
HAL Id: hal-04261390
https://hal.science/hal-04261390v1

Submitted on 27 Oct 2023 (v1), last revised 15 Nov 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decision and Complexity of Dolev-Yao Hyperproperties
(Technical Report)

Itsaka Rakotonirina, Gilles Barthe, Clara Schneidewind

To cite this version:
Itsaka Rakotonirina, Gilles Barthe, Clara Schneidewind. Decision and Complexity of Dolev-Yao Hy-
perproperties (Technical Report). Symposium on Principles of Programming Languages (POPL), Jan
2024, London, United Kingdom. �hal-04261390v1�

https://hal.science/hal-04261390v1
https://hal.archives-ouvertes.fr

Decision and Complexity of Dolev-Yao Hyperproperties
(Technical Report)
ITSAKA RAKOTONIRINA,MPI-SP, Germany

GILLES BARTHE,MPI-SP, Germany and IMDEA Software Institute, Spain

CLARA SCHNEIDEWIND,MPI-SP, Germany

The formal analysis of cryptographic protocols traditionally focuses on trace and equivalence properties, for

which decision procedures in the symbolic (or Dolev-Yao, or DY) model are known. However, many relevant

security properties are expressed as DY hyperproperties that involve quantifications over both execution

paths and attacker computations (which are constrained by the attacker’s knowledge in the underlying model

of computation). DY hyperproperties generalise hyperproperties, for which many decision procedures exist,

to the setting of DY models. Unfortunately, the subtle interactions between both forms of quantifications have

been an obstacle to lifting decision procedures from hyperproperties to DY hyperproperties.

The central contribution of the paper is the first procedure for deciding DY hyperproperties, in the usual

settingwhere the number of protocol sessions is bounded andwhere the equational theorymodelling cryptogra-

phy is subterm-convergent. We prove that our decision procedure can decide the validity of any hyperproperty

in which quantifications over messages are guarded and quantifications over attacker computations are limited

to expressing the attacker’s knowledge. We also establish the complexity of the decision problem for several

important fragments of the hyperlogic. Further, we illustrate the techniques and scope of our contributions

through examples of related hyperproperties in the smart-contract field.

CCS Concepts: • Security and privacy → Logic and verification; Formal security models; • Theory of
computation → Cryptographic protocols.

Additional Key Words and Phrases: hyperproperties, security protocols, computational complexity

1 INTRODUCTION
Cryptographic protocols are interactive distributed algorithms designed to achieve a set of security

goals in the presence of active adversaries. These protocols are the cornerstone of computer security:

they are widely deployed to support authentication and secure communications and emerging

applications such as blockchains. They are however complex and error-prone, and hence a prime

target for formal verification. In fact, there is already a large body of work developing foundations

and practical tools for their analysis, see e.g. [Blanchet 2012].

The common substrate of many of these works is the symbolic model of cryptography, rooted in

the seminal work of Dolev and Yao [Dolev and Yao 1983]. Its crux is an adversary that can observe

protocol executions, carry arbitrary computations from the values learned during observation, and

intercept, tamper, or forge messages exchanged across the network. The adversary is embedded

into the model by means of an adversarial semantics of protocols, which can then be used as a basis

to prove that these protocols achieve a security property for all possible behaviours of adversaries

and coalitions of dishonest participants. Traditional security properties are trace properties that are
defined as universal quantifications over execution (traces) w.r.t. the semantics, possibly relying on

an epistemic temporal logic featuring a modality K for the adversary’s knowledge. Surprisingly,

despite general undecidability results, their verification for all adversaries is decidable under

reasonable restrictions on cryptographic protocols and on the properties. Existing mature tools

typically focus on trace properties for the most part [Armando et al. 2012; Basin et al. 2019; Blanchet

et al. 2020]. Still, not all security properties of interest fall into this class.

Authors’ addresses: Itsaka Rakotonirina, itsaka.rakotonirina@mpi-sp.org, MPI-SP, Bochum, Germany; Gilles Barthe,

gbarthe@mpi-sp.org, MPI-SP, Bochum, Germany and IMDEA Software Institute, Madrid, Spain; Clara Schneidewind,

clara.schneidewind@mpi-sp.org, MPI-SP, Bochum, Germany.

2 Itsaka Rakotonirina, Gilles Barthe, and Clara Schneidewind

In a classic setting [Alpern and Schneider 1985], (trace) properties are defined as sets of traces.

As such, they are special instances of hyperproperties, which are defined as properties of the set of

traces itself—that is, they are sets of sets of traces [Clarkson and Schneider 2010]. Hyperproperties

provide a rich setting for modelling and reasoning about systems because, in short, they display

the additional ability to express relations between several executions of a protocol. This is an

important ingredient to formalise, typically, strong notions of information leakage or simulability

predicates. Notably, the specification and verification of hyperproperties can be achieved through

hyperlogics, such as HyperCTL* [Clarkson et al. 2014], which extends CTL* with quantifiers over

execution traces. Decidability and complexity of the model-checking and synthesis problems for

such hyperlogics have been studied extensively [Clarkson et al. 2014; Coenen et al. 2019; Finkbeiner

et al. 2015; Hsu et al. 2023; Mascle and Zimmermann 2019]. However, these results are not applicable

to symbolic models of cryptography, as they do not consider adversarial semantics. Meanwhile,

tools operating in the symbolic model still do not handle such hyperproperties beyond some fixed

notions of process equivalences [Basin et al. 2019; Blanchet et al. 2020; Cheval et al. 2020b].

In a recent work, [Barthe et al. 2022] introduces Hypertidy CTL*, a temporal logic for modelling

and reasoning about hyperproperties in (timed) symbolic models of cryptography. Hypertidy CTL*

extends HyperCTL* with clauses to reason about, and quantify over, adversarial computations. Un-

like HyperCTL* where the model checking of arbitrary hyperproperties is decidable [Clarkson et al.

2014], the presence of the adversary makes the problem undecidable in general in Hypertidy CTL*.

Currently, there is no decision procedure for any non-trivial fragment of this logic beyond trace

properties, nor even incomplete methods that could serve as the basis of a future automated tool.

Contributions
The main contribution of this paper is a decision procedure for hyperproperties in a symbolic model

of protocols including real-time and a global state. We see this as a first theoretical foundation of

DY hyperproperty analysis, in the same way as the development of now-mature symbolic tools

benefited from a large amount of more theoretical work on decidability and complexity [Cheval et al.

2013, 2018; Durgin et al. 2004; Kanovich et al. 2014; Rusinowitch and Turuani 2003]. Our procedure

takes as input a hyperproperty 𝜑 and a model of the cryptographic protocol 𝑃 , and decides whether

the hyperproperty holds for all adversaries interacting with 𝑃 . Our decision procedure makes two

requirements, described below.

First, we require that the hyperproperty 𝜑 is a formula of a fragment of Hypertidy CTL* whose

quantifications over adversarial computations are restricted to model the adversary’s knowledge.

Alternatively, this fragment can be seen as an extension of HyperCTL* with adversarial executions,

real-time, predicates to reason about global states, and a standard epistemic knowledge operator K.
Similarly to HyperCTL*, this allows unrestricted quantifications over execution paths. Additionally,

we require that quantifiers over messages are guarded, i.e., should only be used to make reference

to terms appearing in the protocol—and not to express arbitrary first-order formulae. These as-

sumptions are classic in verification tools for trace properties [Basin et al. 2019], although notably

excluding cryptographic notions of indistinguishability properties [Barthe et al. 2022; Cheval et al.

2018]. While this is a serious restriction of our decision procedure, we contend that it delineates

the focus of our technical investigation to the interactions between adversarial computations and

trace quantifications, which require specific treatment.

Second, we require that the protocol 𝑃 is written in the bounded fragment of (a timed and stateful

variant of) the applied 𝜋-calculus [Abadi et al. 2018], and that the equational theory used to model

cryptography is subterm-convergent. Both assumptions are very common, and are adopted by many

decision procedures [Cheval et al. 2013, 2018; Rusinowitch and Turuani 2003]. In particular, the

boundedness assumption imposes an explicit bound on the number of protocol sessions of 𝑃 , but the

Decision and Complexity of Dolev-Yao Hyperproperties (Technical Report) 3

potential interactions with the adversary remain unbounded. It is justified by theoretical reasons

(because verification is generally undecidable for arbitrarily many sessions), and by practical

reasons (because most security flaws of concrete protocols can be exhibited with a few sessions).

