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Abstract

1. Habitat  suitability  models  infer  the  geographical  distribution  of  species  using

occurrence data and environmental variables. While data on species presence are

increasingly accessible, the difficulty to confirm real absences in the field often forces

researchers to generate them in silico. To this aim, pseudo-absences are commonly

randomly sampled across the study area (i.e., the geographical space). However, this

introduces sample location bias (i.e., the sampling is unbalanced towards the most

frequent habitats occurring within the geographical space) and favours class overlap

(i.e.,  overlap between environmental  conditions associated with species presences

and pseudo-absences) in the training dataset. 

2. To mitigate this, we propose an alternative methodology (i.e., the uniform approach)

that systematically samples pseudo-absences within a portion of the environmental

space delimited by a kernel-based filter, which seeks to minimise the number of false-

absences included in the training dataset. 

3. We simulated 50 virtual species and modelled their distribution using training datasets

assembled  with  the  presence  points  of  the  virtual  species  and  pseudo-absences

collected using the uniform approach and other approaches that randomly sample

pseudo-absences  within  the  geographical  space.  We  compared  the  predictive

performance of habitat suitability models and evaluated the extent of sample location

bias and class overlap associated with the different sampling strategies. 

4. Results indicated that the uniform approach: (i) effectively reduces sample location

bias and class overlap; (ii) provides comparable  predictive performance to sampling

strategies carried out in the geographical space; and (iii) ensures gathering pseudo-
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absences adequately representing the environmental conditions available across the

study area. We developed a set of R functions in an accompanying R package called

USE to disseminate the uniform approach.

Keywords: background points, ecological niche models, presence-only models,

sample location bias, class overlap, species distribution models, reproducibility.
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1 Introduction

Habitat  suitability  models  (hereafter,  HSMs)  are  a  class  of  statistical  models  used  to

describe the relationship between species attributes (e.g., presence-absence, abundance)

and a set of spatially-explicit variables chiefly representing abiotic, biotic and human-related

factors (e.g., climate, soil, demographic parameters, land-use). These models are rooted in

the  niche  theory  (i.e.,  Hutchinsonian niche,  see  Guisan  et  al.,  2017)  and rely  on  both

theoretical and practical assumptions: (i) species are assumed to be at (quasi)equilibrium

with  their  environment  (Hattab et  al.,  2017);  (ii)  the set  of  predictors  used to  fit  HSMs

includes all necessary information to capture the ecological niche of the species; and (iii)

species distribution attributes, used as the response variable, need to be appropriate for the

intended model purpose (e.g.,  biodiversity conservation, forecasting biological  invasions,

assessing the effects of global change) (Tessarolo et al., 2021; but see also Guisan et al.,

2017 for a thorough review on the theoretical assumptions underpinning HSMs). Some of

these assumptions are hardly, if ever, met in nature since species are seldom at equilibrium

with their environment (Svenning and Skov, 2004), posing several limitations to the use and

interpretation  of  HSMs’  outputs.  Acknowledging  and,  when  possible,  addressing  these

limitations still makes HSMs a powerful toolbox for understanding the drivers of the species’

realised and potential distributions (sensu Jackson and Overpeck, 2000). For this reason,

HSMs are still widely applied in several research fields, including biogeography (Wasof et

al.,  2015;  Duffy  et  al.,  2017),  climate  change  ecology  (Jarvie  and  Svenning,  2018),

conservation biology (Newbold, 2018; Santini et al., 2021), invasion ecology (Hattab et al.,

2017; Da Re et al. 2020; Bazzichetto et al. 2021), and pathogen risk assessment (Batista

et. al., 2023).

One of the most critical assumptions underpinning HSMs is the appropriateness of
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biological data for modelling the ecological niche of the species, which means that species

distribution  attributes,  being  either  presence-absence  or  abundance  data,  should  allow

effectively describing the true species-environment relationship (Guisan et al., 2017; Baker

et al., 2022). However, while information on species occurrence (i.e., presence) is usually

readily  accessible  through  field-collected  observations  or  museum/herbaria  records,

trustworthy  absence  data  are  by  far  more  difficult  to  gather  or  to  confirm  in  the  field

(Jiménez-Valverde et al., 2008), as their sampling requires labour-intensive and costly field

campaigns  (Hattab  et  al.,  2017).  The  usual  lack  of  true  absence  data  has  led  to  the

development  of  HSMs  approaches  that  either  rely  solely  on  presence  data  (so-called

‘presence-only  models’,  such  as  the  BIOCLIM  model;  Booth  et  al.  2014)  or  combine

presence  data  with  pseudo-absences  or  background  points  for  modelling  species

distributions (e.g., the MaxEnt algorithm; Phillips et al., 2017).

Pseudo-absences and background points are terms often used interchangeably in the

scientific literature (Sillero and Barbosa, 2020), but they may represent different conditions.

Pseudo-absences  are  sampled  from  locations  considered  unsuitable  for  the  species

(Barbet-Massin et al., 2012). In contrast, background points encompass the full range of

environmental conditions, including potential suitable locations for the species (presence

locations; Phillips et al., 2009; Hallgren et al., 2019). The choice between pseudo-absences

and background points indicates the user's uncertainty about the ecological preferences of

the species, with background points used when there is no prior knowledge of unsuitable

environmental conditions. Despite recognizing the distinction, we will  henceforth use the

term  pseudo-absences  to  refer  to  both  pseudo-absences  and  background  points  for

simplicity and alignment with our study.

The most common approaches for sampling pseudo-absences involve (i) randomly

surveying a large number of points across the study area (e.g., 10,000; Barbet-Massin et
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al., 2012; Iturbide et al., 2015; Støa et al., 2019, Hysen et al., 2022) or (ii) sampling them

within or (iii) outside buffers created around presence locations (VanDerWal et al., 2009;

Bedia  et  al.,  2013).  These  approaches  share  the  characteristic  of  deploying  pseudo-

absences randomly across the geographic space, which often leads to oversampling of the

most common habitat conditions that are widespread in the study area (Tessarolo et al.,

2014, 2021; Ronquillo et al., 2020). This sample location bias negatively impacts HSMs in

multiple ways. Firstly, it can introduce a bias in the sampling of environmental conditions

experienced  by  a  species,  potentially  affecting  the  accurate  estimation  of  the  species

response curve, particularly in heterogeneous areas (Austin 2007; Hortal et al., 2008; Albert

et  al.,  2010;  Beck  et  al.,  2014,  Bazzichetto  et  al.,  2023).  Secondly,  it  influences  the

predictive performance of  HSMs,  as  reflected in  the evaluation metrics  used (Jiménez-

Valverde et al., 2013; Sillero and Barbosa, 2020).

