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Av. F. D. Roosevelt 50, B-1050 Bruxelles, Belgium

2Institut FEMTO-ST, Département d’Optique, UMR 6174 CNRS,
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Experimental demonstrations of entangled quantum images produced through parametric down-
conversion have so far been confined to studying two photon correlations. Here we show that
multiphoton correlations between quantum images are accessible experimentally and exhibit many
new features including being sensitive to the phase of the bi-photon wavefunction. As a concrete
example, we consider a modification of existing quantum imaging experiments in which the CCD
cameras are moved out of focus, provide detailed analytical predictions for the resulting 4 photon
intereferences, and support these by numerical simulations. The proposed experiment can also be
interpreted as entanglement swapping: Bob’s photons are initially unentangled, but the joint de-
tection of Alice’s photons projects Bob’s photons onto an entangled state. The general approach
proposed here can be extended to other quantum optics experiments involving high dimensional
entanglement.

I. INTRODUCTION

Since the seminal works of Clauser [1] and Aspect [2],
entangled photons have been one of the workhorses of
quantum information sciences. Nowadays high dimen-
sional entangled photon pairs can be routinely produced
in the laboratory, using different degrees of freedom such
as angular momentum [3, 4], time-energy [5–8], position-
momentum [9–12], path entanglement (using integrated
optics) [13], or multiple degrees of freedom simultane-
ously [14]. The number of modes that can be entangled
can reach hundreds, or even thousands, see e.g.[4, 8, 10–
12]. These experiments have focused on the correlations
between two entangled photons. Here we show that if
one extends them to the study of multiphoton correla-
tions, then novel phenomenology and interference pat-
terns emerge. These new features are experimentally
accessible with current technology, as they already ap-
pear in 4 photon correlations. In the same way that the
quantum teleportation experiment of Bouwmeester et al.
[15] revolutionized quantum optics, we expect the present
proposal to considerably broaden the scope and interest
of high dimensional photonic entanglement.

An important inspiration for the present work is bo-
son sampling [16], see the experimental realizations of
[17–21]. On the one hand boson sampling provides the
theoretical framework for describing multiphoton corre-
lations. On the other hand the computational complexity
arguments of [16] show that as the number of modes and
the number of photons increases, the correlation pattern
become exceedingly complex and impossible to simulate
efficiently on a classical computer. But for moderate
number of photons (say 4 or 6), while this complexity
already shows up, it should be possible to fully inves-
tigate the system experimentally. The present work is
most closely related to the extension of boson sampling
to gaussian bi-partite states [22, 23], and to the low op-
tical depth boson sampling of [24].

For definitness we illustrate our approach in the case
of spatially entangled photons, as realised in [10, 11],
and schematized in Fig. 1. A spatially extended,
pulsed, pump laser illuminates a thin nonlinear crystal in
which photon pairs are produced by Spontaneous Para-
metric Down Conversion (SPDC) using Type II phase
matching. The signal and idler photons are not co-
linear and are imaged separately on Alice and Bob’s
cameras. Single photon resolution on each pixel of the
camera is achieved by using electron multiplying charge-
coupled devices (EMCCD). Such quantum imaging ex-
periments were introduced theoretically in [25]. Using
CCD cameras, they have been applied to demonstrations
of the Einstein-Podolsky-Rosen (EPR) paradox[11, 26],
ghost imaging[27], quantum adaptive optics[28], quan-
tum holography[12], sub-shot-noise imaging [29, 30],
quantum imaging with undetected photons [31], see [32]
for a review. Note that additional optical elements, such
as a Spatial Light Modulator (SLM), or a diffuser [28, 33],
can be inserted between the source and the CCD if de-
sired. Ghost imaging with entanglement-swapped pho-
tons was reported in [34] demonstrating the feasibility of
multiphoton quantum imaging experiments.

Here we consider multiphoton correlations on the im-
age planes. If the produced photons are indistinguishable
(except for the position-momentum degree of freedom),
then we don’t know which photon detected on Alice’s
camera is the partner of which photon detected on Bob’s
camera. The probability for a specific detection event is
obtained by summing all the possible pairings of signal
and idler photons, as illustrated in Fig. 1 in the case of
4 photon correlations.
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FIG. 1: Schematic of the proposed setup and interferences
between 4 photon correlations. A spatially extended, pulsed,
pump laser (L) generates photon pairs in a nonlinear crystal
(C) through SPDC. The signal and idler photons (red lines)
are imaged onto Alice’s and Bob’s CCD cameras. If two pho-
ton are detected on Alice’s camera and two photons are de-
tected on Bob’s camera, then we don’t know which photon
is the partner of which photons. The amplitudes for the two
processes interfere, and must be summed when computing
the probability of this event, see Eq. (4). This is indicated
schematically in the figure by the “+” sign between the two
amplitudes which must be taken before squaring. x, y, z and
x′, y′, z′ are the coordinates used in the main text. The lens
in the image indicate schematically that an imaging system
system is used, specifically either a 2-f or 4-f optical system,
slightly defocussed as measured by z and z′.

II. MULTIPHOTON CORRELATIONS IN
QUANTUM IMAGES

We treat the pump beam classically which implies that
the quantum state of the signal and idler photons is gaus-
sian and can be written as

|Ψ⟩ = N exp

(∫ ∫
dxdx′Φ(x,x′)a†xa

†
x′

)
|0⟩ , (1)

where Φ(x,x′) is the biphoton wavefunction, with x =
(x, y) and x′ = (x′, y′) the positions on Alice and Bob’s
image planes (we denote throughout Alice’s (Bob’s) vari-

ables with unprimed (primed) letters), a†x and a†x′ are
creation operators for photons at x and x′, |0⟩ is the
vacuum state, and N is a normalisation factor.