Technically, the assumption ensures that protocol executions are bounded in depth, which is the

main reason why we can express the validity of 𝑃 |= 𝜑 as a finite set of hyperconstraints, a core
notion that we introduce. As a complement, the use of destructor subterm convergent rewriting
systems to model cryptography is used to decide adversarial knowledge, i.e., whether a term can be

deduced by the adversary at some point in a protocol execution. It encompasses many primitives

such as hash functions, encryption, signatures, or zero-knowledge proofs [Abadi and Cortier 2006].

Technical Developments. At a technical level, getting inspiration from other decision procedures

for bounded processes in different contexts [Cheval et al. 2013, 2018; Liu and Lin 2012], our own

approach consists of two interleaving components:

(1) constraint generation: we extract a set C of hyperconstraints from the decision problem

𝑃 |= 𝜑 ;

(2) constraint solving: we establish the existence of solutions for the constraints of C.

The main challenge and technical innovation lies in the fact that, unlike any related work in

this context, the interaction between path quantifications and adversarial computations requires

carefully updating the constraints of C whenever a new path quantifier is handled. We deal with

these updates by manipulating a stack of hyperconstraints, each stack level representing a different

path quantifier. The effect of solving the constraints of the most recent level 𝑛 of the stack is

thus propagated to previous levels 𝑖 < 𝑛, typically in the case where the path at level 𝑛 imposes

constraints on some adversarial computations introduced at level 𝑖 . We establish the soundness and

completeness of our constraint generation, and show that the generated constraint set satisfies a

small model property, i.e., it has a solution iff it has a solution of size smaller than some 𝑘 . Here 𝑘 can

be computed effectively and is exponential in the parameters of the problem (𝑃 and 𝜑 among others).

Making the link between the extracted constraints and the actual statement 𝑃 |= 𝜑 , this naturally

translates into a decision procedure whose complexity ranges over the exponential hierarchy of

complexity (EXPH(poly)). This complexity bound is tight, as the verification problem for even

stricter fragments of the logic are already known to be EXPH(poly) hard [Barthe et al. 2022].

Additional Contributions. A second contribution of the paper is an extensive study of various

fragments and extensions of the framework. On the one hand, we provide exact complexity bounds

for several fragments of the logic: we target selected equational theories (e.g., empty or limited

to one free symbol), and several sub-fragments (e.g., tidy LTL or Hypertidy LTL). This highlights

the impact on complexity of the different parameters of the problem, and we hence argue that it

contributes to a better theoretical understanding of hyperproperty verification. On the other hand,

we establish undecidability for several generalisations of our main theorem, thus illustrating the

minimality of our assumptions. A summary of our results can be found in Figure 9 later in the

paper, when all necessary notions are introduced (end of Section 4.3). We recall that our results are

restricted to a fragment not supporting cryptographic notions of equivalence, and thus leave the

case of the full Hypertidy CTL* logic open. We return to this open problem in the conclusion.

In addition to our technical contributions, we detail several case studies of interest of our proce-

dure. They model various (hyper)properties of interest including notions of fairness, simulation,

reentrancy freedom, as well as some correctness properties involving several trace quantifications.

Although some of these notions have already been studied in the literature, our contribution is the

ability to model these properties in scenarios involving coalitions of fully dishonest participants

4 Itsaka Rakotonirina, Gilles Barthe, and Clara Schneidewind

and an active adversary controlling communications. Most of such proofs cannot be handled or

supported by any existing approach, highlighting the theoretical interest of our contributions.

2 MOTIVATING EXAMPLE: FAIR REWARD
To give a general idea of the expressivity of our model and of the scope of our contributions, we

first present a prototypical example of a Dolev-Yao hyperproperty, in the context of distributed

programs running on top of a blockchain-based cryptocurrency (so-called smart contracts). It will
be used throughout the paper as an example support for our technical definitions.

2.1 Blockchain and Smart Contract
At a high-level, blockchain-based cryptocurrencies enable networks of mistrusting users to reach

a consensus on the execution of financial transactions. A joint transaction log (the blockchain)
is gradually extended by ordering authenticated transactions into blocks. However, transactions

do not only authorize direct asset transfers but also advanced asset redistribution logics (smart
contracts). Users trigger the contract’s behaviour by posting a transaction with the call details; it is

then executed once this transaction is appended (published) to the blockchain. Notably, between a

transaction’s submission and its publication, it already constitutes public information—and other

transactions leveraging this information may be scheduled in this time window.

reduc verify(sign(x,y,z),x,pk(z)) -> ok.

formula hyp_publish(pi:trace) =

G (∀x:bitstring. Publish(x)pi =>

(G not Publish(x)pi) /\

verify(x.sig ,x.data ,x.sender) = ok)

formula hyp_submit(pi:trace) =

∀x:bitstring. F Submit(x)pi =>

(F Publish(x)pi) \/

verify(x.sig ,x.data ,x.sender) ≠ ok

Fig. 1. Simple blockchain model

We axiomatise a simplified blockchain in Fig-

ure 1. The submissions and publications of trans-

actions tx are represented by events Submit(tx) and

Publish(tx), mentioned in the blockchain’s properties

(formula). These are trace properties, that is, they re-

fer to events happening in a single trace pi, as indi-

cated by the subscripts pi on events. Here, transac-

tions are tuples tx = ((tx.sender,tx.func,tx.args),tx.sig)

storing, resp., the public key of the sender, the

name of the contract function to invoke, its argu-

ments, and the signature of the transaction’s data

tx.data = (tx.sender,tx.func,tx.args). Signatures are mod-

elled by a set of uninterpreted symbols pk(skey) (public key) and sign(msg,rnd,skey) (randomised sig-

nature), and a rewriting rule (reduc) defining verification. The two formula then formalise the (trace)

properties of our simplified blockchain, namely that transactions should be signed and only ap-

pended once (hyp_publish), and that well-signed submissions are eventually published (hyp_submit). For

hyp_submit, publication may either precede the submission—thus invalidating it due to hyp_publish—or

follow it. The two formula notably use the (strict) temporal operators F (“finally”) and its dual G

(“globally”). In real-time contexts, they intuitively read as “in the strict future, it eventually (resp.

always) holds that...”. The axiomatization therefore captures that valid transactions are guaranteed

to be published eventually, but not necessarily in the order of their submission.

2.2 Fair Reward Contracts
We now describe a smart contract, Puzzle, implementing a simple hash puzzle letting a user who

knows the preimage of a specific hash value puzzle = h(sol) claim a (monetary) prize. A user 𝐴 can

claim the prize by submitting a transaction invoking a function of the contract (that we call solve)

with sol as the argument. Upon inclusion of such a transaction to the blockchain, the contract

checks whether sol is the expected preimage, in which case it transfers the prize funds to the sender.

Decision and Complexity of Dolev-Yao Hyperproperties (Technical Report) 5

in(tx): Publish(tx):

if tx.func = solve:

if h(tx.args) = puzzle:

balance[tx.sender] += prize:

prize = 0

else: skip
else: skip

Fig. 2. Model of the contract Puzzle

Figure 2 describes a blockchain where Puzzle is deployed,

prize referring to the numeric prize value. It is written in our

framework’s calculus, using a more readable programming-

like syntax with an intuitive interpretation (detailed in Ap-

pendix B for completeness). In line with the terminology

of Figure 1, this process therefore receives transactions

as inputs tx from the network, and appends them to the

blockchain (event Publish, which is notably constrained by

the properties of Figure 1). When tx contains a call to the

solve function, the process also executes it accordingly.

let d = (pk(sk),solve ,sol) in
let tx = (d,sign(d,rand(0),sk)) in
out(tx): Submit(tx)

Fig. 3. Honest user submitting to Puzzle

A user 𝐴 submitting a solution sol to this contract is

therefore described by the process of Figure 3. We use

in particular the previous Submit event and sign signature

function. The randomness of the signature is handled by

a symbol rand, modelling a (deterministic) pseudo-random

generator, called a private function symbol in our frame-

work, passed here with an arbitrary seed 0. Unfortunately,

the Puzzle contract is inherently unfair as it is vulnerable to the following attack which allows an

adversary to claim the reward without prior knowledge of sol: (1) an honest user computes and

submits a transaction tx to fetch sol to the solve function; then (2) before tx gets effectively appended

to the blockchain through the consensus mechanism, it becomes public to all network participants.