To overcome this issue,  previous studies (Varela et  al.  2014;  Hattab et  al.,  2017)

proposed to sample species presence and (true) absence data throughout a systematic

sampling of the environmental conditions available across the study area, thus limiting the

artificial  constraint  imposed  by  the  random  sampling  towards  the  most  widespread

environments. More specifically, Varela et al. (2014), Hattab et al. (2017) and Perret and

Sax  (2022)  suggested  collecting  species’  presence  and/or  absence  within  2-  or  3-

dimensional environmental spaces obtained using ordination techniques. Such approaches

significantly  contributed  to  the  improvement  and  standardisation  of  the  way  species

observations,  including  pseudo-absences,  can  be  collected  to  calibrate  HSMs reducing

sample location bias. Yet, they do not explicitly consider class overlap, another relevant

methodological  issue  encountered  when  collecting  pseudo-absences  through  random

sampling  across  the  geographical  space.  Class  overlap  refers  to  the  overlap  between

environmental  conditions  associated  with  both  species  presence  and  absence,  thus
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hindering the concept of pseudo-absences itself. It has negative effects on the predictive

performance of HSMs and it is particularly critical for machine learning techniques, while

regression techniques such as generalised linear models seem to be less affected (Barbet-

Massin et al., 2012; Grimmett, Whitsed and Horta, 2020; Valavi et al., 2021). So far, class

overlap has been addressed using resampling techniques more oriented to adjusting an

unbalanced number of classes in the response variable (i.e., the ‘up-’ or ‘down-sampling’

approach;  Valavi  et  al.,  2021),  irrespective  of  the  technique  used  to  obtain  pseudo-

absences. 

As far as we know, there are no approaches for sampling pseudo-absences that

seek  to  mitigate  both  sample  location  bias  and  class  overlap.  Here,  we  present  an

alternative  sampling strategy,  which  we called the ‘uniform’  approach,  that  builds  upon

existing strategies for systematically sampling the environmental space to select pseudo-

absences.  The novel  aspect  of  the  uniform approach  is  that,  beyond reducing  sample

location bias, it also minimises class overlap by implementing a kernel-based filter that is

used to delineate the portion of the environmental space where to collect pseudo-absences.

To  test  our  approach,  we  simulated  50  virtual  species  and  compared  the  predictive

performance of HSMs trained on pseudo-absences sampled using the uniform approach as

well  as other sampling strategies traditionally carried out within the geographical  space:

random  (i.e.,  pseudo-absences  randomly  sampled  within  the  geographical  space)  and

buffer-out (i.e., pseudo-absences randomly collected outside buffers built around presence

locations). To foster reproducibility, we provide an accompanying R package called  USE

(Uniform Sampling of the Environmental space), which bundles the R functions needed to

implement  the  uniform  approach.  The  package  is  available  at

https://github.com/danddr/USE. Finally, we provide a tutorial to explain how to apply the

uniform approach to real case studies, using the European beech Fagus sylvatica L. as a
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target species.  

2 Methods

2.1 Simulation of virtual species

We used virtual species (hereafter VS), a simulation tool that provides the great advantage

of  knowing the true generative process underlying the species geographical  distribution

(Meynard et al., 2019). We created the realised environmental space (sensu Jackson and

Overpeck 2000) of 50 different virtual species using the bioclimatic variables gathered from

the WorldClim database (www.worldclim.org; spatial resolution ~18.6 km at the Equator;

Fick and Hijmans, 2017). We restricted the distribution of the simulated VS (and those of

the bioclimatic variables) to the geographical extent spanning from -12° W to 25° E and

from 36° to 60° N (approximately Western and Southern Europe) to significantly reduce the

computational  effort  to  process  the  entire  workflow.  Each  VS  was  generated  using  a

random  set  of  five  bioclimatic  variables  (out  of  the  19)  through  the  function

generateRandomSp from the R package  virtualspecies (Leroy et al., 2016), which

randomly assigns relationships between the VS and the bioclimatic variables (e.g., linear,

quadratic relationships). This way, we obtained a raster layer reporting the habitat suitability

index of  each VS (HSI,  Fig.  1a),  which we then converted to  a  binary  (i.e.,  presence-

absence) map using the function convertToPA. Further details about parameters setting

can be found in the R code available at https://github.com/danddr/USE_paper.

2.2 Sampling of the pseudo-absences
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Regardless of the sampling approach and modelling technique used to calibrate the HSMs,

the ratio between the number of presences and pseudo-absences in the training datasets

(i.e.,  sample  prevalence)  was  kept  equal  to  1,  which  means  that  an  equal  number  of

presences  and  pseudo-absences  were  collected.  In  practice,  each  of  the  VS-specific

training  dataset  included  300  presences,  which  were  randomly  sampled  within  the

geographical extent using the function sampleOccurrences from the virtualspecies

R package. Consequently, we collected an equal number of pseudo-absences according to

the three sampling strategies presented below. 

2.2.1 Uniform approach: pseudo-absences sampled within the environmental space

For each VS (i.e., iteration), we built a 2-dimensional environmental space by keeping the

first two axes of a principal component analysis (PCA) performed on the correlation matrix

of  the  five  randomly  selected  bioclimatic  variables  used  to  generate  the  realised

environment (Fig. 1b). Each time, we checked that the first two principal component axes

accounted for at least 70% of the total bioclimatic variability. Then, we uniformly sampled

pseudo-absences in the environmental  space using the  uniformSampling function. In

short, each pseudo-absence is associated with a geographical location (i.e., a pixel of the

environmental layers), which is in turn characterised by the set of environmental conditions

encountered at that location. Such a combination of environmental conditions determines

the position of the pseudo-absence within the environmental space. A pseudo-absence can

thus be defined as the projection of a geographical location onto the environmental space

generated through the PCA (i.e., a PC-score). Below, we present a step-by-step description

of  the uniform sampling  performed by  the function  paSampling,  which  internally  calls

uniformSampling (both functions are included in the USE R package):
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1. First, kernel density estimation (a statistical technique used to estimate the underlying

probability  distribution  of  a  set  of  data  points  by  smoothing  them  with  a  kernel

function;  Scott,  1992)  is  used  to  calculate  the  probability  density  function  of  the

presence data within the 2-dimensional environmental space. Similar uses of kernel

density  estimation  have  become  popular  in  recent  years,  especially  due  to  their

increasing use in trait-based ecology to compute probabilistic hypervolumes and trait

probability densities (Mammola and Cardoso, 2020 and reference therein). The PC-

scores associated with a probability threshold equal to or greater than 0.75 (i.e., the

default  threshold  value  used  in  the  paSampling function)  are  likely  to  bear

environmental conditions associated with presence locations. Thus, we selected these

presence locations and we generated the convex hull  delimiting the portion of the

environmental  space mostly associated with this set of  presence points  within the

environmental  space (Fig.  1c).  The kernel  bandwidth (i.e.,  the width of  the kernel

density  function  that  defines  its  shape)  can  be  either  defined  by  the  user  or

automatically estimated by the function paSampling. In the latter case, the function

uses a bandwidth selector by internally calling the function Hpi of the R package ks

(Duong, 2021).

