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Abstract. Rent division consists in simultaneously computing an
allocation of rooms to agents and a payment, starting from an in-
dividual valuation of each room by each agent. When agents have
budget limits, it is known that envy-free solutions do not necessar-
ily exist. We propose two solutions to overcome this problem. In the
first one, we relax envy-freeness to account for budget disparities. In
the second one, we allow fractional allocations, in which agents may
change rooms during the duration of the lease.

1 Introduction

A set of n agents agree to pay collectively the rent of a flat that con-
tains n rooms. Rooms are not alike: an agent prefers some rooms to
others. We assume preferences are modeled by valuations represent-
ing the maximum amount that a given agent is willing to pay for a
given room. How should we assign rooms to agents and how should
the rent be divided? This is the standard rent division problem. It is
known that, provided that the valuations given to the different rooms
by a given agent sum up to the rent, there always exists an alloca-
tion that is individually rational (no agent should pay more for a
room than her maximum payment for that room), envy-free (no agent
would prefer the allocation to another agent – room and payment – to
their own), and that maximises both utilitarian and egalitarian social
welfare [11]. This solution is implemented in the spliddit.org plat-
form [12] and is its most popular application.

The standard problem is often not realistic, because agents usually
have a budget, that is, a maximum amount of money they can afford
to pay. Searching for individually rational envy-free solutions to rent
division with individual budgets is nontrivial [17] and may result in
a failure to meet both conditions, as shown in the following example.

Example 1. Example with no individually rational envy-free solu-
tion respecting the budget constraints. The rent of the flat is 1000.
Two agents value two rooms as follows:

room r1 room r2 budget
agent 1 800 400 600
agent 2 800 400 500

If r2 is assigned to 1, and r1 to 2, then individual rationality im-
plies that 1 pays at most 400, therefore 2 has to pay at least 600,
which exceeds her budget. Thus r1 must be assigned to 1, and r2
to 2. Because of her budget constraint, agent 1 cannot pay more
than 600. Because of individual rationality, 2 cannot pay more than
400 for r2; so, to reach the total rent of 1000, 1 must pay 600 and

2 must pay 400. Assuming utilities are quasi-linear, 1’s utility is
800 − 600 = 200 (her valuation for r1 minus her payment), and
2’s utility is 400− 400 = 0. However, the utility 2 would enjoy from
1’s share is 800− 600 = 200 > 0, and hence 2 envies 1.

Example 1 shows that we cannot simultaneously satisfy individual
rationality, budget limits, and envy-freeness.1 Should we conclude
that the agents should give up renting the flat and look for another
one? We believe not, and propose two solutions:

1. Allocate r1 to 1 with payment 600 and r2 to 2 with payment
400. The allocation is individually rational and respects individual
budgets. It is not envy-free in the classical sense, but we may argue
that 2’s envy towards 1 is not justified: if 2 was allocated r1 with
payment 600, she would not be able to pay. Therefore, this allocation
satisfies a weakening of envy-freeness, that we call budget-friendly
envy-freeness (B-EF).
2. Allocate r1 to 1 and r2 to 2 for the first half of the year and then

swap the rooms for the second half, asking a payment of 500 to each
agent. This fractional allocation is envy-free (provided preferences
do not depend on time), is individually rational, and respects budgets.

We explore these two ways of enlarging the set of fair allocations:
budget-friendly envy-freeness and fractional allocations. After dis-
cussing related work, we present the basic definitions in Section 3.
Section 4 defines B-EF, and shows algorithms to find a B-EF solution
if either payments or the allocation is fixed. Section 5 turns to frac-
tional envy-free allocations, which can be computed in polynomial
time when they exist, and considers the temporal implementation of
fractional allocations, with the aim to minimise the number of times
agents have to change room. Last, we experimentally show in Sec-
tion 6 that relaxing EF to B-EF and considering fractional allocations
make it possible to enlarge significantly the set of instances for which
a fair solution to a rent division problem exists.

2 Related Work

Rent division. The rent division problem was first studied in the
economics literature and more recently became the most used ap-
plication on the spliddit.org webpage. Initially, spliddit implemented
an algorithm by Abdulkadiroğlu et al. [2], which was updated based
on the work of Gal et al. [11], who provided a linear program that
finds a solution maximising both the utility of the worst-off agent and

1 A similar example can be constructed even if, for each agent, the sum of all
valuations is equal to the rent.
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minimising the gap between the best and the worst-off agent. For a
unifying treatment of contributions in rent division in economics and
computer science we refer to recent work by Velez [20].

Envy-freeness with budgets. Our work takes its roots in the con-
tribution of Procaccia et al. [17], who developed a polynomial algo-
rithm to compute the maximin envy-free solution for rent division
under budget. In the presence of individual budgets, the algorithm
of Gal et al. [11] cannot be used as the existence of payments mak-
ing any efficient allocation of rooms envy-free is not guaranteed. The
general results of Segal-Halevi [18] are also not applicable since the
preferences induced by the budget constraint are not continuous. Our
paper tackles the problem left open by Procaccia et al. [17] of what
solution to propose when no envy-free solution exists. To the best
of our knowledge the work of Velez [21] is the only other paper
considering budgets. The solution proposed is to lift the assump-
tion of quasi-linearity of preferences and ask agents to report their
marginal disutility for exceeding their budget. Velez [22] investi-
gates the incentive-compatibility of such mechanisms. Our notion of
budget-friendly envy-freeness draws inspiration from work on envy-
freeness in fair division with budgeted bidders [3, 4, 13, 14], and is
related (in spirit) to justified envy-freeness in two-sided matching [1].

