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Abstract—Many machine vision tasks like urban scene-
understanding rely on machine learning, and more specifically
deep neural networks to provide accurate enough results to
make technology like autonomous vehicles possible. FPGAs have
proven to be an excellent target for deploying highly parallel,
low-latency and low-power deep neural network architectures for
embedded and cloud applications. Many FPGA implementations
use recursive architectures based on Deep Processing Units
(DPUs) for fast and resource-efficient solutions which usually
come at the cost of a higher latency. On the other hand, pipelined
dataflow architectures have the potential to offer scalable, low-
latency implementations. In this work, we have explored im-
plementing a semantic segmentation network as a pipelined
architecture and evaluated the achievable performances. Our
model, a convolutional encoder-decoder based on U-Net, achieves
62.9 % mIoU on the Cityscapes dataset with a 4-bit integer
quantization. Once deployed on the Xilinx Alveo U250 FPGA
board, the implemented neural network architecture is able to
output close to 23 images per second with 44 ms latency per
input. The code of this work is open-source and was released
publicly.

Index Terms—semantic segmentation, FPGA, deep learning,
scene-understanding

I. INTRODUCTION

Semantic segmentation is a computer vision task aiming to
identify and separate objects in an image by attributing a label
to each pixel. It has become very popular due to recent interest
in applications requiring scene understanding, like autonomous
driving or computer-assisted surgery. Similarly to other image
processing tasks like classification or object detection, it is
implemented by deep neural networks that rely on access to
high computing power, generally in the form of one or multiple
GPUs. This type of power-hungry hardware, however, is not
suitable for applications where hardware cost and energy are at
stake. Field-Programmable Gate Arrays (FPGAs), on the other
hand, represent very good targets to deploy energy-efficient
deep neural networks [1] for embedded, edge, and cloud
applications. Therefore, many efforts were put to overcome
the challenges of implementing such systems on FPGA, which
are exceptionally high for semantic segmentation networks,
due to more complex topologies and higher feature maps
resolution than those of classification networks. A common
solution to ease the FPGA implementation uses programmable
engines for deep neural networks, like the Deep Processing
Unit (DPU) of Vitis AI, which can be used with most neural
network topologies, and offer a resource-efficient accelerator

with minimal development time. However, due to their re-
cursive design, they rely on many data transfers that limit the
achievable performance. An alternative is to implement a fully
pipelined and dedicated architecture on FPGA. This paper
aims to evaluate such a pipelined architecture and compare
it to recursive ones for semantic segmentation networks.
We study the implementation of a custom neural network,
based on ResNet-18 and U-Net, using FINN1, an open-source
experimental framework for DNN deployment on FPGA [2],
[3] and propose a low-latency architecture implemented on
Alveo U250 accelerator card. All our code is open-source and
freely available2.

II. RELATED WORK

A. Similar approaches

Previous works on segmenting Cityscapes images on FPGA
include an ENet model deployed on Xilinx Zynq 7035 using
Vitis AI’s DPU by Jia et al. [4]. The obtained architecture has
the benefit of providing a good throughput for a relatively low
amount of resources but has the drawback of having weights
stored outside of the on-chip memory, which generates a lot
of data-transfer latency, as shown by the average 720 ms per
image when considering data transfer, compared to 30.38 ms
for the DPU’s processing only. Alternatively, Ghielmetti et
al. [5] proposed a network based on ENet with a heteroge-
nous quantization and filter pruning. They used HLS4ML
to generate a hardware architecture for their network, which
is a framework with a similar approach to FINN. It also
uses a library of HLS IPs as building blocks to construct
a dataflow architecture with on-chip weights storage. The
authors obtained a very light architecture deployed on Xilinx
ZCU102 and obtained a very low latency of 4.9 ms for a single
image, and 30.6 ms for a batch of 10. However, obtaining such
efficient hardware came at the expense of the model accuracy,
with only 36.8 % of mIoU on the dataset.

B. Pipelined architectures for deep neural networks

As detailed in [2], FINN is an open-source framework that
uses customized HLS hardware blocks to build a scalable
heterogeneous pipelined architecture. As such, it diverges
from the “one-size-fits-all” approach that can be found in

1https://xilinx.github.io/finn
2https://github.com/hleblevec/finn-semseg



frameworks based on a DPU like Xilinx Vitis AI and instead
proposes individual hardware elements that implement the
various operations happening in an artificial neural network
and are interconnected by AXI interfaces to form a graph that
fits the network’s structure. It takes the initial graph of the
model in ONNX format and operates various transformations
on it to map every node of that graph to a corresponding HLS
layer. The parallelism level of each element can be tailored to
balance the resource utilization and the latency of each layer.
This gives FINN a lot of flexibility that allows it to fully
explore the design space to find latency-resources trade-offs
adapted to any FPGA target and any throughput requirements.
An implementation of a ResNet50 with very high throughput
and low latency has been made using FINN [6], which shows
the tool’s potential to implement large residual networks with
pipelined architectures and offer better performance than DPU
implementations.