The probability of detecting n photons on Alice’s cam-
era at positions X(n) = x1, · · · ,xn and n photons on

Bob’s camera at positions X
′

(n) = x′
1, · · · ,x′

n is given by

[22, 23]

P (2n)(X(n);X
′

(n)) = |⟨0|ax1 · · · axnax′
1
· · · ax′

n
|Ψ⟩|2

= |N |2|Perm
(
Φx1,···,xn;x′

1,···,x′
n

)
|2 (2)

where Φx1,···,xn;x′
1,···,x′

n
is the n×n matrix whose (i, j)th

entry is given by the biphoton wavefunction at positions
(xi,x

′
j), i.e. by Φ(xi,x

′
j), and Perm is the permanent

of the matrix.
In order to simplify expressions, we make the following

approximations. First, in order to get the response of the
camera we need to integrate Eq. (2) over the area of each
pixel. We assume that Φ varies little over the area of a

pixel and therefore omit this integration. Second we as-
sume that the mean number of photons is much smaller
than the number of pixels, and consequently the prob-
ability of two photons reaching the same pixel is small,
and we do not consider these events. Third we assume
that losses are negligible.

Thus the probability of detecting a single pair at posi-
tions (x;x′) is given by

P (2)(x;x′) = |N |2|Φ(x,x′)|2 , (3)

and depends only on the norm of the biphoton wave-
function. But if two pairs are detected at (x1,x2) and
(x′

1,x
′
2), then the corresponding probability is given by

P (4)(x1,x2;x
′
1,x

′
2) = |N |2|Φ(x1,x

′
1)Φ(x2,x

′
2)

+Φ(x1,x
′
2)Φ(x2,x

′
1)|2 . (4)

A new interference effect arises because we do not know
whether the photon detected at x1 is the partner of the
photon detected at x′

1 or at x′
2, and we must sum the

amplitudes for these two processes as illustrated in Fig.
1. Therefore Eq. (4) is sensitive to the phase of the
biphoton wavefunction.

III. DEFOCUSING THE QUANTUM IMAGES

For the purpose of analytical predictions, we assume
that the biphoton wavefunction is gaussian, which is a
widely used and well justified approximation [35–37]. At
the surface of the nonlinear crystal (i.e. in the near field)
the biphoton wavefunction is thus given by

Φ(x,x′) ∝ exp

(
− 1

4w2
0

|x+ x′|2 − b2

4
|x− x′|2

)
. (5)

For simplicity of notation we omit, here and in the fol-
lowing expressions, the constant that multiplies the ex-
ponentials in Φ, and denote this by the symbol ∝. In
Eq. (5), w0 is the width of the pump beam, while b
takes into account that the phase matching conditions
are only partially enforced due to the finite thickness of
the nonlinear crystal. The photon pairs are produced ap-
proximately in the same location, up to an uncertainty
1/b. The Schmidt number of this biphoton wavefunction

is K = 1
4

(
bw0 +

1
bw0

)2
[35]. We are interested in the sit-

uation where w0 ≫ 1/b, corresponding to a large area of
illumination of the crystal and a high Schmidt number.
Experimentally the total number of position/momentum
modes in entangled images of order 2000 are reported
[10], although direct measurements of the Schmidt num-
ber have yielded a lower value of order 200 [11].
The Fourier transform of Eq. (5) gives the biphoton

wavefunction in the far field

Φ̃(p,p′) ∝ exp

(
−w

2
0

4
|p+ p′|2 − 1

4b2
|p− p′|2

)
(6)
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where p and p′ are the transverse momenta of Alice and
Bob’s photons.

For interesting interferences to arise in the 4 photon co-
incidences Eq. (4) we need a complex, oscillating bipho-
ton wavefunction. This is not the case for the near and far
field biphoton wavefunctions Eqs. (5, 6) which are real
and positive. But in [37] it was shown that as the photons
propagate, the entanglement between Alice’s and Bob’s
photons becomes encoded in the phase of the biphoton
wavefunction. This situation is readily accessible regime
experimentally: one simply needs to move the cameras
out of focus. Note that because of the symmetry between
Eqs. (5) and (6) one could either defocus the near field
image or the far field image. Below we consider the case
of defocusing the near field image.

If Alice and Bob’s photons travel a distance z and z′

from the crystal surface, then in the paraxial approxima-
tion, the biphoton wavefunction in momentum space is
given by

Φ̃(p,p′; z, z′) ∝ exp

(
−w

2
0

4
|p+ p′|2 − 1

4b2
|p− p′|2

−i z
2k

|p|2 − i
z′

2k
|p′|2

)
(7)

where k is the longitudinal momenta of the idler and
signal photons (assumed equal). In order to simplify the
expression for the Fourier transform of Eq. (7), we take
the limit w0 → ∞ in the resulting expression, whereupon
Φ(x,x′; z, z′) only depends on x − x′, i.e. we are in the
translation invariant limit. We then have

Φ(x,x′; z, z′) ∝ exp

(
−α− iβ

4
|x− x′|2

)
(8)

where α = b2

1+Z2 and β = b2Z
1+Z2 are real and positive with

Z = b2(z+z′)
2k . The uncertainty in the joint positions is

of size 1/
√
α, and increases when the defocusing (i.e. z

and z′) increase. The defocusing is important when Z ≫
1, whereupon β ≫ α, and the biphoton wavefunction
exhibits many oscillations within a defocusing spot.

Going back to Fig. 1, Eqs. (5, 6, 8) correspond to
the bi-photon wavefunction on the camera planes when
imaging the near field (the crystal surface), the far field,
and the defocused near field respectively. The coordi-
nates (x, y) and (x′, y′) in Fig. 1 correspond to x and x′

in the case of Eqs. (5, 8) ) and to p and p′ in the case
of Eq. (6), while the z and z′ coordinates correspond to
the degree of defocusing.