Randomised matching and fair division. Allowing randomised
solutions is a thoroughly studied idea in fair division and match-
ing problems [6, 15]. Indeed, allowing more expressive solutions
through, e.g., time sharing mechanisms, makes it possible to increase
fairness guarantees and to bypass impossibility results [5, 7]. Ran-
domised solutions for the rent division problem (without budgets)
have been already investigated by Dufton and Larson [9], who stud-
ied to which extent randomised mechanisms can be strategy-proof
and provide envy-freeness guarantees once a deterministic solution
is sampled. Technically speaking, a fractional allocation and a ran-
domised allocation are identical objects, but their interpretations dif-
fer. Also, our focus is not on strategyproofness but on envy-freeness:
we determine if an envy-free fractional solution exists when agents
have budgets and we seek for an implementation of such a solution
that minimises the number of room swaps.

3 The Model

In this section, we present the model of rent division with individ-
ual budgets, and the properties of individual rationality and envy-
freeness that are the focus of this paper.

3.1 Basic definitions

We consider a set R of n rooms that need to be allocated to a set A
of n agents. Each agent i ∈ A has a valuation vij ∈ R

+ over each
room j ∈ R, and L is the total rent that needs to be paid to secure the
rooms. Note that differently than previous work we do not assume
that

∑
j∈R vij = L. A rent division problem is a tuple 〈n, V, L〉

where V = (vij)i∈A,j∈R.
A solution to a rent division problem consists of an assignment

σ : A → R and a payment vector p : A → R, such that∑
i∈A pi = L. Note that payments can possibly be negative. An

assignment σ is efficient if
∑

i∈A viσ(i) is maximal over all possible
allocations. Now we add a budget bi ∈ R

+ for each agent i. A solu-
tion is affordable if pi ≤ bi for all i ∈ A. Without loss of generality,
we assume that

∑
i∈A bi ≥ L (the agents can afford the total rent). A

rent division problem with individual budgets is a tuple 〈n, V, L, b〉,
where 〈n, V, L〉 is a rent division problem and b = (b1, . . . , bn).

3.2 Envy-freeness

In line with previous work, we assume that agents have quasi-linear
utilities, and say that a solution (σ, p) is envy-free (EF) if no agent can
increase her utility by exchanging her assigned room and payment
with another agent: (σ, p) is EF if viσ(i) − pi ≥ viσ(j) − pj for
all agents i, j ∈ A. While a rent division problem with unlimited
budgets always admits an EF solution [19], this is not true in our
setting, as shown by the following example.

Example 2. Consider two rooms r1 and r2, and two agents with
budget 500 each. Both agents value r1 at 600 and r2 at 400. The
total rent is 1000, hence each agent has to pay 500, and the agent
who gets r2 envies the agent who gets r1.

3.3 Individual rationality

A solution (σ, p) is individually rational (IR) if for all agents i we
have that viσ(i) − pi ≥ 0. Under our assumptions EF does not imply
IR, as can be seen in the following example.

Example 3. Consider the following 2-agent rent division problem
where L = 1000:

room r1 room r2 budget
agent 1 600 100 700
agent 2 100 300 300

Let σ assign r1 to 1 paying 700 and r2 to 2 paying 300. (σ, p) is
not IR, since the utility of 1 is −100, but it is EF: 2 (resp. 1) would
have utility −600 (resp. −200) if she received r1 and had to pay
700 (resp. received r2 and had to pay 300), which is less than their
current utility.

An IR solution to a rent division problem under budget can be
found in polynomial time by solving a matching problem.

Proposition 1. We can determine if there exists an IR and affordable
allocation in polynomial time.

Proof sketch. Consider the bipartite graph ((A,R), E). Add arcs
ea,r ∈ E between each vertex a ∈ A and r ∈ R with weight
min{ba, var}. This weight is the maximal price that agent a can pay
for room r in an IR affordable allocation. It is sufficient to test if the
matching of maximal weight on ((A,R), E) has total payoff greater
than L, otherwise no IR and affordable allocation exists.

4 Budget-Friendly Envy-Freeness

When individual payments are bounded by a budget, the notion of
envy can be restricted to rooms an agent can afford, obtaining a nat-
ural relaxation of envy-freeness.

Definition 1. A solution (σ, p) is budget-friendly envy-free (B-EF)
if for all agents i we have that:

viσ(i) − pi ≥ viσ(j) − pj for all agents j ∈ A such that pj ≤ bi.