2. The portion of the environmental space defined by the above-mentioned convex hull is

removed from the whole environmental space. Then, a sampling grid was generated

from a pre-selected resolution (e.g., 10 × 10 cells) and overlaid on the 2-dimensional

environmental space (Fig. 1d). The optimal resolution of the sampling grid within the

environmental space can be determined using the function optimRes from the USE

package. This function operates as follows:

- Within  each cell  of  the sampling grid,  the average (squared)  Euclidean distance
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between  the  pseudo-absences  (PC-scores)  in  the  cell  and  the  centroid  of  their

convex hull is computed;

- Once this metric is computed across all cells of the sampling grid, the average mean

value is computed across all cells (hereafter, grid average);

- The  procedure  above  is  separately  repeated  on  different  sampling  grids  of

increasing resolution (i.e., increasing number of cells);

- The resulting set of grid averages (one per resolution) are used as a measure of the

aggregation among pseudo-absences within the cells  of  the sampling grids. This

value  is  compared  across  resolutions  and  the  best  grid  is  chosen  as  the  one

providing the best trade-off between resolution and average distance among points

within  cells  (i.e.,  the resolution  that  allows  uniformly  sampling the environmental

space  without  overfitting  it).  More  specifically,  the  best  grid  is  the  one  whose

resolution is  just  below that  which would  not  allow the average distance among

pseudo-absences to be reduced by more than 10% (other values can be set by the

user).

3. Once the optimal resolution is set, the sampling grid is sequentially scanned (i.e., cell

by cell) by the uniformSampling function called via the paSampling function and,

from each grid cell, a given number of pseudo-absences is randomly collected. At this

stage, the pseudo-absences associated with environmental  conditions too close to

those of  the presence locations are already excluded (see step 1).  Note that  the

pseudo-absences are randomly selected within the area of each cell of the sampling

grid, and not at the centroid nor at the nodes.

The total number of pseudo-absences sampled within each cell of the sampling grid can be

set by the user (using the argument  n.tr,  default n.tr = 5),  who can also indicate a
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desired  sample  prevalence.  If  the  sample  prevalence  is  not  specified,  fewer  pseudo-

absences are likely to be eventually sampled than expected (i.e., n.tr × number of cells).

This happens because (i) no pseudo-absence points are collected in empty cells, and (ii)

less pseudo-absence points than n.tr are available within the cells at the boundary of the

environmental space (see zooming window in Figure 1d). Similarly, no  pseudo-absences

are  collected  within  the  core  area  of  the  presences  (excluded  in  step  1).  If  a  sample

prevalence  is  set  by  the  user,  the  sampling  grid  is  surveyed  until  the  chosen  sample

prevalence is reached by the algorithm. 

Figure 1: Flowchart representing the step-by-step procedure for implementing the uniform
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approach:  a)  habitat  suitability index (HSI)  of  the  i-th virtual  species (VS; lighter colours

indicate  higher  habitat  suitability  and  black  dots  represent  presence  points  in  the

geographical space); b) PCA performed on the environmental variables in the study region

(lighter colours indicate high PC-scores densities and black dots represent the presence

points within the environmental space); c) application of the kernel-based filter, which splits

the  environmental  space  into  two  sub-spaces  associated  with  either  the  environmental

conditions more suitable for the species (in blue) or those associated with less/not suitable

environmental conditions (in red; with black dots still depicting presence points); d) pseudo-

absences are uniformly sampled across a sampling grid of a chosen resolution overlaid to

the 2-dimensional environmental space. Specifically, pseudo-absences are sampled within

each cell of the 2-d grid. The inset map shows an example of a grid cell at the boundary of

the environmental space (i.e., a grid cell containing low density of pseudo-absences), black

dots represent presence points; e) the purple dots represent the pool of randomly selected

pseudo-absences after running the uniform sampling approach; f) the white dots represent

the selected set  of  pseudo-absences after  running the uniform sampling approach,  but

displayed in the geographical space this time, black dots still  represent presence points

from the focal virtual species.

2.2.2 Pseudo-absences sampled within the geographical extent

The sampling of pseudo-absences within the geographical extent was conducted using the

random and buffer-out approaches. For the random approach (Barbet-Massin et al. 2012;

Iturbide et al., 2015; Støa et al., 2019), we simply generated 300 random pseudo-absences

across the studied geographical extent. For the buffer-out approach (Bedia et al., 2013), we

created a buffer of 50 km radius around each presence location, and we then randomly

sampled pseudo-absences outside the presence-specific buffers, but within the convex hull
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of  the  species  geographical  distribution  (i.e.,  the  convex  hull  that  connects  the  outer

presences of the species and thus delimits the range actually covered by the species in the

geographical space).

2.3 Habitat suitability models

For each of the 50 VS and for each of the three sampling strategies (i.e., uniform, random,

buffer-out), we built a specific dataset combining the presence records with the pseudo-

absences sampled within the environmental and the geographical space. First, we modelled

the presence and pseudo-absences data as a function of the same five bioclimatic variables

used to generate each of the 50 VS. To this aim, we randomly partitioned each dataset

(specific for a sampling strategy) into 5 replicates of both training (70% observations) and

testing  (30%)  sets,  which we used to  calibrate  and validate,  respectively  and for  each

replicate, five modelling algorithms: (i)  binomial generalised linear models with ‘logit’ link

(GLMs); (ii) generalised additive models (GAMs); (iii) random forests (RFs); (iv) boosted

regression trees (BRTs); and (v) MaxEnt. In total, we fitted 3,750 HSMs (50 VS species × 3

different  sets  of  pseudo-absences  ×  5  modelling  algorithms  ×  5  replicates  of  70-30%

partitions).  To  fit  the  HSMs,  we  used  the  R  package  sdm (Naimi  and  Araújo,  2016).

Although we acknowledge the importance of fine-tuning HSMs (Fourcade, 2021), we kept

model settings at their  default  value since it  would have been unfeasible to individually

parametrise each algorithm for all 50 VS and sampling strategies. A detailed representation

of the workflow of the analyses is shown in Fig. 2. Furthermore, we acknowledge that our

use  of  MaxEnt  did  not  conform  with  the  general  recommendations  for  its  adequate

implementation (e.g.,  using 10,000 background points;  Cobos et  al.,  2019;  Kass et  al.,

2021). Nonetheless, we included it  in the comparison of models’ performance due to its

wide usage within the HSMs community.
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2.4 Comparison among sampling strategies

2.4.1 Predictive performance comparison

After  fitting  HSMs  for  all  the  50  VS,  we  compared  the  predictive  performance

associated with each combination of sampling approaches and modelling techniques by

computing the following metrics:  (i)  the area under  the receiver operating characteristic

curve (AUC); (ii) the continuous Boyce index (CBI); (iii) the sensitivity; (iv) the specificity; (v)

the true skill statistics (TSS); and (vi) the root mean squared error (RMSE). The RMSE was

computed by comparing the true (i.e., simulated) habitat suitability of the focal VS against

the one predicted by each combination of modelling and sampling approach. A detailed

description of  the above-mentioned modelling techniques and validation metrics can be

found in Guisan et al. (2017). To compare the predictive performance of the HSMs fitted

under  different  combinations of  sampling strategy and modelling technique,  we visually

assessed the results of the 50 VS simulations using violin plots reporting the distribution of

the values of the predictive performance metrics listed above. Furthermore, we tested for

statistical differences between the three sampling strategies for each predictive accuracy

metric  using the  Kruskall-Wallis  test,  followed by  one-tailed  Dunn’s  post  hoc rank  sum

comparisons  using  the  dunn.test R  package  (Dinno,  2017)  (p-values  for  multiple

comparisons adjusted using Holm correction). 