In particular, a dishonest user may read tx to learn sol before computing their own transaction tx'.

in(tx): Publish(tx):

if tx.func = commit: @t:
if t < timeout:

T[tx.sender] = tx.args

else: skip
else if tx.func = release: @t:

if t > timeout

&& h(tx.args) = puzzle

&& h((tx.args ,tx.sender))

= T[tx.sender]:

balance[tx.sender] += prize;

prize = 0

else: skip
else: skip

Fig. 4. Contract FairPuzzle

The transaction tx' may then be published before tx (even

though submitted later). This execution is valid in that it

complies to the blockchain’s axiomatisation of Figure 1

(valid transactions have been published, although delayed).

Such attacks are possible in practice because the blockchain

consensusmechanism only ensures that (valid) transactions

are eventually included but does not guarantee their order

within blocks. Note that the attack requires the adversary to

perform active transaction computations when interacting

with the system, which is the crux of Dolev-Yao models.

Figure 4 describes a process model of a refined contract

FairPuzzle preventing such exploits of honest transactions.

Users are required to send commitments (under the form
of hashes including their identity) to their solution in an

initial phase, in turn stored in a table T. The commitment are

subsequently opened in a later release phase. The transition
into this phase occurs at time timeout, which is indicated by the checks against the current time t,

recorded through the timestamping instructions @t.

2.3 Proving Fair Reward
Let us call fair reward the resilience of a protocol against the above kind of attacks. We can

define it by comparing the possible executions of a smart contract with idealised executions where

transactions are included upon submission, i.e., without getting reordered. Rephrasing: “for all
executions 𝜋1, there exists an execution 𝜋2 (with the same submissions, but possibly in a different order)
whose valid submissions are immediately followed by their publications, and such that 𝜋1 and 𝜋2 have
the same final balance of all users”.

6 Itsaka Rakotonirina, Gilles Barthe, and Clara Schneidewind

formula hyp_block(pi:trace) = // blockchain model

hyp_publish(pi) /\ hyp_submit(pi)

formula ideal(pi:trace) = // ideal executions

G (∀x:bitstring. Submit(x)pi =>

F Publish(tx)pi =>

silentpi U Publish(tx)pi)

formula fair_reward = // security hyperproperty

∀pi1:trace. hyp_block(pi1) =>

G (Setuppi1 => ∃pi2:trace. hyp_block(pi2) /\

ideal(pi2) /\

(∀x:bitstring.F Submit(x)pi1 <=> F Submit(x)pi2) /\

F (G silentpi1 /\ G silentpi2 /\

∀x:bitstring. balancepi1[x] = balancepi2[x]))

Fig. 5. Formalisation of fair reward

This notion is formalised in Fig-

ure 5. It assumes in particular that

the theoretical model of the proto-

col involves a setup phase letting

the adversary choose the attack pa-

rameters (prize value, number of

participants, trust scenario...), and

whose end is indicated by the Setup

event. After the setup phase, the

quantification over pi2 requires the

existence of the ideal trace simu-

lating pi1. In particular, immediate

publication is modelled by the fact

that pi2 should satisfy silent until (U)

publication, where silent means that no particular action is occurring at the current time. Similarly,

the balances of all users are compared in the final states, i.e., once executions are “silent forever”.

Note that, despite FairPuzzle being a reasonably simple contract, establishing fair reward is not

trivial in that it requires several technical arguments about the commitment management. Typically:

(1) commitments critically include the public key of the sender (tx.sender in Figure 4). Otherwise,

an adversary could replay a commitment by an honest user during the commitment phase

and then frontrun their release transaction;

(2) commitments should only be accepted during a proper commitment phase, here modelled

by a timeout. Otherwise, when an honest user submits a release, the adversary learns the

solution and may then both commit and release it before the honest one gets through;

(3) users should check that their commitment has effectively been published before releasing.

Otherwise, an adversary may get it artificially rejected by swapping the two transactions.

These three examples are typical executions 𝜋1 which cannot be simulated by any ideal execution

𝜋2. Such subtleties highlight the necessity of a careful, exhaustive and systematic reasoning for

proving that fair reward is indeed enforced by the contract’s code and the honest participants’

behaviour. We illustrate, all across the paper, how FairPuzzle is verified in our framework, and how

to encode its various programming mechanisms (e.g., mutable tables) in our symbolic model.

3 PROTOCOL MODEL
We model our protocols in a timed and stateful variant of the bounded applied 𝜋-calculus. The

model is a refinement from [Barthe et al. 2022]; one difference is that our model features a notion of

atomic composition, which eases the modelling of timing aspects, and supports a notion of global

state that can be used to model mutable variables.

3.1 Cryptographic Primitives and Messages
Term Algebra. The algebraic setting we use to model cryptographic primitives is largely standard.

We start with atomic values:

A = N ⊎ X with N = Npub ⊎ Npriv R ⊂ Npub XN ⊂ X .

The set N of names is used to model most values used in protocols: public names (Npub) may

for example model identities, public constants, or numeric values such as time (R), while private
names (Npriv) model data unknown to the adversary such as large secret cryptographic material.

The set X then contains the variables, including a distinguished subset XN
of numeric variables

Decision and Complexity of Dolev-Yao Hyperproperties (Technical Report) 7

used to specifically bind numeric values. We assume that Npriv , Npub ∖ R, XN
and X ∖ XN

are

infinite. We write vars (𝑢), (resp. vars𝑛 (𝑢), names(𝑢)) the set of variables (resp. numeric variables,

names) appearing in an arbitrary object 𝑢. Next, we introduce signatures, which are finite sets

F = {f/𝑛, g/𝑚, h/𝑝, . . .} used to represent cryptographic primitives. A symbol f/𝑛 models a

primitive taking 𝑛 arguments. We consider two partitions of F :

F = Fc ⊎ Fd = Fpub ⊎ Fpriv .

On the one hand, Fc ⊎ Fd distinguishes constructors (used to construct messages) from destructors
(used to pattern-match constructors, with possible failure). On the other hand, Fpub⊎Fpriv separates

public symbols from private ones, the latter specifically modelling operations the adversary is not

allowed to perform (e.g., protocol-specific oracles). Finally, protocol messages are modelled by:

Definition 3.1 (Term). A term is an atomic value 𝑎 ∈ A, or a function symbol f or an arithmetic

operator (+, ×, −, . . .), applied to other terms while respecting arities. We write T (𝑆) the set of
terms built from 𝑆 ⊆ A∪ F ∪𝑂 , for a given set of arithmetic operators𝑂 . We call a term 𝑢 ∈ T (𝑆):
(1) constructor if 𝑆 ∩ Fd = ∅; (2) public if 𝑆 ∩ Npriv = ∅ and 𝑆 ∩ Fpriv = ∅; (3) ground if 𝑆 ∩ X = ∅;
(4) numeric if 𝑆 ⊆ R ∪ XN ∪𝑂 .

In particular, our model is implicitly typed in that some terms represent numeric values such as

time, and others, cryptographic material; our definitions thus often involve related typing conditions.

Finally, the notion of substitutions 𝜎 is defined as usual:

𝜎 = {𝑥1 ↦→ 𝑢1, . . . , 𝑥𝑛 ↦→ 𝑢𝑛}
is a mapping where dom(𝜎) = {𝑥1, . . . , 𝑥𝑛} are pairwise distinct variables forming the domain of 𝜎 ,

and 𝑢1, . . . , 𝑢𝑛 are terms; 𝜎 is then well-typed if, for all 𝑖 such that 𝑥𝑖 ∈ XN
, 𝑢𝑖 is a numeric term. The

application of a substitution 𝜎 to a term 𝑡 is denoted by 𝑡𝜎 which is the term obtained by replacing

all occurrences of 𝑥𝑖 in 𝑡 by 𝑢𝑖 = 𝑥𝑖𝜎 . Also, more specifically, we say that a term 𝐶 is a context if,
writing vars (𝐶) = {𝑥1, . . . , 𝑥𝑛}, each 𝑥𝑖 appears exactly once in 𝐶 . In this case, we write:

𝐶 [𝑢1, . . . , 𝑢𝑛] instead of 𝐶𝜎, provided 𝜎 = {𝑥1 ↦→ 𝑢1, . . . , 𝑥𝑛 ↦→ 𝑢𝑛} is well-typed.
In particular, we say that 𝑢 is a subterm of 𝑣 if there is a context 𝐶 such that 𝑣 = 𝐶 [𝑢]. It is a strict
subterm if, in addition, 𝑣 ≠ 𝑢. Regarding notations, we write 𝜎 ∪ 𝜎 ′

the substitution of domain

dom(𝜎) ∪ dom(𝜎 ′) that extends both 𝜎 and 𝜎 ′
(provided they coincide on dom(𝜎) ∩ dom(𝜎 ′)); and

𝜎𝜎 ′
refers to the composition 𝜎 ′ ◦ 𝜎 , i.e., for all terms 𝑡 , 𝑡 (𝜎𝜎 ′) = (𝑡𝜎)𝜎 ′

.