For two agents i, j ∈ A, we will say that agent i is B-envious of
agent j when viσ(i) − pi < viσ(j) − pj and pj ≤ bi.
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Example 4. Consider a two-agent rent division problem with rent
L = 800. The individual valuations and budgets are given in the
following table:

room r1 room r2 budget
agent 1 500 200 500
agent 2 700 300 300

Let σ allocate r1 to agent 1 and r2 to agent 2, and let p1 = 500
and p2 = 300. In (σ, p), 1 does not envy 2, but 2 envies 1 because she
would get utility 700 − 500 = 200 if she was assigned r1 with pay-
ment 500, therefore (σ, p) is not EF. However, (σ, p) is B-EF: 2 does
not envy 1 under Definition 1 because 1’s payment (500) exceeds 2’s
budget (300).

Observe that the allocation σ in Example 4 is not efficient. This
contrasts with the classical setting of rent division where EF solutions
are necessarily based on efficient allocations. Still, we can show that
B-EF solutions are Pareto-optimal. One can show that this implies
that B-EF solutions are based on Pareto-optimal allocations.

Proposition 2. If (σ, p) is a B-EF solution then (σ, p) is a Pareto-
optimal solution, i.e., there is no solution (θ, q) such that for all i ∈
A we have viθ(i) − qi ≥ viσ(i) − pi, and such that viθ(i) − qi >
viσ(i) − pi, for some agent i ∈ A.

Proof. Let (σ, p) be a B-EF solution. Let us assume towards a
contradiction that there exists another solution (θ, q) that Pareto-
dominates (σ, p). We first prove that all rooms are paid the same
price in (σ, p) and (θ, q). Let us assume there exists a room j for
which the price is strictly larger in (θ, q) than in (σ, p). Let k, l be
the two agents such that θ(k) = σ(l) = j. Our assumption is that
qk > pl. We obtain that:

vkσ(k) − pk ≤ vkθ(k) − qk (Pareto-domination of (σ, p) by (θ, q))

< vkσ(l) − pl (qk > pl and θ(k) = σ(l)).

Since pl < qk ≤ bk, agent k B-envies l in σ, yielding a contra-
diction. Hence no room has a larger price in (θ, q) than in (σ, p).
As

∑
i∈A qi =

∑
i∈A pi = L, this entails that all rooms have

exactly the same price in both solutions. Let k ∈ A be such that
vkσ(k) − pk < vkθ(k) − qk (such an agent exists by Pareto domi-
nance). Let l ∈ A be such that σ(l) = θ(k). We obtain that:

vkσ(k) − pk < vkθ(k) − qk

= vkσ(l) − pl (as σ(l) = θ(k) and pl = qk)

Since pl = qk ≤ bk, k B-envies l in (σ, p), a contradiction.

4.1 Computing B-EF solutions

An IR and B-EF solution, if existing, can be found by solving the fol-
lowing mixed-integer linear program.2 We use binary variables xij

for i ∈ A and j ∈ R to model the assignment, and continuous vari-
ables pi for i ∈ A for the payments:

xij , cij , dij are binary variables for (i, j) ∈ A×R
λ ∈ R, pi ∈ R for i ∈ A∑

i∈A xij = 1 ∀j ∈ R∑
j∈R xij = 1 ∀i ∈ A∑
i∈A pi = L

pi ≤ bi ∀i ∈ A
(
∑

j∈R xijvij)−pi ≥ 0 ∀i ∈ A

2 A B-EF solution does not always exist, as can be seen by adapting the
introductory example by Procaccia et al. [17] or in Example 2.

For B-EF care must be taken for expressing that one agent can envy
another when she can afford the payment.

∑
j∈R

vijxij − pi +Mcii′ ≥
∑
j∈R

vijxi′j − pi′ ∀i, i′ ∈ A

cii′ + dii′ = 1 ∀i, i′ ∈ A
pi′ − cii′M ≤ bi ∀i, i′ ∈ A
bi − dii′M + λ ≤ pi′ ∀i, i′ ∈ A

Recall that for B-EF an agent i can envy another agent i′ only
when she can afford the payment, i.e. when pi′ ≤ bi. Our idea is to
add in the envy-free statement a value cii′M (where M is a suffi-
ciently large positive constant3) and enforce that cii′ = 0 if and only
if pi′ ≤ bi. To do so, we introduce binary variables dii′ , a continuous
variable λ ≥ 0, three constraints and we set the objective function
as maximising λ. A B-EF solution exists if there exists a solution to
the MILP satisfying the constraints and yielding a strictly positive λ
value. The first constraint ensures that one of cii′ or dii′ has value
1 and the other 0. The remaining two constraints are about affording
the payment. If i can afford the payment of i′, i.e., bi ≥ pi′ , then it
is not possible to have cii′ = 1, for otherwise dii′ would be 0 and
no value of λ > 0 would satisfy the constraint bi + λ ≤ pi′ . Thus,
in this case cii′ = 0, dii′ = 1, λ is bounded by pi′ − bi +M > 0,
and the envy statement applies from agents i to i′ as intended. When
i cannot afford the payment of i′, i.e., bi < pi′ , then cii′ must be 1
to satisfy the constraint pi′ − cii′M ≤ bi. Then dii′ = 0 and λ is
bounded by pi′ − bi > 0.

