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ON GALOIS REPRESENTATIONS WITH LARGE IMAGE by

Christian Maire

Abstract. -For every prime number p ě 3 and every integer m ě 1, we prove the existence of a continuous Galois representation ρ : G Q Ñ Gl m pZ p q which has open image and is unramified outside tp, 8u if p " 3 mod 4 and is unramified outside t2, p, 8u if p " 1 mod 4. We also revisit the question of the lifting of residual Galois representations in terms of embedding problems; that allows us to produce Galois representations with open image in the group of upper triangular matrices with diagonal entries equal to 1, unramified outside tp, 8u, for m "small" comparing to p.

Let G Q be the absolute Galois group of Q, and let p be a prime number. The last decades have shown the importance in arithmetic geometry of continuous Galois representations ρ : G Q Ñ Gl m pZ p q deriving from geometric objects. Thanks to Serre in [START_REF] Serre | Propriétés galoisiennes des points d'ordre fini des courbes elliptiques[END_REF], one knows that the action of G Q on torsion points of elliptic curves without complex multiplication produces 2-dimensional Galois representations with open image in Gl 2 pZ p q. But as observed by Greenberg in [START_REF] Greenberg | Galois representations with open image[END_REF], it seems more difficult to produce geometric Galois representations with open image in dimensions m ě 3. In [START_REF] Greenberg | Galois representations with open image[END_REF], Greenberg himself suggested a method from group theory for constructing higher-dimensional Galois representations with open image. Let us be a little more specific. Let K be a number field having r 2 pairs of non-real embeddings, and let G be a finitely generated pro-p group of p-rank at most r 2 `1. When the field K is p-rational (see §1.2 for the full definition and background), the Galois group of the maximal p-extension of K unramified outside p is a free pro-p group of rank r 2 `1. Hence the group G can be realized as the Galois group of an extension over K unramified outside p, thanks to the universal property of free groups. This approach allowed Greenberg to realize Galois representations ρ : G Q Ñ Gl m pZ p q with open image and such that ρ is unramified outside tp, 8u, under the hypotheses that p is a regular prime and m satisfies 1`4rm{2s ď p. The regularity of p is important because for the cyclotomic field K " Qpζ p q, it is equivalent to the p-rationality of K. A few years later this method was extended by Cornut and J. Ray [START_REF] Cornut | Generators of the pro-p Iwahori and Galois representations[END_REF] for more general linear groups, but always under the assumption that p is regular and that all large m are excluded when p is fixed. In fact, it is possible to relax the condition on p-rationality to realize Galois representations with big image: this has been done by A. Ray in [START_REF] Ray | Constructing Galois representations ramified at one prime[END_REF]. For example, when p ě 2 m` 2`2ep , where e p is the index of irregularity of p, A. Ray shows the existence of continuous Galois representations ρ : G Q Ñ Gl m pZ p q unramified outside tp, 8u with open image. But as in [START_REF] Greenberg | Galois representations with open image[END_REF] and [START_REF] Cornut | Generators of the pro-p Iwahori and Galois representations[END_REF], the dimension of the representations is bounded for fixed p. By a different approach, Katz in [START_REF] Katz | A note on Galois representations with big image[END_REF] constructs geometric Galois representations over cyclotomic extensions, and by descent he gets finitely ramified continuous Galois representations of G Q with open image in Gl m pZ p q, for p " 1 mod 3 or p " 1 mod 4 for every even m ě 6. We note that the representations constructed by Katz are motivic but are ramified at sets consisting of primes of potentially many different residue characteristics. More recently Tang [START_REF] Tang | A note on Galois representations valued in reductive groups with open image[END_REF] p1q by using a lifting theorem of Fakruddhin-Khare-Patrikis, showed the existence of Galois representations with open image when p " m; in this case there is no control of the set of ramification of the Galois representations due to the nature of the Ramakrishna style lifting argument. In this work, by extending the arithmetical approaches of [START_REF] Greenberg | Galois representations with open image[END_REF], we are able to prove (Corollary 4.6):

Theorem A. -Given a prime number p ě 3, and an integer m ě 1, there exist continuous Galois representations ρ : G Q Ñ Gl m pZ p q with open image satisfying: piq ρ is unramified ouside tp, 8u if p " ´1 mod 4, piiq ρ is unramified ouside t2, p, 8u if p " 1 mod 4, and has ramification index 2 at 2.

Remark. -The representations we construct have the property that "half" of the eigenvalues of complex conjugation are `1, the others being ´1.

Remark. -For m " 1 take the Z p -extension of Q.

Here is the key idea of our approach. We exploit a result of Kuranishi [16] that shows that a semisimple Lie algebra can be generated by 2 elements; in particular we use the explicit form for sl m recently given by Detinko-De Graaf [START_REF] Detinko | 2-generation of simple Lie algebras and free dense subgroups of algebraic groups[END_REF], and Chistopolskaya [START_REF] Chistopolskaya | On nilpotent generators of the special linear Lie algebra[END_REF]. Thus we apply the embedding criteria of Greenberg to some special subgroup H of Sl m pZ p q generated by two elements. Instead of considering number fields of large degree, namely Qpζ p q, we reduce the study of the existence of Galois representations with open image to certain imaginary quadratic extensions for which p does not divide its class number. By passing through the maximal abelian 2-extension K{Q inside Qpζ p q, the same strategy allows us to produce, for many primes p " 1 mod 4 and unbounded m, continuous Galois representations ρ : G Q Ñ Gl m pZ p q ramified only at tp, 8u with open image. This is the p1q Tang's paper https://arxiv.org/abs/2205.00502 is later than the first version of this work.

case for all but six primes p " 1 mod 4 less than 4 ¨10 5 ; for those situations the number fields K are p-rational. See Section 4.3.1 and Corollary 4.8.

The strategy of Greenberg applies when the number field K fixed by the kernel of the residual representation is p-rational. In this work we also extend this approach. To do this we revisit the question of the lifting of residual Galois representations (of order coprime to p) in terms of embedding problems, by using the criteria of Hoechsmann.

For a finitely generated pro-p group G, let G ab :" G{rG, Gs be the abelianization and G p,el :" G ab {pG ab q p the maximal p-elementary quotient. Set ε " 0 if p ą 2, and ε " 1 if p " 2, and consider the following congruence subgroup Gl 1 m " tA P Gl m pZ p q, A " 1 mod p 1`ε u. We prove (Theorem 3.3):

Theorem B.
-Let Γ " G ¸∆ be a profinite group where G is a finitely generated pro-p group and where ∆ is a finite group of order coprime to p. Let H be a closed subgroup of a p-adic analytic uniform group G Ă Gl 1 m generated by elements having the same valuation. Let ρ 0 : ∆ ãÑ Gl m pZ p q be an injective representation of ∆. Suppose that ∆ acts by conjugation (via ρ 0 ) on G and on H, such that the ∆-module H p,el is isomorphic to a sub-∆-module of G p,el . Let

f : Γ " G ¸∆ H p,el ¸∆1
be a surjective map induced by this isomorphism, where f |∆ " ρ 0 and ∆ 1 " ρ 0 p∆q.