2.4.2 Sample location bias and class overlap

To assess the intensity of sample location bias associated with the different sampling

strategies, we extracted the pseudo-absences of a single VS and map their aggregation

within the environmental space using bivariate density plots. The aim was to identify which,
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among  the  three  sampling  strategies,  was  more  subject  to  oversampling  particular

environmental  conditions  within  the  geographical  space.  In  principle,  the  sampling

strategies  more  affected  by  sample  location  bias  would  exhibit  a  clear  aggregation  of

pseudo-absences within the environmental space. We visually assessed the areas of the

environmental  space  sampled  by  the  different  sampling  strategies  using  the  function

geom_density_2d of the ggplot2 R package (Wickham, 2016). This function performs a

2D kernel density estimation using the kde2d function of the MASS R package (Venables

and Ripley, 2002) and displays the results with contours.  In addition, for 10 new VS, we

calculated  the  total  range  (i.e.,  max  PC-score  –  min  PC-score)  of  the  two  principal

component  axes  associated  with  the  pseudo-absences  collected  through  the  different

sampling strategies. We then derived the 95% confidence interval of the total range trough

a nonparametric bootstrap (n = 2,000) using the function smean.cl.boot from the Hmisc

R package for  each  principal  component  axis  and sampling  strategies.  We  tested  for

statistical differences for  each principal component axis  among  sampling strategies using

the Kruskall-Wallis test followed by two-tailed Dunn’s post hoc rank sum comparisons with

Holm’s correction. To assess the effectiveness of the uniform approach for mitigating class

overlap, we simulated 10 new VS, sampled their presences and pseudo-absences using the

three sampling strategies and mapped the position of the presence and pseudo-absence

points within the environmental space following the procedure explained in section 2.2.1

and Figure 1a,b. Then,  we computed the Gaussian hypervolume of  the presences and

pseudo-absences using the hypervolumes R package (Blonder et al., 2014; 2022), and

calculated the overlap between them. Statistically significant differences in the degree of

overlap were tested using one-way ANOVA and Tukey HSD test. 
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2.5 Sensitivity analyses

In our analytical framework, we kept fixed the value of the following parameters: sample

prevalence, the size of the buffer for the buffer-out approach, and the number of bioclimatic

variables used as predictors to fit the HSMs for the VS. To test the potential effect on our

results of varying these parameters, we conducted the following sensitivity analyses:

 To test  the effect  of  changing sample prevalence on the predictive performance of  the

different sampling strategies, we repeated the entire workflow on 10 VS using two additional

prevalence  values,  namely  0.5  and  0.1.  Specifically,  for  each  VS,  we  generated  two

additional training datasets with 300 presences, but we combined them with 600 and 3,000

pseudo-absences to achieve sample prevalence of 0.5 and 0.1 respectively. 

 To test the effect of the size of the buffer on the predictive performance of the buffer-out

approach, we repeated the entire workflow on 10 VS considering the following buffer radius

lengths: 50, 100 and 200 km.

 To test how using a different number of bioclimatic variables would affect the predictive

performance of the sampling strategies, we repeated the entire workflow on 50 VS using all

19 bioclimatic variables to both define the environmental space to generate the VS and as

predictors to fit the related HSMs. 

2.6 Real-case study

To illustrate how to apply the uniform approach with the USE R package, we modelled the

realised distribution of Fagus sylvatica in Italy, France and Spain. We chose F. sylvatica as

a target species because its distribution and biogeographic history is well-known across

Europe (Magri et al., 2006; Poli et al., 2022). The whole analysis of F. sylvatica is described
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in S5, and the R code to replicate it can be found at: https://github.com/danddr/USE_paper.

Figure 2 Overall  workflow of  the analysis  described in  the Methods section.  The ‘*’  is

associated with analyses (i.e., sample bias, class overlap, sample prevalence, radius of the

buffer) performed on n = 10 virtual species (VS).

18

372

373

374

375

18

https://github.com/danddr/USE_paper


USE: a novel approach to uniformly sample the environmental space

3 Results

3.1 Comparison of the predictive performance associated with geographical vs 

environmental sampling

Overall,  the  uniform  approach  performed  equal  to  or  better  than  the  geographical

approaches in terms of out-of-sample prediction (Fig. 3). Pairwise comparisons between the

predictive accuracy performance of the uniform approach against the random and buffer-out

approaches  showed  statistically  significant  differences  in  73%  and  47%  of  the

combinations,  respectively.  However,  these  differences  were  algorithm-  and  metric-

dependent  and did not  point to an overall  higher predictive performance of  the uniform

approach (Fig.  3,  Tab.  S1,  Fig.  S1.1).  The pattern  of  the differences among predictive

performance metrics was consistent among prevalence values (Fig. S2.1-2.2) and number

of bioclimatic variables used in the models (Fig. S3). Increasing the buffer radius length

(Fig. S4),  resulted in higher predictive performance of the buffer-out approach for some

metrics  (AUC,  TSS,  specificity),  while  for  CBI,  sensitivity  and  RMSE  results  remained

comparable with those presented in Fig. 3.
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Figure  3:  Violin  plots  reporting  the  distribution  of  the  values  of  the  metrics  of  predictive

performance for the habitat suitability models (HSMs) of the 50 virtual species (VS), as modelled

using 5 randomly selected bioclimatic predictors and setting sample prevalence equal to 1 (i.e.,

same number of presences and pseudo-absences). Dots represent median values of the metrics of

predictive accuracy. Columns indicate the different performance metrics, while rows are associated

with the modelling techniques used to fit the HSMs. Higher values in all metrics but RMSE reflect

higher predictive performance. AUC = area under the curve; CBI = continuous Boyce index, TSS =

true skill  statistic; RMSE = root mean squared error; GLM = generalised linear model; GAM =

generalised additive model; RF = random forest; BRT = boosted regression trees.
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3.2 Effect of sample location bias and class overlap

The bivariate density plots of the pseudo-absences sampled within the environmental and

geographical  space  highlighted  that  the  uniform  approach  had  the  widest  and  most

homogeneous coverage of environmental conditions throughout the environmental space

(Fig.  4,  see  Figure  S1.2  for  a  more  detailed  representation  of  the  density  of  pseudo-

absences sampled within the environmental  space when running the uniform approach;

Fig.S1.3).  In  contrast,  the random and buffer-out  approaches appeared to  be prone to

sample location bias, with peaks of high density of pseudo-absences occurring in specific

areas of  the environmental  space,  i.e.,  those associated with the most  frequent  habitat

conditions encountered within the geographical space, and a narrow mean range of PC-

scores sampled  along both principal component axes compared to the uniform approach

(Fig. 4, Fig. S1.3; Kruskal-Wallis test for PC1: ꭓ2= 21.54, df = 2, p-value < 0.001; Kruskal-

Wallis test for PC2: ꭓ2= 14.91, df = 2, p-value < 0.001). 