In order to obtain predictions for the 4 photon correla-
tions, we insert Eq. (8) into Eq. (4). One finds that the
4 photon correlation probability takes the simple form

P (4)(X;X′; z, z′) ∝ exp(−α
4
D)

(
cosh(

α

2
S) + cos(

β

2
S)

)
(9)

where D(X;X′) = |x1 −x′
1|2 + |x1 −x′

2|2 + |x2 −x′
1|2 +

|x2 − x′
2|2 and S(X;X′) = (x1 − x2).(x

′
1 − x′

2). When

the defocusing is significant (β ≫ α) then the 4-photon
coincidence probabilities have strong oscillations given
by the term cos(β2S). In Appendix A we show that the

oscillating term in Eq. (9) (the term in cos(β2S)) is a
robust prediction that does not depend on the gaussian
approximation Eq. (5). And in Appendix B we generalize
Eq. (9) to higher order correlations and show that the
expressions for P (2n) are much more complex as soon as
n > 2.

IV. NUMERICAL SIMULATIONS

In order to confirm these analytical predictions, we car-
ried out numerical simulations using the method intro-
duced in [38] and since used extensively, see e.g. [39].
The idea of the simulations is to take as input for the
signal and idler fields gaussian white noise with inten-
sity corresponding to half a photon per mode. This field
is numerically propagated through the system, including
the non linear crystal. The obtained fields are used to
obtain, after averaging over repetitions of the simulation
and appropriate subtractions, expectation values of the
4 point intensity correlations

I(x1,x2;x
′
1,x

′
2) = ⟨Ψ|nx1

nx2
nx′

1
nx′

2
|Ψ⟩ (10)

where nx = a†xax is the number operator at position x.
We then subtract the correlations of lower order: acciden-
tal coincidences between non twin photons and between
non twin signal and idler pairs (two bunched photons
in an image, that do not correspond to twin photons in
the other image) to obtain the genuine 4 point intensity
correlations.

In Fig. 2 we compare the numerical simulations with
the analytical predictions of Eq. (9). The numerical sim-
ulations were carried out for a pump beam with a waist
w0 = 200 µm, a crystal thickness of 50 µm, and a pump
laser wavelength of 351 nm. The pixel size (used to dis-
cretize the numerical simulations) is 2.7 µm. The field
of view is 256 ∗ 256 pixels. The intensity of the pump
beam is adjusted so that the intensity at the center of
the signal and idler beams after propagation through the
crystal is approximately 0.6 photon per pixel. The beam
is then propagated 100 µm beyond the crystal in order
to defocus it. The stochastic simulations were repeated
5 105 times in order to obtain sufficient statistics. To
exhibit the oscillations of P (4) encoded in the variable S
we fix two coordinate differences, use two other coordi-
nate differences as plot variables, and average over the
remaining 4 coordinates. The differences between theory
and numerics correspond to a signal-to-noise ratio of 4.9,
in agreement with a model of the numerical uncertainties
developed in Appendix C.
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FIG. 2: Comparison of analytical predictions and numerical
simulations for 4 photon correlations in quantum images. To
allow the comparison, the correlations of each row are nor-
malized to unity and represented with a false color scale ex-
pressed in normalized units (N.U.). The coordinates that are
not fixed in the figure are averaged out.

V. EXPERIMENTAL IMPLEMENTATION.

Experimental parameters for an experimental imple-
mentation could be as follows. 100 fs pump pulses at 355
nm, with a waist w0 = 200 µm, produce photon pairs in
a β-barium borate crystal of thickness 50µm. The non-
colinear signal and idler photons pass through a 3 nm
wide notch fillter to ensure that they are indistinguish-
able. They are imaged onto the CCD cameras with either
a 2f or 4f optical system, slightly defocused as discussed
in the main text. The overall detection efficiency (the
probability that a signal or idler photon is registered on
the camera, taking into account all losses and detector
inefficiency) can be taken to be η = 0.3. In Appendix C
we estimate that 105 to 106 images need to be taken in or-
der to reproduce experimentally images similar to those
in Fig. 2. For comparison Ref. [28] used 107 images to
analyse in detail the biphoton wavefunction in a quantum
imaging experiment, showing that such an experiment is
accessible using present technology). Two related exper-
iments are Ref. [34] that demonstrated quantum imag-
ing experiments with 4 photons but with images were
restricted to 4 pixels, and [40] that studied 4 photon cor-
relations but using the polarisation degree of freedom.

VI. INTERPRETATION AS ENTANGLEMENT
SWAPPING

The high dimensional space in which the proposed 4
photon experiment takes place makes the experiment
much richer. As illustration of the new features that
emerge we show that a modification of the experiment
allows for an interpretation as entanglement swapping

[41].
Recall that initially the photon pairs shared between

Alice and Bob are entangled, but there is no entangle-
ment between Bob’s photons. The joint detection of
Alice’s two photons projects Bob’s photons into an en-
tangled state. The intuition is that the overlap of the
wavefunctions of Alice’s two photons, followed by the
detection of these two photons at specific positions, is
analoguous to the action of the beam splitter followed by
joint detection in the teleportation experiment in [15].
Indeed, suppose we postselect that two photon pairs are
produced and that Alice’s photons are detected at posi-
tions xA1 and xA2. Then it follows from Eq. (1)) that
Bob’s two photons are projected onto the entangled state

|ϕ⟩ =

∫
dx′

1dx
′
2 (Φ(xA1,x

′
1)Φ(xA2,x

′
2)

+Φ(xA1,x
′
2)Φ(xA2,x

′
1)) a

†
x′
1
a†x′

2
|0⟩ . (11)

To illustrate this in more detail, suppose that xA1 =
(+a, 0) and xA2 = (−a, 0), that the biphoton wavefunc-
tion is given by Eq. (8), and that Bob’s photons are
postselected to be in the vicinity of (+l, 0) and (−l, 0).
For large enough defocusing, and small enough values of
a and l, the quantum state Eq. (11) is approximately
given by a momentum entangled state (see Appendix D
for the derivation):

|ϕ⟩ ≈
(
eiφ1 |p′−+; +l⟩|p′+−;−l⟩+ eiφ2 |p′−−; +l⟩|p′++;−l⟩

)
(12)

where φ1,2 are unimportant phases, and |p′;±l⟩ are ap-
proximate momentum states located near (±l, 0) respec-
tively with zero momentum in the y direction, and mo-
mentum p′±± = ±βl

2 ± βa
2 in the x direction.