As state-of-the-art semantic segmentation networks tend to
have more complex structures than classification networks due
to residual elements and potentially long shortcuts requiring
large memories — a thorny topic on FPGA, we aim to
investigate the possibility to use a FINN-generated pipeline
architecture for such a network. This study is detailed in the
following sections.

III. IMPLEMENTATION

A. Proposed DNN Architecture

State-of-the-art semantic segmentation models based on
HRNet [7] have a structure that is too complex to be imple-
mented as a pipelined dataflow architecture, and the memory
requirements would arguably be too high to fit on any available
device without the use of external memory. As an example,
HRNet-18 (the lightest version) has 21 million parameters, so
with a 4-bit quantization, the weights would occupy 84Mb of
memory, which is already quite consequent for an FPGA. This
is not the only memory requirement, as it is also necessary to
store intermediate high-resolution feature maps.

Works like ENet [8] or ERFNet [9] have proposed efficient
auto-encoders oriented toward hardware implementation that
would make good candidates. However, they rely on the use
of dilated convolutions which are not yet fully supported by
FINN3. This left us with more classical convolutional encoder-
decoder architectures, out of which U-Net [10] stands as one of
the better-performing ones, thanks to the use of intermediate
encoder outputs being used as additional side-inputs in the
decoder, which was shown to be very significant in improving
the accuracy of semantic segmentation networks [11].

Fig. 1 displays a view of the architecture of the network we
propose for implementation with FINN. We chose to use the
encoder part of a ResNet-18 because it offers a good accuracy-
to-number-of-parameters ratio compared to other popular clas-
sification networks [12]. We then proceeded with the usual
decoder architecture for a U-Net, composed of upsampling
layers and convolutions mirroring the encoder.

3As of release v0.8.1.
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Fig. 1: Representation of the architecture of our semantic segmentation neural
network. “BN” stands for Batch Normalization. The element within the
Encoder Block is repeated twice each time in the architecture, but we only
extract the output of the second for the decoder. As in the original ResNet-18
architecture, each shortcut may contain a downsampling layer in the form of
a Convolution with a 1x1 kernel, depending on if the feature map resolution
needs to be scaled down. This usually happens only once in each Encoder
Block.

We used the Cityscapes dataset to train and evaluate our
model [13]. It consists of 5000 images of urban driving
scenes with pixel-level fine annotations with 30 visual classes,
although only 19 classes are used for benchmarking. The
metric used to evaluate models on this dataset is the mean
of the IoU (Intersection over Union) across all classes, itself
defined as IoU = TP

TP+FN+FP where TP , FN , and FP are
respectively the number of true positive, false negative and
false positive pixels in the output image with respect to the
ground truth. We would normally use transposed convolution
to upsample the images but they are not supported by FINN
yet, so we had to use nearest-neighbors upsampling instead,
which is less accurate than transposed convolutions that have
the advantage of having trainable parameters which ensure that
the upsampling is relevant to the data. We measured a roughly
3% loss in mIoU after modification. We quantized the model
through quantization-aware training with Brevitas [14], using
INT4 quantization for weights and activation, except for the
first and last layer which are put to INT8, and obtain an mIoU
of 62.9% with our model.

We also modified the initial structure by moving ReLU lay-
ers from before to after the element-wise additions where the
shortcuts reconnect with the main branch and put an additional
one after the last convolution. This eases the conversion to
HLS layers of FINN without changing the network’s accuracy.

Lastly, although FINN does not have an efficient support
of DSPs, we moved some Multiply-Accumulate operations of
convolutions from LUTs to DSPs to reduce LUT usage and
ease the placement step during implementation.

B. FINN Customizations

1) Graph nodes conversion to HLS: In FINN’s default
build, graph transformations are defined and sequenced in a
way that is suitable for networks with relatively “standard”
architectures. This sequence is not compatible with residual



networks and with the shortcuts required in our U-Net. There-
fore, we used our own custom build within FINN’s compiling
environment, by changing the order and the nature of the
transformations applied to the network, as well as introducing
new ones that were not part of the available transformations in
the library, making them publicly available in the previously-
mentioned repository. These transformations, detailed below,
are represented in Fig. 2.
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Fig. 2: New proposed transformations in FINN. From left to right: first and
second scenarios of data layout conversion for Upsample nodes, and new
conversion of MaxPool layers. “MT” stands for MultiThreshold and “T”
for Transpose. Two consecutive Transpose can be absorbed together, and a
Transpose can be absorbed in a subsequent MultiThreshold.

These transformations are meant to convert the input and
output tensors data format from NCHW (Number of batches,
channel, height, width), which is the usual format of Pytorch
to NHWC which is the representation used in the HLS library.
These transformations were missing or incomplete for Up-
sample and MaxPool nodes. In the case of Upsample, we
have different scenarios depending on the pre-existence of a
Transpose node before or after (respectively first and second
from the left in Fig. 2). The Transpose node operates the
permutation of the dimension and is used to preserve data
layout consistency between nodes. The MaxPool data layout
conversion (right in Fig. 2) is an update of the already existing
one to make it compliant to the case of it being a fork node,
which is the case in our model.