Suppose moreover that:

piq H 2 pG , Q p {Z p q " 0; and piiq G ab rps and the tangent space g of G are orthogonal to each other as ∆-modules.

Then the embedding problem

Γ " G ¸∆ ψ w w w w f H ¸∆1 g / / / / H p,el ¸∆1
has a proper continuous solution ψ.

For the notion of valuation, see Section 2.2.2, and for the notion of being orthogonal, see Definition 1.11.

As example of application, we focus on T m Ă Sl m pZ p q, the group of upper triangular matrices with diagonal entries equal to 1.

Corollary C.

-Let e ě 0, and let p be a prime number with index of irregularity e p ď e. There is a constant c e depending on e such that for every m ď c e pp ´1q 1{pe`1q , there exist continuous Galois representations ρ : G Q Ñ Gl m pZ p q unramified outside tp, 8u and with open image in T m . One can take c 0 " 1{2 and c 1 " 1{4.

The paper contains four sections. In Section 1 and in Section 2, we recall facts about pro-p groups, the maximal pro-p-extension of a number field unramified outside p, and generalities regarding uniform groups and Z p -Lie algebras. In Section 3, we develop the approach of lifting residual representations via the embedding problem; in particular we prove Theorem B. The last section is devoted to applications with the proofs of Theorem A and Corollary C. It seems likely the methods we introduce can apply more generally for realizing other groups, and with partial ramification at p as well; we also discussed this at the end of the last section. 

Notations

H i pΓ, M q » pH i pG, Z{pq b M q ∆ .
Proof. -First, by the algebraic universal coefficients Theorem for G-homology over F p , one has the isomorphism (1)

F : H i pG, Z{pq b M ^" Ñ H i pG, M ^q,
where the tensor product is taken over F p , and where F is defined by

F prf s b mq " rf b ms,
showing that (1) is also an isomorphism of ∆-modules. See for example [13, Here, AutpHq is the group of continuous automorphisms of H.

A proof is given in [12, Section 2.2] in the spirit of [START_REF] Wingberg | Free pro-p-extensions of number fields[END_REF].

1.2. Restricted ramification. -Let K be a number field. As usual pr 1 , r 2 q is the signature of K. When p " 2 we assume K totally imaginary. Set

' E K :" Z p b O K the pro-p completion of the group of units of the ring of integers O K of K, ' Cl K the p-Sylow subgroup of the class group of K, ' K p the completion of K at p|p, U p the local units of K p , ' U p :" lim ÐÝ n U p {U p n
p the pro-p completion of U p , and U p :"

ź p|p U p , ' ι K,p : E K Ñ U p the diagonal embedding of E K into p-adic units. 1.2.1. The pro-p group G K,p .
-This section contains only well known results, but is included for the sake of clarity.

Let K p {K be the maximal pro-p extension of K unramified outside p; set G K,p " GalpK p {Kq. The pro-p group G K,p is finitely presented. More precisely, one has (see [22, Chapter VIII, Proposition 8.3.18; Chapter X, Corollary 10.4.9, Theorem 10.7.13]):

Theorem 1.5. -The pro-p group G K,p is of cohomological dimension ď 2, and d p H 1 pG K,p , Z{pq ´dp H 2 pG K,p , Z{pq " r 2 `1.
Let us write

G ab K,p » F K,p ' T K,p
, where T K,p :" T orpG ab K,p q is the torsion of G ab K,p , and where F K,p :" G ab K,p {T K,p » Z tp p is the free part; the quantity t p is the Z p -rank of G ab K,p . By class field theory one has (see for example [8, Chapter III, §1, Corollary 1.6.3]):

t p " dim Qp Q p b cokerpι K,p q " r 2 `1 `dim Qp Q p b kerpι K,p q. (2)
Recall also that Leopoldt's conjecture asserts that kerpι K,p q " 1, and thanks to Baker and Brumer [START_REF] Brumer | On the units of algebraic number fields[END_REF] one knows that Leopoldt's conjecture is true for abelian extensions K{Q. One also has the following well-known result (see for example [22, Chapter X, Corollary 10.3.7]):

Proposition 1.6. -One has kerpι K,p q " 1 ðñ H 2 pG K,p , Z p q " 0.
Proof. -This is a consequence of Proposition 1.3 and Theorem 1.5.

Regarding T K,p , we have the following:

Proposition 1.7. -Suppose Cl K " 1. Then T K,p » T or ´Up {ι K,p pE K q ¯.
Proof. -By class field theory one has U p {ι K,p pE K q » G ab K,p when Cl K " 1. Hence, given a number field K, up to a finite set of primes (those that divide the class number of K) the computation of T K,p is reduced to the computation of the torsion of U p {ι K,p pE K q. Nontrivial elements in T or `Up {ι K,p pE K q ˘are rare; one has the following conjecture ( [START_REF] Gras | Les Θ-régulateurs locaux d'un nombre algébrique : Conjectures p-adiques[END_REF]Conjecture 8.11]).

Conjecture 1.8 (Gras).

-Given a number field K, then T K,p " 1 for p " 0.

Regarding this conjecture many computations provide some evidence, but very little is known in general. See [8, Chapter IV, §3 and §4] and [START_REF] Gras | Practice of the Incomplete p-Ramification over a Number Field -History of Abelian p-Ramification[END_REF] for a good exposition. Nevertheless, the p-group T K,p is a deep arithmetical object associated to K, as we can see from the next proposition, for example. The fact that G K,p may be a noncommutative free pro-p group can be found, maybe for the first time, in a paper of Shafarevich [28, §4]. Let us recall that when G K,p is free pro-p then K is said to be p-rational ([21]). Proposition 1.9. -The pro-p group G K,p is free pro-p (on r 2 `1 generators) if and only if kerpι K,p q " 1 and T K,p " 1.

Proof. -If G K,p is free pro-p then G ab K,p » Z tp p , T K,p " 1, H 2 pG K,p , Q p {Z p q
" 0, and by Proposition 1.6 one gets kerpι K,p q " 1. For the converse, suppose that kerpι K,p q " 1 and G K,p » Z tp p . By Proposition 1.6, H 2 pG K,p , Z p q " 0; by Proposition 1.2, one gets H 2 pG K,p , Z{pq " 0 (take ∆ trivial and M " Z{p), and then G K,p is free pro-p. Regarding the p-rank of G K,p , see Theorem 1.5.

