
HAL Id: hal-04261652
https://hal.science/hal-04261652

Submitted on 14 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SCMA Detection in MIMO Systems with Low
Complexity EP using QRD

Adam Mekhiche, Antonio Maria Cipriano, Charly Poulliat

To cite this version:
Adam Mekhiche, Antonio Maria Cipriano, Charly Poulliat. SCMA Detection in MIMO Systems with
Low Complexity EP using QRD. 12th International Symposium on Topics in Coding (ISTC 2023),
Sep 2023, Brest, France. pp.1-5, �10.1109/ISTC57237.2023.10273533�. �hal-04261652�

https://hal.science/hal-04261652
https://hal.archives-ouvertes.fr


SCMA Detection in MIMO Systems with Low
Complexity EP using QRD

Adam Mekhiche
Thales - IRIT / INP Toulouse

Gennevilliers, France
adam.mekhiche@thalesgroup.com

Antonio Maria Cipriano
Thales

Gennevilliers, France
antonio.cipriano@thalesgroup.com

Charly Poulliat
IRIT / INP Toulouse

Toulouse, France
charly.poulliat@toulouse-inp.fr

Abstract—This article presents new low complexity message
passing based detection algorithms for Sparse Code Multiple
Access (SCMA) in Multiple Input Multiple Output (MIMO)
systems thanks to the combination of sparser Factor Graph
(FG) representation via QR Decomposition (QRD) and enhanced
message-passing scheduling. The proposed algorithm achieves
better performance to complexity trade-off than state-of-the-art
message-passing-based detectors. Our results are presented based
on complexity and error rate performance analysis.

Index Terms—Expectation Propagation, Sparse Code Multiple
Access, Multiple Input Multiple Output, QR, Scheduling

I. INTRODUCTION

Non-Orthogonal Multiple Access (NOMA) has been studied
for cellular networks like 5G New Radio (NR) [1] to improve
the system spectral efficiency, in combination with already
existing techniques like MIMO. One technique to achieve
NOMA called SCMA [2] uses a sparse multidimensional
codebook to spread users across several orthogonal Resource
Elements (RE) to overload the system, i.e. having an average
of more than one user per RE. Furthermore, to improve
performance, SCMA can be combined with a multiple antenna
receiver at the cost of a less sparse system. The detection
of signals in such systems can be exponentially complex,
e.g. detectors with an exact Maximum A Posteriori (MAP)
criterion, but the computational complexity can be drastically
reduced when the codebook sparsity is taken into account by
the detection algorithm. Message Passing Algorithms (MPA)
can use this sparsity to achieve, at the same time, near-optimal
performance and low complexity detection. MPAs are iterative
algorithms designed to exchange messages along the edges of
an FG, that represents a factorized version of the target A Pos-
teriori Probability (APP), in order to compute an approximate
MAP criterion. One MPA used for SCMA is the Belief Prop-
agation (BP) [2] which achieves near-optimal performance
but whose complexity increases rapidly with the connectivity
of the graph because it has to enumerate all the possible
MIMO symbols. Approximate Message Passing (AMP) [3] is
another effective MPA that can achieve great performance, but
typically with a low convergence rate. Expectation Propagation
(EP) [4] is a very good candidate for SCMA since it can
achieve great performance while maintaining a low complexity
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[5], especially when the associated FG is thoughtfully re-
factorized through matrix decomposition, as shown in this
article. Previous work [6] studied the pre-processing of the
received signal in order to accomplish greater sparsity, when
using a multiple antenna receiver, through matrix decomposi-
tion. Their method uses QR Decomposition (QRD) to reduce
the number of edges in the FG and reorder it to apply a more
efficient BP, but BP remains quite computationally expensive.
Other works [3], [5] proposed to use low complexity MPA
to improve the performance-to-complexity trade off. Low
complexity EP applied on modified FG has also been studied
in MIMO context [7], [8]. The proposed algorithms in this
article achieve a more effective scheduling of the EP message
exchange applied to less connected scalar factor graphs thanks
to a QRD pre-processing suited for SCMA. These algorithms
have improved convergence speed and performance while
lowering their overall complexity, compared to other MPA
based SCMA detector [3], [5], [6]. The article is organized
as follows : Section II introduces the system model used in
the paper, then Section III presents the proposed combination
of pre-processing and scheduling for EP messages. Section
IV and Section V compare the proposed algorithms with the
aforementioned MPA, from a computational complexity and a
performance point-of-view, respectively.

