
HAL Id: hal-04262134
https://hal.science/hal-04262134v1

Preprint submitted on 27 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bilateral parking procedures
Philippe Nadeau

To cite this version:

Philippe Nadeau. Bilateral parking procedures. 2023. �hal-04262134�

https://hal.science/hal-04262134v1
https://hal.archives-ouvertes.fr

BILATERAL PARKING PROCEDURES

PHILIPPE NADEAU

Abstract. We introduce the class of bilateral parking procedures on Z. These generalize the
classical one as follows: Instead of having cars systematically park in the nearest available spot on
their right, we also allow cars to use the nearest spot to their left. We will distinguish the subclass
of local procedures, which has the striking property that for any procedure of the class, the number
of corresponding parking functions of length r is given by (r + 1)r−1.

We show how to extend definitions and results to probabilistic procedures, in which the decision
to park left or right is random. We finally describe how bilateral procedures can naturally be
encoded by labeled binary forests, whose combinatorics explain and unify several results from the
literature.

1. Introduction

Classical parking functions are one of the fundamental objects of enumerative and algebraic com-
binatorics. They are connected to various structures such as noncrossing partitions, hyperplane
arrangements, and many others: see for instance the survey [16] and references therein. The corre-
sponding parking procedure Pright on Z was originally defined as an elementary hashing procedure,
cf. [10]. Since then, they have been generalized in a number of ways.

We recall the definition of the classical parking functions: Let r be a positive integer, and there
are r cars that want to park on an empty street with spots labeled by 1, 2, . . . , r from left to right.
The cars arrive successively, and the ith car has a preferred spot ai. If this spot is available, it
parks there, and if not it parks in the nearest available spot to the right. The sequence (a1, . . . , ar)
is called a parking function if at the end, all cars managed to park.

The main enumerative result is that the number of parking functions for r cars is given by
the simple formula (r + 1)r−1. We have also the following characterization: a1 · · · ar is a parking
function if and only if for any k = 1, . . . , r, there are at least k indices i such that 1 ≤ ai ≤ k.
Parking functions generalizations have often relied on the above characterization (often taken as
the definition). This is the case of so-called G-parking functions and ≊-parking functions, see [16].
Recently, several variations were also considered by varying different aspects of the procedure, see
for instance [3] and references therein.

In this work, we will consider the extensions of the parking procedure obtained by simply changing
the “nearest available spot to the right” condition: we will also allow one to park to the nearest
available spot to the left. This explains the name bilateral for our class of procedures.

Let us give already two examples of possible rules. We need only describe where to park when
one’s prefered spot is occupied:

• Pclosest: If the nearest available spot to the right is (weakly) closer than the nearest available
spot to the right, park there, otherwise park to the left.

This research is partially supported by the French project ANR19-CE48-011-01 (COMBINÉ).

1

2 PHILIPPE NADEAU

• Pprime: If the total number of cars parked between the nearest available spots to the left
and to the right is a prime number, park to the right, otherwise park to the left.

We choose to describe the parking procedures P that we want to consider, as functions associating
to a preference word a1 · · · ar a finite subset of Z. In terms of parking, P(a1 · · · ar) is the set of
occupied spots at the end of the procedure; if it is equal to {1, . . . , r} then we will say that a1 · · · ar
is a P−parking function. Then some easy properties of the function P then characterize what we
mean by bilateral procedure.

We will then give two more properties to determine the subclass of local procedures: roughly
put, these say that left/right decisions must be invariant under translation, and depend only on
the cars that parked on the block. With such conditions we obtain the following striking enurative
result.

Theorem 1.1. Let P be a bilateral, local parking procedure. Then the number of P-parking func-
tions of length r is given by (r + 1)r−1.

In particular this holds for the classical procedure, for Pclosest and Pprime defined above, and for
an uncountable number of such procedures. One may interpret Theorem 1.1 as a kind of discrete
universality result: a unique enumeration result holds for a large classe of procedures where only
light local conditions are imposed. The terminology is borrowed (and arguably stretched) from
statistical physics.

The proof of this result will follow from Pollak’s argument in the classical case, based on a cyclic
procedure derived from the original procedure.

We can naturally add randomness to a bilateral procedure: instead of choosing either left or right,
choose probabilities adding to 1 for the two options. Now each preference word has a probability
to be P-parking, instead of being parking or not. For a particular procedure, we will see that these
probabilities, suitably normalized, coincide with the family of remixed Eulerian numbers studied
by Vasu Tewari and the author [12]. The notion of memoryless local procedure extends to the the
probabilistic setting, and a version of Theorem 1.1 holds in this case.

From the point of view of bijective combinatorics, we show that bilateral procedures are naturally
encoded by certain pairs of labeled forests. This bijection naturally lifts the original parking
procedure, and is directly connected to the outcome function of the procedure, which is the order
in which the cars parked. We will recover some known results, including in the classical case.

Here is a short plan of the article. We first describe the parking procedures P that we consider
in Section 2. We will focus on bilateral procedures, and then introduce the subclass of local
procedures in Section 3. We will then see that the enumeration (r + 1)r−1 is in a sense universal
for local procedures, see Theorem 1.1. We then explain how to define a probabilistic version of our
procedures in Section 4. We describe some natural connection with the combinatorics of binary
trees via a natural encoding in Section 5. We finally define a ”colored” version of the model in the
last section.