Example 1.10. -Take p ą 3, and let K{Q be an imaginary quadratic field. Observe that E K " 1 and that U p is torsion free. Hence when Cl K " 1, the pro-p group G K,p is free pro-p on 2 generators.

With semisimple action.

-Let ∆ be a finite group of order coprime to p. Let Ψ p be the set of irreducible F p -characters of ∆. Let M be a finite F p r∆s-module. For ϕ P Ψ p , set r ϕ M to be the ϕ-rank of M . In particular if χpM q denotes the character of M , then χpM q " ř ϕPΨp pr ϕ M qϕ. Put χ ´1pM q :" ř ϕPΨp pr ϕ M qϕ ´1, where ϕ ´1pgq :" ϕpg ´1q.

Definition 1.11. -Two finite F p r∆s-modules M and N are said to be orthogonal, and write M K N , if for every ϕ P Ψ p one has r ϕ M ¨rϕ N " 0.

We denote by Reg the character of the regular representation, by 1 the trivial character, and for a subgroup D of ∆, by Ind ∆ D 1 D the induced character from D to ∆ of the trivial character 1 D of D. Since χpM b N q " χpM qχpN q and χpM ^q " χ ´1pM q, one has: Lemma 1.12. -Let M and N be two finite F p r∆s-modules.

Then ´M ^b N ¯∆ " 0 if and only if M K N . Proof. -Indeed, χ ´M ^b N ¯∆ " xχpM ^qχpN q, 1y " xχpN q, χpM qy " ř ϕ pr ϕ M ¨rϕ N q.
For the end of this section, let us consider the following setting.

Let K{k be a finite Galois extension of degree coprime to p; put ∆ " GalpK{kq. Observe that K p {k is Galois and that ∆ acts on

G K,p , T K,p , F K,p , etc. Put Γ " GalpK p {kq » G K,p ¸∆.
First, the next Theorem will be essential to lift residual representations.

Theorem 1.13. -Let M be a finite Γ-module of exponent p on which G K,p acts trivially. Assuming Leopoldt's conjecture for K at p, then H 2 pΓ, M q » `TK,p rps ^b M ˘∆. In particular H 2 pΓ, M q " 0 if and only if T K,p rps K M .

Proof. -This is a consequence of Proposition 1.2, Proposition 1.6 and Lemma 1.12.

Remark 1.14. -When K contains ζ p , the character of T K,p rps is related to the mirror character of Cl 1 K , where Cl 1 K is the p-Sylow of the p-class group of K. Typically when K " Qpζ p q, r ϕ T K,p rps " r ϕ ˚C l K , where ϕ ˚:" ωϕ ´1. In this case, Qpζ p q is p-rational if and only if p is regular. For more general results see [START_REF] Gras | Théorèmes de réflexion[END_REF].

To finish, the following proposition will be the starting point for realizing residual representations as Galois extensions of number fields. Proof.

-One has Q p b F K,p " Q p b U p M Q p b ι K,p pE K q.
Then use for example [10, §5 Theorem 5.12, and §6].

Uniform groups and Lie algebras

2.1. Generalities. -For this section we refer to [6, Chapters 4, 7 and 9]. Set ε " 0 if p ą 2, and ε " 1 if p " 2. Let G be a finitely generated pro-p group. Set G 1 " G, and for n ě 1, G n`1 " G p n rG, G n s. The pG n q is the p-descending central series of G. For n ě 1, consider the map:

α n : G n {G n`1 Ñ G n`1 {G n`2 x Þ Ñ x p . Definition 2.1.
-The pro-p group G is said to be uniform if G{G p1`εqp is abelian and if for every n, the map α n induces an isomorphism.

Hence when G is uniform, there exists some

d such that G n {G n`1 » pZ{pq d ; the integer d is called the dimension of G. Theorem 2.2.
-Let G be a uniform pro-p group. Then for all n ě 1, G n`1 is uniform and also equal to:

piq pG n q p rG n , G n s, piiq G p n " xg p n , g P Gy, piiiq pG n q p " xg p n , g n P G n y. Proof. -See [6, Chapter 3, Theorem 3.6].
Recall that a p-adic analytic group is a topological group G having a structure of p-adic analytic manifold for which the product and the inverse are analytic. Since Lazard [START_REF] Lazard | Groupes analytiques p-adiques[END_REF] one knows that uniform pro-p groups are the socle of p-adic analytic groups. Indeed:

Theorem 2.3. -piq A uniform group G of

dimension d is a p-adic analytic group of dimension d (as analytic manifold). piiq Every p-adic analytic group of (analytic) dimension d contains an open subgroup which is uniform of dimension d.

piiiq Let G be a pro-p group which is a p-adic analytic group, then G ãÑ Gl m pZ p q for some m.

Proof. -See [6, Interlude A].
In what follows, we will consider uniform groups G as subgroups of Gl m pZ p q. m " tA P Gl m pZ p q, A " 1 mod p 1`ε u. Moreover exp and log are inverse on these two spaces. Hence exppgl m q " Gl 1 m and since gl m is powerful, Gl 1 m is uniform ([6, Chapter 5, Theorem 5.2]). Let sl m be the Z p -Lie subalgebra of gl m consisting of matrices with zero trace. The algebra sl m is also powerful, and then Sl 1 m :" exppsl m q is uniform; one has Sl 1 m " Sl m pZ p q X Gl 1 m (see for example [6, Chapter 9, Exercise 8]). More, since sl m pQ p q :" Q p b sl m is simple, one has sl m pQ p q " psl m pQ p , sl m pQ p qq which implies that the abelianization of Sl 1 m is finite. 2.2.2. Uniform groups and Z p -Lie algebras. -Let us start with a classical result showing the power of the exponential and the logarithm. For k ě 1, consider the congruence subgroups:

Exponential and

Gl k m " tA P Gl m pZ p q, A " 1 mod p k`ε u, Sl k m :" Sl m pZ p q X Gl k m .
Proposition In fact, Gl 1 m is a special case of the following result: m be a uniform pro-p group of dimension d. Set g :" logpGq Ă gl m , and g p :" g{pg. Observe that g p is a F p -vector space of dimension d.

As for Gl 1 m in Proposition 2.4, the p-descending central series pG n q of a uniform group G Ă Gl m pZ p q is easy to describe. Indeed:

Proposition 2.7. -One has G n " exppp n´1 gq. In particular, G n {G n`1 » p n´1 g{p n g » g p . Proof. -See [6, Chapter 4, Lemma 4.14].
Let L Ă gl m be a powerful Z p -Lie algebra. For x P L, put w L pxq :" maxtk, x P p k´1 Lu, w L p0q " 8; it is a valuation on L (following Lazard's terminology, see [17, Chapter I, §2.2]). When starting with a uniform group G, for g P G define w G pgq :" w g plogpgqq, where g " logpGq: this is a filtration on G (see [17, Chapter II, §1]).