II. SYSTEM MODEL

Consider a MU-MIMO uplink transmission of Nu single
antenna users toward a base station using Nr receive antennas
(Nu × Nr). Each user i ∈ J1, NuK encodes a stream of bits
bi ∈ FKb

2 , using an Error Correcting Code (ECC) of length
N and rate R, into encoded bits ci ∈ FN

2 . We denote F2 the
finite field of size 2. The encoded bits are randomly interleaved
and then mapped to constellation symbols according to its
user-specific SCMA codebook. The codebook B is made of
|B| = M multidimensional symbols, spread across Re < Nu

orthogonal Resource Elements (REs), e.g. different spectral
resources of an Orthogonal Frequency Division Multiplexing
(OFDM) modulation. A mapping matrix F ∈ [0, 1]Re×Nu is
used to represent the codebook’s resource allocation of each
user :

F =

1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 (1)



We denote dv the number of users per RE, i.e. the number
of ones per line, and df the number of RE used per user,
i.e. the number of ones per column. At time n and on the
RE k ∈ J1, ReK, the vector sn,k = [sn,k1 , . . . , sn,kNu

]T ∈ B
of symbols is sent through a uncorrelated Rayleigh channel
Hn,k ∈ CNr×Nu and the signal yn,k ∈ CNr is received by
the base station using Nr antennas. The corresponding linear
model is:

yn,k = Hn,ksn,k +wn,k (2)

with wn,k ∈ CNr a vector of Additive White Gaussian
Noise (AWGN) samples with the properties E(wn,k) = 0 and
E(wn,kw

H
n,k) = N0INr . For the sake of readability, the time

index will be omitted except when needed for comprehension.
There are numerous ways to construct an SCMA codebook,

with different advantages and drawbacks, but the general rule
to build a codebook is given in [9]. In the article, we use
constellation rotation codebooks developed in [10]. The advan-
tages of such codebooks are the ability to use the same base
constellation for all users, e.g. QPSK, and to account for the
rotation of each symbol, for each user and for each resource,
directly in an equivalent channel matrix. Let’s consider a base
constellation X of size |X | = M , e.g. QPSK, used to map
c = [c1, . . . , cNu

]T ∈ FNu
2 to x = [x1, . . . , xNu

]T ∈ XNu .
Using a codebook with the mapping matrix (1), we can write

ȳ = (H̄ ◦ Ḡ)x+ w̄. (3)
with ◦ the Hadamar product. Taking Re = 4 as an example,
we denote

Ḡ = G⊗ 1Nrwith G =

φ0 φ1 φ2 0 0 0
φ1 0 0 φ2 φ0 0
0 φ2 0 φ0 0 φ1

0 0 φ0 0 φ1 φ2

 ∈ CRe×Nt (4)

with ⊗ the Kronecker product and 1Nr the vector of ones
of size Nr such as Ḡ ∈ CNrRe×Nt . H̄ ∈ CNrRe×Nu ,
the rearranged channel matrix, groups receiving antennas and
concatenates REs on its lines, with its ith column:
h̄i = [(h1)1,i . . . (h1)Nr,i · · · (hRe

)1,i . . . (hRe
)Nr,i]

T
,

∀a ∈ J0, 2K, φa = eia∆, with ∆ the difference of phase
between to adjacent phase.
The received signal is, similarly to H̄, rearranged as :

ȳ = [(y1)1 . . . (y1)Nr
· · · (yRe

)1 . . . (yRe
)Nr

]T

and the same for the noise. Equation (2) becomes :
ȳ = H̄eqx+ w̄ (5)

with H̄eq = H̄ ◦ Ḡ. This new equivalent channel matrix
encompasses the contribution of the real channel, the imposed
sparsity of the codebook and the constellation rotation of each
user. The turbo-iterated receiver computes the a posteriori
probability of x :