Rewriting. Terms have an operational behaviour modelled by:

Definition 3.2 (Rewriting). A rewriting system R is a finite set of rewrite rules ℓ →R 𝑟 , where ℓ, 𝑟

are terms without arithmetic operators, with vars (𝑟) ⊆ vars (ℓ). Additionally, we assume that R is:

(1) destructor, i.e., for all (ℓ →R 𝑟), ℓ = f (𝑢1, . . . , 𝑢𝑛) with f ∈ Fd,𝑢1, . . . , 𝑢𝑛, 𝑟 constructor terms;

(2) subterm, i.e., for all (ℓ →R 𝑟), 𝑟 is either a strict subterm of ℓ , or a ground term;

(3) convergent, i.e., for all terms 𝑢, there exists a unique normal form 𝑢 ↓ of 𝑢, namely a term

irreducible by→R such that 𝑢 →R · · · →R 𝑢 ↓.

Such rewriting systems can model many primitives such as encryption, signature, hash, or zero-

knowledge among others [Blanchet et al. 2020; Cheval et al. 2020b], but not associative-commutative

behaviours, such as XOR or group exponentiation [Basin et al. 2019]. Rules may also be extended

with weights to capture cryptographic primitives relying on time consumption [Barthe et al. 2022],

which we omit here to alleviate the presentation of the model. We lift→R to a relation on arbitrary

terms that is the closure of R under well-typed substitution and term context, that is, for all ℓ →R 𝑟 ,

well-typed substitutions 𝜎 , and contexts 𝐶 [𝑥] such that 𝑥 ∈ X ∖ XN
, we have 𝐶 [ℓ𝜎] →R 𝐶 [𝑟𝜎].

8 Itsaka Rakotonirina, Gilles Barthe, and Clara Schneidewind

Also, informally, a destructor operation “fails” when, intuitively, its arguments do not match any

rewrite rule. A (well-typed) term without such failure is called a message:

Definition 3.3 (Message). A term 𝑢 is a message if for all subterms 𝑣 of 𝑢, 𝑣 ↓ is a constructor term;

also, if 𝑣 ↓= 𝑓 (𝑣1, . . . , 𝑣𝑛) for some arithmetic operator 𝑓 , all terms 𝑣𝑖 should be numeric terms. We

write msg (𝑢) to express that 𝑢 is a message, the notation being extended to sequences, sets... of

terms by requiring that all these terms are messages.

3.2 Protocols in an Adversarial Environment
Syntax. We model protocols as processes of a timed and stateful variant of the applied 𝜋-calculus.

We use events for formalising security properties; these are modelled by a dedicated, finite set

of function symbols F𝑒 . Although the syntax is mostly taken from [Barthe et al. 2022], we in-

troduce a novel notion of atomic composition 𝛼 : 𝛽 , that executes two instructions 𝛼 and 𝛽 (or

more) simultaneously. In addition to improving the model’s modularity by allowing for breaking

complex instructions into simpler blocks, atomic composition offers fine-grained control over the

timestamping of instructions which is useful when modelling timed case studies. We also introduce

a global state, i.e., a multiset to which any subprocess may push, pull, or pattern-match terms.

Definition 3.4 (Process). The grammar of (timed) processes is:

𝑃 ::= 0 null process 𝑆 ::= 𝑆 + 𝑆 choice push 𝑢 : 𝑆 global store
𝑃 | 𝑃 parallel skip ; 𝑃 break pull 𝑢 : 𝑆 successful lookup
!
𝑛 𝑃 replication out(𝑢) : 𝑆 output unfound 𝑢 : 𝑆 failed lookup
𝑆 sequence in(𝑥) : 𝑆 input @𝑡 : 𝑆 timestamp

new 𝑘 : 𝑆 new name when 𝑒 ∼ 0 : 𝑆 arithmetic
Ev (®𝑢) : 𝑆 event

where 𝑛 ∈ N ∪ {∞}, 𝑢 is a term, ®𝑢 = 𝑢1, . . . , 𝑢𝑝 is a sequence of terms, Ev/𝑝 ∈ F𝑒 , 𝑘 ∈ Npriv ,

𝑥 ∈ X , 𝑡 ∈ XN
, and 𝑒 is a numeric term and ∼ ∈ {>, ⩾}. We call a process bounded when all of its

replications !
𝑛 𝑃 are so that 𝑛 ≠ ∞.

We comment the syntax below. Processes are structured by the operators 𝑃 | 𝑄 (executing 𝑃 and

𝑄 concurrently), 𝑃 +𝑄 (executing the first instruction of either 𝑃 or 𝑄), and !
𝑛 𝑃 (executing up to

𝑛 parallel copies of 𝑃). Process instructions are composed atomically with the syntax 𝑐1 : 𝑐2 : 𝑆 ,

meaning that 𝑐1 and 𝑐2 are executed simultaneously. An atomic sequence is eventually broken

by a skip, which simply lets time elapse. For readability, we often omit the skip when its role is

only to break a sequence (and we write a semicolon directly after the previous instruction). Then,

new 𝑘 generates a fresh name, i.e., a value unknown to the adversary. Events have no interpretation

in concrete protocol implementations and are simply used here to formalise security properties.

Timestamps @𝑡 and the “when” operator record the current time 𝑡 and perform arithmetic tests,

respectively. Importantly, processes have access to a global state that is a multiset 𝜃 of constructor

terms. Terms can be added to 𝜃 using push 𝑢, and searched for (with pattern matching) using pull 𝑢
or unfound 𝑢. That is, pull 𝑢 only proceeds if 𝑢𝜎 ∈ 𝜃 for some 𝜎 (and has for effect to remove one

occurrence of 𝑢𝜎 from 𝜃), while unfound 𝑢 asserts that no instance of 𝑢 is in 𝜃 . Finally, inputs

and outputs handle remote communications. Since the network is compromised, an output out(𝑢)
reveals 𝑢 to the adversary, while an input in(𝑥) fetches an arbitrary message 𝑥 from them, possibly

forged from previous outputs. Note however that, in an atomic composition out(𝑢) : in(𝑥) : 𝑆 , the
adversary has no access to 𝑢 when computing 𝑥 as they are emitted simultaneously.

Example 3.1. Despite the minimal form of the grammar, it is expressive enough to make our

results relatively independent of the formalism. For example, one may encode the mutable variables

Decision and Complexity of Dolev-Yao Hyperproperties (Technical Report) 9

used in the motivating example of Section 2. Each such variable 𝑥 is injectively mapped to a public

name 𝑐𝑥 , and the value 𝑢 of 𝑥 is stored in the global state under the form Store(𝑐𝑥 , 𝑢) for some

dedicated symbol Store/2. Given a numeric variable 𝑥 , incrementing it could therefore be done by:

𝑥 += 1 : 𝑃 ≜ pull Store(𝑐𝑥 , 𝑦) : push Store(𝑐𝑥 , 𝑦 + 1) : 𝑃 .

We detail in Appendix B other common features such as tests (if / else), or communication channels.

As a complement, Figure 6 defines the omitted process in Section 2 in this extended syntax, namely,

the expected behaviour of an honest user interacting with the patched contract FairPuzzle.

let id = pk(sk) in
let d0 = (id,commit ,h((sol ,id))) in
let tx0 = (d0,sign(d0,rand(0),sk)) in
@t0: if t0 < timeout: out(tx0): Submit(tx0);

let d1 = (id,release ,sol) in
let tx1 = (d2,sign(d1,rand(1),sk)) in
@t1: if t1 > timeout: out(tx1): Submit(tx1)

Fig. 6. Honest user submitting to FairPuzzle

In both scenarios (the broken or the fair puz-

zle), if we call user the process describing the

expected submission process, and P the one

defining the contract’s behaviour, the process

user | !^n P would thus model the scenario con-

sisting of an honest user and the contract which

may be invoked up to n times. The Dolev-Yao

adversary then models an implicit coalition of

arbitrarily-many dishonest users.