The Lie algebra g as a sub-module of gl

m . -Let G Ă Gl 1
m be uniform; set g " logpGq. Recall that g is the powerful sub-Lie Z p -algebra of gl m such that exppgq " G. Let ∆ 1 be a finite subgroup of Gl m pZ p q of order coprime to p, acting by conjugation on G; observe that ∆ 1 also acts on Gl m , on gl m,p :" gl m {pgl m , and on g p . Since p |∆ 1 |, the Z p r∆ 1 s-module gl m is projective (see [START_REF] Serre | Linear representations of finite groups[END_REF]Chapter 14,§14.4]) and then, gl m,p and gl m pQ p q :" Q p b gl m have the 'same' character (as ∆ 1 -modules). Of course, for the same reason, g p and gpQ p q have the same character. Since gpQ p q Ă gl m pQ p q we obtain: Proposition 2.8. -Let ∆ 1 Ă Gl m pZ p q be a subgroup of order coprime to p acting on g by conjugation. Then g p is isomorphic to a sub-∆ 1 -module of gl m,p . Definition 2.9. -When the action is given via a Galois representation ρ 0 : ∆ Ñ Gl m pZ p q (here ∆ 1 " ρ 0 p∆q), the ∆-module g p is called the adjoint of G following ρ 0 .

Semisimple algebras. -

The next Theorem, due to Kuranishi ([16]), is essential for our strategy. See also [START_REF] Bois | Generators of simple Lie algebras in arbitrary characteristics[END_REF].

Theorem 2.10 ([16]

). -Let L be a semisimple Q p -Lie algebra. Then L can be generated by 2 elements. As corollary of Theorem 2.10 we get Corollary 2.12. -Let G Ă Gl 1 m be a uniform group such that gpQ p q is semisimple. Then there exist two elements g and g 1 in G such that the group G and the (closed) subgroup H generated by g and g 1 , are commensurable.

Proof. -Let g :" logpGq be the powerful Z p -Lie algebra associated to G. Set L :" Q p b g. By Theorem 2.10 there exist x, y P L such that L " xx, yy. By multiplying x and y by some powers of p, we can assume that x and y are also in g. Set g " exppxq and g 1 " exppyq, and let H " xg, g 1 y be the closed subgroup of G generated by g and g 1 . The pro-p group H is p-adic analytic as a closed subgroup of a p-adic analytic group; let U be an open uniform subgroup of H. Then for r " 0, g p r and pg 1 q p r are in U . Hence the Z p -Lie algebra L U " logpU q of U contains p r x and p r y, and then Q p b L U " L . Thus, U and G are locally isomorphic and even commensurable (due to the fact that U Ă G), see for example [ Example 2.13. -Take m " 2. Set x " E 1,2 ppq `E2,1 ppq, and y " E 1,1 ppq ´E2,2 ppq. Observe that px, yq " 2p 1`ε `E2,1 ppq ´E1,2 ppq ˘, hence x and y generate the Lie algebra sl 2 pQ p q. Set g " exppxq and g 1 " exppyq, and H " xg, g 1 y. Then H has Sl 2`2ε 2 as open subgroup. [START_REF] Chistopolskaya | On nilpotent generators of the special linear Lie algebra[END_REF]). -Take m ě 3. The Lie algebra sl m is simple. Set x " ř m´1 i"1 E i,i`1 ppq, and y " " E m,1 ppq m odd, E m´1,1 ppq `Em,2 ppq m even.

Example 2.14 ([5] or

Observe that xx, yy Zp Ă sl m . Thanks to [5, Proposition 2.5 and Proposition 2.6] and [3, Example 2] one has xx, yy " sl m pQ p q. Put g " exppxq, g 1 " exppyq and H " xg, g 1 y Ă Gl 1 m . Observe that w G pgq " w G pg 1 q " 1. Then H has Sl k m as an open subgroup for some k " 0.

Lifting in uniform pro-p groups

The goal of this section is to give lifting criteria for uniform groups including the wellknown conditions when G " Sl 1 m (see [20, §1.6]).

Compatible actions.

-Let G be a pro-p group of p-rank ě d, and let be a homomorphism ∆ Ñ AutpG q, where ∆ is a finite group of order coprime to p. Set Γ " G ¸∆. Observe that G p,el is a F p r∆s-module.

Let M be a sub-F p r∆s-module of G p,el , and let ρ 0 : ∆ãÑGl m pZ p q be an injective representation of ∆. Put ∆ 1 " ρ 0 p∆q. Hence M is also a ∆ 1 -module by ρ 0 psq ¨m :" s ¨m.

Let P r M : G Ñ G p,el Ñ M be a projection of G on M .
Let H Ă Gl m pZ p q be a pro-p group such that d p H " d p M . Suppose that ρ 0 p∆q acts on H by conjugation. Hence H p,el becomes a ∆-module via ρ 0 , by s¨g 1 :" ρ 0 psq¨g 1 . We suppose now that the action of ∆ on M is compatible with that of ∆ on H p,el : in other words, χpH p,el q " χpM q, as ∆-modules. Hence there exists a ∆-isomorphism β : H p,el " Ñ M .

Embedding problem.

-Let G Ă Gl 1 m be a uniform pro-p group of dimension d. Set g :" logpGq Ă gl m . Given 1 ď s ď d and k ě 1, let z 1 , ¨¨¨, z s P p k´1 g be some independent elements in p k´1 g{p k g » pZ{pq d . Set g i " exppz i q. Then for i " 1, ¨¨¨, k, one has w G pg i q " k. 

H{H r2s / / G k {G k`1 » log / / p k´1 g{p k g H{H p rH, Hs P f f f f log 7 7
Hence the family tg 1 H r2s , ¨¨¨, g s H r2s u is free in H{H r2s , showing that d p H ě d p H{H r2s ě s. But H is generated by the g i 's. Thus d p H " s, and P is an isomorphism. piiq Clearly H rns H. Since G n`k " G p n`k´1 rG, G n`k´1 s one has: 

H rns {H rn`1s " H X G n`k´1 {H X G n`k " `H X G n`k´1 ˘Gp n`k´1 rG, G n`k´1 s L G p n`k´1
č n G n " t1u.
We now summarize conditions of Section 3.1. Via β and ρ 0 , suppose that H p,el can be seen as a sub-∆-module M of G p,el . Hence there exists a surjective morphism f 2 : Γ Ñ H{H r2s ¸∆1 , such that piq pf 2 q |G " β ´1 ˝P r M , piiq pf 2 q |∆ " ρ 0 . Recall that H{H r2s " H p,el . More generally, suppose that for some n ě 2, there exists a surjective morphism

f n : Γ Ñ H{H rns
¸∆1 , where pf n q |∆ " ρ 0 . Then let us consider the embedding problem pE n q: m is a uniform group of dimension d, H is a closed subgroup of G, β is a ∆-isomorphism from H p,el to a sub-∆-module of G p,el , ρ 0 : ∆ ãÑ Gl m pZ p q is a representation of ∆, and ∆ 1 " ρ 0 p∆q. We suppose moreover that ∆ 1 acts by conjugation on G. Hence, via ρ 0 , the group ∆ acts also on g :" logpGq Ă gl n , and on g p :" g{pg (see §2.2.3).