2. Bilateral and local parking procedures

As stated in the introduction, the list of parking spot preferences of incoming cars is given by
a preference word a1a2 · · · ar with ai ∈ Z, read from left to right: the ith car wants to park in
the spot ai. A general parking procedure P goes as follows: it is defined inductively, with no cars
parked at the beginning. Assume the first i− 1 cars have parked at distinct spots in Z. If the spot

BILATERAL PARKING PROCEDURES 3

ai is available, the ith car parks there. If the spot is not available, then there is a rule in P that
determines an available parking spot for the car ai. In the classical parking procedure, this rule
consists in choosing systematically the nearest available spot to the right. More generally, bilateral
procedures also allow the spot to be the nearest available spot to the left.

Let us point out that it is more customary to define parking procedures on an interval {1, . . . , r},
and say that the procedure fails as soon as a car cannot park. A parking function is then an entry
word of length r where everyone managed to park. Here we define our procedures on Z, which is
more pleasing from a mathematical point of view since we don’t have to deal with partially defined
functions. Indeed all cars will find an available spot. A procedure can then be considered successful
if the occupied spots at the end are {1, 2, . . . , r} (see Definition 2.5). This is how the boundary
conditions are integrated to our setting.

2.1. Parking procedures. Let Fin(Z) = {I ⊂ Z | #I < +∞} be the collection of finite subsets of
Z. A parking procedure will be given by a function P : Z∗ → Fin(Z). The subset P(a1 · · · ar) rep-
resents the set of occupied spots after cars with preferences a1, . . . , ar ∈ Z have parked successively.
This leads to the following definition:

Definition 2.1 (Parking procedure). A function P : Z∗ → Fin(Z) is a parking procedure if P(ϵ) = ∅
and for any r ≥ 1 and any word a1 · · · ar,

(1) The subset P(a1 · · · ar) has cardinality r, and for any i < r

P(a1 · · · ai) ⊂ P(a1 · · · ai+1);

(2) If ar /∈ P(a1 · · · ar−1), then P(a1 · · · ar) = P(a1 · · · ar−1) ⊔ {ar}.

The first condition indicates that everyone manages to park (and does not move afterwards).
The second condition expresses that one parks at their favorite spot if it is available. Note that at
this stage cars may possibly park at any available spot, possibly very far, when their desired spot
is not available. We will soon restrict to bilateral procedures, but in this section we choose to give
definitions at this level of generality where they make sense.

Remark 2.2. These conditions capture reasonable conditions of what a “real-life” parking procedure
on Z should satisfy. Note however that in a recent work [9], cars can be dislodged from their parking
spot by a later car, which is not covered by our setup.

2.2. Memoryless parking procedures. Definition 2.1 includes the possibility that the parking
decisions may depend on the whole sequence of preferred spots a1, . . . , ai. A natural subclass
of parking procedures, which includes the classical one Pright as well as Pprime,Pclosest from the
introduction, consists of those where the parking decisions only depend on the set of occupied spots
at the moment where one wants to park. This can be expressed as follows:

Definition 2.3. A parking procedure P is memoryless if there exists a function MP : Fin(Z)×Z →
Z such that P(a1 · · · ara) = P(a1 · · · ar) ⊔ {MP(P(a1 · · · ar), a)} for any a1, · · · , ar, a.

The function MP characterizes the parking procedure P by immediate induction. By definition
of our procedures, it necessarily satisfies M(S, a) /∈ S for any S, a, and M(S, a) = S⊔{a} whenever
a /∈ S. Conversely, a memoryless parking procedure is given by any family of integers M(S, a) ∈ Z
for a, S such that a ∈ S, that satisfy M(S, a) /∈ S. In words, M(S, a) specifies the spot where a car
with prefered spot a parks, when a is in the set S of occupied spots.

4 PHILIPPE NADEAU

Let us now give an example of a parking procedure that is not memoryless. The reader will have
no trouble finding other examples, even simpler to express than the following one. We include it
here since it was the starting point and motivation for this work.

Example 2.4. The procedure PLBS is introduced and studied by Vasu Tewari and the author
in [13]. It is defined inductively as follows: Let W = a1 · · · ar be any word and a such that
a ∈ PLBS(W). We need to define PLBS(Wa), which is done as follows:

Let I be the block of PLBS(W) such that a ∈ I. Define j ∈ {1, . . . , r} to be maximal such
that aj ∈ I: in words, the jth car is the last car that parked on I. Then PLBS(Wa) is defined by
parking in the nearest spot available left of I if a < aj , and right of I if a ≥ aj .

Thus one needs to record, for each block, where the last car that parked there had wanted to
park: the procedure is not memoryless. To give an explicit example, it sends both words 12 and
21 to the set S = {1, 2} (this is true for any procedure of course), but sends 121 to {0, 1, 2} and
211 to {1, 2, 3}.

2.2.1. P-parking functions. We finally come to our definition our parking functions associated to a
parking procedure.

Definition 2.5 (P-parking functions). Let P be a parking procedure. A word a1 · · · ar is said to
be parking for P, or a P-parking function, if P(a1 · · · ar) = {1, . . . , r}.

It is clear that this coincides with the usual notion of parking functions when P = Pright. Let
Park(P) be the set of parking functions for P, and Parkr(P) those of length r. The standard
enumeration result recalled in the introduction is #Parkr(Pright) = (r + 1)r−1.

An immediate remark is that for any P-parking procedure, all r! permutations of the word 12 · · · r
are in Parkr(P): indeed these are the cases where everyone finds their preferred spots available.