Semantics. We now define a labelled transi-

tion system describing the execution of processes in an adversarial environment. To model the

knowledge obtained by the adversary by interfering with communications (i.e., spying on outputs),

we use a standard notion of frame Φ. It is a substitution

Φ = {ax1 ↦→ 𝑢1, . . . , ax𝑛 ↦→ 𝑢𝑛}
where 𝑢1, . . . , 𝑢𝑛 are constructor terms, and ax𝑖 ∈ AX are special variables (not considered as

being part of X) called axioms. They serve as handles to outputs 𝑢𝑖 intercepted during a protocol

execution by the adversary. We write axioms(𝜉) the set of axioms appearing in an object 𝜉 . In

particular, adversarial computations are modelled by:

Definition 3.5 (Recipe). A recipe is a term of the form 𝜉 ∈ T (Npub ∪ Fpub ∪ AX) . We say that a

recipe 𝜉 deduces a constructor term 𝑢 from a frame Φ if msg (𝜉Φ) and 𝜉Φ↓= 𝑢.

Recipes cannot contain private names or functions because they are not accessible to the adversary

a priori. The actual operational semantics (Figure 7) then operates on an extended form of process

recording the multiset of subprocesses executed in parallel P, the adversary’s knowledge Φ, the
global state 𝜃 , and the current time 𝑡 .

Definition 3.6 (Extended process). An extended process is a tuple𝐴 = (P,Φ, 𝜃, 𝑡), with P a multiset

of processes, Φ a frame, 𝜃 a multiset of constructor terms, and 𝑡 ∈ R+. We write the respective

components P(𝐴), Φ(𝐴), 𝜃 (𝐴) and 𝑡 (𝐴), and often interpret a process 𝑃 as ({{𝑃}},∅,∅, 0) .

The semantics Figure 7 is a labelled transition relation

®𝑤−→ , where ®𝑤 is a (possibly-empty) sequence

of so-called actions, that are either event terms Ev (®𝑢), Ev ∈ F𝑒 , or some transition-specific labels

(par, repl, in...). Figure 7 introduces two intermediary relations −→ at (atomic semantics) and −→ seq

(sequential semantics). They define the behaviour of single instructions: −→ at specifically handles

operations that may be composed atomically (it hence operates on single processes instead of

multisets), while−→ seq executes consecutive atomic instructions until reaching a skip. The sequential
semantics ensures in particular through Rule (Comp) that atomically-composed outputs do not

update the adversary’s knowledge Φ before the end of the rule. Note also that the global clock 𝑡 is

entirely managed by Rule (Lift), which defines −→ by letting some time pass from 𝑡 to 𝑡 + 𝛿 .

10 Itsaka Rakotonirina, Gilles Barthe, and Clara Schneidewind

operational semantics:

({{𝑃}} ∪ Q,Φ, 𝜃, 𝑡) ®𝑤−→ (P ∪ Q,Φ′, 𝜃 ′, 𝑡 + 𝛿) if 𝛿 > 0 and (Lift)

({{𝑃}},Φ, 𝜃, 𝑡 + 𝛿) ®𝑤−→ seq (P,Φ′, 𝜃 ′, 𝑡 + 𝛿)
sequential semantics:

({{skip ; 𝑃}},Φ, 𝜃, 𝑡)
skip
−−−→ seq ({{𝑃}},Φ, 𝜃, 𝑡) (Skip)

({{𝑃 | 𝑄}},Φ, 𝜃, 𝑡)
par
−−→ seq ({{𝑃,𝑄}},Φ, 𝜃, 𝑡) (Par)

({{!𝑛 𝑃}},Φ, 𝜃, 𝑡)
repl
−−−→ seq ({{!𝑛−1 𝑃, 𝑃}},Φ, 𝜃, 𝑡) if 𝑛 > 0 (Repl)

({{𝑃}},Φ, 𝜃, 𝑡) 𝛼, ®𝑤−−−→ seq (P,Φ′ ∪ Φ′′, 𝜃 ′′, 𝑡) if (𝑃,Φ, 𝜃, 𝑡) 𝛼−→ at (𝑃 ′,Φ′, 𝜃 ′, 𝑡) (Comp)

and ({{𝑃 ′}},Φ, 𝜃 ′, 𝑡) ®𝑤−→ seq (P,Φ′′, 𝜃 ′′, 𝑡)
atomic semantics (over single processes):

(out(𝑢) : 𝑆,Φ, 𝜃, 𝑡) out−−→ at (𝑆,Φ ∪ {ax ↦→ 𝑢 ↓}, 𝜃, 𝑡) if msg (𝑢) and ax ∈ AX ∖ dom(Φ) (Out)

(in(𝑥) : 𝑆,Φ, 𝜃, 𝑡) in−→ at (𝑆{𝑥 ↦→ 𝜉Φ↓},Φ, 𝜃, 𝑡) if 𝜉 recipe, msg (𝜉Φ) (In)

(new 𝑘 : 𝑆,Φ, 𝜃, 𝑡) new−−−→ at (𝑆{𝑘 ↦→ 𝑘 ′},Φ, 𝜃, 𝑡) if 𝑘′ ∈ Npriv fresh (New)

(Ev (®𝑢) : 𝑆,Φ, 𝜃, 𝑡)
Ev (®𝑢↓)
−−−−−→ at (𝑆,Φ, 𝜃, 𝑡) if msg (®𝑢) (Event)

(push 𝑢 : 𝑆,Φ, 𝜃, 𝑡)
push
−−−→ at (𝑆,Φ, 𝜃 ∪ {{𝑢 ↓}}, 𝑡) if msg (𝑢) (Push)

(pull 𝑢 : 𝑆,Φ, 𝜃 ∪ {{𝑢𝜎 ↓}}, 𝑡)
pull
−−→ at (𝑆𝜎,Φ, 𝜃, 𝑡) if msg (𝑢𝜎) (Pull)

(unfound 𝑢 : 𝑆,Φ, 𝜃, 𝑡) unfound−−−−−−→ at (𝑆,Φ, 𝜃, 𝑡) if for all 𝜎 such that msg (𝑢𝜎), 𝑢𝜎 ↓∉ 𝜃 (Unfound)

(@𝑡0 : 𝑆,Φ, 𝜃, 𝑡)
stamp
−−−−→ at (𝑆{𝑡0 ↦→ 𝑡},Φ, 𝜃, 𝑡) (Stamp)

(when 𝑒 ∼ 0 : 𝑆,Φ, 𝜃, 𝑡) when−−−−→ at (𝑆,Φ, 𝜃, 𝑡) if 𝑒 ∈ R and 𝑒 ∼ 0 holds (When)

(𝑆0 + 𝑆1,Φ, 𝜃, 𝑡) −→ at (𝑆𝑖 ,Φ, 𝜃, 𝑡) if 𝑖 ∈ {0, 1} (Choice)

Fig. 7. Operational semantics of the calculus

We now comment the rules of Figure 7. In the communication rules (Out) and (In), outputs

increase the adversary’s knowledge (i.e., add the axiom ax to dom(Φ)), and inputs are computed by

the adversary using previous outputs (i.e., through a recipe 𝜉). Note also that only valid messages

in normal form, namely constructor terms, are allowed to circulate on the network. Rule (Event)

triggers an event used to formalise security properties, and may be atomically composed to other

instructions to add custom labels to them aswell. The three rules (Push), (Pull) and (Unfound) then

formalise the behaviour of global state manipulation by adding, removing, or checking the absence

of a term in 𝜃 , respectively. Rules (New), (Stamp) and (When) have a straightforward interpretation,

while Rule (Par) and (Repl) spawn parallel threads, and (Choice) atomically branches to either of

two processes. The semantics then induces the following notion of execution:

Definition 3.7 (Trace, Trace state). A trace 𝑇 of an extended process 𝐴0 is a finite sequence

𝑇 : (P0,Φ0, 𝜃0, 𝑡0)
®𝑤1−−→ · · · ®𝑤𝑛−−→ (P𝑛,Φ𝑛, 𝜃𝑛, 𝑡𝑛)

of −→ -transitions as defined in Figure 7. If 𝑡 ⩾ 𝑡0, we also define the state of𝑇 at time 𝑡 , written𝑇@𝑡 ,

as the following pair, with the convention 𝑡𝑛+1 = +∞:

𝑇@𝑡 = ((P𝑖 ,Φ𝑖 , 𝜃𝑖 , 𝑡), 𝐸) with 𝑖 = min{ 𝑗 ⩽ 𝑛 + 1 | 𝑡 𝑗 ⩾ 𝑡}

where 𝐸 = { ®𝑤𝑖 } if 𝑡 = 𝑡𝑖 , 𝑖 ∈ J1, 𝑛K, and 𝐸 = ∅ otherwise. The state 𝑇@𝑡 = (𝐴, 𝐸) of a trace thus
indicates the set 𝐸 of events being triggered at the current time 𝑡 , if any, as well as the current state

of the process execution 𝐴 (at time 𝑡 but right after the execution of the events of 𝐸).