Regarding class overlap,  we detected a statistically  significant  difference in the overlap

between the  portions  of  the  environmental  space occupied  by  presences  and pseudo-

absences sampled through different approaches (one-way ANOVA F(2, 27) = 5.83, p-value

= 0.008). Specifically, the uniform approach exhibited the lowest overlap in comparison to

the other sampling strategies (Fig.  5).   The post  hoc Tukey HSD test  showed that  the

uniform approach exhibited a significantly lower overlap than the random sampling (p <

0.001), whereas the uniform- buffer-out and buffer-out-random comparisons did not show

significant differences (p = 0.09, p=0.47).
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Figure 4:  a)  Bivariate  plots  showing the environmental  space generated by a principal

component analysis carried out on 5 bioclimatic variables. Red lines represent the density

of pseudo-absences for an individual virtual species, as sampled by the random and buffer-

out  approaches within the geographical  space,  and by the uniform approach within the

environmental space. A more detailed representation of the density of pseudo-absences

sampled by the uniform approach is reported in Figure S1.2. b) Histograms showing the
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frequency distribution of the first two principal components (columns) associated with the

different sampling strategies (rows). 

Figure  5: Box  plots  showing  the  overlap  between environmental  spaces  generated  by

presences  and  pseudo-absences  of  the  virtual  species.  Letters  denote  significant

differences  using  Tukey  HSD  test.  Colours  are  associated  with  the  three  sampling

strategies used to generate the pseudo-absences (uniform in blue, random in yellow and

buffer-out in pink).
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4 Discussion

In  this  study,  we proposed the  uniform approach as  an  alternative  strategy  to  sample

pseudo-absences within the environmental space. In contrast to existing techniques, our

approach  systematically  samples  pseudo-absences  from  portions  of  the  environmental

space excluding the conditions that are likely to be suitable for the species to establish. As a

result, the uniform approach reduces the chance of including false-absences in the training

dataset.  From a more theoretical  perspective, data collected after the application of the

kernel-based filter are much closer to the concept of pseudo-absences than those obtained

through traditional, geographical sampling approaches. Our findings show that the uniform

approach represents a valid strategy for gathering pseudo-absences, resulting in out-of-

sample predictive accuracy comparable to the sampling strategies implemented within the

geographical space. In addition, the uniform sampling significantly reduces sample location

bias and class overlap, which is critical to obtain ecologically meaningful pseudo-absences.

Importantly, the uniform approach is flexible, as it allows the user to set parameters (e.g.,

kernel bandwidth, sample prevalence, sampling grid resolution) that control how pseudo-

absences  are  sampled  within  the  environmental  space.  Such  flexibility  is  particularly

valuable  to  mimic  different  ecological  processes  that  are  easier  to  capture  within  the

environmental space than within the geographical space (e.g., source-sink dynamics). In all

cases, by generating informative pseudo-absences, the uniform approach allows satisfying

one of the most critical assumptions underpinning habitat suitability modelling: the need for

adequate  species  distribution  attributes  (i.e.,  pseudo-absence  data  here)  to  model  the

species-environment relationship (Guisan et al., 2017).
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4.1 Effect of the sampling approaches on models’ predictive performance

Results of the VS’ simulations showed that the uniform approach performed well in terms of

out-of-sample  prediction  regardless  of  the  modelling  technique,  metric  of  predictive

performance,  and  sample  prevalence  used.  All  HSMs  calibrated  on  pseudo-absences

sampled  with  the  uniform  approach  consistently  showed  high  predictive  performance,

especially for the metrics related to the capacity of a model to correctly predict presences

(i.e.,  sensitivity  and CBI).  Concerning the metrics associated with the models’  ability  to

predict absences (e.g., specificity), the uniform sampling showed values comparable to the

other strategies. This suggests that the uniform approach reduces omission error without

necessarily  increasing commission error.  This  is  coherent  with Fei  and Yu (2016),  who

reported an increase in overall model predictive performance when pseudo-absences were

systematically collected within the environmental space.

In this sense, results for the CBI, which is currently the go-to accuracy metric for validating

HSMs  fitted  on  pseudo-absences  (or  background  points),  and  for  the  RMSE  were

particularly encouraging since the uniform approach scored, together with the buffer-out

approach, the highest CBI values and lowest RMSE values across all modelling techniques.

The high predictive performance associated with the uniform approach can be attributed to

its two main underlying properties: the systematic sampling of the environmental space and

the kernel-based filter on the presence data.

Notwithstanding the positive results obtained in terms of predictive performance, we argue

that a comparison of metrics of model predictive accuracy may not be the best means for

evaluating  the  adequacy  of  different  sampling  strategies  carried  out  within  the

environmental rather than the geographical space. Indeed, previous studies showed that
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these metrics are affected by several factors, including sample prevalence (Guisan et al.,

2017; Leroy et al., 2018; Marchetto et al., 2023), sample bias (Dubos et al., 2022, Rocchini

et al., 2023) or the spatial extent of the study area (Lobo et al., 2008). Moreover, AUC and

TSS tend to score high even in case of poor models calibrated on data exhibiting strong

sample location bias (Fourcade et al.,  2018, Jiménez-Valverde, 2021). Assessing HSMs

predictive performance using a set of different predictive accuracy metrics might help the

user to critically evaluate the outputs of the models.

4.2  Effect  of  the  uniform  sampling  on  sample  location  bias  and  class

overlap

The uniform approach proved to significantly reduce sample location bias, since pseudo-

absences  were  homogeneously  scattered  across  the  bivariate  density  plot  of  the  two

principal component axes (Fig. 4a,b, Fig. S1.2 in Supplementary Materials) and collected a

wider range of PC-scores compared to the random and buffer-out approaches (Fig. S1.3).

On the contrary, the two sampling approaches carried out within the geographical space

exhibited prominent peaks of density of pseudo-absences in correspondence with the most

frequently encountered environmental conditions within the geographical space, resulting in

a narrower mean of PC-scores. As a consequence, the random and buffer-out approaches

may  provide  sub-optimal  pseudo-absences  for  modelling  the  species-environment

relationship (Thuiller et al. 2004; Austin 2007). This aspect gets increasingly relevant as

environmental  conditions  are  more heterogeneously  distributed across  the geographical

space (e.g.,  in mountain regions with high topographic heterogeneity).  Therefore, HSMs

calibrated on training datasets adequately representing environmental variability rather than

wide geographical  coverage represent  a crucial  step to better  capture and discriminate

species niche breadth (Tessarolo et al., 2014, 2021; Varela et al., 2014; Bazzichetto et al.,
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2022; Perret and Sax 2022).

The  uniform  approach  proved  to  also  significantly  reduce  class  overlap.  The  thres

argument passed to the  paSampling function controls the portion of the environmental

space associated with the species presence, thus inherently limiting class overlap by the

exclusion of environmental conditions suitable to the species (see Fig. 1c, Fig. 5 and Fig.

S1.4). This results in a set of pseudo-absences theoretically much closer to the species’

true absences. Given that presence points are unevenly distributed within the environmental

space, different kernel thresholds might also be used to handle the sampling of pseudo-

absences under particular scenarios. As an example, setting a low kernel threshold would

allow excluding accidental  presences  from unsuitable  locations  (e.g.,  ‘sink  populations’)

from the  training  dataset,  while  potentially  including  observations  from  these  areas  as

pseudo-absences. Unfortunately, there is no a priori choice about the value of the threshold

without having preliminary information on species’ ecology, the study area and the goal of

the research. For this reason, we provided the thresh.inspect function, which produces

plots depicting the entire environmental space alongside the portion that would be excluded

based on a specific kernel density threshold.