P(x|ȳ, H̄eq) ∝
NrRe∏
j=1

P(ȳj |x, H̄eq)︸ ︷︷ ︸
fEQU
j

Nu∏
i=1

P(xi|ci)︸ ︷︷ ︸
fDEM
i

P(ci)︸ ︷︷ ︸
fDEC
i

(6)

where fEQU
j defines the likelihood function, fDEM

i the demap-
ping function and fDEC

i the decoding function which provides
an a priori probability of the coded binary vector ci thanks to

an Error Correcting Code (ECC) decoder. From this a posteri-
ori probability, a Factor Graph (FG) can be drawn to represent
the link between each variable (variable nodes) connected
through functions (function nodes). The FG is the support on
which MPAs are applied to compute an approximation of (6)
and this article focuses on EP. MPAs exchange messages along
the edges of an FG, and the more edges there are, the more
complex the detection becomes, e.g. for BP the computational
complexity increase is exponential with dv the number of
users connected to a single RE and Re the number of RE,
while with EP has only a polynomial complexity (square
or cube). The next section proposes to reduce the number
of exchanged messages through matrix decomposition, as a
pre-processing of the received signal on the RE level, and
thoughtfully reorder the scheduling of EP messages to enhance
the detection performance.

III. PROPOSED LOW COMPLEXITY SCMA RECEIVER

There is a natural synergy between SCMA and MPA based
detectors which rely on the FG sparsity to give a more
accurate estimation of P (x|y,H, N0), e.g. BP returns an exact
MAP estimation when applied on a tree FG. Less connected
graphs decrease the detection complexity as fewer messages
need to be computed. There are several exact or approximate
processing to reduce the number of edges in a graph. One
way to compute an approximate and less connected FG is to
neglect the low-weight edges but at the cost of performance
loss [11]. Another exact computation of the equivalent FG
can be done through matrix decomposition, such as QR
decomposition. This method [6] decomposes each RE channel
matrix Hk,∀k ∈ J1, ReK into two matrices, one unitary matrix
Qk ∈ CNr×Nr and one upper triangle matrix Rk ∈ CNr×Nu .
Each RE signal is received signal is pre-processed :

QH
k yk = Rksk +QH

k wk (7)
and the proposed algorithms apply the same process but
on the equivalent channel matrix that contains the channel
perturbation and the codebook constellation rotation. Applying
QRD on the RE level ensures that the resulting graph is
sparser than before, which would not be the case if the QRD
was applied to the global equivalent channel matrix of (6).
Since each RE local factor graph is fully connected, there are
Nr equalization function nodes (fEQU) and dv user variable
nodes (x) so Nrdv edges per local graph, the QRD processing
removes almost half the edges, dv(dv + 1)/2 edges remain.
The rearranged received signal processed by the QRD on the
RE level gives the FG of Fig. 1. The proposed algorithms
exchange Expectation Propagation [4] messages on this new
FG according to a specific scheduling to enhance performance.

EP is an approximate Bayesian inference algorithm that
selects a distribution q ∈ Q closest to the targeted distribution
p. The set Q of distributions in which q lies is the set of
complex Gaussian distributions of the exponential family. In
order to select the best q, EP uses the inclusive Kullback-
Leibler divergence which is a divergence measure of the



RE1 RE2 RE3 RE4

Fig. 1. MIMO SCMA (Nu = 6, Re = 4, dv = 3, df = 2) factor graph
representation. Dotted edges are removed through QRD of each RE channel
matrix Hk . Gray variables are assumed known or partially known from the
detection algorithm perspective, and only the white variables are estimated.

statistical difference between two distributions:

DKL(p||q) =
∫

p(x) log

(
p(x)

q(x)

)
dx (8)

and the selection of the closest distribution is done as:
q = projQ[p] = argmin

q̃∈Q
DKL(p||q̃). (9)

EP messages are extrinsic distributions exchanged between
a function node and a variable node of an FG. The general
expression of an EP message between a function node fj and
a variable node xi is:

mfj→xi
(xi) =

1

mxi→fj (xi)
×

projQ

mxi→fj (xi)

∫
x

fj(x)
∏

i′∈N(fj)

i′ ̸=i

mxi′→fj (xi′)

 . (10)