2) FIFO insertion: An important step in FINN is the FIFO
insertion. Once the network is converted to a graph of HLS
IPs, FIFOs must be inserted between certain nodes to ensure
that enough data are available to each layer to construct their
input. This is essential to ensure that the dataflow architecture
can work as a continuous and balanced pipeline, and meet the
highest possible throughput. It was necessary to insert very
large FIFOs in the shortcuts between the encoder and the

decoder part, to make sure the data could be buffered long
enough to compensate for the latency of the computations
happening in the rest of the architecture. Some of these FIFOs
have a depth up to 218 with is 8 times larger than the maximum
authorized depth of 215 for FIFO IPs in Vivado, which is
used to implement the design. In order to get around this
limitation, we developed the SplitLargeFIFO transformation
within FINN’s compiler4. The purpose of this operation is to
split FIFOs whose depths are over 215 into as many smaller
FIFOs as necessary to make sure they are all under this
threshold.

IV. PERFORMANCE MEASUREMENTS

A. Results

We implemented the obtained hardware architecture on
Alveo U250 and evaluated its performances using inputs of
256×256 pixels, lower than the original resolution, to meet
tools and on-chip memory limitations. The network needs to
be fed batches of inputs rather than a single image to reach its
best achievable performance due to FINN’s pipeline and PCIe
interfaces designs [15]. We measured the runtime latency as
the time between the moment we send the batch of data to
the card, to the time we receive it. As such, it takes into
account not just the execution time, but also the data transfer
time composed of the PCIe transfer time and the input and
output DMA processing time. We carried out measurements
with different batch sizes, from 1 to 104 by power-of-ten steps.
The results are displayed in Fig. 3.
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Fig. 3: Semantic segmentation throughput (including the cost of data transfers
over PCIe) in frames-per-second (blue, cross) and runtime latency in ms
(green, circles) of the network on Alveo U250.

As expected, the throughput increases with the batch size
and reaches its maximum value of around 22.6 FPS with a
batch of at least 100 images. The latency evolves linearly
with the batch size with an overhead corresponding to the
interface’s latency that is visible for small batch sizes (1 or

4Released as a new official feature in FINN v0.9.



Model HW Arch. mIoU Target Avg. Latency1 FPS 2 FPS* 3 Clock Rate LUT BRAM FF DSP
ResNet18-Unet [Ours] Pipelined 62.9 % Alveo U250 44 ms 22.65 32.04 152 MHz 490,265 4,260 569,527 1,043

EnetHQ [5] Pipelined 36.8 % ZCU102 3 ms - - 140 MHz 76.718 224.5 87,059 450
ENet [4] DPU 63.1 % Zynq 7035 720 ms 1.39 32.9 - 62,599 257 192,212 689

1 Average per input. Computed with an input batch of 10 for [5] and over 58 single images for [4]. For the latter, we considered the latency measurement
when taking the data transfer into account, which we believe to be a fair comparison to our measurements.

2 Average system FPS when considering data transfers.
3 Average on-chip FPS when considering computing time only.

TABLE I: Performance and resources usage comparison between our design and two similar works.

10) but becomes negligible for higher batch sizes. Doing a
linear regression gives an intercept of 71 ms and a slope of
44 ms per input.

B. Comparison to previous works

We compared ourselves to the two other similar works
presented in Section II-A and show the results in Table I. Al-
though our latency is much higher than EnetHQ [5], our model
offers significantly higher accuracy. The implementation of
ENet[4] with Vitis AI has a faster segmentation throughput
when considering on-chip computations only, but displays a
much larger latency due to costly data transfers, which shows
the ability of a pipelined architecture to achieve substantially
lower latencies than DPUs. We must acknowledge that both
these accelerators require much lower resources than ours,
and therefore have been able to be deployed on platforms
with Zynq devices, which are more suited for embedded
applications than Alveo U250, which is essentially a datacenter
accelerator board. As the limitations of FINN progressively
get lifted with the constant development of new features, the
methodology presented in this paper will allow the implemen-
tation of a lighter neural network, more suited for embedded
deployment, with a pipelined dataflow architecture, and thus
obtaining competitive runtime performance while maintaining
a good model accuracy on a smaller target.

V. CONCLUSION

We proposed a pipelined implementation of a 4-bit quan-
tized semantic segmentation network on Alveo U250 FPGA
using FINN that achieves 62.9 % mIoU on Cityscapes and
is, to our knowledge, the first implementation on FPGA of
a UNet-based network segmenting Cityscapes. Even with
a complex neural network, our implementation is on par
with the state of the art, paving the way to very efficient
implementations for real-time semantic segmentation on em-
bedded devices. Our line of work goes now toward embedded
deployment with a lighter architecture exploiting the tools and
methodology detailed in this paper.
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