2.2.2. Functions lsP and πP(W). Let us define two functions associated to a parking procedure P.
The function lsP from Z∗ to Z associates to a preference word the spot in Z where the last car

parks. Explicitly, lsP(a1 · · · ai) = k where {k} = P(a1 · · · ai)\P(a1 · · · ai−1). If W = a1 · · · ar is any
word, then the outcome function πP(W) is defined as follows:

πP(W) : P(W) → {1, . . . , r}, i 7→ ls(a1a2 · · · ai)

is a bijection. It associates to an occupied spot k the integer i such that the ith car parked in l.
When W is P-parking, we have that πP(W) is a permutation of {1, . . . , r}.

A natural question, well studied in the case of the classical parking procedure, is to compute,
given a permutation σ, the number of (parking) words W such that πP(W) = σ. This naturally
partition parking words of length r in r! classes. We will come back to this question in Section 5.

2.3. Bilateral parking procedures. In this work, we will focus on bilateral parking procedures:
when one’s prefered parking spot is not available, then the chosen spot must be either the nearest
available spot to the left or the nearest available spot to the right –note that even though our goal
is not to define real-life parking procedures, the constraint is fairly natural in order for cars to
have a small displacement. All procedures considered until now (Pright,Pclosest,Pprime,PLBS) are
bilateral

Let us give a mathematical definition and fix some terminology and notations in the process.
Given a subset S of Z, we say that a discrete interval I = {t, t+1, . . . , u} with t ≤ u in Z is a block

BILATERAL PARKING PROCEDURES 5

of S if it is included in S, and maximal for this property with respect to inclusion. For instance, if
S = {2, 3, 5, 6, 7, 8, 9, 12}, its blocks are {2, 3}, {5, 6, 7, 8, 9} and {12}.

Definition 2.6 (Bilateral parking procedure). A parking procedure P is bilateral if the following
holds: For any word W and letter a such that a ∈ P(W), let I = {t, t + 1, . . . , u} be the block of
P(W) such that a ∈ I, one has lsP(Wa) ∈ {t− 1, u+ 1}.

Thus to define a bilateral procedure P, it suffices to determine a rule that picks either the spot
left of the block (lsP(Wa) = t− 1) or right (ls(Wa) = u+ 1) whenever a ∈ P(W). We define the
direction DirP by DirP(Wa) ∈ {left, right} accordingly, and will more conveniently define bilateral
procedures by specifying DirP . For memoryless procedures, we will naturally abuse notation and
write DirP(S, a) for DirP(Wa) when S = P(W).

Example 2.7. Let k ∈ Z>0. The k-Naples parking procedure PNap,k
+ is introduced in [4] and further

studied in [5]. The procedure is defined on positive integers, i.e. goes from (Z>0)
∗ to Fin(Z>0). It

is a variation of the classical parking procedure where one allows cars to back up, up to k spots, to
find an available spot.

We give an extension PNap,k to Z∗ here –note that in order to define parking functions, only the
original procedure plays a role, so our notion coincides with the one from [5],[4]. When a driver
finds its prefered spot a occupied, it goes to the next available spot to the right if a ≤ 0. If a > 0,
it checks spots a − 1, a − 2, . . . a − k in order and parks to the first available one, say a − j, if it
exists and satisfies a− j > 0; otherwise it takes the first available spot to the right.

Using our notations, PNap,k is the memoryless procedure characterized as follows: for S ∈ Fin(Z)
and a ∈ S, let I = {t, t+1, . . . , u} be the block that contains a. Then Dir(S, a) = left if t > 1 and
a− t < k, and Dir(S, a) = right otherwise.

3. Local parking procedures

3.1. Shift invariance and local decision. We now come to two extra constraints on a procedure
P. Informally, we require it to be invariant under translation, and that left/right decisions must
depend only on the subsequence of cars that parked on the block.

3.1.1. Shift invariance. Let τ : i 7→ i+ 1 be the shift on Z. It extends to subsets of Z or words in
Z∗ naturally: for instance τ({2, 3, 5}) = {3, 4, 6} and τ(523) = 634.

Definition 3.1 (Shift invariance). A bilateral parking procedure P is said to be shift invariant if
for any word W , one has DirP(τ(W)) = DirP(W).

This condition can be equivalently written as P(τ(W)) = τ(P(W)), which allows this definition
to be extended to non necessarily bilateral procedures.

Example 3.2. The procedures Pright,Pprime,Pclosest,PLBS are all shift invariant. The k-Naples
procedure PNap,k for k ≥ 1 is not shift-invariant since it sends both 11 and 22 to {1, 2}.

Another simple case of a procedure that is not invariant is the (bilateral, memoryless) procedure
Pevenodd defined as follows: if the desired spot ai is occupied, park right if ai is even, and left if ai
is odd.

6 PHILIPPE NADEAU

3.1.2. Local decision. If I is any subset of P(W), let W|I be the subword of W given by the letters
ai such that the ith car parked in S. We will use this in the case where I is a block of S.

Definition 3.3 (Local decision). A parking procedure is called locally decided if for any W,a and
I a block of P(W), we have that lsP(Wa) = lsP(W|I).

All examples of procedures defined until now are locally decided. It is easy to define one that is
not, and we will see such a procedure in Section 3.3.

3.2. Local procedures. We now combine the two previous properties to obtain a class of partic-
ular interest.

Definition 3.4 (Local parking procedures). A parking procedure P is local if it is both shift-invariant
and locally decided.

As we shall see in the next section, this is a class with a striking enumerative property in the
bilateral case. Let us give two immediate properties of the definition. First, the next property
shows that in order to study words resulting in a fixed set of parking spots S, it suffices to know
parking functions.