In order to demonstrate that the resulting state indeed
has the form Eq. (12), one needs to measure the first
photon (located near (+l, 0)) in the basis spanned by
|p′−±; l⟩ and the second photon (located near (−l, 0)) in
the basis spanned by |p′+±;−l⟩. Such measurements can
be realised by inserting along the paths of the photons a
Spatial Light Modulator (SLM) such that around regions
(±l, 0) the SLM has phase profiles which are periodic
with period 2π/∆p, with ∆p = p±+ − p±− = βa, and
then measuring in the far field, see Fig. 3 and Appendix
E.

VII. CONCLUSION

In the present work we have shown that entangled pho-
tons of high dimension exhibit interesting multiphoton
correlations, focusing on the specific case of entangled
quantum images. Interesting multiphoton correlations
already appear in the 4 photon case. They can be ex-
ibited by defocusing the images, which is of course easy
experimentally. We provide detailed analytical predic-
tions for the resulting 4 photon intereferences. These are
supported by numerical simulations. We further show
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FIG. 3: Proposed setup to demonstrate entanglement swap-
ping between quantum images (the lens indicate schemati-
cally that imaging optics is required). Alice’s camera plane
is defocused with respect to the imaging the crystal surface
(z coordinate in the image). The joint detection of Alice’s
photons at a specific position, say (+a, 0) and (−a, 0), leaves
Bob’s photons in an entangled state. In order to analyse the
entanglement between his photons, Bob uses a Spatial Light
Modulator (SLM) on which is imprinted a periodic phase pro-
file (represented by gray lines in the figure). The SLM is po-
sitioned so as to be in the plane imaging the crystal surface.
If one photon passes through one window of his SLM, and the
other photon passes through the other window, then the pe-
riodic phase imprinted on the photons allows Bob to analyse
the momentum entanglement between his photons. This is
obtained by positioning Bob’s camera in the far field (where
detection events measure the transverse momentum of the
photons). (The detailed procedure is described in Appendix
E).

that this experiment can be interpreted as entanglement
swapping between photons. Bob’s photons are initially
unentangled. But the joint detection of Alice’s photons
projects Bob’s photons onto an entangled state.

The present work could be extended in several direc-
tions. First of all it calls for an experimental demon-
stration as the multiphoton correlations described here
are accessible with current experimental techniques. The
main experimental difficulties are to make the different
photons produced indistinguishible (except for the spa-
tial degree of freedom) in order to allow for multiphoton
intereferences, and to accumulate sufficient statistics in
order to see the correlations emerge from the background.
As discussed above, this seems of comparable difficulty
to other experiments that have been realised previously.
A successful experiment of 4-photon correlations would
set the stage for investigating higher order correlations
(6 and more photons).

Second, the proposed experiment should be compared
with boson sampling experiments[17–21] whose aim is to
have a highly complex bi-photon wavefunction in order to
maximise the complexity of a classical simulations. Here
we propose using a quite simple bi-photon wavefunctions,

leading to simple expressions for the multi-photon cor-
relations. However the bi-photon wavefunction can be
complexified, for instance by inserting SLMs along the
optical path as proposed in [24]. Since quantum imag-
ing experiments with hundreds to thousands of modes
have been demonstrated[10, 11], quantum imaging may
ultimately provide a more scalable approach to Boson
sampling.

Third, the interpretation as entanglement swapping
suggests that many mutliphoton experiments such as
generation of GHZ states [42], W states[43], etc... could
find analog implementations using quantum imaging ex-
periments.

Finally, the general approach proposed here is not lim-
ited to the spatial degrees of freedom. Photons entangled
in other degrees of freedom, such as frequency or angular
momentum, could also be used to investigate multipho-
ton correlations. These directions in which the present
work can be extended show that multiphoton correlations
betweeen quantum images promises to be a rich area of
study, both theoretically and experimentally.

Appendix A: Robustness

In this section we show that in the limit of large defo-
cusing our results do not depend on the gaussian approx-
imation used in the main text. We derive a form for the
biphoton wavefunction and for the 4 photon coincidence
probabilities that is valid when z + z′ is large.

In order to compare the results obtained in this section
with the results obtained in the main text, we note that
when z + z′ is large Eq. (8) in the main text takes the
form

Φ(x,x′; z, z′)

≈ exp

(
− k2

b2(z + z′)2
|x− x′|2 + i

k

2(z + z′)
|x− x′|2

)
. (A1)

In general the biphoton wavefunction at transverse po-
sitions x and x′ on Alice and Bob’s camera’s, which are
positioned a distance z and z′ from the non linear crystal,
is given by

Φ(x,x′; z, z′) ∝
∫ ∫

dpdp′ Φ̃(p,p′)

× exp
(
−i z

2k |p|
2 − i z

′

2k |p
′|2 + ip · x+ ip′ · x′

)
(A2)

where Φ(p,p′) is the biphoton wavefunction (in momen-
tum space) at the crystal surface, which we no longer
take to be gaussian.