We conjecture that the general problem of finding B-EF solutions
is NP-hard, but we do not have a proof. However, in practice, the
number of agents (and rooms) is small, so the number of alloca-
tions is reasonably small. Below we give an algorithm that, given
a fixed initial allocation, computes a payment vector that satisfies B-
EF, whenever there exists one, in pseudo-polynomial time. Further,
we also give a polynomial-time algorithm that finds a B-EF solution,
if any, in polynomial time when the payment vector is fixed.

4.2 Computing B-EF solutions: fixed allocation

Here, we fix an allocation and we check in pseudo-polynomial time
whether a B-EF solution exists, and when it does, we output a corre-
sponding price vector. To obtain our pseudo-polynomiality result we
restrain in this subsection the input parameters L, vij and bi to Z

+

for all i ∈ A and j ∈ R.
We first define a weakening of budget envy-freeness: given a so-

lution (σ, p), we say that agent i strongly B-envies (SB-envies) j if
pj < bi and viσ(j) − pj > viσ(i) − pi; and that (σ, p) is weakly bud-
get envy-free (WB-EF) if no agent SB-envies another one. Remark
that if i B-envies j but does not strongly B-envies j then pj = bi and
viσ(j) − pj > viσ(i) − pi.

Our result uses Algorithm 1 of Kempe et al. [14], which finds min-
imal payments for a given allocation so that the resulting solution is
WB-EF, and runs in pseudo-polynomial time. As Kempe et al. [14]
do not use the concept of a rent, we add a final processing stage guar-
anteeing that the payments sum up to the rent, and that the solution
is B-EF (not only WB-EF).

Algorithm 1 of [14] starts from a lower bound on initial agents’
payments, and iteratively increases payments in order to eliminate
SB-envy relations by reasoning on a weighted envy graph Gp: given

3 E.g., M can be set to (maxij vij) + (maxi bi) + (
∑

i∈A bi) which is
a loose upper bound on envy as −(∑i∈A bi) is a lower bound on the
possible payment of an agent.
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Algorithm 1: B-EF payment, allocation fixed
Data: instance 〈n, V, L, b〉, allocation σ

1 Start from pi = L−∑
k∈A\{i} bk, ∀i ∈ A;

2 Run Strong B-Envy Removal (cf. Algorithm 1 of [14]);
3 Run Final Payment Increase;
4 return (σ, p)

Algorithm 2: Strong B-Envy Removal
Data: instance 〈n, V, L, b〉, allocation σ, payment p

1 while There exists edge (i, j) ∈ Gp with pj < pi − λij do

2 pj ← min{bi, pi − λij};
3 delete (u, k) from Gp for all (u, k) such that pk ≥ bu;
4 if pj > bj or pj > vjσ(j) then return no solution;
5 if

∑
i∈A pi > L then return no solution;

6 return (σ, p)

an allocation σ and a payment vector p, Gp is defined by taking n
nodes, adding edge (i, j) if pj < bi, and labeling it with λij =
viσ(i) − viσ(j). That is, Gp contains an edge from i to j if i can
afford the price paid by j. Observe that the labels of the edges do
not depend on the payments: they only represent the potential envy
generated by the allocation σ.

Theorem 1. Given a fixed allocation σ, we can determine in pseudo-
polynomial time whether there exists a payment vector p such that
(σ, p) is affordable, IR, and B-EF.

Proof sketch. Our Algorithm 1 starts from an initial payment vec-
tor p = (L − ∑

k∈A\{1} bk, ..., L − ∑
k∈A\{n} bk) and draws the

envy graph Gp. It then uses Algorithm 2 (which corresponds to Al-
gorithm 1 in [14]) to remove SB-envy, if possible, among the agents.
If the algorithm does not output a payment vector, or if the sum of
payments exceeds the rent, then no solution exists. If Algorithm 2
returns a solution such that the sum of the payments is lower than
the rent, then we increase the payments uniformly (up to the bud-
get or the valuation of the assigned room) to obtain a B-EF solution
using Algorithm 3. If this is not possible because of an incompatibil-
ity with B-EF, budget limits, or IR, then we output that there is no
solution.

We explain our proposed algorithm on the following example:

Example 5. Let n = 3, R = {r1, r2, r3}, L = 1000, valuations
and budgets as follows:

room r1 room r2 room r3 budget
agent 1 340 300 500 300
agent 2 290 350 470 380
agent 3 200 370 485 400

Consider the allocation σ(i) = ri for i = 1, 2, 3. We start from
initial payments p = (220, 300, 320), and draw the corresponding
envy graph Gp:

1 2

3

60

285 -120
115

Algorithm 3: Final Payment Increase
Data: instance 〈n, V, L, b〉, allocation σ, payments p

1 A′ ← {i ∈ A : pi < min{bi, viσ(i)}};
2 while

∑
i∈A pi < L do

3 if A′ = ∅ then return no solution;
4 ∀i ∈ A′, mi ←

min
{
bi, viσ(i),minj∈A\A′ st pj≤bi viσ(i)−viσ(j)+pj

}
;

5 q ← max{0,min
{

L−∑
i∈A pi

|A′| ,mini∈A′{mi − pi}
}
};

6 for each i ∈ A′ do pi ← pi + q ;
7 A′ ← {i ∈ A′ : pi < mi};
8 if (σ, p) is not B-EF then return no solution;
9 return (σ, p)

Then, when we run Algorithm 2, we can select the edge (2, 1) in
Gp such that p1 < p2 − λ21, i.e., λ21 = 60 < 300− 220 = 80. We
treat this edge by updating p1 to min{380, 300− 60} = 240. Then,
we can select edge (2, 3) where p3 < p2 − λ23, i.e., −120 < −20.
We treat this edge by updating p3 to min{380, 300 − (−120)} =
380, hence, removing edge (2, 3) from Gp. We finally obtain payment
p = (240, 300, 380). This payment generates no SB-envy, and the
sum of the payments is lower than the rent.