Decision and Complexity of Dolev-Yao Hyperproperties (Technical Report) 11

Example 3.2. Using the notations of Example 3.1, consider the process 𝐴0 = user | !2 P modelling

an honest user submitting to the broken Puzzle contract. The trace modelling the attack against fair

reward from Section 2 would typically start as a sequence of transitions of the form

𝐴0

par
−−→

out,Submit(tx)
−−−−−−−−−−−→𝐴1

repl
−−−→

in,Publish(tx′)
−−−−−−−−−−−→𝐴2

repl
−−−→

in,Publish(tx)
−−−−−−−−−−→𝐴3

for some extended processes𝐴1, 𝐴2, 𝐴3. The first segment from𝐴0 to𝐴1 submits the honest transition

tx (say, under the axiom ax). The second segment from 𝐴1 to 𝐴2 is the adversary’s interference.

After unfolding one copy of P (Rule (Repl)), the dishonest transaction tx′ gets published, being
fetched through the input recipe 𝜉 = (𝜁 , sign(𝜁 , 𝑟, sk′)), where 𝑟 ∈ Npub is fresh, sk′ ∈ Npub models

the signature key of the adversary, and 𝜁 = (pk(sk′), solve, ax.args). The recipe 𝜉 thus models the

adversary extracting the solution from tx and then forging their own transaction from it. The final

segment from 𝐴2 to 𝐴3 then publishes the honest transaction tx to comply with the blockchain

axiomatisation (recall hyp_submit in Section 2, Figure 1). This time, the adversary forwards the honest

transaction tx, that is, uses the recipe 𝜉 ′ = ax for the publication’s input.

4 VERIFICATION OF HYPERPROPERTIES
4.1 Hyperproperties

Guarded Hyperformulae. Wepresent the logic Hypertidy CTL* of [Barthe et al. 2022] for specifying

hyperproperties, adapted to our context with atomic composition, and restricted to a fragment with

some syntactic restrictions (guarded hyperformulae). First, we do not provide a generic operator
for what was called “second-order quantifiers” ∀𝑋 in [Barthe et al. 2022], which quantify over all

possible recipes 𝑋 that the adversary may compute. Instead, we restrict their use to the atomic

formula K𝜋 (𝑢), stating that the adversary can deduce (“Knows”) 𝑢 in the frame of the trace 𝜋 .

This feature is not crucial to the examples of this paper, but is useful to express, e.g., notions of

data secrecy. However, this limitation excludes more complex statements about the view of the

adversary, like indistinguishability properties such as static equivalence 𝜋0 ∼ 𝜋1 (reading as “there

exist no public tests, i.e., recipes 𝜉 , that deduce a valid message in 𝜋𝑖 but fail in 𝜋1−𝑖”). We leave such

properties aside, as most use cases for them are already studied by dedicated tools [Basin et al. 2019;

Blanchet et al. 2020; Cheval et al. 2020b], and as guarded hyperformulae may still express many

relevant relational hyperproperties through arbitrary deducibility constraints or term equalities

across multiple traces. Naturally, non-adversarial notions of path indistinguishability (e.g., one that

compares parts of the global states as in our motivating example) are expressible in our framework.

As a second (natural) restriction, we will impose that first-order quantifiers ∀𝑥 , quantifying over

messages, are guarded. This is the uplifting of standard assumptions in reachability properties (see,

e.g., [Basin et al. 2019]) to the Tidy logics. It intuitively requires that such quantifiers should only

be used to make reference to terms used by the process, and not to express arbitrary first-order

formulae on terms. Rephrasing, the possible instantiations of 𝑥 should always be determined from

context when (dis)proving that a subformula ∀𝑥 .𝜑 holds. A similar notion has been introduced

in HypertidyCTL*, but is purposely very strict so that the complexity lower bounds of [Barthe

et al. 2022] could be as general as possible. On the contrary, we designed our notion of guard with

expressivity in mind, making it naturally more general than the prior version of [Barthe et al. 2022].

Definition 4.1 (guarded hyperformula). The grammar of guarded hyperformulae is:

𝜑 ::= ⊥ false GS𝜋 (𝑢) global state membership
𝑢 = 𝑣 equality modulo theory ∀𝑥1, . . . , 𝑥𝑝 .𝜑 ⇒ 𝜑 guarded quantifier
𝛼𝜋 action ∀𝜋.𝜑 path quantifier
K𝜋 (𝑢) adversary deduction 𝜑 U𝐼 𝜑 (time-constrained) until

12 Itsaka Rakotonirina, Gilles Barthe, and Clara Schneidewind

where 𝑢, 𝑣 are terms, 𝛼 is an action (as in the operational semantics), 𝑥1, . . . , 𝑥𝑝 ∈ X (𝑝 ⩾ 0), 𝜋

belongs to a set X𝑝
of so-called path variables, and 𝐼 = (𝑎, 𝑏) is an open interval with 𝑎, 𝑏 numeric

terms (or possibly 𝑏 = +∞). We also require that in ∀®𝑥 .𝜑0 ⇒ 𝜑1, the formula 𝜑0 is a guard for ®𝑥 .
Namely, we require that for all 𝑦 ∈ {®𝑥}, 𝑦 should appear with positive polarity (i.e., 1) in 𝜑0, polarity

being defined as follows assuming a fresh alpha renaming of all quantified variables:

• 𝑦 appears with polarity 1 in ⊥, and also in GS𝜋 (𝑢) (resp. Ev𝜋 (®𝑣)) provided 𝑢 (resp. provided

there exists 𝑢 ∈ {®𝑣} which) is a constructor term and 𝑦 ∈ vars (𝑢);
• if 𝑦 appears with polarity 𝑝𝑖 in 𝜑𝑖 , 𝑖 ∈ {0, 1}, it appears with polarity min(−𝑝0, 𝑝1) in
𝜑0 ⇒ 𝜑1;

• if 𝑦 appears with polarity −1 in 𝜑 , so does it in ∀𝜔.𝜑 , with 𝜔 ∈ X ∪ X𝑝
;

• if 𝑦 appears with polarity 1 in𝜓 , so does it in 𝜑 U𝐼 𝜓 .

Let us now give an intuition for each constructor of the logic. First of all, the atomic formulae are
⊥ (always false), 𝑢 = 𝑣 (“𝑢 and 𝑣 are messages of same normal form”), 𝛼𝜋 (“at the current time, 𝜋

performs the action 𝛼”), K𝜋 (𝑢) (“the adversary can deduce 𝑢 from the current frame of 𝜋”), and

GS𝜋 (𝑢) (“𝑢 belongs to the current global state of 𝜋”). Guarded quantifiers ∀®𝑥 .𝜑0 ⇒ 𝜑1 instantiate

the variables ®𝑥 as messages, in a way restricted by 𝜑0. Without quantification (i.e., {®𝑥} = ∅), this
results in a plain implication 𝜑0 ⇒ 𝜑1. In combination with the atomic formula ⊥, this permits

to derive negation ¬𝜑 ≜ 𝜑 ⇒ ⊥, “true” ⊤ ≜ ¬⊥, disjunction 𝜑 ∨ 𝜓 ≜ (¬𝜑) ⇒ 𝜓 , and in turn

conjunction 𝜑 ∧𝜓 , and existential quantifiers ∃𝜋.𝜑 and ∃®𝑥 .𝜑0 ∧𝜑1. We also sometimes consider the

silent action 𝜏𝜋 (silent in Section 2), which is the negation of all other actions 𝛼𝜋 . The quantifiers over

path variables ∀𝜋.𝜑 specifically quantify over all traces 𝜋 of the process, with nested quantifiers

branching from the last path quantifier in scope. Finally, the “until” 𝜑 U𝐼 𝜓 means that 𝜑 should

hold during a time window (𝑡, 𝑡 + 𝛿), where 𝛿 ∈ 𝐼 and 𝑡 is the current time, while𝜓 holds at time

𝑡 + 𝛿 . We often use the typical notation 𝜑 U𝜓 ≜ 𝜑 U(0,+∞) 𝜓 to refer to a non-time-constrained

version of the operator. Other classical temporal operators include F𝐼 𝜑 ≜ ⊤U𝐼 𝜑 (“finally”) and

G𝐼 𝜑 ≜ ¬(F𝐼 ¬𝜑) (“globally”). The non-time-constrained version of these operators F and G , used

in Section 2, are also to be understood with 𝐼 = (0, +∞).
The satisfiability relation for guarded hyperformulae is formalised in Figure 8, through judge-

ments of the form Π, 𝑡 |= 𝜑 with Π a substitution from path variables to traces and 𝑡 ∈ R+. We

assume a dedicated path variable 𝜀 ∈ dom(Π) used to track the last path quantifier.

