordisms - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Linear Realisability and Cobordisms

Résumé

Cobordism categories are known to be compact closed. They can therefore be used to define non-degenerate models of multiplicative linear logic by combining the Int construction with double glueing. In this work we detail such construction in the case of low-dimensional cobordisms, and exhibit a connexion between those models and the model of Interaction graphs introduced by Seiller. In particular, we exhibit how the so-called trefoil property is a consequence of the associativity of composition of higher structures, providing a first step toward establishing models as obtained from a double glueing construction. We discuss possible extensions to higher-dimensional cobordisms categories
Fichier principal
Vignette du fichier
TLLA2023_Maestracci_Seiller_.pdf (546.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04262206 , version 1 (27-10-2023)

Identifiants

Citer

Valentin Maestracci, Thomas Seiller. Linear Realisability and Cobordisms. FSCD, Sapienza Università Di Roma, Jul 2023, Rome, Italy. ⟨hal-04262206⟩
20 Consultations
21 Téléchargements

Altmetric

Partager

More