Now we increase the payment of the agents to reach the rent us-
ing Algorithm 3. We can first uniformly increase the payment of all
agents by 20, reaching payment p = (260, 320, 400), implying that
agent 3 reaches her budget (and thus she will not be part of subset A′

anymore). Finally, we can uniformly increase the payment of agents
1 and 2 by 10, reaching payment p = (270, 330, 400) to exactly
reach the rent.

In Algorithm 2, we have at most n2 edges to check at each iteration
of the while loop, and we will have at most n(

∑
i∈A bi) iterations.

So the algorithm runs in (
∑

i∈A bi)n
3 operations. In Algorithm 3,

the while loop runs for at most n iterations, and each iteration of the
loop requires n2 operations due to Line 4. Hence, the algorithm runs
in O(n3) operations. To sum up, we obtain a pseudo-polynomial al-
gorithm, running in timeO((

∑
i∈A bi)n

3), which is very reasonable.
Obtaining a polynomial algorithm would be even better. We

thought of reusing Algorithm 2 of [14], which is claimed to compute
a WB-EF solution in polynomial time, but we have doubts about its
correctness (and no proof is given in [14]).

Still, now that we know that given an initial allocation, we can
compute a payment vector that satisfies B-EF, whenever there exists
one, in timeO((

∑
i∈A bi)n

3). This implies that given the valuations,
the rent and the budgets, we can compute a solution, if any, in time
O((

∑
i∈A bi)n!n

3). In everyday rent division problems, n is low
(typically, no more than 5), therefore we can compute a solution in a
reasonable amount of time.

Discussion about the polynomial algorithm by Kempe et al. [14].

We explain here our doubts about Algorithm 2 by Kempe et al. [14],
which is claimed to be a polynomial-time algorithm for finding min-
imal payments that make the solution affordable, IR, and WB-EF,
given an initial allocation. We start with the following example with
two agents and two rooms, and the following valuations:

room r1 room r2 budget
agent 1 400 500 450
agent 2 0 500 500
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Let σ allocate r1 to agent 1 and r2 to agent 2. Starting with payments
p = (0, 0), we obtain the following envy graph Gp.

1 2

-100

500

Algorithm 2 by Kempe et al. [14] runs a while loop which is ex-
ecuted while there exists a negative cycle in Gp. At the end of the
while loop the algorithm returns an affordable, IR, and B-EF price
vector or claims that none exist. Note that in our example there
is no negative cycle in Gp. Hence the algorithm would just return
p = (0, 0) which is not B-EF as agent 1 B-envies agent 2.

Note that in a positive cycle containing one negative arc, such as
in the previous example, we can treat the negative arc by raising pay-
ments along the cycle (in a similar way as does Algorithm 1 in [14])
without having to pass twice by the same arc. This may not be true
with more than one negative arc in such a positive cycle.

We believe that it may be possible to give some conditions, like
those established in Algorithm 2 of Kempe et al. [14], to identify the
agent from which to start the treatment of negative arcs in a positive
cycle, in order to avoid treating several times the same arc in the
cycle, but we leave this for future work.

4.3 Computing B-EF solutions: fixed payments

In practice, agents looking for flat-sharing will often search for apart-
ments with a rent corresponding to their accumulated budget. In such
a case, the payments are fixed as each agent imust pay bi to reach the
total rent L. We show that, more generally, given any fixed payment
vector p, we can efficiently determine if there exists an assignment σ
of agents to rooms such that (σ, p) is affordable, IR, and B-EF.

Theorem 2. Given a fixed payment vector p, we can determine if
there exists an assignment σ of agents to rooms such that (σ, p) is
affordable, IR, and B-EF in polynomial time.

Proof sketch. First, we can easily check whether the payments are
compatible with an affordable solution which meets the rent. Our
algorithm tries to build an IR and B-EF assignment in a greedy fash-
ion considering agents in decreasing order w.r.t. payments, as fol-
lows: We partition the set of agents into k groups (B1, . . . , Bk), i.e.,⋃k

�=1 B� = A andB�∩B�′ = ∅ for every � �= �′ ∈ [k], such that for
all agents i, j ∈ B�, pi = pj , and for all agents i ∈ B� and j ∈ B�′

with � < �′, we have that pi > pj . Then, we consider sets B� with
increasing values of � (hence, with decreasing payments), and try to
assign each agent i in B� to a room in top(i), the set compounded
of her most preferred rooms within the remaining ones. This is done
by considering a bipartite graph and determining if there exists a per-
fect matching in this graph. If there is no such an assignment, or if
it violates an IR or B-EF constraint, then we conclude that no valid
solution exists.