Γ " G ¸∆ ψn v v fn 1 / / H

Theorem 3.3 (Theorem B). -With the above notations, suppose given

f : Γ " G ¸∆ H p,el ¸∆1 ,
where f |∆ " ρ 0 , such that: piq H 2 pG , Q p {Z p q " 0; and piiq T rps K g p . Then the embedding problem

Γ " G ¸∆ ψ w w w w f H ¸∆1 g / / / / H p,el ¸∆1
has a proper continuous solution ψ.

Proof. -We proceed step by step. ' First, for n ě 2 suppose we are given a surjective morphism f n : Γ Ñ H{H rns ¸∆1 , where pf n q |∆ " ρ 0 . And consider the embedding problem pE n q. ' Observe now that . By Lemma 1.12 we finally get H 2 pΓ, H rns {H rn`1s q " 0: the embedding problem pE n q has some proper solution ψ n thanks to Proposition 3.2. Put f n`1 :" ψ n . ' By hypothesis f 2 is given. Hence by the previous computation one deduces that pE 2 q has a proper solution, which gives the existence of one f 3 . Then pE 3 q has a proper solution, etc. To conclude, it suffices to take the projective limit of a system of compatible solutions ψ n , and to remember that

H rns {H rn`1s H X G n`k´1 L H X G n`k " / / pH X G n`k´1 qG n`k {G n`k _ G n`k´1 {G n`k G n`k´1 G n`k {G n`k " o o Since G is uniform, G n`k´1 {G n`k » g p ,
č n H rns " t1u. Remark 3.4.
-Observe that H ¸∆1 ãÑ Gl m pZ p q. Hence the continuous map ψ induces a continuous Galois representation ρ : Γ Ñ Gl m pZ p q with image containing H as open subgroup. Moreover for δ P ∆, one has ψpδq " ρ 0 pδq; thus ρ |∆ » ρ 0 . In other words, ρ is a lift of ρ 0 . Finally observe that changing the map β or the map P r M changes the representation ρ.

Applications

Before developing the arithmetical context, let us make a quick observation.

Proposition 4.1. -Let k be a number field such that r 2 ą 0. Suppose the Leopoldt and Gras conjectures for k at p. Take p " 0. Then for every p-adic analytic group G for which the Lie algebra is semisimple, there exist a continuous Galois representation ρ : Galpk{kq Ñ Gl m pZ p q with image commensurable with G.

Proof. -Our hypotheses imply the pro-p group G k,p is free of p-rank r 2 `1 ě 2. Let U Ă G be a uniform subgroup of G. The group U is commensurable with a subgroup H generated by 2 elements (Corollary 2.12). We conclude by noting that H is a quotient of G K,p , thanks to the universal property of free groups.

When k is totally real (and p is odd), one strategy is to start with a residual Galois representation of Galpk{kq of order coprime to p (typically of order 2) in which at least one real place is ramified.

The principle. -

The principle proposed is the one developed by Greenberg [START_REF] Greenberg | Galois representations with open image[END_REF], with a generalization based on Theorem 3.3 when the field of the residue image is not p-rational. ' Let us start with a Galois extension K{k with Galois group ∆ of order coprime to p.

Recall that ∆ acts on G K,p , etc. Set Γ " GalpK p {kq » G K,p ¸∆. Suppose kerpι K,p q trivial (equivalently, assume Leopoldt's conjecture for K at p). Then H 2 pG K,p , Q p {Z p q " 0 by Proposition 1.6. ' For i " 1, ¨¨¨, s, let L i {K be cyclic degree p extensions in K p {K. Let L be the compositum of the L i 's and set M " GalpL{Kq. We suppose that ∆ acts on M . ' Let ρ 0 : ∆ ãÑ Gl m pZ p q be a Galois representation of GalpK{kq. Set ∆ 1 :" ρ 0 p∆q. ' Let G Ă Gl 1 m be a uniform group, and let H be a closed subgroup of G as in Section 3.2. We suppose now that ∆ 1 acts by conjugation on H, such that there exists a ∆-isomorphism β : H p,el Ñ M . Hence, we also get GalpL{Kq ¸∆ » H p,el ¸∆1 . We then have a continuous Galois representation ρ 1 : GalpK p {kq Ñ H p,el ¸∆1 such that:

piq pρ 1 q |GalpKp{Kq " β ´1 ˝P r M , piiq ρ 1 | ∆ " ρ 0 .
The Galois representation ρ 1 plays the role of the function f of Theorem 3.3. If K is p-rational, which is the context of [START_REF] Greenberg | Galois representations with open image[END_REF], one can apply Proposition 1.4 to obtain:

Corollary 4.2. -If G K,p
is free, then the representation ρ 0 lifts to a Galois representation ρ : GalpK p {kq Ñ Gl m pZ p q with image containing H as an open subgroup.

If K is not p-rational, we use Theorem 3.3.

' As ∆ 1 acts by conjugation on H, we assume moreover that it also acts on G. Set g :" logpGq Ă gl n . Hence g p becomes a ∆-module (via ρ 0 ). As consequence of Theorem 3.3 and Remark 3.4, we get: Corollary 4.3. -If kerpι K,p q " 1 and T K,p rps K g p , then ρ 0 lifts to a Galois representation ρ : GalpK p {kq Ñ Gl m pZ p q with image containing H as an open subgroup.

By Proposition 1.9 observe that kerpι K,p q " 1 and T K,p rps " 1 imply that K is p-rational. Remark 4.4. -Let ρ 1 : GalpK p {kq Ñ Gl m pZ p q be a Galois representation having image commensurable with Sl m pZ p q, and unramified outside a finite set S that contain all p-adic places. Let ω 1 : G Q Ñ Z p be the cyclotomic character. Now, recall that since Sl m pQ p q is semisimple, every open subgroup of Sl 1 m has finite abelianization. Hence the image of the Galois representation ρ :" ρ 1 b ω 1 : GalpK p {Qq Ñ Gl m pZ p q has p-adic dimension m 2 ; in conclusion the image of ρ is open in Gl m pZ p q. Observe also that ρ is unramified outside S.

Galois representations via imaginary quadratic fields. -

We start with an imaginary quadratic extension K{Q. Let p ą 2 be a prime number. Put ∆ " GalpK{Qq " xsy, and let ϕ be the nontrivial character of ∆.