Proposition 3.5. Let P be a bilateral, local procedure. Let S ∈ Fin(Z) of size r. We denote its
blocks I1, . . . , Im with Ij = {tj + 1, . . . , tj + rj} for any j. Then a word W satisfies P(W) = S if
and only if it is a shuffle of words W1, . . . ,Wm where τ−tjWj is P-parking of length rj.

Thus the total number of such words W is

#{W | P(W) = S} =

(
r

r1, . . . , rm

)
#Parkr1(P)#Parkr2(P) · · ·#Parkrm(P).

As Parkr(P) = (r + 1)r−1 by Theorem 1.1, proved in the next section, we have an explicit
formula.

The second property is that in the memoryless case, the class of local procedures is particularly
nice to describe.

Proposition 3.6. A local, memoryless, bilateral parking procedure P is determined by the data
of mP(r, i) := MP({1, . . . , r}, i) ∈ {0, r + 1} for all 1 ≤ i ≤ r, or equivalently of the directions
DirP(r, i) := DirP({1, . . . , r}, i).

Conversely, any choice of boolean values D(r, i) ∈ {left, right} for all 1 ≤ i ≤ r determines a
local, memoryless, bilateral parking procedure P such that DirP = D.

The proof follows readily from the definitions. Here are the explicit values DirP(r, i) in our
running examples:

• For the usual procedure Pright, we have Dir(r, i) = right for any r, i.
• For Pclosest, we have Dir(r, i) = left if i ≤ r/2 and Dir(r, i) = right if i > r/2.
• For Pprime, we have Dir(r, i) = right if r is prime and Dir(r, i) = left if r is composite.

3.3. Enumeration. We will now prove Theorem 1.1, which says that for any bilateral local pro-
cedure P, the number of P-parking functions of length r is given by (r + 1)r−1; the first values
for r = 1, 2, 3, 4 are 1, 3, 16, 125. Before we give the proof of this result, let us note that neither
condition in the definition of a local procedure (Shift invariance and local decision) can be removed
as a hypothesis:

BILATERAL PARKING PROCEDURES 7

Remark 3.7. The procedures Pevenodd and PNap,k (for k > 0) are locally decided, but not shift
invariant. Pevenodd has only 2 parking functions of length 2, while PNap,k has 4, so the result of
the theorem does not hold for either of the procedures.

Remark 3.8. Now consider the following memoryless procedure Pfar: if one’s prefered spot a is
occupied, let R, resp. L, be the number of cars already parked to the right, resp. to the left, of
a. Then one parks in the nearest spot available to the right if R ≤ L, and to the left if R > L.
In our mathematical language: let a,W such that a ∈ S := P(W), and I = {s, s + 1, . . . , t} the
block containing a. Define R = #{i ∈ S | i > a} and L = #{i ∈ S | i < a}. Then DirP = left
if L ≥ R while DirP = right if L < R. It is shift invariant, but not locally decided, and direct
enumeration shows that there are only 14 parking functions of length 3 for Pfar, so the conclusion
of Theorem 1.1 does not hold.

The proof is based on an argument of Pollak in the classical case, as found in [14],[8]. Let Zi
[r+1]

be the set of words of length i ≤ r and with letters in {1, . . . , r + 1}. By identifying {1, . . . , r + 1}
with Z/(r+1)Z, the cyclic group Z/(r+1)Z then acts on {1, . . . , r+1} by rotation and thus Zi

[r+1]

by acting on each letter. Explicitly, let ρ = ρr be defined as

ρ : Z/(r + 1)Z → Z/(r + 1)Z, i 7→ i+ 1.

which we extend naturally to words by ρ(a1 · · · ai) = ρ(a1) · · · ρ(ai). Thus each orbit of words has
the form {W,ρ(W), . . . , ρr(W)}; we call such orbits “cyclic”. Equivalently, they correspond to the
cosets of (1, . . . , 1) in Zi

[r+1] ≃ (Z/(r + 1)Z)i considered as an additive group.

Proposition 3.9 (Parking cyclic lemma). Let P be a bilateral, local procedure, and r ≥ 1. There
is exactly one P-parking function in each cyclic orbit in Zr

[r+1].

Proof of Theorem 1.1. It is clear that Parkr ⊂ Zr
[r+1], the latter being of cardinal (r + 1)r. Propo-

sition 3.9 then tells us that a fraction 1/(r+ 1) of these words are parking functions, which proves
the desired enumeration. □

For the proof of Proposition 3.9, we will introduce a cyclic version of the procedure P. By a
cyclic parking procedure, we mean a procedure with domain Z≤r

[r+1] and codomain Fin({1, . . . , r+1})
that satisfies the properties of Definition 2.1. Cyclic intervals are well-defined as sets of consecutive
integers, so we can also define cyclic blocks as the maximal such intervals in a set S. Bilateral
cyclic parking procedures thus make sense, and can be specified by a direction function Dir.

Proof of Proposition 3.9. We define the cyclic procedure Pr by induction, by specifying its direction
function Dirr. Suppose that it is defined on all words of length up to i < r, and let W have length i.
Let S := Pr(W), a ∈ S, and let I be the cyclic block of S containing a and V = W|I . By applying

a suitable rotation ρk, we have ρk(I) = {1, . . . , j} for a certain j.
We then define Dirr(Wa) := Dir(ρk(Wa)). Let us remark that at this point, the local property

has not been used, and the definition makes thus sense for any procedure. Note that P being local
implies that this is also equal to Dir(ρk(V a)). Now we claim that:

(1) For any W , Pr(ρ(W)) = ρ(Pr(W)).
(2) W is a P-parking word if and only if Pr(W) = {1, . . . , r}.