One can prove that this algorithm returns an assignment σ such
that (σ, p) is affordable, IR and B-EF iff such an assignment exists.
The key idea is that, for an assignment to be IR and B-EF, each agent
i must receive a room in top(i).

The algorithm described in the proof of Theorem 2 is illustrated in
the next example.

Example 6. Consider the following 4-agent rent division problem
where L = 1000:

r1 r2 r3 r4 budget = payment
agent 1 100 450 600 300 400
agent 2 400 400 700 200 250
agent 3 400 100 500 250 250
agent 4 300 100 400 300 100

The budgets sum to the rent, therefore the payment pi for each i is
fixed to her budget. The agents are partitioned into 3 groups w.r.t.
their payments: B1 = {1}, B2 = {2, 3}, and B3 = {4}. We can
define for each agent her top subset of rooms, i.e., their most pre-
ferred rooms among the remaining ones by considering the agents
in the order of their group: top(1) = {r3}, top(2) = {r1, r2},
top(3) = {r1}, and top(4) = {r4}. A perfect matching, that satis-
fies the IR and B-EF constraints, can be found at each step � ∈ [3]
between agents in B� and rooms in

⋃
i∈B�

top(i). This process re-
sults in the unique assignment σ such that (σ, p) is IR and B-EF,
where σ(1) = r3, σ(2) = r2, σ(3) = r1, and σ(4) = r4. Note that
if, we change v1,r2 from 450 to 460, such an assignment σ would not
exist because agent 1 would necessarily B-envy agent 2.

5 Fractional Solutions

In this section, we propose a second alternative to envy-free alloca-
tions under individual budgets. The idea is to allow agents to spend
a fraction of their time in different rooms, and we study possible im-
plementations of the resulting fractional allocation that minimise the
number of room swaps.

Definition 2. A fractional solution to a rent division problem is an
n × n bistochastic matrix X , with xij be the fraction of time agent
i spends in room j, and a price vector p : A → R, such that∑

i∈A pi = L.

The definitions of IR and EF easily extend to fractional solutions.
We say that (X, p) is individually rational under quasi-linear utilities
if for all agents i we have that

∑
j∈R xijvij − pi ≥ 0. Further, we

say that a fractional solution (X, p) is envy-free under quasi-linear
utilities if the following holds for all agents i and i′ in A:

∑
j∈R

xijvij − pi ≥
∑
j∈R

xi′jvij − pi′ .

Observe that the initial Example 2 admits a fractional EF-solution:
let agent 1 spend 6 months a year in room r1 and the remaining part
in room r2 (and symmetrically for agent 2). If both agents pay 500
their utility is 0 and by symmetry no agent envies the other. How-
ever, fractional EF-allocations do not always exist, as shown by the
following example.

Example 7. Consider the following rent division problem under
budget with L = 1000:

room r1 room r2 budget
agent 1 700 400 700
agent 2 800 300 300

The only affordable allocation is non-fractional: it assigns room r2
to agent 2 at a price of 300, with 1 envying 2.

Allowing fractional allocations is a significant weakening that al-
lows to obtain a solution for quite many instances for which there
would be otherwise no solution. To illustrate this, we define below a
family of instances for which this is indeed the case.
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Proposition 3. For each budget vector b = (b1, . . . , bn) such that
L
n

≤ bi < L, there exists a rent division problem which does not
admit an affordable EF solution but admits a fractional one.

Proof. We first show that if bi ≥ L
n

for all i ∈ A, then 〈n, V, L, b〉
admits an affordable fractional EF allocation. To see this, fix pay-
ments pi = L

n
to be equal for all agents. The fractional solution

where all agents spend the same fraction of time in each room, i.e.,
xij = 1/n for all i and j, is an affordable EF solution.

Now, for all i ∈ A we fix agent i’s evaluation of room r1 at bi,
zero otherwise – that is, for all i, vi1 = bi and vij = 0 for j ≥ 2.
Assume, w.l.o.g., that an allocation gives room r1 to agent 1. Given
that b1 < L then pi > 0 for at least one other agent, who has negative
utility and envies agent 1. So no allocation is EF.

5.1 Computing fractional solutions

Fractional solutions that are IR and EF, when they exist, can be found
in polynomial time by using the following Linear Program (LP). The
LP considers as variables xij ∈ [0, 1] for i ∈ A and j ∈ R for the
fraction of time i spends in room j, and pi for i ∈ A as the price
of agent i. The set of linear constraints is the following, formalising
that each agent has a room allocated all of the time, that the payments
sum to the rent, with the last two lines enforcing IR and EF:

∑
i∈A xij = 1 ∀j ∈ R∑
j∈R xij = 1 ∀i ∈ A∑
i∈A pi = L

pi ≤ bi ∀i ∈ A
(
∑

j∈R xijvij)−pi ≥ 0 ∀i ∈ A

(
∑

j∈R xijvij)− pi ≥ (
∑

j∈R xi′jvij)− pi′ ∀i, i′ ∈ A

When this set of linear constraints has a solution, it may in fact
have many solutions. As in Procaccia et al. [17] (cf. their Theorem 1),
the objective function can be defined so as to maximise a fairness
criterion, such as: maxmin (with one additional variable y, add con-
straints y ≤ (

∑
j∈R xijvij) − pi for all agents i and, as objective

function, maximise y); or equitability (with one additional variable
y, add constraints y ≥ (

∑
j∈R xijvij)− pi − (

∑
j∈R xi′jvij)+ pi′

for any i and i′ and, as objective function, minimise y).