Definition 4.2 (Satisfiability). A process 𝑃 satisfies 𝜑 , written 𝑃 |= 𝜑 , when {𝜀 ↦→ 𝜀𝑃 }, 0 |= 𝜑 , with

𝜀𝑃 the empty trace starting from 𝑃 .

Π, 𝑡 ̸ |= ⊥
Π, 𝑡 |= 𝑢 = 𝑣 iff msg (𝑢, 𝑣) and 𝑢 ↓= 𝑣 ↓
Π, 𝑡 |= Ev𝜋 (®𝑢) iff msg (®𝑢), and writing Π(𝜋)@𝑡 = (𝐴, 𝐸) for some 𝐴, 𝐸, we have Ev (®𝑢) ↓∈ 𝐸

Π, 𝑡 |= K𝜋 (𝑢) iff msg (𝑢), and writing Π(𝜋)@𝑡 = (𝐴, 𝐸) for some 𝐴, 𝐸, we have 𝑢 ↓∈ 𝜃 (𝐴)
Π, 𝑡 |= GS𝜋 (𝑢) iff msg (𝑢), and writing Π(𝜋)@𝑡 = (𝐴, 𝐸) for some 𝐴, 𝐸, 𝑢 ↓ deducible from Φ(𝐴)
Π, 𝑡 |= ∀𝑥 . 𝜑 iff for all ground constructor terms 𝑢 s.t. 𝜎 = {𝑥 ↦→ 𝑢} is well-typed, Π |= 𝜑𝜎

Π, 𝑡 |= 𝜑 ⇒ 𝜓 iff Π, 𝑡 ̸ |= 𝜑 or Π, 𝑡 |= 𝜓

Π, 𝑡 |= ∀𝜋. 𝜑 iff writing Π(𝜀)@𝑡 = (𝐴, 𝐸), for all traces 𝑇 of 𝐴, Π[𝜋 ↦→ 𝑇, 𝜀 ↦→ 𝑇] |= 𝜑

Π, 𝑡 |= 𝜑 U𝐼 𝜓 iff 𝐼 ⊆ R+ and ∃𝛿 ∈ 𝐼 . Π, 𝑡 + 𝛿 |= 𝜓 and ∀𝛿 ′ ∈ (0, 𝛿). Π, 𝑡 + 𝛿 ′ |= 𝜑

Fig. 8. Satisfiability relation for formulae

Decision and Complexity of Dolev-Yao Hyperproperties (Technical Report) 13

4.2 Fragments and Restrictions
In this paper, we provide a large range of results, referring in particular to several classical fragments

of Hypertidy CTL* whose definitions are recalled below.

Definition 4.3 (Fragments). A guarded hyperformula 𝜑 is said to be in:

• Hypertidy LTL if it is of the form 𝜑 = 𝑄1𝜋1 . . . 𝑄𝑛𝜋𝑛 .𝜓 , for 𝑄𝑖 ∈ {∀, ∃} and 𝜓 a formula

without path quantifiers;

• tidy CTL* if for all subformulae of𝜑 of the form∀𝜋.𝜓 , all path and regular variables appearing
in𝜓 (except 𝜋) are bound by a quantifier in𝜓 ;

• tidy LTL if it is in Hypertidy LTL but has only one path quantifier.

While many properties of our examples will fall into the Hypertidy LTL fragment, the running

example (Section 2, Figure 5) typically uses nested quantifiers to express succinctly that the two

equivalent trace 𝜋1 and 𝜋2 did the same setup phase. Other typical properties that Hypertidy LTL

does not capture are liveness properties such as fairness in optimistic fair exchange [Barthe

et al. 2022], which fall into tidyCTL* (non-relational formulae). Finally, the tidy LTL fragment

is restricted to express trace properties such as (weak) secrecy or authentication. The simple

blockchain axiomatisation of Section 2 falls into this last class. In protocol analysis, one is then

usually interested in the verification problem:

Decision Problem: Verif
▶ Input: A term algebra (consisting of F , F𝑒 ,R), a process 𝑃 built from it, a guarded

hyperformula 𝜑

▶ Output: Does 𝑃 |= 𝜑 hold?

The analogue of Verif in HyperCTL* is model checking, simpler than satisfiability in that it

is decidable for arbitrary hyperproperties [Clarkson et al. 2014]. The problem is however more

complex in our context, i.e., undecidable even in tidy LTL [Barthe et al. 2022]. To achieve decidability,

our results therefore rely on previously-mentioned restrictions (bounded processes and destructor

subterm convergent rewriting). We motivate them below through several undecidability results.

First, the problem is undecidable for unbounded processes, even without rewriting.

Proposition 4.1 (Verification of arbitrary processes). Verif is undecidable even when Fc = Fpub =

{h/1}, Fd and R are empty, and 𝜑 is a tidy LTL formula.

Although general undecidability is common in protocol analysis, this result emphasises the

minimality of the fragment needed to reach it. The proof, in Appendix C, relies on an encoding of

two-counter machines, and is done in a restricted setting without real-time, and with global states

limited to simulate internal communications. One therefore has to either rely on partial decision

procedures or impose restrictions on processes to obtain decidability. We chose to focus on the

decidability of bounded processes which, we recall, is still of practical interest as attacks on real

protocols rarely require many sessions. However, this does not make the problem trivially decidable

due to the adversary, if the term algebra remains unrestricted. Typically [Barthe et al. 2022]:

Proposition 4.2 (Verification with arbitrary rewriting). Verif is undecidable for bounded processes
and a convergent term algebra, even for tidy LTL formulae.

4.3 Technical Overview of the Results
In this section, we state our main decidability and complexity results (summarised at the end of

the section, Figure 9) and reference the corresponding sections. Basics of complexity theory can

be found in Appendix A but, as a minimal reminder, we give here relations between complexity

classes of interest, including EXPH(poly) (polynomially-bounded exponential hierarchy):

14 Itsaka Rakotonirina, Gilles Barthe, and Clara Schneidewind

P ⊆ NP ⊆ PSPACE ⊆ EXP
EXP ⊆ NEXP ⊆ EXPH(poly) ⊆ EXPSPACE

When it comes to complexity, one important aspect of the problem is the numeric constraints that

may appear in “when” instructions, or that naturally arise as (discrete-time) scheduling constraints

when proving hyperproperties. Our results are largely independent of the details of the solving of

numeric constraints; they thus always implicitly assume:

(1) a notion of atomic numeric constraint used in “when” conditions, and that allows at least

constraints 𝑡 < 𝑡 ′ for 𝑡, 𝑡 ′ ∈ XN
. All of our complexity lower bounds are valid regardless,

that is, without “when” instructions;
(2) an oracle checking whether a conjunction of atomic time constraints has a solution (that is,

an instantiation of the numeric variables satisfying the constraints).

For oracle-free results to hold, the underlying problem should be decidable—and in P, when it

comes to complexity. Note that this polynomial bound is at least trivial for the minimal required

core of atomic constraints, i.e., in contexts without real-time.

Decidability in Restricted Fragments. As a complement to our main result (stated at the end of the

section), we first mention a couple of side complexity results for fragments of the logic (proved in

Appendix F). Historically, reachability properties (tidy LTL) benefited frommore attention, resulting

in a strong theoretical understanding and automated support, compared to wider fragments [Cheval

et al. 2020a]. For example, for subterm convergent term algebras and bounded processes, many

such properties such as weak secrecy are known to be coNP complete [Baudet 2007; Rusinowitch

and Turuani 2003]. However surprisingly, verifying generic tidy LTL formulae is also known to be

PSPACE hard under the same assumptions [Barthe et al. 2022]. We actually prove that:

Theorem 4.3 (Decidability in tidy LTL). Verif is PSPACE complete for destructor subterm convergent
term algebras, bounded processes, and tidy LTL guarded hyperformulae.