8 PHILIPPE NADEAU

The two claims together imply the proposition: the first claim implies that each orbit contains
exactly one word W with Pr(W) = {1, . . . , r}, while the second one claims that these are precisely
the P-parking words. Let us now prove these claims.

The first claim follows readily from our definition of Pr: keeping the notations from the above
paragraph, one needs to show that Dirr(Wa) = Dirr(ρ(Wa)) for any a,W with a ∈ Pr(W), and
indeed both are given by Dir(ρk(Wa)) = Dir(ρk−1ρ(Wa)).

For the second claim, note that r+1 is missing from Pr(W) at the end if and only if it was missing
at each step. If W ′ is a P-parking word, let us show that P(W) = Pr(W) for each prefix. We need
to show that Dir(Wa) = Dirr(Wa) for each prefix Wa of W ′ with a ∈ P(W). Since P is local,
Dir(Wa) = Dir(V a) while Dirr(Wa) = Dir(ρk(V a)). Now remark that we have ρk(V a) = τ j(V a)
for a certain j as words in {1, . . . , r}, and we can conclude by shift-invariance.

□

This gives a better understanding of why the procedure Pfar fails to satisfy the result of
Proposition 3.9. Two cosets have no parking function in them, namely {131, 242, 313, 424} and
{133, 244, 311, 422}, the other fourteen having one.

3.4. Extending Theorem 1.1 and Proposition 3.9. Following up on the previous remark, the
problem is essentially that the parking decisions in Pfar depend on information on the position
(left or right) of cars that are outside of the block where one wants to park. Such information is

not stable under a cyclic rotation of the blocks, which is why the cyclic version Pfar
r used in the

proof of Proposition 3.9 behaves differently from the original procedure..
For a bilateral, shift-invariant procedure, the local decision property removes this issue. Since it

is also easy to state and has some nice structural properties (see Propositions 3.5,3.6), we chose to
state the theorem at this level of generality. But there are weaker properties that also work, the
key being to be able to define the cyclic version. Analyzing the proof of Proposition 3.9, one can
weaken the hypothesis as follows.

Proposition 3.10. Let P be a bilateral procedure that satisfies the following property:
For any r ≥ 1, any word W of length at most r with letters in {1, . . . , r}, and any cyclic rotation
R = ρkr such that P(R(W)) does not contain r+1, then Dir(Wa) = Dir(R(Wa)) for any a ∈ P(W).
Then there is exactly one P-parking function in each cyclic orbit in Zr

[r+1], and thus there are

(r + 1)r−1 P-parking words of length r.

In particular, note that the property is satisfied if the parking rule is a function of the total
number of parked cars –equivalently, if the parking rule for the ith car depends on i. For this class
of procedures, the previous result is in fact hinted at in the seminal article [10], as we will pinpoint
in the next section.

4. Probabilistic parking

To add probabilities to the setting, the usual manner is to study properties of P-parking words
picked uniformly at random for instance. In the classical case, this is a very natural problem from
the hashing viewpoint, and the problem and was studied extensively: see [6, 7]. One can also
probabilize the procedures themselves, which is the point of view we develop here.

BILATERAL PARKING PROCEDURES 9

4.1. Definition. A probabilistic procedure is defined at the end of [10]: Given q ∈ [0, 1], consider
the following procedure PKW,q: when one’s spot is occupied, park at the nearest spot on the right (

resp. left) with probability q (resp.1− q). A more generalized procedure PKW,(q)i is in fact defined
at the very end of the paper: if the ith driver’s spot is occupied then the probabilities are qi and
1−qi for a fixed family q = (qi)i≥1. Notice that if each qi is in {0, 1}, we get a class of deterministic
procedure that satisfies the hypothesis of of Proposition 3.10.

We can then develop the notion of a bilateral probabilistic parking procedure P in much the same
way as we did in the deterministic case. In that case P(W) will the data of a finitely supported
“probability measure” on Fin(Z); we write it PW . By this we will just mean a function on Fin(Z)
with values in [0, 1] such that PW is zero outside of a finite number of subsets, and the sum of
PW (S) over S ∈ Fin(Z) is 1.

To define a bilateral probabilistic procedure P, we fix DirP(W,S, a) a real number in [0, 1],
representing the probability to go right when a ∈ S after having read PW . These is defined when
W has #S letters, all of them belonging to S. Let us define a graph G(P) with vertices all such
pairs (W,S), with outgoing edges at each vertex labeled by Z. Then we have the following edges
for any W,S, a:

• if a /∈ S, (W,S)
a→ (Wa,S ⊔ {a}

• if a ∈ S, let I = {s, . . . , t} the block that contains a. Then we have an edge (W,S)
a→

(Wa,S ∪ {t + 1} with weight DirP(W,S, a) and an edge (W,S)
a→ (Wa,S ∪ {s − 1} with

weight 1−DirP(W,S, a).

The value PW is then the total weight of all paths in G(P) going from (ϵ, ∅) to (W,S). It is clear
by induction that the sum of PW (S) over S ∈ Fin(Z) is 1, which justifies thinking about PW as a
probability measure.

Definition 4.1 (Parking probability). Let P be a probabilistic parking procedure, and W a word
of length r. Then the parking probability ParkP(W) is defined by PW ({1, . . . , r}).