The first EP-based receiver that can be derived from this new
FG representation is a local QRD Scalar EP (SEP QRD),
which exchanges EP messages along the edges of the sparser
graph of Fig. 1, similarly to [6], which uses BP messages.
This algorithm is less complex than classic SEP [5], [12] (see
Sec. IV) but it has better performance and converges more
rapidly (see Sec. V). The first proposed receiver combines the
use of QRD to remove edges in the FG and the application
of the EP algorithm with a modified scheduling of messages
to better suit the specific SCMA FG and is called Scheduled
Scalar EP with QRD (SSEP QRD). Indeed, the local FG of
each RE can be browsed more efficiently by exchanging the EP
messages from the last, and most connected user and moving
to upper users, which are less connected, one by one instead
of the traditional flooding scheduling used for detection. The
second algorithm adds a ”per-user” schedule of the decoding
process to improve soft estimation of symbols and to achieve
Successive Interference Cancellation (SIC) and is called SSEP
QRD SIC. A study on enhanced EP messages scheduling
has been proposed for massive Single User (SU)-MIMO and
Multiple User (MU)-MIMO detection [8].

Both algorithms share the same detection scheduling : Each
user is treated separately, from the last one (xNu) to the first
(x1). The first messages exchanged are the messages from ev-
ery demapping node to every variable node. During the update
of the user i, the variable node xi sends its messages to all the
connected equalization function nodes, so there are on average
dfNr/2 messages sent per variable node, some nodes are more
connected (e.g. x6 on Fig. 1) and some are less connected (e.g.
x1 on Fig. 1). We denote NfEQU(xi) the set of indexes of the
equalization function nodes connected to the variable node xi,
and conversely with Nx(f

EQU
j ). These messages are referred

to as mxi→fEQU
j

(xi), ∀i ∈ J1, NuK, j ∈ NfEQU(xi). Then, all
the equalization nodes send their messages mfEQU

j →xi
(xi) back

to the variable node xi and this node propagates it up to the
demapping node fDEM

i . Every user is detected according to this
scheduling, sequentially from the most connected to the least,
and we denote as an ”auto iteration” the process of exchanging
messages up to the demapping nodes for all users. The first
instance of detection is 0 auto iteration. At the last auto
iteration, the demapping node computes the Log Likelihood
Ratio (LLR) λe

i which can be sent to a decoder that computes
b̂i and P (ci) as λa

i , used as an a priori probability in the next
detection instance. The constellation mapping of the symbol
is represented through the function φ : Flog2(M)

2 → C and
the inverse function ∀k ∈ log2(M), φ−1

k : C → Flog2(M)
2 that

returns the kth bits of a base constellation symbol x. This step
is done once every user has been detected in SSEP QRD. The
computation of every auto iteration and a channel decoding
step for each user is called a turbo iteration. Compared to SEP
[5], [12], this algorithm can be self-iterated (i.e. auto iteration)
between turbo iterations instead of just a single instance of
detection, and it also saves its EP messages as initialization
messages for the next turbo iteration. SSEP QRD scheduling
and message computation are detailed in Alg. 1.

Similar scheduling, which provides better SIC, is proposed
by decoding each user at the end of its iteration and by
propagating the updated messages to the equalization function
nodes. Such scheduling has also been proposed in massive
MIMO (SSEP QRD SIC) [8] and has shown to outperform
classic VEP [13] both in terms of performance and complexity.

The advantages of the proposed algorithms are that they
use a QRD of the equivalent channel matrix of each RE
to ensure that the resulting FG is sparser than the classic
SCMA FG with multiple receive antennas. In addition, QRD
needs to be applied once per RE and only when the channel
changes, e.g. in a block fading scenario only once per block;
not at every auto or turbo iteration which makes this pre-
processing computationally thrifty as shown in Sec. IV. Then,
unlike VEP [3], [13], the proposed EP can benefit from this
novel sparsity to achieve an even lower complexity detection.
Finally, the enhanced scheduling increases the convergence
speed and improves the performance, see Sec. V.

IV. COMPLEXITY ANALYSIS

The complexity of EP algorithms depends on several factors.
On one hand, the number of messages exchanged depends



Algorithm 1 Scheduled Scalar EP on MIMO-QRD-SCMA FG
Input: y,H, N0, T = Turbo iteration, L = Auto iteration
Output: b̂ - the estimated bits.