We place ourselves in the translation invariant limit,
so that

Φ̃(p,p′) = δ(p+ p′)f̃(
p− p′

2
) . (A3)



6

Eq. (A2) therefore becomes

Φ(x,x′; z, z′) ∝
∫
dp f̃(p)

× exp
(
−i (z+z′)

2k |p|2 + ip · (x− x′)
)

(A4)

We suppose that the crystal is not very thick, so that
at the crystal surface the photons are highly correlated
in position. This implies that f (the Fourier transform

of f̃) is strongly peaked around 0, and hence that f̃ is
a slowly varying function. Therefore, for large enough
z + z′, the integral in Eq. (A4) can be approximated by
saddle point integration. The saddle is at

p∗ =
k(x− x′)

z + z′
(A5)

and Φ(x,x′; z, z′) is approximately given by

Φ(x,x′; z, z′) ≈ f̃

(
k(x− x′)

z + z′

)
exp

(
i

k

2(z + z′)
|x− x′|2

)
.

(A6)
This can be compared with Eq. (A1). We see that the
quadractic phase of Φ is robust prediction of the model.
On the other hand the gaussian prefactor is not.

Upon inserting Eq. (A6) into Eq. (4), one finds that
the 4 photon correlation probability takes the form

P (2)(x1,x2;x
′
1,x

′
2; z, z

′)

∝ |f̃11′ |2|f̃22′ |2 + |f̃12′ |2|f̃21′ |2

+2|f̃11′ f̃22′ f̃12′ f̃21′ | cos
(

k

z + z′
(x1 − x′

1) · (x2 − x′
2) + φ

)
(A7)

where we use the notation

f̃ij′ = f̃

(
k(xi − x′

j)

z + z′

)
(A8)

for the slowly varying prefactors, and φ is the phase of
f̃11′ f̃22′ f̃

∗
12′ f̃

∗
21′ .

Equation (A7) has the same structure as Eq. (9) in the
main text. In particular the last term in Eq. (A7) corre-
sponds to the oscillating term cos(βS/4) in Eq. (9). The
argument of the harmonic function is the same (βS/4) in
both expressions, up to the phase φ.
Further note that when x1,x2,x

′
1,x

′
2 are all close to

each other, then we have approximate equality of the
prefactors f̃11′ = f̃22′ = f̃12′ = f̃21′ = f̃(0), consequently

φ = 0, and therefore Eq. (A7) further simplifies to

P (2)(x1,x2;x
′
1,x

′
2; z, z

′)

∝ 2|f̃(0)|4
(
1 + cos

(
k

z + z′
(x1 − x′

1) · (x2 − x′
2)

))
.

(A9)

Eqs. (A7) and (A9) show that the oscillations in the
4 photon probabilities is thus a robust prediction of the
proposed experiment.

Appendix B: Higher order correlations

In this section we give expressions for higher order cor-
relations in quantum imaging experiments, i.e. between
n photons on Alice’s camera and n photons on Bob’s
camera. The case n = 2 yields Eq. (9) in the main text.

The amplitude to find n photons on Alice’s camera at
positions x1, · · · ,xn and n photons on Bob’s camera at
positions x′

1, · · · ,x′
n is given by

⟨0|ax1
· · · axn

ax′
1
· · · ax′

n
|Ψ⟩

∝ Perm (Φx1,···,xn;x′
1,···,x′

n
)

=
∑
σ

exp

(
−α− iβ

4

n∑
i=1

|xi − x′σ(i)|
2

)

= exp

(
−α− iβ

4
D(n)

)∑
σ

exp

(
−α− iβ

4
S(n)
σ

)
(B1)

where we have used Eq. (8) in the main text for the
biphoton wavefunction, and where

D(n) =
1

n

n∑
i,j=1

|xi − x′j |2 (B2)

S(n)
σ =

n∑
i=1

|xi − x′σ(i)|
2 − 1

n

n∑
j=1

|xi − x′j |2


= 2

n∑
i=1

xi · x′σ(i) − 1

n

n∑
j=1

xi · x′j

 . (B3)

(Note that D(2) = 2D where D(2) is defined in Eq. (B2)
and D is defined in the main text below Eq. (9)).

We therefore find that

P (n)(x1, · · · ,xn;x
′
1, · · · ,x′

n) ∝ exp(−α
2
D(n))|

∑
σ

exp

(
−α− iβ

4
S(n)
σ

)
|2

= exp(−α
2
D(n))

(∑
σ

exp
(
−α
2
S(n)
σ

)
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+2
∑
σ<σ′

exp
(
−α
4
(S(n)

σ + S
(n)
σ′ )

)
cos

(
β

4
(S(n)

σ − S
(n)
σ′ )

))
(B4)

(where by
∑

σ<σ′ we mean that we do a double sum over
all permutations, with σ ̸= σ′, and each pair (σ, σ′) only
counted once).

Eq. (B4) contains n!(n!+1)
2 terms. In the case n = 2

the expression simplifies because there are only two per-
mutations, the identity I and σ12, and also because we

have that S
(2)
I = −S(2)

σ12 . This yields Eq. (9) in the main
text. In the case n = 3 there are 6 permutations, corre-
sponing to 21 terms. The complexity of the multiphoton
correlations thus grows rapidly as the number of photons
increases.

Appendix C: Signal-to-noise ratio (SNR)

Here we estimate the Signal to Noise Ratio (SNR) in
the proposed experiment, and hence the number of cam-
era frames required to reach a desired SNR. We present
a qualitative estimate that shows the dependence on the
main parameters. For instance our estimates are only
valid for low or moderate number of produced pairs, and
we do not take into account effects due to the interfer-
ence effects described in the main text (this is precisely
the signal we want the measure). A more precise esti-
mate would compute exactly all the probabilities for the
signal we want to measure and all the backgrounds. This
goes beyond the present work.