' Suppose that G K,p is free pro-p. By Proposition 1.15, χpG p,el K,p q " 1 `ϕ. Take M " G p,el K,p " xh 1 , h 2 y » pZ{pq 2 , such that s ¨h1 " h 1 and s ¨h2 " h ´1 2 .

' We recall the observation of Example 2.14 from [START_REF] Chistopolskaya | On nilpotent generators of the special linear Lie algebra[END_REF] and [START_REF] Detinko | 2-generation of simple Lie algebras and free dense subgroups of algebraic groups[END_REF]. Take m ě 3, and consider z 1 " E 1,2 ppq `E2,3 ppq `¨¨¨`E m´1,m ppq P gl m , and

z 2 "
" E m,1 ppq m odd E m´1,1 ppq `Em,2 ppq m even.

Set g 1 " exppz 1 q P Gl 1 m and g 2 " exppz 2 q P Gl 1 m , and H " xg 1 , g 2 y. Take the uniform group G :" Sl 1 m . Of course H Ă G. As seen in 2.14 (thanks to Corollary 2.12), the analytic groups H and Sl m pZ p q are commensurable. Set A " ř i p´1q i`1 E i,i . By conjugation, A ¨z1 " ´z1 and A ¨z2 " z 2 , and then A acts by ´1 on g 1 and by `1 on g 2 . Of course A acts also on Sl m pZ p q. Let ρ 0 : GalpK{Qq Ñ Gl m pZ p q be the Galois representation defined by ρ 0 psq " A.

Here kerpρ 0 q " 1, and the map β : M Ñ H p,el defined by βph 1 q " g 1 H p rH, Hs and βph 2 q " g 2 H p rH, Hs is an isomorphism of ∆-modules. For m " 2, consider Example 2.13 and take z 1 " E 1,1 ppq ´E2,2 ppq, z 2 " E 1,2 ppq `E2,1 ppq, g 1 " exppx 1 q, g 2 " exppx 2 q, and A " E 1,1 ´E2,2 .

In conclusion, the principle of Section 4.1 allows us to lift ρ 0 to a Galois representation of GalpK p {Qq Ñ Gl m pZ p q. piq ρ is unramified ouside tp, 8u if p " ´1 mod 4, piiq ρ is unramified ouside t2, p, 8u if p " 1 mod 4.

Proof. -Take K " Qp ? ´pq. Thanks to an explicit version of Brauer-Siegel (see for example [START_REF] Louboutin | The Brauer-Siegel Theorem[END_REF]), p |Cl K |, and therefore K is p-rational (see Example 1.10). For p " 3, the number field Qp ? ´3q is 3-rational. Apply Theorem 4.5.

Remark 4.7. -Observe that ramification at 2 only occurs in Qp ? ´pq{Q.

Galois representations via

Qpζ p q. -4.3.1. When the maximal 2-subextension of Qpζ p q is p-rational. -Let a be the odd part of p ´1; in other words, p ´1 " a2 λ with 2 a; so λ " v 2 pp ´1q. Take k " Q, L " Qpζ p q and let K{k be the maximal 2-extension in L. Let s be a generator of ∆ " GalpK{Qq. Recall that ι K,p is injective, and by Proposition 1.15, χpF K,p {pq " 1 `ωa `ω3a `¨¨¨`ω pp´2qa ,

where ω : G Q Ñ F p Ă Z p is the mod p reduction of the cyclotomic character.

Take m ě 3. Let g 1 and g 2 be the elements of Sl 1 m as in the previous section. Set H " xg 1 , g 2 y Ă Sl 1 m .

Set A a psq " m ÿ i"1 ω ia psqE i,i . Consider the Galois representation ρ 0 : GalpK{Qq Ñ Gl m pZ p q defined by ρ 0 psq " A a psq. Then A a psq ¨z1 " ω ´apsq z 1 and A a psq ¨z2 "

" ω apm´1q psq z 2 m odd ω apm´2q psq z 2 m even.

Put g 1 " exppz 1 q and g 2 " exppz 2 q. The action of A a psq is odd on g 1 , and even on g 2 . Of course A a psq acts also on Sl 1 m . Thanks to the decomposition of χpF K,p {pq, we can find h 1 and h 2 in F K,p such that s ¨h1 " h ω a psq 1 , and s ¨h2 " h ω apm´1q psq 2 if apm ´1q " 0 mod p ´1 for m odd, and s ¨h2 " h ω apm´2q 2 if apm ´2q " 0 mod p ´1 for m even; there is no condition for the odd character, but the even character must be trivial. We obtain the first condition (regarding the existence of h 1 and h 2 ): for m odd we must have v 2 pm ´1q ě v 2 pp ´1q; for m even we must have v 2 pm ´2q ě v 2 pp ´1q. Open image in T m . -Let T m Ă Gl m pZ p q be the group of upper triangular matrices with diagonal entries equal to 1.

Put M " F p h 1 `Fp h 2 Ă G p,
In this part we propose to give a strategy to produce Galois representations ρ : G Q Ñ Gl m pZ p q with open image in T m and unramified outside tp, 8u. Let t m Ă gl m be the Z p -lie algebra generated by the matrices E i,j ppq, i ă j. The algebra t m is powerful. Let T 1 m :" exppt m q be the exponential of t m . Then T 1 m " T m X Gl Let H be the closed subgroup of T 1 m generated by the g i :" exppz i q's, i " 1, ¨¨¨, m ´1. The pro-p group H is of p-rank m ´1 and commensurable with T 1 m . Set λ " pp ´1q{2. We assume first that m ď λ. We are still using L " Qpζ p q as in the previous section. Let s be a generator of ∆ " GalpL{Qq. Recall that ι L,p is injective, and χpF L,p {pq " 1 `ω `ω3 `¨¨¨`ω pp´2q .

Let ω k i be the characters that appear in Cl L , i " 1, ¨¨¨, e p .

Let b be an (odd) integer coprime to p ´1. Set B b psq "

m ÿ i"1 ω ba i psqE i,i
, where a i " 0 for i odd, and a i " i ´1 for i even. Consider the Galois representation ρ 0 : GalpL{Qq Ñ Gl m pZ p q defined by ρ 0 psq " B b psq.

Then for 1 ď i ă m, B b psq ¨zi " " ω ´bi psq z i i odd, ω bpi´1q psq z i i even.
Of course B b psq acts also on T 1 m , and the characters that appear in the decomposition of χpt m q are like ω bpj´lq with 1 ď j, l ď m. By the choice of b, observe that the action of ∆ on H{H p,el is compatible with the action on F L,p . Hence by Theorem 3.3 the realization of H ¸∆ as Galois extension of Q can be done when bpj ´lq ı k i ´1 mod p´1, for every 1 ď j, l ď m and i " 1, ¨¨¨, e p : in this case the characters appearing in χpt m q and in χpT L,p q are distinct, giving us orthogonality. Of course this is automatic when e p " 0.