5.2 Implementing fractional allocations

A fractional solution to a rent division problem can give rise to mul-
tiple practical implementations, depending on the sequence of room
swaps that agents perform. By Birkhoff’s theorem we know that any
bistochastic matrix X can be decomposed as the convex combina-
tion of permutation matrices. In our terminology, this implies that
for any fractional solution X there exist λ1, . . . , λk ∈ (0, 1], with∑

t λt = 1, and σ1, . . . , σk deterministic solutions, such that for all
i ∈ A and j ∈ R we have that

∑
{t|σt(i)=j} λt = xij . In line with

previous work, we call such a representation a Birkhoff-von Neu-
mann (BvN) decomposition of X of size k. The order in which the
permutations of a BvN decomposition are considered gives rise to
different implementations of a given fractional solution X in terms
of room swaps:

Definition 3. An implementation I of length k of a fractional solu-
tion X is given by (Λ, <) where Λ is a k-BvN decomposition of X
and < is an ordering on [k] = 1, . . . , k.

When I is fixed, for simplicity we will assume that σ1, . . . , σk are
given following ordering<. To discriminate between possible imple-
mentations of a fractional solutionX , we define a natural notion that
counts the overall number of swaps that an agent has to perform:

Definition 4. Given an implementation I of X , the switch price of
agent i in I is

Si(I) = |{t ∈ {1, . . . , k − 1} : σt(i) �= σt+1(i)}| .

The following example shows that an implementation in which
agents never move back to the same room is not guaranteed to exist:

Example 8. Consider the following fractional allocation X:

room r1 room r2 room r3
agent 1 0.6 0.3 0.1
agent 2 0.2 0.5 0.3
agent 3 0.2 0.2 0.6

Agents 1 and 3 have to spend 60% of the time in a room, and agent
2 only 50%. Thus, one of 1 and 3 has to go back to the same room in
any implementation of X .

5.3 Computing minimal-switching implementations

We now show that finding an implementation of a fractional solu-
tion minimising the number of switches is computationally hard. We
begin by the following decision problem.

MINSUM-SWITCH-IMPLEMENTATION

INPUT: Fractional solution X , k ∈ N

QUESTION: is there an implementation I of X such that∑
i∈A Si(I) ≤ k?

Theorem 3. MINSUM-SWITCH-IMPLEMENTATION is NP-
complete.

Proof sketch. Membership to NP is straightforward. For hardness we
reduce from PARTITION. Given an instance U = {v1, . . . , vn} of
PARTITION with S =

∑n
i=1 vi, create a 3n×3n bistochastic matrix

X as depicted on Table 1. We first observe that X admits an imple-
mentation in which no agent returns to the same room iff there is an
implementation with

∑
i∈A Si(I) = (n+2)n+3n+2n = n2+7n

(this can be seen by counting the number of non-zero cells in each
row of X). Further, for each value v ∈ U and agent in Ai

1, there is a
room R∗(i, v) ∈ {R1

1, R
1
2, . . . , R

1
n} with value v in the matrix. We

call R∗(i, v) the v-corresponding room for agent Ai
1. One can prove

that there is a solution to PARTITION iffX admits an implementation
with

∑
i∈A Si(I) ≤ n2 + 7n, which is equivalent to the existence

of an implementation where no agent returns in any room.

Now, we show that even if the deterministic allocations composing
a BvN decomposition are fixed, finding an ordering that minimises
the switch cost is an intractable problem.

MINSUM-SWITCH-ORDERING

INPUT: BvN decomposition Λ of length k, K ∈ N

QUESTION: is there an ordering < over [k] such that∑
i∈A Si(I) ≤ K where I = (Λ, <)?

Theorem 4. MINSUM-SWITCH-ORDERING is NP-complete.
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R1
1 R1

2 . . . R1
n R2

1 R2
2 . . . R2

n R3
1 R3

2 . . . R3
n

A1
1 v1 vn . . . v2 S 0 . . . 0 S 0 . . . 0

A1
2 v2 v1 . . . vn 0 S . . . 0 0 S . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A1

n vn vn−1 . . . v1 0 0 . . . S 0 0 . . . S
A2

1 2S 0 . . . 0 1
2
S 0 . . . 0 1

2
S 0 . . . 0

A2
2 0 2S . . . 0 0 1

2
S . . . 0 0 1

2
S . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A2

n 0 0 . . . 2S 0 0 . . . 1
2
S 0 0 . . . 1

2
S

A3
1 0 0 . . . 0 3

2
S 0 . . . 0 3

2
S 0 . . . 0

A3
2 0 0 . . . 0 0 3

2
S . . . 0 0 3

2
S . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A3

n 0 0 . . . 0 0 0 . . . 3
2
S 0 0 . . . 3

2
S

Table 1. The matrix used in the reduction of Theorem 3. It can be made
bistochastic by dividing every cell by 3S.