1. Parameters

For ease of reading, we list here the parameters that
will be used in our analysis.

• N is the average number of photons produced by
the pump pulse.

• nPixels ≫ 1 is the number of pixels over which
photons can be registered. Note that this does not
necessarily correspond to the number of pixels of
the camera as one may bin several camera pixels
together, and on the other hand part of the camera
area may not be used.

• 0 < η < 1 is the probability that a photon is de-
tected. (1 − η are the losses, including all optical
losses, detector efficiency, etc..).

• nPixelsCond > 1 is the number of pixels over which
Bob’s photon can be found, given that Alice de-
tected a photon at a specific pixel.

• P1 denotes the probability that a photon is regis-
tered on a pixel of Alice’s camera (or a pixel of
Bob’s camera).

• PCoincid
2 denotes the probability that two photon

from a pair are registered, one on Alice’s camera
and one on Bob’s cameras.

• PCoincid
4 denotes the probability that four photon

from two pairs are registered, two on Alice’s camera
and two on Bob’s cameras.

• nframes is the number of camera frames accumu-
lated to get sufficient statistics.

• Pdark is the probability of a dark count. We will
take Pdark = 0 below (supposing that it is not the
dominant source of noise). We indicate below how
to take into account Pdark ̸= 0.

• ntemp is the number of temporal/spectral modes
of Alice and Bob’s photons. We will initially sup-
pose that there is a single temporal mode (i.e that
the pump pulse is sufficiently short, and subsequent
spectral filtering of signal and idler sufficiently nar-
row, that the downconverted photons cannot be
distinguished based on temporal-spectral informa-
tion). We will then show how our estimates change
when there is more than one temporal mode.

2. Single pixel detection probability

The probability of having a click on a given pixel i of
Alice’s camera (or i′ of Bob’s camera) is

P1(i) = P1(i
′) = η

N

nPixels
. (C1)

3. Two photon coincidence probability

If Alice registers a photon at pixel i, then the other
photon of the pair can be registered over a certain zone
Zi of the Bob’s camera. Let us consider the probability
of a coincidence (i, i′) where i′ belongs to the zone Zi.

PCoincid
2 (i, i′) = P1(i)P

Coincid(i′|i)

= P1(i)
η

nPixelsCond
(C2)

where PCoincid(i′|i) is the probability that Bob detects
the partner photon at pixel i′, given that Alice detected
a photon from the same pair at pixel i.



8

4. Four photon coincidence probability

What is the probability that Alice detects photons at
pixels i, j and Bob detects photons at pixels i′, j′? The
interesting case is when i′, j′ ∈ Zi, that is photon i

′ could
be the partner of photon i or of j, and similarly for j′.
Then there can be interferences between the different
pairs. This is given by

PCoincid
4 (ij, i′j′) = PCoincid

2 (i, i′)PCoincid
2 (jj′) (C3)

(up to order 1 factors due to the interferences described
in the main text, which is precisely what we want to
measure). Thus

PCoincid
4 =

(
PCoincid
2

)2
=

(
P1

η

nPixelsCond

)2

. (C4)

5. Total coincidence probabilities

The probability of a click on one pixel is

P (click) = P1 + Pdark (C5)

where we indicate how to take into account the dark
counts. We neglect Pdark in what follows, but it could
be easily be included in the estimates of the SNR.

The total probability of a coincidence (i, i′) where i′

belongs to the zone Zi on one image is

PCoincidTotal
2 (i, i′) = PCoincid

2 (i, i′) + (P (click))
2

(C6)

where the second term is due to accidental coincidences.
The probability of a 4-fold coincidence is

PCoincidTotal
4 (ij, i′j′|1 image)

= PCoincid
4 (ij, i′j′|1 temp mode) + (P (click))

4
+ ...

(C7)

where the second term is due to accidental 4 fold coinci-
dences (There are other accidental kinds of 4 fold coin-
cidences, for instance when 2 photons belong to a pair,
and the other 2 do not, for simplicity we do not write all
these terms).

6. SNR for 2 Photon correlations

To measure the correlations, we need to accumulate
nframes camera images.

The number of single detections on pixel i is

N1(i) = nframesP (click)±
√
nframesP (click)(C8)

where we add the statistical uncertainty.
The number of coincidences on pixels i, i′ follows from

Eq. (C6):

N coincid
2 (i, i′) = nframesPCoincid

2 + nframesP (click)2 .

(C9)

The signal we want to measure is

S2 = nframesPCoincid
2 (C10)

while the noise is the statistical fluctuations of the two
terms in Eq. (C9):

N2 = ±
√
nframesPCoincid

2 +±
√
nframesP (click)2 .

(C11)
The first noise term will dominate when we have low
pump power so that photon pairs are rare, while the sec-
ond noise term will dominate when photon pairs are com-
mon. The two noise terms are of comparable magnitude
when P (click)2 = PCoincid

2 which corresponds to

N =
nPixels

nPixelsCond
. (C12)

That is the two noise terms are comparable when approx-
imately one pair is produced per zone of size nPixelsCond.
Since the first noise term is the fluctuations of the sig-
nal, to improve the SNR ratio we should increase the
pump power (i.e. increase N) until the second noise term
becomes comparable to the first. From now on we as-
sume that this is the case, and that the first noise term
is smaller or equal than the second.
The Signal to Noise Ratio is then

SNR2 =
√
nframes

PCoincid
2

P1
. (C13)

Hence the number of frames needed to exhibit 2 photon
coincidences is

nframes
2 = SNR2

2

P1

PCoincid
2

= SNR2
2

n2PixelsCond

η2
. (C14)

7. SNR for 4 Photon correlations

Similarly the number of 4 fold coincidences on pixels
i, j, i′, j′ follows from Eq. (C7):

NCoincid
4 (ij, i′j′)

= nframesPCoincid
4 (ij, i′j′) + nframesP (click)4 + ... .