The notion of a memoryless procedure extends directly: here we need just fix real numbers
DirP(S, a) with no dependence on W , and the graph G(P) has correspondingly vertices indexed
simply by Fin(S) and its edges are simply defined by dropping W from the definitions above.
Finally PW (S) is the total weight of all paths in G(P) from ∅ to S and labeled by the word W .

4.2. Enumerative properties. The notion of local procedure extends readily to the probabilistic
setting (DETAIL), and we have the following extension of Theorem 1.1.

Theorem 4.2. Let P be a local, probabilistic parking procedure, and r ≥ 1. Then the sum of
PP(W) over all words W of length r is (r + 1)r−1.

This was noticed to hold for the procedure PKW,q in [10]. The key to the theorem is the following
extension of Proposition 3.9:

Proposition 4.3. Let P be a local, probabilistic parking procedure, and r ≥ 1. Then the sum of
PP(W) over any cyclic orbit in Zr

[r+1] is equal to 1. Thus the sum of PP(W) over all words of

length r is (r + 1)r−1

The local hypothesis can be weakened to the one in Proposition 3.10. In particular, the result
applies to the procedures PKW,(q)i , and thus we recover as a special case the result mentioned at
the very end of [10].

10 PHILIPPE NADEAU

4.3. Abelian procedures. A local, memoryless procedure P is completely specified by the num-
bers pP(r, i) = DirP(r, i) ∈ [0, 1] giving the probability to go right when a car with prefered spot
ih wants to park on the block {1, . . . , r}.

Example 4.4. For the procedure PKW,q, we have p(r, i) = q for all r, i.

Example 4.5. Let us define the procedure PP,q, with q ∈ [0,+∞], by p(r, i) are given by [i]
[r+1] .

This is the probability that the car parks in r + 1 after a biased random walk on {1, . . . , r} with
right probability 1/(1 + q). This leads to the rich combinatorics of remixed Eulerian numbers,
introduced by the author with Vasu Tewari [11],[12]. The interpretation as a parking procedure is
a reformulation of the “sequential process” given in [12, Section2].

Definition 4.6. A (probabilistic) parking procedure P is called abelian if Pa1···ar = Paσ1 ···aσr for
any letters a1, . . . , ar and any permutation σ.

Pright is known to be abelian, as can be seen immediately from the characterization of parking
words in the introduction. More generally, the procedures PP,q are known to be abelian, cf. [12].

ADD SOMETHING HERE

Proposition 4.7. The procedures Pq, q ∈ [0,∞], are the only local memoryless procedures that are
abelian.

In the deterministic case, it follows that a local memoryless procedure P is abelian if and only
if it is either Pright or its symmetric version P left.

Proof. Let P be a local memoryless abelian procedure, and define pr,i := pP(r, i). Define q by

p1,1 =
1

1+q . We need to show that pr,i =
[i]

[r+1] for all r, i. We prove this by induction on r. It holds

for r = 1 by definition, and we assume the claim holds for r − 1 with r ≥ 2.
Consider the word Wr,i = 12 · · · (r− 1)ri for any 1 ≤ i ≤ r. By definition its parking probability

is pr,i. Now, for i ̸= r, consider the word 12 . . . (r−1)ir, obtained by exchanging the last two letters
in Wr,i. Its parking probability is given by pr−1,ipr,r, so by abelianity and the induction hypothesis
we obtain:

(4.1) pr,i =
[i]

[r]
pr,r for i = 1, . . . , r − 1.

Consider now the word 12 · · · (r − 2)rr(r − 1), obtained from Wr,r by moving n − 1 to the end.
Its parking probability is easily computed as 1

1+q +
q

1+qpr,r−1, the two terms corresponding to the

second car with desired spot r going right or left. By abelianity.

(4.2) pr,r =
1

1 + q
+

q

1 + q
pr,r−1.

One can now easily solve the system of equations (4.1),(4.2) and get the desired result pr,i =
[i]

[r+1]

which is thus proven by induction. □

5. Encoding with binary trees

In this section we will define a general lift of the parking procedure: given any parking procedure

P, we define an injective function P̂ also defined on Z∗ with a natural projection Π such that

Π ◦ P̂ = P.

BILATERAL PARKING PROCEDURES 11

5.1. Definition of P̂. Recall that a finite, plane, binary tree is defined recursively as either empty
or consisting of a node, a left (sub)tree and a right (sub)tree. Its size is its number of nodes. These
are in bijection with complete binary trees, where by attaching extra leaves. A forest is then usually
defined as a set of trees.

Definition 5.1. An indexed forest F is the data of a subset S in Z, and a binary tree of size |I|
for each block of I of S. The set S is the support of F . Binary trees of size r are identified with
indexed forests with support {1, . . . , r}.

In the example below, the support is {2, 3, 4, 5, 6, 7, 11, 14, 15}. Elements of the support cor-
respond bijectively to nodes of the forest, as illustrated by the arrows in the figure: this is the
canonical labeling of the nodes that will be important in what follows, which we will use to specify
nodes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17−1

Given a procedure P and a word W of length r, we will attach a pair (P,Q) of labeled forests
with the same underlying indexed forest of size r The projection Π(P,Q) is defined as the support
of this indexed forest F . The labels are on the nodes of the common shape, and we will write pi,
resp. qi for the label in P , resp. Q of the node i ∈ Π(P,Q). P will be bijectively labeled by the
multiset of letters of W , while Q is a decreasing forest: it has labels {1, . . . , r} and each node has
greater label than all its descendants.