Let us give an explicit criteria. To simplify, one assumes that the index of irregularity e p of p is equal to 1. Let 0 ď n b ă p ´1 be the representant of b ´1pk 1 ´1q modulo p ´1. Set N p " max b `minpn b , p ´1 ´nb q ˘, and observe that for every 1 ď j, l ď N p , one has bpj ´lq ı k 1 ´1 modulo p ´1. We have proven (with Remark 4.4): -Let e ě 0, and let p be a prime number such that e p ď e. There is a constant c e depending on e such that for every m ď c e pp ´1q 1{pe`1q , there exist continuous Galois representations ρ : G Q Ñ Gl m pZ p q unramified outside tp, 8u and with open image in T m . One can take c 0 " 1{2 and c 1 " 1{4.

Proof. -When e " 0, L is p-rational, and the only condition is m ď λ " p ´1 2 . More generally we study the equation bpj ´lq " k i ´1 pmod p ´1q, (3) 1 ď j, l ď m and i " 1, ¨¨¨, e p . One can assume 1 ď k i ´1 ď λ, and observe that j ‰ l.

Let q ą 1 be an integer coprime to p ´1. Suppose that q e ď λ. Among the e `1 intervals r1, qq, rq, q 2 q, ¨¨¨, rq j , q j`1 q, ¨¨¨, rq e , λs, at least one interval I contains no k i ´1; write I " rq i 0 , q i 0 `1q or I " rq e , λs. Set b " q i 0 , and consider the Galois representation ρ 0 : GalpK{Qq Ñ Gl m pZ p q defined as before by ρ 0 psq " B b psq. Observe now that q i 0 pj ´lq P I if m ď q and m ď λ{q e ; the last condition corresponds to the case where I " rq e , λs. In other words, the equation (3) has no solution: the characters of the action of ∆ on H p,el avoid the ω k i ´1's. When q " opλ e`1 q these two bounds are essentially the same; and in this case m ! e q 1{pe`1q is suitable. For this, observe now that one can find an integer q coprime to p ´1 between λ 1{pe`1q and λ 1{pe`1q `cplogppqq 2 , where c is an absolute constant: this is the bound of Iwaniec [START_REF] Iwaniec | On the problem of Jacobsthal[END_REF] for the Jacobsthal's function; we then have λ 1{pe`1q ă q ă c 1 e λ 1{pe`1q . Set c e " `pc 1 e q e 2 1{pe`1q ˘´1 ; observe that m ď c e pp ´1q 1{pe`1q implies m ď q and q e m ď λ (the existence of a such positive integer m implies q e ď λ which is a condition above). When e " 1: by Bertrand's postulate one knows that there exists a prime q coprime to p ´1 such that ? 2λ ă q ă 2 ? 2λ. Here m ď 1 4

? p ´1 implies m ď q and qm ď λ. The end of the proof is an application of Theorem 3.3 with Remark 4.4.

4.4.

Other perspectives: Galois representations partially ramified at p. -Let K be a number field, let S be a finite set of primes of K, and let K S be the maximal pro-p extension of K unramified outside S; set G S " GalpK S {Kq. A part of the results of Section 1.2 can be adapted to G S ; this section has been written with this idea in mind.

A key result to apply Theorem 3.3 is Proposition 1.6. As noted in [19, §3], one may have H 2 pG S , Q{Zq " 0, and eventually G S free, even if S does not contain all places above p. Hence, clearly our strategy can produce Galois representations ρ : G S Ñ Gl m pZ p q with open image, and for which the ramification at p is partial.

Theorem 2 . 5 .

 25 -There is an equivalence between the category of uniform pro-p groups G and the category of powerful Z p -Lie algebras L (i.e. verifying L » Z d p and pL, Lq Ă p 1`ε L). When G Ă Gl 1 m this correspondence is given by the exponential and the logarithm; in particular L " logpGq P gl m . Proof. -See [6, Chapter 9, Theorem 9.10]. Definition 2.6. -Let G Ă Gl 1

Definition 2 .

 2 11. -Two topological groups G and H are said to be commensurable if they have a common open subgroup.

  27, Part II, Chapter V, §2, Corollary 2], or [6, Chapter 9, §9.5, Theorem 9.11]. In other words, G and H are commensurable. The two next examples make explicit Theorem 2.10.

Theorem 4 . 5 . 1 :Corollary 4 . 6 (

 45146 -Given p ě 3, and m ě 1. Let K{Q be an imaginary quadratic field extension such that K is p-rational. Then there exist continuous Galois representations ρ : GalpK p {Qq Ñ Gl m pZ p q with open image.Proof. -Apply Corollary 4.2: there exists a continuous Galois representation ρ GalpK p {Qq Ñ Sl 1 m ¸ρ0 p∆q ãÑ Gl m pZ p q with image containing Sl k m for some k " 0, as open subgroup. We conclude with Remark 4.4.As a corollary, we obtain: Theorem A). -There exist continuous Galois representations ρ : GalpQ{Qq Ñ Gl m pZ p q with open image satisfying:

Corollary 4 . 10 .

 410 -Suppose that e p " 1. There exist continuous Galois representations ρ : G Q Ñ Gl m pZ p q unramified outside tp, 8u and with open image in T m , for every m ď N p .Example 4.11. -' Take p " 37. Then e p " 1, k 1 " 5, and N p " 16. ' Take p " 257. Then e p " 1, k 1 " 93, and N p " 124.It is possible to give some asymptotic estimate.

Corollary 4 . 12 (

 412 Corollary C).

.

  Throughout this article p is a prime number. ' If M is a finitely generated Z p -module, set d p M :" dim Fp M {M p , M rps :" tm P M, pm " 0u, and T orpM q " tm P M, Dk, p k m " 0u. ' If G is a finitely generated pro-p group, set G ab :" G{rG, Gs, G p,el :" G ab {pG ab q p , and d p G :" d p G ab . ' If A is a Hausdorff, abelian and locally compact topological group, set A ^to be the Pontryagin dual of A.For the computations we have used the program PARI/GP[START_REF]PARI/GP version2.9[END_REF].

1. On pro-p groups and on pro-p extensions unramified outside p: the results we need 1.1. On pro-p groups. -For

  classical properties on cohomology and homology of pro-p groups, see for example[START_REF] Neukirch | Cohomology of Number Fields[END_REF] Chapters I and II]. Let 1 ÝÑ G ÝÑ Γ ÝÑ ∆ ÝÑ 1 be an exact sequence of profinite groups where G is a finitely presented pro-p group, and ∆ is a finite group of order coprime to p. Recall that by the Schur-Zassenhaus Theorem one has Γ » G ¸∆.