4.4 Limitations and usage notes

4.4.1 Limitations

The first limitation of the uniform approach, which is anyway a general limitation in HSMs

(e.g.,  Cayuela et al., 2009), is that its effectiveness depends on the amount (sample size)

and quality (e.g., geographically unbiased data  sensu Fourcade 2014) of presence data.

Indeed, if few presence data are available and/or presence data are geographically biased,

the  kernel-based  filter  might  not  accurately  delimit  the  area  associated  with  suitable
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conditions  for  the  species.  As  a  consequence,  the  capacity  of  discriminating  between

suitable and unsuitable conditions of the uniform approach might be negatively affected.

A second limitation is that,  although the uniform approach proved to be robust  to

varying  sample  prevalence,  its  effectiveness  might  diminish  if  a  very  large  number  of

pseudo-absences is sampled (e.g., in case of low sample prevalence) (Fig. S2.1-2.2). Since

the uniform approach samples a user-defined number of pseudo-absences within a grid

overlaid to a bi-dimensional environmental space, if the number of pseudo-absences grows

indefinitely, the advantage of the systematic sampling decreases. Indeed, oversampling the

environmental space would generate datasets suffering from sample location bias as much

as those based on the random sampling carried out within the geographical space.

From a more practical perspective, the uniform approach can currently operate only

across 2-dimensional environmental spaces, but 3-dimensional spaces might be supported

in the future.

Finally, although the idea behind USE and the uniform sampling approach is to provide

users with an easy-to-use tool to generate more ecologically meaningful pseudo-absences,

we acknowledge the existence of other techniques designed to avoid generating pseudo-

absences  altogether.  Notable  examples  are  point-process  analyses  (e.g.,  Isaac  et  al.,

2020),  which  model  the  density  of  presence-only  points  per  unit  area,  rather  than  the

probability of presences and (pseudo-)absences. More recently, machine-learning methods

based on  isolation  forests  were  also proposed,  with  the R package  ITSDM specifically

dedicated  to  HSMs  (Song  and  Estes,  2023).  We believe,  however,  that  our  approach

provides a simpler and more intuitive way to deal with the issue of presence-only data, and

thus has a lower threshold for end-users to implement in their workflow.

4.4.2 Usage notes

We here used the uniform approach to sample bioclimatic spaces, although we stress the
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importance of not only using bioclimatic variables, but also information on soil, land-use as

well  as  other  relevant  variables  when  modelling  species  distributions.  Also,  we  invite

potential users of the uniform sampling approach to always check that the first two axes of

the principal  component  analysis  used to  generate  the environmental  space explains  a

large portion of the variance observed in the data (e.g., ≥ 70%). Equally important is the

choice of the boundaries of the geographical extent for which the 2-dimensional space has

to be generated.  Indeed, to avoid the "there are no elephants in the Antarctic" paradox

(Lobo et al.,  2010),  the spatial  extent of  the study area should be delineated so that it

excludes geographical locations, and in turn environmental conditions, less suitable for the

species  (e.g.,  collecting  pseudo-absences  from  Mediterranean  coastal  dunes  when

modelling the distribution of an alpine plant species). In short, the uniform approach can

provide exhaustive information on where the species is likely to not occur, but it remains a

responsibility  of  the  end  user  to  carefully  verify  if  such  information  is  ecologically

meaningful.

5 Conclusion

In this study, we compared the predictive performance of two strategies for sampling pseudo-

absences carried out within the geographical space with that of the uniform approach, which 

operated within the environmental space. Also, we compared geographical and environmental 

sampling approaches in terms of their vulnerability to sample location bias and class overlap. The 

uniform approach proved to have good predictive performances and to reduce sample location 

bias and class overlap, thereby representing a valid alternative to generate pseudo-absences for 

HSMs. We made the uniform approach openly available to the modellers community at 

https://github.com/danddr/USE.
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7 Code and Data availability 

The  scripts  for  replicating  the  analyses  presented  in  this  paper  are  available  at

https://github.com/danddr/USE_paper, as well as all the raw outputs of the simulations and

statistical analyses (which are available as an .RDS file).

We  provide  a  general  tutorial  to  explain  how  to  apply  the  USE  package  at

https://danddr.github.io/USE/articles/USE_vignette.html. In addition, we provide a tutorial on

how to apply the uniform approach based on a real species (the European beech,  Fagus

sylvatica  L.)  in  S5.  The  R  script  related  to  the  tutorial  is  available  at

https://github.com/danddr/USE_paper.  
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Supplementary Material 1

Tab. S1: Post-hoc multiple comparisons with Dunn’s rank sum test (α = 0.05; omnibus test
was always significant with P < 0.05, data not shown). All the comparisons were performed
comparing the uniform dataset against the other different sampling strategies. P-values were
adjusted using Holm correction. GLM = generalised linear model; GAM = generalised
additive model; RF = random forest; BRT = boosted regression trees. AUC = area under the
curve; CBI = continuous Boyce index, TSS = true skill statistic; RMSE = root mean squared
error. Z: test statistics. P.val: p-value (ns: not statistically significant).

Model Metric Comparisons Z P.val

BRT AUC Uniform - BufferOut 0.6241 ns

BRT AUC Uniform - Random 8.6859 p<0.05

BRT CBI Uniform - BufferOut 1.1292 ns

BRT CBI Uniform - Random 6.3851 p<0.05

BRT RMSE Uniform - BufferOut -2.3726 ns

BRT RMSE Uniform - Random -0.6024 ns

BRT Sensitivity Uniform - BufferOut -0.9328 ns

BRT Sensitivity Uniform - Random -1.375 ns

BRT Specificity Uniform - BufferOut 1.7994 ns

BRT Specificity Uniform - Random 9.052 p<0.05

BRT TSS Uniform - BufferOut 0.2245 ns

BRT TSS Uniform - Random 8.2078 p<0.05

GAM AUC Uniform - BufferOut 2.4852 p<0.05

GAM AUC Uniform - Random 9.7106 p<0.05

GAM CBI Uniform - BufferOut -2.9944 p<0.05

GAM CBI Uniform - Random 2.4044 p<0.05

GAM RMSE Uniform - BufferOut -4.2491 p<0.05

GAM RMSE Uniform - Random 0.228 ns

GAM Sensitivity Uniform - BufferOut 2.7209 p<0.05

GAM Sensitivity Uniform - Random 5.3686 p<0.05

GAM Specificity Uniform - BufferOut -0.5144 ns
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Model Metric Comparisons Z P.val