Let us first define the forest Q. Given P,W , consider the bijection πP(W) defined in Section 2,
which encodes the order in which parking spots were filled. Let S = P(W). Then one can naturally
encode πP(W) as an indexed decreasing forest with support S. This defines the forest Q, and its
underlying forest F . We note i → qi this labeling. To construct P , simply label F by having node
i get the label pi = Wqi .

Definition 5.2. We define P̂ : Z∗ 7→ (P,Q) to be this construction.

Here is this correspondence for PLBS with the word W = 5.11.8.3.9.3.2 from our previous
example:

Proposition 5.3. Let us list some immediate properties for any local procedure P:

• A word W is P-parking if the commons shape of (P,Q) is a tree.
• The P-correspondence is injective.
• The canonical labeling of a node is the spot where the corresponding car ended up parking.

Following up on this last point, one sees that
∑

i |pi − i| corresponds to the total displacement
of the parking process.

12 PHILIPPE NADEAU

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

P

Q

2

3

3
8

9

115

7

6

2

5

314

5.2. Correspondence. The framework is particularly nice if for any (P,Q) in the image of P̂,

all (P,Q′) with Q′ a decreasing forest of the same shape is also in the image of P̂. In that case

the image is is determined once we know what labeled forests P can occur: we say that P̂ is a
correspondence, and that such admissible labeled forests are P-forest.

In general, local procedures do not give rise to correspondences. It holds however in the memo-
ryless case, where in fact one need only assume that the procedure is locally decided (see Defini-
tion 3.3):

Proposition 5.4. Let P be a locally decided memoryless procedure. Then P̂ is a correspondence
with P-trees given by the following condition: if i is any node with interval [li, ri], then the possible
values of its label from the following set :

(5.1) {j | DirP({li, . . . , i− 1}, j) = right} ∪ {i} ∪ {j | DirP({i+ 1, . . . , ri}, j) = left}.

Proof. Suppose W 7→ (P,Q)Exchange qi = k and qj = k + 1 in Q when i, j are incomparable, let
Q′ be the result. Then W ′ 7→ Q′ where W ′ is obtained from W by swapping letters at positions
k, k+1. Indeed this is true for up to position k because it’s locally decided, and then the memoryless
condition takes care of the rest. The rest of the statement is easy and left to the reader. □

Now to determine the fibers of the outcome function πP , one has to simply count the number of
P-trees of a given shape. We thus get immediately from the prevuous proposition:

Proposition 5.5. Let P be a locally decided memoryless procedure, and σ a permutation of
{1, . . . , r}. Let T be the binary tree underlying the decreasing tree of σ.

Then the number of P-parking functions with outcome σ is given by the product over all i of the
cardinality of the sets (5.1). If P is moreover shift-invariant (thus a local procedure), then we have
explicitly

(5.2)
∏
i∈T

(1 +Ri−ℓi + Lri−i),

where Rk is the number of values i ∈ {1, . . . , k} such that DirP(r, i) = right, and Lk = k −Rk.

The Pright-forests for the classical procedure Pright have labels in [li, i] for any node i. The
specialization of Proposition 5.5 then gives the well-known result given in [15, Exercise 5.49(d)].

BILATERAL PARKING PROCEDURES 13

Example 5.6. For the k-Naples procedure PNap,k the set (5.1) is given by

{li + k − 1, li + k, . . . , i− 1} ∪ {i} ∪ {i+ 1, . . . , i+ k}

if li > 1, and by

{1, . . . , i− 1} ∪ {i} ∪ {i+ 1, . . . , i+ k}
if li = 1.

We thus get the main result of [5], Theorem 3.12. Note that li = 1 means that node i lies on the
leftmost branch of the tree T . It is then immediate to get the recursive formula for #Parkr(PNap,k)
given in [4].

Remark 5.7. We thus get a bijection Φ = P̂right between classical parking functions and binary
trees with a double labeling. Parking functions are also bijectively connected to families of labeled
binary trees in (at least) two other ways: first, one uses the standard representation of parking
functions as labeled Dyck paths, composed with any bijection between Dyck paths and binary
trees. This was done recently for example in [1, Section 6]. Another known bijection is with Shi
trees, as defined by Gessel, see for instance [2] and references therein.

These bijections are however not naturally related to our correspondence Φ, in the sense that
the number of labelings of a given tree differ for r = 3 in all three cases: If we write the num-
ber of labelings in a nonincreasing fashion for all 5 trees of these sizes, we get 6, 4, 3, 2, 1 in our
correspondence, 6, 3, 3, 3, 1 using any of the other bijections.

Using standard bijection between binary and plane trees, Φ can be seen to be equivalent to a
bijection between parking functions and Cayley trees due to Knuth, as described by Yan [16].

5.3. The probabilistic case. (Rough sketch) Each path in the graph G(P) naturally gives rise
to a pair (P,Q) by using the above construction, carrying the weight of the path. If we group all
pairs (P,Q) ending in (W,S), we get an interpretation for PW (S). In the case of PNT,q, this gives
rise naturally to the interpretation of Ac(q) as counting Postnikov trees [12].

6. Colored version

Let C be any set, and consider the alphabet A = Z × C. The set C represents some extra
information. In terms of cars, one might consider its brand, its color, or the age of the driver. Let
val : A = Z× S → Z be the projection to the first factor, which represents the prefered spot. Now
a preference list, will be a word a1 . . . ar in A∗, the ith car having prefered spot valai. The set C
can then be used as extra source of information in order to decide where to park.