	Proposition 1.1. -Let M be a finite Γ-module of exponent p on which G acts trivially.
	Then for i ě 1, we have the isomorphism:

ab . Proposition 1.2. -

  Let M be a finite Γ-module of exponent p on which G acts trivially. If H 2 pG, Q p {Z p q " 0 then H 2 pG, M q » `T rps ^b M ˘∆.Proof. -By taking the G-homology of the exact sequence 0 Ñ Z p Ñ Z p Ñ Z{pZ Ñ 0, we get the exact sequence of F p r∆s-modulesH 2 pG, Z p q{p / / H 2 pG, Z{pq / / / / H 1 pG, Z p qrps.After observing that H 2 pG, Z p q ^» H 2 pG, Q p {Z p q " 0, then H 2 pG, Z{pq is isomorphic to `H1 pG, Z p qrps ˘^» T rps ^, and we conclude by Proposition 1.1. Z{pq ´dp H 2 pG, Z{pq " t ´dp H 2 pG, Z p q.

	Chapter VI, §15, Theorem 15.1]. By Pontryagin duality, we obtain H i pG, M q » H i pG, Z{pq b M , as ∆-modules. Since |∆| is coprime to p, by the Hochschild-Serre spectral sequence one also has H i pΓ, M q » H i pG, M q ∆ (see for example [22, Chapter II, §1, Lemma 2.1.2]). By combining these two observations we finally obtain the claimed isomorphism. Let us write G ab » Z t p ' T , Proposition 1.3. -One has d p H 1 pG, Suppose now that G is a free pro-p group on d generators, and let H be a pro-p group of p-rank d 1 ď d. Since G is projective, the pro-p group H can be seen as quotient of G. For our work we need a little bit more to take into account the action of ∆. The following proposition can be found in the paper of Greenberg [11, Proposition 2.3.1] and partially where T is the torsion subgroup of G The proof of Proposition 1.2 also allows us to obtain: in an unpublished paper of Wingberg [30].

Proposition 1.4. -

  Let Γ " G ¸∆ be a profinite group where G is free pro-p on d generators and where ∆ is a finite group of order n coprime to p. Let H be a finitely generated pro-p group on d 1 generators, with d ě d 1 . Suppose that there exists a homomorphism ∆ Ñ AutpHq such that the ∆-module H p,el is isomorphic to a sub-∆-module of G p,el . Then there exists a normal subgroup N of G, stable under ∆, such that G{N is ∆-isomorphic to H and so we have a surjection Γ H ¸∆.

Proposition 1.15. -

  Assuming the Leopoldt conjecture for K at p, one has

	χpF K,p {pq " 1 `nReg	´ÿ v|8	Ind ∆ ∆v 1

∆v , where n " rk : Qs, and where ∆ v is the group of decomposition of v in K{k. In particular if K{k is a CM-field one has χpF K,p {pq " 1 `nϕ, where ϕ is the nontrivial character of GalpK{kq.

  logarithm. -2.2.1. The Lie algebras gl m and sl m . -Take m ě 2. Let gl m be the Z p -free module of dimension m 2 generated by the matrices E i,j ppq :" p 1`ε E i,j , where E i,j are the elementary matrices. Then gl m is a Z p -Lie algebra, subalgebra of the algebra gl m pQ p q of the matrices of size m ˆm with coefficients in Q p , equipped with the Lie bracket pA, Bq " AB ´BA. It is not difficult to see that pgl m , gl m q Ă p 1`ε gl m : the algebra gl m is said to be powerful converge for x P gl m and z P Gl 1 m , where Gl 1

	and the logarithm series			
	logpzq :"	ÿ ně1	p´1q n`1 n	pz ´1q n
	(see [6, Chapter 9, §9.4]).			
	Thanks to [17, Chapter IV, Theorem 1.3.5.1], one knows that the exponential series
	exppxq :"	ÿ ně0	1 n!	x

  Let us consider the closed subgroup H of G generated by the g i 's. The group H is p-adic analytic. Observe that H Ă G k Ă Gl k m . For n ě 1, put H rns :" H X G n`k´1 . Hence H r1s " H. piq The pro-p group H is of p-rank s, and H p,el » H{H r2s . piiq For each n ě 1, H rns H, the quotient H rns {H rn`1s is p-elementary abelian, and H acts trivially (by conjugation) on H rns {H rn`1s .

	Lemma 3.1.

piiiq The H rns are open in H, and č n H rns " t1u. Proof.piq One has the commutative diagram:

  rG, G n`k´1 s. Hence H rns {H rn`1s is p-elementary abelian, and G and then H acts trivially on H rns {H rn`1s . piiiq Point piiq shows that the H rns are of finite index in H, and then open since H is pro-p finitely generated. Regarding the intersection, that is obvious since

  and this isomorphism is also compatible with the action of ∆. In particular, H rns {H rn`1s is a sub-∆-module of g p . ' Since f n pG q Ă H{H rns , byLemma 3.1 the group G acts trivially (via f n ) on H rns {H rn`1s . By Proposition 1.2 and piq we get H 2 pΓ, H rns {H rn`1s q » ´T rps ^b H rns {H rn`1s ¯∆. ' But by hypothesis T rps K g p . Then as H rns {H rn`1s ãÑ g p , one has T rps K H rns {H rn`1s

  el K,p . Then ∆ acts on M , and the two ∆-modules M and H p,el are isomorphic. Let us start with a character ω k i that appears in χpCl L rpsq, that is equivalent to say that ω 1´k i appears in χpT L,p rpsq. The characters of T L,p rps are ω 1´k i , and such a character becomes a character of T K,p rps if and only if a divides k i ´1. Hence K is p-rational if and only if a k i ´1 for every i. By using Corollary 4.2 and Remark 4.4, we obtain: Let p " 1 mod 4 be a prime number, and let m ě 3. Write p ´1 " 2 λ a where 2 a. Let tω k 1 , ¨¨¨, ω ke u be the characters corresponding to the nontrivial components of the p-Sylow of the class group of Qpζ

	Corollary 4.8. -p 257 3329 11777 114689 163841 184577 k 1 93 1951 8879 34343 140801 49029	4.3.2.

p q. Suppose that: piq v 2 pm ´1q ě v 2 pp ´1q if m is odd, and v 2 pm ´2q ě v 2 pp ´1q if m is even; piiq a pk i ´1q for i " 1, ¨¨¨, e. Then there exist continuous Galois representations ρ : G Q Ñ Gl m pZ p q unramified outside tp, 8u, and with open image. Example 4.9. -For p ď 4 ¨10 5 , there are only six cases for which piiq fails, and the index of irregularity e p is 1 for all of them:
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