GAM Specificity Uniform - Random 8.4643 p<0.05

GAM TSS Uniform - BufferOut 0.0233 ns

GAM TSS Uniform - Random 8.2981 p<0.05

GLM AUC Uniform - BufferOut -4.6005 p<0.05

GLM AUC Uniform - Random -0.1257 ns

GLM CBI Uniform - BufferOut 0.726 ns

GLM CBI Uniform - Random -5.4103 p<0.05

GLM RMSE Uniform - BufferOut -3.1414 p<0.05

GLM RMSE Uniform - Random 2.7924 p<0.05

GLM Sensitivity Uniform - BufferOut -1.5199 ns

GLM Sensitivity Uniform - Random -2.8583 p<0.05

GLM Specificity Uniform - BufferOut -5.522 p<0.05

GLM Specificity Uniform - Random 1.4241 ns

GLM TSS Uniform - BufferOut -4.54 p<0.05

GLM TSS Uniform - Random -0.3467 ns

Maxent AUC Uniform - BufferOut 2.4852 p<0.05

Maxent AUC Uniform - Random 9.7106 p<0.05

Maxent CBI Uniform - BufferOut -7.9909 p<0.05

Maxent CBI Uniform - Random 0.4514 ns

Maxent RMSE Uniform - BufferOut -2.8994 p<0.05

Maxent RMSE Uniform - Random 2.7528 p<0.05

Maxent Sensitivity Uniform - BufferOut 4.284 p<0.05

Maxent Sensitivity Uniform - Random 4.2468 p<0.05

Maxent Specificity Uniform - BufferOut -0.8195 ns

Maxent Specificity Uniform - Random 7.6853 p<0.05

Maxent TSS Uniform - BufferOut -0.1257 ns

Maxent TSS Uniform - Random 8.1398 p<0.05

RF AUC Uniform - BufferOut 2.6549 p<0.05
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Model Metric Comparisons Z P.val

RF AUC Uniform - Random 9.7143 p<0.05

RF CBI Uniform - BufferOut 0.1289 ns

RF CBI Uniform - Random 8.4596 p<0.05

RF RMSE Uniform - BufferOut -2.4619 p<0.05

RF RMSE Uniform - Random 3.1183 p<0.05

RF Sensitivity Uniform - BufferOut -0.3741 ns

RF Sensitivity Uniform - Random 0.046 ns

RF Specificity Uniform - BufferOut 0.8738 ns

RF Specificity Uniform - Random 8.9689 p<0.05

RF TSS Uniform - BufferOut 0.0921 ns

RF TSS Uniform - Random 8.1664 p<0.05
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S1.1: Post-hoc multiple comparisons with one-tailed Dunn’s rank sum test (α = 0.05;
omnibus test was always significant with P < 0.05, data not shown). All the comparisons
were performed assuming that the performance of the uniform sampling strategy was higher
than the other two sampling strategies: a) relative proportion of the significant comparisons
aggregated by sampling strategy; b) relative proportion of the significant comparisons
aggregated by sampling strategy and metric.

Figure S1.2: Bivariate density plot of principal component scores associated with the
pseudo-asbences sampled for a virtual species using the uniform approach.

4



Figure S1.3: Mean (points) and 95% confidence interval (error bars) of the principal
components total range (max PC-score − min PC-score) captured by the three sampling
strategies. Two-tailed Kruskal-Wallis test for PC1: �2= 21.54, df = 2, p-value < 0.001;
Kruskal-Wallis test for PC2: �2= 14.91, df = 2, p-value < 0.001. Letters denote significant
differences using Dunn’s test, p-values were adjusted using Holm’s correction. Colours are
associated with the three sampling strategies used to sample the pseudo-absences (uniform
in blue, random in yellow and buffer-out in pink).
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Figure S1.4: Effect of setting different kernel thresholds on the inclusion/exclusion of
pseudo-absences eventually sampled using the uniform approach (black dots are the true
virtual species presences represented within the environmental space). Setting a low value
of the kernel threshold (e.g., 0.25) increases the portion of the environmental space
excluded from the uniform sampling; in contrast, setting a high value of the kernel threshold
increases the portion of the environmental space available for the uniform sampling.
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Supplementary Material 2

To test the potential effect of different sample prevalence values, we repeated the

entire workflow on 10 virtual species using two different prevalence values: 0.5

and 0.1. In both cases, we obtained a dataset consisting of 300 presences, which

we then combined with a second dataset of 600 (for sample prevalence 0.5) and

3,000 (for sample prevalence 0.1) pseudo-absences.

Figure S2.1: Violin plots reporting the distribution of the values of the metrics of
predictive performance for the habitat suitability models of 10 virtual species (dots
represent median values of the metrics of predictive performance), considering 5
predictors, and using a sample prevalence equal to 0.5. Columns indicate the different
performance metrics, while rows are associated with the modelling algorithms used to fit
the habitat suitability models.
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Figure S2.2: Violin plots reporting the distribution of the values of the metrics of
predictive performance for the habitat suitability models of 10 virtual species (dots
represents median values of the metrics of predictive performance), considering 5
predictors, and using a sample prevalence equal to 0.1. Columns indicate the different
performance metrics, while rows are associated with the modelling algorithms used to fit
the habitat suitability models.
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Supplementary Material 3

Fig. S3: Violin plots reporting the distribution of the values of the metrics of predictive
performance for the habitat suitability models of 50 virtual species modelled as a
function of 19 bioclimatic predictors, and setting sample prevalence equal to 1 (i.e.,
same number of presences and pseudo-absences). Dots represent median values of the
metrics of predictive accuracy. Columns indicate the different performance metrics, while
rows are associated with the modelling algorithms used to compute HSMs. AUC = Area
Under the Curve; CBI = Continuous Boyce Index, TSS = True Skill Statistic; RMSE =
Root Mean Squared Error; GLM = generalised linear model; GAM = generalised additive
model; RF = random forest; BRT = boosted regression trees.
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Supplementary Material 4
To test the potential effect of different sizes of the buffer sizes on the buffer-out

approach, we repeated the entire workflow on 10 virtual species with three

different radius lengths: 50, 100 and 200 km. We kept the training dataset with a

sample prevalence equal to 1, consisting of 300 presences and 300

pseudo-absences.

Fig. S4.1: Violin plots reporting the distribution of the values of the metrics of predictive
performance for the habitat suitability models of 10 virtual species modelled as a
function of 5 bioclimatic predictors, and setting sample prevalence equal to 1 (i.e., same
number of presences and pseudo-absences). We varied the size of the radius for the
buffer-out approach, setting it to/using 50, 100 and 200 km. Dots represent median
values of the metrics of predictive accuracy. Columns indicate the different performance
metrics, while rows are associated with the modelling algorithms used to fit the habitat
suitability models. AUC = Area Under the Curve; CBI = Continuous Boyce Index, TSS =
True Skill Statistic; RMSE = Root Mean Squared Error; GLM = generalised linear model;
GAM = generalised additive model; RF = random forest; BRT = boosted regression
trees.

10



Supplementary Material 5

Case study on the realised distribution of Fagus sylvatica in Western Europe

Methods

To illustrate how to apply the uniform approach with the USE R package, we

modelled the realised distribution of Fagus sylvatica in Italy, France and Spain

(hereafter, western Europe). We chose F. sylvatica as an example species

because its distribution and biogeographic history is well-known across Europe

(Magri et al., 2006; Poli et al., 2022). For the sake of simplicity, we restricted the

area of investigation to western Europe and used two modelling algorithms.

Indeed, the case study of F. sylvatica is only intended as a practical example to

show how the USE package operates, while not providing a further comparison on

the predictive performance of HSMs fitted on data collected through different

sampling strategies (as already done using virtual species, see main manuscript).