We have as before (bilateral) parking procedures,

P : A∗ → Fin(Z)

defined exactly as in Section 2: one simply has to replace Z∗ by A∗ and the conditions a ∈ P(W)
by val(a) ∈ P(W).

If a = (i, s), extend the shift τ by defining τ(a) = (i + 1, s) and extend to words. Then the
shift-invariance and local decision property are immediately extended to procedures on A∗, so we
have the notion of local procedures in this case.

One can require P to be only a partial function, that is, to be defined on a subset L ⊂ A∗. It
is reasonable to require that L be closed under deleting a letter at any position, that is, that L be

14 PHILIPPE NADEAU

closed under taking subwords. This ensures that the words W|I are well-defined in the definition
of a local procedure.

Also, L should be closed under (cyclic) shifts: if W is a word of L of length i < r, the word
ρr(W) is also in L. We can now state the extension of Proposition 3.9.

Proposition 6.1. Let L ⊆ A∗ be closed under subwords and cyclic shifts. Let P be a colored local
procedure defined on L. Then any cyclic class in L ∩Ar

r+1 contains exactly one parking word.

We can extend PLBS to this colored setting. This correspondence is introduced and studied
in [13]. We pick C = Z>0, and only consider the language L of words in A = with distinct letters.
Order A = Z× S lexicographically. Let W,a, I such that I is a block of PLBS(W) and a ∈ I. Let
j ∈ {1, . . . , r} be maximal such that aj ∈ I (“last car that parked on the interval”). Then if a < aj
the casr parks left, and if a > aj park right. Since we only consider words with distinct letters, this
is well-defined.

Acknowledgements

I would like to thank everyone I’ve bothered with this in the past couple of years.

References

[1] N. Bergeron, R. S. González D’León, S. X. Li, C. Y. A. Pang, and Y. Vargas. Hopf algebras of parking functions
and decorated planar trees. Adv. in Appl. Math., 143:Paper No. 102436, 62, 2023.

[2] O. Bernardi. Deformations of the braid arrangement and trees. Adv. Math., 335:466–518, 2018.
[3] J. Carlson, A. Christensen, P. E. Harris, Z. Jones, and A. Ramos Rodŕıguez. Parking functions: choose your

own adventure. College Math. J., 52(4):254–264, 2021.
[4] A. Christensen, P. E. Harris, Z. Jones, M. Loving, A. Ramos Rodŕıguez, J. Rennie, and G. R. Kirby. A gen-

eralization of parking functions allowing backward movement. Electron. J. Combin., 27(1):Paper No. 1.33, 18,
2020.

[5] L. Colmenarejo, P. E. Harris, Z. Jones, C. Keller, A. Ramos Rodŕıguez, E. Sukarto, and A. R. Vindas-Meléndez.
Counting k-Naples parking functions through permutations and the k-Naples area statistic. Enumer. Comb.
Appl., 1(2):Paper No. S2R11, 16, 2021.

[6] P. Diaconis and A. Hicks. Probabilizing parking functions. Adv. in Appl. Math., 89:125–155, 2017.
[7] P. Flajolet, P. Poblete, and A. Viola. On the analysis of linear probing hashing. Algorithmica, 22(4):490–515,

1998. Average-case analysis of algorithms.
[8] D. Foata and J. Riordan. Mappings of acyclic and parking functions. Aequationes Math., 10:10–22, 1974.
[9] P. E. Harris, B. M. Kamau, J. C. M. Mori, and R. Tian. On the outcome map of MVP parking functions:

Permutations avoiding 321 and 3412, and Motzkin paths, 2022.
[10] A.G. Konheim and B. Weiss. An occupancy discipline and applications. SIAM J. Appl. Math., 14:1266–1274,

1966.
[11] P. Nadeau and V. Tewari. A q-analogue of an algebra of Klyachko and Macdonald’s reduced word identity, 2021.
[12] P. Nadeau and V. Tewari. Remixed Eulerian numbers, 2022.
[13] P. Nadeau and V. Tewari. Forest polynomials and the class of the permutahedral variety, 2023.
[14] J. Riordan. Ballots and trees. J. Combinatorial Theory, 6:408–411, 1969.
[15] R. P. Stanley. Enumerative combinatorics. Vol. 2. 62:xii+581, 1999. With a foreword by Gian-Carlo Rota and

appendix 1 by Sergey Fomin.
[16] C. H. Yan. Parking functions. In Handbook of enumerative combinatorics, Discrete Math. Appl. (Boca Raton),

pages 835–893. CRC Press, Boca Raton, FL, 2015.

Univ Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5208, Institut Camille Jordan, 43 Blvd.
du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France

Email address: nadeau@math.univ-lyon1.fr

mailto:nadeau@math.univ-lyon1.fr

	1. Introduction
	2. Bilateral and local parking procedures
	2.1. Parking procedures
	2.2. Memoryless parking procedures
	2.3. Bilateral parking procedures

	3. Local parking procedures
	3.1. Shift invariance and local decision
	3.2. Local procedures
	3.3. Enumeration
	3.4. Extending Theorem 1.1 and Proposition 3.9

	4. Probabilistic parking
	4.1. Definition
	4.2. Enumerative properties
	4.3. Abelian procedures

	5. Encoding with binary trees
	5.1. Definition of P"0362P
	5.2. Correspondence
	5.3. The probabilistic case

	6. Colored version
	Acknowledgements
	References