1: for k = 1 : Re do
2: Heq

k = Hk ◦G = QkRk, yk ← QH
k yk, Heq

k ← Rk

3: end for
4: ∀i, j,m ∈ J1, NtK, J1, NrK, J1, log2(M)K, λa

i,k = 0
5: m

fEQU
j →xi

(xi) = mxi→fDEM
i

(xi) = CN (0,+∞)

6: for t = 0 : T do
7: for i = 1 : Nt do
8: Compute mfDEM

i →xi
(xi):

9: q̃(xi) ∝ exp

(
− |xi−

−→
µd
i |

2

−→
νd
i

−
∑N

n=1 φ
−1
n (xi)λ

a
i,n

)
10: q(xi) ∼ CN

(
µd
i = E [q̃(xi)] , ν

d
i = Var [q̃(xi)]

)
11:

←−
µd
i =
←−
νd
i

(
µd
i

νd
i

−
−→
µd
i−→

νd
i

)
and
←−
νd
i =

(
1

νd
i

− 1
−→
νd
i

)−1

12: end for
13: for i = 1 : Nt and then for j = 1 : NrRe do
14: Compute m

xi→fEQU
j

(xi):

15:
←−
νe
i,j =

(
(νd

i )
−1 − (

−→
νe
i,j)

−1
)−1

16:
←−−
µe
i,j =

←−
νe
i,j

(
µd
i /ν

d
i −
−−→
µe
i,j/
−→
νe
i,j

)
17: end for
18: for l = 0 : L and then for i = Nt : −1 : 1 do
19: for j = 1 : NrRe do
20: Compute m

fEQU
j →xi

(xi):

21:
−→
νe
i,j =

(
N0 +

∑
i′ ̸=i |hj,i′ |2

←−−
νe
i′,j

)
/|hj,i|2

22:
−−→
µe
i,j =

(
yj −

∑
i′ ̸=i hj,i′

←−−
µe
i′,j

)
/hj,i

23: end for
24: Compute mxi→fDEM

i
(xi):

25:
−→
νd
i =

( ∑
j′∈N (xi)

1
−→ν e

i,j′

)−1

,
−→
µd
i =
−→
νd
i

∑
j′∈N (xi)

−−−→
µe
i,j′

−−→
νe
i,j′

26: if l ̸= L then
27: Compute mfDEM

i →xi
(xi): Alg. 1 line. 8

28: end if
29: for j = 1 : NrRe do
30: Compute m

xi→fEQU
j

(xi): Alg. 1 line. 14
31: end for
32: end for
33: for i = 1 : Nt and then for k = 1 : log2(M) do

34: λe
i,k = log

(∑
xi∈X :φ

−1
k

(xi)=1
q̃(xi)∑

xi∈X :φ
−1
k

(xi)=0
q̃(xi)

)
− λa

i,k

35: end for
36: Send λe to decoder and receive λa and b̂
37: end for

on the factor graph representation of the model, i.e. a scalar
or vector FG. The use of matrix decomposition to reduce
the number of edges, e.g. QRD of the channel matrix, also
has an effect on the complexity as such operation can be
computationally demanding. On the other hand, EP can be
iterated through auto and/or turbo iterations which increases
the detection complexity. This section is a study of the
detection complexity only, with its pre-processing, and not
taking into account the decoding complexity, that can be
significant especially when bit-interleaved coded-modulation
with iterative decoding (BICM-ID) is used, as it is the same
for all the compared algorithms.

If the FG representation used is a vector one [3], [13], i.e.

TABLE I
BIG O COMPLEXITY OF EP ALGORITHMS PER TURBO-ITERATION

VEP O((L+ 1)×min(Nu, NrRe)3)
VEP Local O(Re × (L+ 1)×min(Nu, Nr)3)
SEP O((L+ 1)×Nu ×Nr × df )
QRD SEP O((L+ 1)× dv(dv + 1)/2×Re) + (d3v/3)
QRD SSEP O((L+ 1)× dv(dv + 1)/2×Re) + (d3v/3)

the probability is not fully factorized from the y standpoint,
the detection can be very complex. Either every RE and every
antenna are represented using only a single function node
fEQU, which leads to the most computationally complex EP
algorithm that requires the inversion of a square matrix of
size min(Nu, NrRe) per auto iteration which dominates the
overall complexity of the detector. The inversion cost is about
O((L+1)×min(Nu, NrRe)

3). It is possible to factorize only
the receiving antennas and having only Re fEQU equalization
nodes which results in Re inversion of a min(Nu, Nr) matrix.