Proof sketch. Membership to NP is straightforward. Hardness is
shown by reduction from the NP-hard HAMMING SALESMAN

PROBLEM (HSP) [10]. An instance of HSP is a string P =
v1 . . . vn, L, where vi ∈ {0, 1}m, for some n and m, and L is an in-
teger in binary representation. The question is whether there exists a
Hamiltonian cycle over vertices vi of total cost less thanL, where the
distance between two nodes is given by the Hamming distance. One
can show that finding a Hamiltonian path instead of a Hamiltonian
cycle is also NP-hard. Consider now an instance P = v1 . . . vn, L of
HSP. We create an instance of MINSUM-SWITCH-ORDERING with
2m agents and 2m rooms. For each vertex v we create a determinis-
tic allocation σv of the rooms as follows: agent i will be assigned to
room i (resp.m+ i) and agentm+ i will be assigned to roomm+ i
(resp. i) if the i-th bit of v is 0 (resp. 1), for all i in [m]. It is clear that
the switch cost between σv and σv′

is equal to two times the Ham-
ming distance between v and v′. Thus, there is a one-to-one corre-
spondence between Hamiltonian paths on vertices ofP and orderings
of solutions σv . It is therefore sufficient to run MINSUM-SWITCH-
ORDERING on an implementation composed of σv for v ∈ P and
K = 2L to obtain a solution to the initial HSP instance.

We conjecture that minimising the maximum switch cost is NP-
hard as well. Dufossé and Uçar [8] showed that the problem of find-
ing a BvN decomposition with the smallest support (i.e., with the
smallest k) is NP-hard, but this does not necessarily correspond to an
implementation which minimises the switch cost.

Even if we showed that finding minimal-switching implemen-
tations is computationally hard, the number of agents in typical
rent division problems is low, thus the size k of a BvN decom-
position is also likely to be small, since k ≤ n2. Hence, find-
ing minimal-switching implementations can still be performed, e.g.,
by working on the polytope of deterministic assignments. For in-
stance, MINSUM-SWITCH-ORDERING can easily be solved by dy-
namic programming in O∗(2k) by using the formula:

Δ(σ, S) = min
σ′∈S\{σ}

(sc(σ, σ′) + Δ(σ′, S \ {σ}))

where sc(σ, σ′) = |{i ∈ A|σ(i) �= σ′(i)}| is the switch-cost in-
curred by moving from σ to σ′ and Δ(σ, S) is the minimal switch
cost incurred by ordering permutations in S ⊆ Λ under the con-
straint that σ is placed in the first position. The base cases are
Δ(σ, {σ}) = 0, and the optimal MINSUM-SWITCH-ORDERING

value is obtained by considering minσ∈Λ Δ(σ,Λ).

6 Discussion

We proposed two approaches to increase the number of instances
where a fair rent division is returned. The first one relaxes the notion

Figure 1. Proportion of rent division instances that admit a solution that is
IR and EF, B-EF, fractional (F-EF), or an extension of fractional with B-EF
replacing EF (F-BEF), depending on the tightness of the agents’ budgets.

of envy-freeness to take budget discrepancies into consideration. The
second one allows for fractional allocations that are implemented
by having agents swap their rooms (and minimising the number of
swaps). We can of course combine the two approaches and define B-
EF fractional solutions. We leave this mostly for further study (but
see below for how we considered it in our experiments).

We evaluated in simulations the number of additional solutions
that our proposals can provide in synthetically generated rent divi-
sion problems. We generated the agents’ valuations of rooms start-
ing from a base value Mj for each room j, sampled from a uniform
distribution in [25, 50]. All other parameters are sampled from the
following normal distributions:

vij ∼ N (Mj , αMj), L ∼ N (
∑
j∈R

Mj , α
∑
j∈R

Mj),

bi ∼ N (
∑
j∈R

Mj

n
, α

∑
j∈R

Mj

n
),

where 0 < α < 1. In this way, we generate rent division problems
where agents have correlated valuations for the rooms, and have a
budget that is roughly one n-th of the rent to be paid (i.e., the agents
can pay the rent but their budget is tight). We discarded all instances
that did not admit an IR solution, and we then increased the individ-
ual budgets by multiplying them by a budget tightness factor which
varies between 1 and 2.

Figure 1 presents our findings for 3 agents setting α = 0.1. We
observe that B-EF and fractional solutions increase significantly the
fraction of instances in which a fair allocation exists. In the extreme
case of budget tightness equal to 1, there are twice more instances
with a B-EF solution than with a classical EF solution. As expected,
when the budget is less tight it becomes more and more likely to
find a solution (irrespective of the fairness criteria).4 We find similar
results for n ∈ {2, 4, 5} and different values of α.

Identifying the computational complexity of determining the exis-
tence of B-EF solutions seems to be a challenging open problem. A
further interesting direction is to estimate the robustness of our solu-
tions under perturbations of the individual budgets, in line with [16],
who however focuses on the agents’ valuations.
4 There exist however (few) rent division problems that do not admit an IR
and EF solution, even with unlimited budgets (recall that we do not assume
that individual valuations sum to the rent).
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