(C15)

The signal we want to measure is

S4 = nframesPCoincid
4 (C16)

while the noise is the statistical fluctuations of the two
terms in Eq. (C15):

N4 = ±
√
nframesPCoincid

4 +±
√
nframesP (click)4 .

(C17)
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One easily shows that two noise terms are comparable
when Eq. (C12) is satisfied. To make the SNR ratio
maximal, one should work in a regime where the pump
powe is large enough that the first noise term is smaller
or equal than the second.

The Signal to Noise Ratio is then

SNR4 =
√
nframes

PCoincid
4

P 2
1

=
√
nframes

(
PCoincid
2

P1

)2

=
√
nframes

η2

n2PixelsCond

(C18)

Hence the number of frames needed to exhibit 4 photon
coincidences is

nframes
4 = SNR2

4

(
P1

PCoincid
2

)4

= SNR2
4

n4PixelsCond

η4
(C19)

8. Effect of distinguishable photons

If one uses a long pump pulse (or equivalently a too
broad specral filter), then photon pairs produced at dif-
ferent times will be distinguishable. This situation would
also arise if the pump pulses were short enough, but the
camera averages over several successive pump pulses. We
denote ntemp the number of temporal modes that are av-
erage over in one camera frame.

Then we have that that P1, P
Coincid
2 , PCoincid

4 are all
mutiplied by ntemp.
Therefore the factor ntemp cancels in the SNR for pho-

ton pairs Eq. (C13). Hence one can study the photon
pair correlations using a CW pump (which is often done
experimentally).

However the factor ntemp does not cancel in the SNR
for 4 photon coincidences. Indeed only a fraction 1/ntemp

4 fold coincidences will come from indistinguishable pairs
while all other 4 fold coincidences will come from distin-
guishable pairs and will contribute to background but
not to the desired signal. Hence we will have

SNR4 → SNR4√
ntemp

(C20)

and

nframes
4 → ntempn

frames
4 . (C21)

9. Estimation of the number of frames needed

We assume the following parameters:

η = 0.3

nPixelsCond = 30

SNR = 10
nPixels

nPixelsCond
= 103 (C22)

The last estimate expresses the fact that the total size of
a camera image is much larger than the zone over which
photons are correlated. Hence a single camera image
contains effectively nPixels

nPixelsCond
independent images, each

covering a zone of size nPixelsCond, and the number of
frames that need to be taken is reduced by this factor.
Hence from Eq. (C14 )we have

nframes
2 = 103 (C23)

and from Eq. (C19)

nframes
4 = 107 . (C24)

This estimate is reduced if one wants to obtain a figure
such as Fig. 2 in the main text, as in this figure K ≈ 50
four-fold correlations are averaged to obtain each pixel
in the figure. To obtain the same SNR, the number of
frames required is reduced by a factor K (see discussion
in subsection C 10). We thus reach an estimate between
105 and 106 frames to reproduce experimentally a figure
such as Fig. 2.

10. Comparison between analytics and simulations
in Fig. 2 of the main text.

In the simulation, we perform for each pixel of Fig.
2 an average of K = 49 values of four-fold correlations
between Alice’s pixels of coordinates x1,x2, and Bob’s
pixels of coordinates x′

1,x
′
2. The averaged values cor-

respond to an unique value of x1 − x2,x
′
1 − x′

2. This

averaging multiplies the SNR by
√
S, giving, in the con-

ditions of the simulation corresponding to ntemp = 1,
η = 1, an expected SNR of:

SNR =

√
S
√
nframes

n2pixelsCond

(C25)

With nframes = 5.105, npixelsCond = 32, we obtain with
Eq.C25 an SNR of 4.8. This value of npixelsCond seems
reasonable because of the decreasing of the correlations
close to the edges of the sub-figures in figure 2.
We can compare this with the SNR estimated from the

images by comparing the analytical and the simulated
values in Fig. 2. This gives an estimated SNR of:

SNRest =
Analytic√

(Analytic− simulated)2
= 4.9 (C26)

There is thus a good agreement betwen the two estimates.
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Appendix D: Entanglement Swapping

We give here details about the interpretation in terms
of entanglement swapping.

We suppose that the biphoton wavefunction is given
by Eq. (8) and that Alice detects her photons at po-

sitions xA1 = (+a, 0) and xA2 = (−a, 0). We denote
the transverse coordinates on Bob’s detection plane by
x′
1 = (x′1, y

′
1) and x′

2 = (x′2, y
′
2). Then the wavefunction

of Bob’s two photons takes the form (insert Eq. (8) into
Eq. (11)):

|ϕ⟩ = exp

(
−α− iβ

4

(
(a− x′1)

2
+ y′1

2
+ (a+ x′2)

2
+ y′2

2
)
+ exp

(
−α− iβ

4

(
(a+ x′1)

2
+ y′1

2
+ (a− x′2)

2
+ y′2

2
)))

= exp

(
−α− iβ

4

(
y′1

2
+ y′2

2
))

exp

(
−α− iβ

4

(
2a2 + x′1

2
+ x′2

2
))

×
(
exp

(
−α− iβ

2
a(x′2 − x′1)

)
+ exp

(
−α− iβ

2
a(x′1 − x′2)

))
(D1)

We suppose that x′
1 = (x′1, y

′
1) and x′

2 = (x′2, y
′
2) are

located in the vicinity of (l, 0) and (−l, 0). We then write

x′1 = l + δ′1 x′2 = −l + δ′2 . (D2)

We bound the region in which Bob’s particles can be
located by

−δ ≤ δ′1, δ
′
2 ≤ +δ

−y ≤ y′1, y
′
2 ≤ +y (D3)

with

δ ≪ l . (D4)

In order to simplify Eq. (D1) we make the following
assumptions

β ≫ α (large defocusing, i.e. Z ≫ 1)

(α, β)× y ≪ 1 (neglect y dependence)

(a2, al, l2)× α ≪ 1 (neglect all terms that depend on α)

δ2β ≪ 1 (neglect second order terms in δ′1, δ
′
2)

(a2, al, l2)× β ≫ 1 (keep phases proportional to β) .