Consider a scalar FG representation [3], [5], [12], without
any matrix decomposition. The number of Scalar EP (SEP)
[5] messages is greater than with a vector FG, where there
are Nu × Nr × Re VEP messages along the edges between
the equalization nodes and the variable nodes instead of Nu.
The SEP complexity is smaller than VEP, especially when the
system grows bigger with antennas and users. SEP does not
use any auto iteration but instead keeps the memory of the EP
messages between turbo iterations. In order to achieve a less
expensive EP detection, the removal of edges through QRD
is a great candidate when applied carefully. Decomposing
the local FGs of each RE, which are fully connected graphs
(unlike the overall FG), removes at most half of the edges
between the equalization nodes and the variable nodes. Indeed,
there are only dv(dv + 1)/2 edges left from dvNr initially
present before QRD on each local graph. The complexity
is lowered and the QRD costs about O(d3v/3) which still
preserve the overall complexity gain. Another MPA like BP
could be applied on such QRD processed FG [6] but each
message is more complex since it depends exponentially on
the connectivity of each RE, i.e O(Re ×Nr ×Mdv ).

V. PERFORMANCE RESULTS

The system simulated has Nu = 6 users using the constel-
lation rotation codebook from [10] with Re = 4, dv = 3
and df = 2 with a QPSK; the codebook uses ∆ = π/6
and the receiver uses Nr = 3 antennas. The mono antenna
users use an LDPC encoder and the receiver uses BP iterative
decoding. The LDPC decoder makes five inner iterations per
turbo iteration, and the inner messages of the decoder are
kept and reused as initialization messages for the next turbo
iteration. A maximum of 9 turbo iterations (i.e. ten decoder
calls) brings the overall LDPC iterations to 50. All the EP
algorithms applied on a scalar FG use only one detection
step (L = 0) and they keep their EP messages throughout
the turbo iterations except VEP which uses one more auto
iteration (L = 1). SEP is extracted from [5] and adapted for
MIMO, SEP QRD is the same algorithm but applied on a QRD
pre-processed FG and VEP [13] is adapted to the SCMA FG.
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Fig. 2 shows the first, second and ninth turbo iterations of
five MPA-based detectors using an LDPC N = 4096 and R =
1/2. The first turbo shows that the most complex algorithm,
VEP, achieves the best performance for the first turbo iterations
but the two proposed algorithms have the same performance
as VEP at T = 9 while being far less complex. SEP and SEP
QRD are less efficient than the proposed algorithms in all the
iterations, and the situation is even worse for SEP as it is also
more complex. SSEP QRD SIC converges more rapidly than
SSEP QRD, at each turbo the SIC version is slightly better in
this scenario using an LDPC of R = 1/2.

Fig. 3 shows the same turbo iterations using an LDPC
N = 3120 and R = 1/3. In this scenario using a stronger
ECC, VEP remains the best detector but SSEP QRD SIC
achieves the same performance from T = 1 while SSEP QRD
is slightly worse. SEP and SEP QRD still perform worse than
the proposed algorithms but achieve the same performance at
the last turbo iteration.

Finally, Fig. 4 shows the same turbo iterations using an
LDPC N = 1944 and R = 2/3. This weaker ECC shows
that SSEP QRD SIC performs essentially the same as SSEP
QRD if the correcting power of the ECC is not sufficient. The
proposed algorithms still outperform SEP and SEP QRD but
converge slower than VEP as SSEP QRD achieve the same
performance than VEP at T = 9. SEP and SEP QRD are still
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Fig. 4. Performance with an LDPC N = 1944 and R = 2/3.

the most affected detectors as their performance has worsened
the most, even at T = 9.

VI. CONCLUSION

This article is the study of two new algorithms, SSEP QRD
and SSEP QRD SIC, that can achieve a better performance-
to-complexity trade-off than other EP-based detectors, as they
achieve almost VEP performance while being less computa-
tionally complex. They rely on scalar FG and QRD to achieve
low complexity detection and use enhanced scheduling to
improve performance. They are great candidates for efficient
MIMO SCMA detection, and they might also be used in other
kinds of NOMA schemes like Interleave Division Multiple
Access (IDMA) [14] which is closely related to SCMA.
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