We gathered data on the presence of F. sylvatica from the open EU-Forest

dataset (Mauri et al., 2017), which compiles observations on European tree

species from national inventories and other similar sources (see Mauri et al.,

2017 for further information about EU-Forest). EU-Forest data consist of

presence records of tree species exhaustively collected across Europe, and then

aggregated to a 1 × 1 km resolution grid. This lets us assume with a certain

degree of confidence that the EU-Forest dataset provided a geographically

unbiased sample of presence records for F. sylvatica in western Europe.

Across our study area, the EU-Forest dataset included a total of 12,444

presence records for F. sylvatica, which we sub-sampled within the environmental

space to retrieve both a training and a testing (for internal validation) presence

dataset. To this aim, we generated a 2-dimensional environmental space using all

19 bioclimatic variables available from WorldClim. Then, we used the function

USE::uniformSampling to uniformly sample presence records within the

environmental space. Note that this approach is conceptually similar to the

spatial-thinning proposed by Aiello-Lammens et al. (2015), which aims at

reducing the clustering of presences within the geographical space (Sillero and

Barbosa, 2020), except that here we applied it within the environmental space.

The obtained training and testing presence datasets were then combined to

obtain the training and testing pseudo-absence datasets using the paSampling
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function from the USE package. In particular, all presence records available for

Fagus sylvatica were used to recover the core area of the species’ bioclimatic

niche within the environmental space. This allowed filtering out the

pseudo-absences likely associated with suitable locations for the species (see

step 1 in section 2.2.1 in the main text). The final sample size of the

pseudo-absences included in the training and testing (internal validation)

datasets were 1,826 and 991, respectively. Note that the sample size of the

presence data included in the training and testing datasets were 1,827 and 991,

respectively. Also note that prevalence was fixed to approx. 1 in both the training

and testing dataset.

Finally, we derived a completely independent testing (external validation)

dataset using presence and true absence data from sPlotOpen (Sabatini et al.,

2021). The sPlotOpen dataset is an open-access subset of sPlot, one of the most

comprehensive global databases of vegetation records (Sabatini et al., 2021).

Here, we used sPlotOpen to gather F. sylvatica presences (n = 367), and to

derive true absence data from those vegetation plots where F. sylvatica was not

recorded (n = 4,162). As done for the EU-Forest dataset, we considered only

sPlotOpen vegetation plots occurring in western Europe (i.e., Italy, France and

Spain).

Then, we modelled the realised distribution of F. sylvatica as a function of a

set of WorldClim bioclimatic variables. For simplicity, we solely focused on the

climatic niche of Fagus sylvatica, although we acknowledge that other drivers

than climate equally contribute in shaping the distribution of this species,

especially so at local scales (Mellert et al., 2018). As modelling techniques, we

used a ‘logit’ link binomial generalised linear model (binomial GLM) and random

forests (RF, fitted using ranger::ranger; Wright and Ziegler, 2017). To reduce

multicollinearity, we selected a subset of the 19 bioclimatic variables using the R

function caret::findCorrelation function (Kuhn, 2021) (setting the

pairwise-correlation threshold to 0.6). The bioclimatic variables eventually kept to

fit the HSM for F. sylvatica were: BIO6 (minimum temperature of the coldest

month); BIO7 (temperature annual range); BIO8 (mean temperature of the

wettest quarter). Also, we used the latitudinal position of the presence and

pseudo-absence records (hereafter, latitude) as an additional predictor to account

for the effect of factors affecting the latitudinal gradient of the distribution of F.

sylvatica that were not included in the model. An example of such factors is the
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species biogeographic history of post-glacial recolonization towards northern

Europe (Magri et al., 2006). To account for non-linearity in the profile of Pearson’s

residuals and improve the fit of the binomial GLM, we introduced second order

polynomial terms for BIO6, BIO7 and latitude. The predictive performance of the

fitted models was assessed on three different types of data: (i) the (internal)

testing dataset derived from the EU-Forest dataset; (ii) 5 partitions of the training

dataset (i.e., a 5-fold cross-validation); and (iii) the independent (external) testing

dataset derived from sPlotOpen. As predictive accuracy metrics, we used the true

skill statistics (TSS) and the continuous Boyce index (CBI). A TSS value greater

than 0.5 is often considered to indicate good predictions. Positive values of CBI

indicate that presences predicted by the model are consistent with the distribution

of presences in the testing dataset. On the contrary, TSS and CBI values close to

zero indicate that the model does not perform differently from a model that

randomly predicts presences and absences. Finally, negative values of the CBI

indicate counter predictions, i.e., predicting low suitability in areas with high

density of presence records (Hirzel et al. 2006).

Beyond model predictive metrics, we computed the following measures of

goodness-of-fit: Tjur’s R2 for the binomial GLM and the R2 for the RF.

A full description of the modelling procedure (from the sub-sampling of the

presences and the collection of pseudo-absences to the assessment of the

model predictive performance) can be found at

https://github.com/danddr/USE_paper/tree/main/Example.

Results

Both the binomial GLM and the RF for F. sylvatica showed high predictive

performances, regardless of the dataset used for testing (Table S5.1).

Concerning the binomial GLM, the TSS was always equal to or above 0.41, with

the lowest value obtained for the sPlotOpen testing dataset (0.41) and the

highest for the EU-Forest dataset (0.61). Similarly, the lowest CBI was scored for

the sPlotOpen dataset (0.88), while the highest for the EU-Forest dataset (0.99).

We obtained comparable results for the RF, with the lowest TSS obtained

when using sPlotOpen as a testing dataset (0.52), while the EU-Forest dataset

and the (average across) 5-fold cross validation resulted in TSS equal to 0.79

and 0.77, respectively. With respect to the CBI, the highest value was observed

13

https://github.com/danddr/USE_paper/tree/main/Example


for the EU-Forest dataset (0.99), while the lowest was obtained using the

sPlotOpen dataset (0.93).

Goodness-of-fit measures seemed to be affected by the modelling technique,

with the R2 of the RF being 0.66, and the Tjur’s R2 for the GLM being 0.36 (Tab.

S5.1).

The pseudo-absences of F. sylvatica collected using the uniform approach were

homogeneously distributed within the environmental space (Fig. S5.2a).

Table S5.1: Results of the habitat suitability models for Fagus sylvatica

(generalised linear model, GLM, and random forest, RF). Models’ predictive

performance was assessed through internal (5-fold cross-validation and

EU-Forest) and external (sPlotOpen) validation. TSS: true skill statistics; CBI:

continuous Boyce index; R-sq: Tjur’s R2 for the GLM, and R2 for RF. Values of

TSS and CBI for the 5-fold cross-validation represent averages.

Validation dataset GLM RF

TSS CBI Tjur’s R2 TSS CBI R2

5-fold CV 0.52 0.93

0.36

0.77 0.97

0.66EU-Forest 0.61 0.99 0.79 0.99

sPlotOpen 0.41 0.88 0.52 0.93
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Figure S5.2: (A) environmental space available for Fagus sylvatica in Italy, Spain
and France, and the position of presences (light blue) and pseudo-absences

(red) sampled within the environmental space using the uniform approach; (B)

distribution of principal component scores across the geographical space, and

location (across western Europe) of presences (light blue) and pseudo-absences

(red) sampled using the uniform approach.
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