With these assumptions Eq. (D1) takes the form

ϕ ≃ exp

(
i
β

2

(
a2 + l2

))
×
(
exp

(
i
β

2
(−2al + (l − a)δ′1 − (l − a)δ′2)

)
+exp

(
i
β

2
(+2al + (l + a)δ′1 − (l + a)δ′2)

))
(D5)

which we can rewrite in terms of momentum states as

|ϕ⟩ ≃ exp

(
i
β

2

(
a2 + l2

))(
exp (−iβal) |p′1 = −βl

2
+
βa

2
;+l⟩|p′2 = +

βl

2
− βa

2
;−l⟩

+exp (+iβal) |p′1 = −βl
2

− βa

2
;+l⟩|p′2 = +

βl

2
+
βa

2
;−l⟩

)
. (D6)

This is the expression given in the main text in Eq. (12). Appendix E: Demonstrating Entanglement
Swapping

In the main text we skteched how to demonstrate ex-
perimentally that state Eq. (D6) is entangled by insert-
ing a SLM in the beam of Bob’s photons, see Fig. 3 in
the main text. We present here the argument in more
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detail.
The state Eq. (D6) is a two qubit state, which we can

write in abstract notation as

|ϕ⟩ = a|0⟩B |0⟩B′ + b|1⟩B |1⟩B′ . (E1)

where

a = exp (−iβal)
b = exp (+iβal)

|0⟩B = |p′1 = −βl
2

+
βa

2
;+l⟩

|1⟩B = |p′1 = −βl
2

− βa

2
;+l⟩

|0⟩B′ = |p′2 = +
βl

2
− βa

2
;−l⟩

|1⟩B′ = |p′2 = +
βl

2
+
βa

2
;−l⟩ . (E2)

and where the subscripts B and B′ denote the photons
that are located near +l and −l respectively.
Measuring in the {|0⟩B , |1⟩B} and {|0⟩B′ , |1⟩B′} bases

is straightforward. First insert a mirror to separate spa-
tially the B states from the B′ states (recall that these
states are localised in momentum and in space). Then
put the CCD camera in the far field.

But measuring only in the computational basis (the ba-
sis {|0⟩, |1⟩}) is not enough to demonstrate entanglement.
For this we need additional measurements. We show how
to do so using a Spatial Light Modulator (SLM).

Suppose that we put on the SLM a periodic phase pro-
file φ(x) = ϵ cos(kx+ θ). Then a wavefunction ψ(x) be-
comes

ψ(x) → ψ(x)eiφ(x) . (E3)

We can expand the phase in Fourier series as

eiϵ cos(kx+θ) =
∑
n

an(ϵ)e
in(kx+θ)

≈ 1 + i
ϵ

2
ei(kx+θ) + i

ϵ

2
e−i(kx+θ) +O(ϵ2)(E4)

where the exact coefficients an(ϵ) = inJn(ϵ) follow from
the Jacobi-Anger expansion (with Jn the Bessel function
of the first kind). In the second line we give the expres-
sion for small ϵ which we use below as it is conceptually
simpler, and sufficient to demonstrate the principle.

From Eq. (E4) it follows that acting on a momentum
state |p⟩, the SLM carries out the transformation

|p⟩ → |p⟩+ i
ϵeiθ

2
|p− k⟩+ i

ϵe−iθ

2
|p+ k⟩ (E5)

Acting on the superposition of two momentum states
|ψ⟩ = α|p⟩+β|p+k⟩ (where we suppose that the momenta
differ by exactly the wave number k of the SLM phase),
we therefore have

|ψ⟩ = α|p⟩+ β|p+ k⟩ → i
ϵeiθ

2
α|p− k⟩

+

(
α+ i

ϵeiθ

2
β

)
|p⟩

+

(
β + i

ϵe−iθ

2
α

)
|p+ k⟩

+i
ϵe−iθ

2
β|p+ 2k⟩ (E6)

By measuring in the far field, the probability of finding
the photon in spots corresponding to momenta p and p+k
will be equal to the norm square of the coefficients of the
second and third line in Eq. (E6). These probabilities
are proportional to

|
(
⟨p| − i ϵe

−iθ

2 ⟨p+ k|
)
|ψ⟩|2

and

|
(
−i ϵe

+iθ

2 ⟨p|+ ⟨p+ k|
)
|ψ⟩|2 (E7)

respectively.

Therfore by both measuring in the original {|p⟩, |p +
k⟩} basis, and by carrying out the above measurement
for different values of θ (for fixed ϵ) one easily obtains
tomographically complete information on the state.

Note that using the Jacobi-Anger expansion mentioned
in Eq. (E4), one can carry out the above analysis for
finite value of ϵ. One finds for instance that the proba-
bilities for the far field probabilities at momenta p and
p+ k are given by

|
(
a∗0⟨p|+ a∗1e

−iθ⟨p+ k|
)
|ψ⟩|2

and

|
(
a∗−1e

+iθ⟨p|+ a∗0⟨p+ k|
)
|ψ⟩|2 (E8)

instead of the approximate expression Eq. (E7).

Going back to the problem Eqs. (E1, E2), we see that
choosing k = βa for the wave number of the phase on the
SLM will allow to do a tomographically complete set of
measurements on the state Eq. (E1).
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