This gap in complexity compared to practical coNP properties is due to the permissive (guarded)

quantifiers over terms ∀𝑥 . This easily allows us to encode the satisfaction of quantified boolean
formulae, the prototypical PSPACE complete problem—while the above-mentioned coNP complete

security properties only exploit such quantifiers in a rather limited way. We introduce here a more

restricted notion of safety property, closer to practical examples, where the Verif problem will be

coNP complete. For that, we require that only the same type of quantifiers (∀, ∃) is used. Formally:

Definition 4.4 (Mono-polarity fragments). We inductively define that a guarded hyperformula

has polarity ∀, ∃, or 0 as follows. If 𝑝 ∈ {0,∀, ∃}, we write ¬𝑝 the opposite polarity, that is, ¬∀ = ∃,
¬∃ = ∀ and ¬0 = 0. Then:

• atomic formulae and their negations have polarity 0;

• if 𝜑𝑖 has polarity 𝑝𝑖 , ∀®𝑥 .𝜑0 ⇒ 𝜑1 has both polarity ¬𝑝0 and 𝑝1, and additionally ∀ if 𝑛 ⩾ 1;

• if 𝜑 has polarity 𝑝 , ∀𝜋.𝜑 has polarity ∀ and 𝑝;

• if 𝜑𝑖 has polarity 𝑝𝑖 , 𝜑0 U𝐼 𝜑1 has polarity 𝑝0 and 𝑝1.

We call tidy𝑄-LTL , 𝑄 ∈ {∀, ∃}, the class of tidy LTL guarded hyperformulae without polarity ¬𝑄 .

Many reachability properties do not involve both ∀ and ∃. Weak secrecy (∀𝜋.G ¬K𝜋 (𝑢)), event
reachability (∃𝜋. F A𝜋), or correspondence properties (∀𝜋.¬A𝜋 U? B𝜋) are typical examples.

Theorem 4.4 (Complexity of mono-polarity tidy LTL). Verif is coNP complete (resp. NP complete)
for destructor subterm convergent term algebras, bounded processes, in tidy∀-LTL (resp. tidy∃-LTL).

Decision and Complexity of Dolev-Yao Hyperproperties (Technical Report) 15

We also provide tight complexity analyses for the pure 𝜋-calculus, that is, with an empty term

algebra (F = ∅ and R = ∅), see Figure 9. Although anecdotal in terms of applications, this fragment

serves as a baseline for comparison to emphasise which assumptions increase the verification cost.

Decidability in Hypertidy CTL*. Finally, our main result is then that Verif is decidable under the
assumptions of this paper.

Theorem 4.5 (Decidability in HypertidyCTL*). The Verif problem is EXPH(poly) complete for
destructor subterm convergent term algebras, bounded processes, and guarded hyperformulae of either
tidy CTL*, Hypertidy LTL or Hypertidy CTL*.

This states three incomparable complexity results for Verif. However, as EXPH(poly) hardness

is already established for the three of them [Barthe et al. 2022], it suffices to prove that Verif is in
EXPH(poly) only for the whole logic Hypertidy CTL*. Our procedure is based on constraint solving,
recalling [Cheval et al. 2013, 2018; Liu and Lin 2012]. This intuitively replaces the sources of un-

boundedness of traces (recipes and timestamps), by variables and constraints on their instantiations.

This is done through an alternative, finitely-branching symbolic semantics defined in Section 5,

used as a basis for a procedure in Section 6. Given a guarded hyperformula 𝜑 , it mainly computes

two sets of constraints Ω𝜑 ,Ω¬𝜑 , where solutions of Ω𝜓 can intuitively be used to reconstruct a

proof that𝜓 holds. Typically, if 𝜑 = 𝜑0 ⇒ 𝜑1, the procedure starts by computing Ω𝜑0
,Ω¬𝜑0

. Then,

as the constraints of Ω¬𝜑0
already induce a proof of 𝜑 , the constraints of Ω𝜑0

are refined w.r.t. to

the formula 𝜑1 through a suitable recursive call, to compute Ω𝜑0∧𝜑1
,Ω𝜑0∧¬𝜑1

. The final decision

criterion is then that 𝜑 holds iff Ω¬𝜑 = ∅. One technical challenge specific to hyperproperties is the
more complex notion of constraints compared to related works [Cheval et al. 2013, 2018], as they

are to be interpreted across several different traces. Additionally, two constraints characterising

two different traces are not independent: 𝜑 expresses relations between them. Therefore, they

cannot be solved separately. Our procedure handles nested path quantifiers using a stack structure,

to propagate the solving’s results from deeper levels to higher ones. Finally, using a small-solution
property (i.e., that all constraints of Ω𝜑 ∪Ω¬𝜑 have a solution of at most exponential size), we show

that we can derive a naive EXPH(poly) procedure.

process term algebra tidy∀-LTL tidy LTL tidyCTL* Hypertidy LTL/CTL*

a
n
y

h
a
s
h

undecidable

b
o
u
n
d
e
d

c
o
n
v
-

e
r
g
e
n
t

e
m
p
t
y

coNP
complete

PSPACE complete

d
e
s
t
r
u
c
t
o
r

s
u
b
t
e
r
m

c
o
n
v
e
r
g
e
n
t

EXPH(poly) complete

Fig. 9. Summary: Complexity of Verifying Guarded Hyperformulae (with oracle to a numeric solver)

16 Itsaka Rakotonirina, Gilles Barthe, and Clara Schneidewind

5 SYMBOLIC ABSTRACTION
We give a symbolic semantics for bounded processes, replacing the operational semantics with

a finitely-branching relation annotated with constraints, mostly inspired by classical analogue

notions [Cheval et al. 2018]. In the following, we always assume that processes only contain

bounded replications.

5.1 (Refined) Unification Theory
We first introduce some important notions from unification theory that are necessary to formalise

the symbolic semantics, and that are central to our decision procedure in general.

Refined Term Algebra. First, we partition the set of variables X in two: first-order variables
𝑥,𝑦, 𝑧, . . . that we have been using so far in processes and formulae, and second-order variables
𝑋,𝑌, 𝑍, . . . that will be used to represent adversarial computations (i.e., recipes). Formally, we write:

X = X1 ⊎ X2
with XN ⊆ X1

where X1 ∖ XN
, XN

and X2
are infinite. We recall that X𝑝

is the set of path variables, and write

vars1 (𝑢), vars2 (𝑢), vars𝑛 (𝑢) the set of first-order, second-order, and numeric variables, respectively,

appearing in an object 𝑢. To reflect the partition X = X1 ⊎ X2
, we refine terms:

Definition 5.1 (First- and second-order term). A first-order term is a term 𝑢 ∈ T (F ∪ N ∪ X1),
and a second-order term is a term 𝜉 ∈ T (Fpub ∪ Npub ∪ AX ∪ X2).
First-order terms are therefore terms representing actual protocol communications, whereas

second-order terms represent adversarial computations. We recall in particular from Section 3

that a ground term is a term 𝑢 such that vars (𝑢) = ∅: a ground second-order term is therefore, by

definition, a recipe 𝜉 (as axioms are not treated as variables of X). Additionally, we use a form of

bookkeeping to record which amount of knowledge was available to the adversary at the time a

given adversarial computation 𝑋 ∈ X2
was introduced. We consider the partition:

X2 =
⊎

𝑀⊆AX, 𝑀 finite

X2

𝑀

Intuitively, variables of X2

𝑀
represent recipes that only use axioms ax ∈ 𝑀 ; in this case we say that

𝑋 hasmultiplicity 𝑀 and write 𝑋:𝑀 instead of 𝑋 to denote this fact. Concretely, when the symbolic

semantics will introduce a new second-order variable to represent a recipe, its multiplicity will be

the domain of the current frame. Besides, we adapt the definition of well-typing accordingly:

Definition 5.2 (Well-typed substitution). A substitution 𝜎 is well-typed if for all 𝜔 ∈ dom(𝜎):
(1) if 𝜔 ∈ X1

then 𝜔𝜎 is a first-order term;

(2) if 𝜔 ∈ XN
then 𝜔𝜎 is a numeric term;

(3) if𝜔:𝑀 ∈ X2
then𝜔𝜎 is a second-order term, axioms(𝜔𝜎) ⊆ 𝑀 and vars2 (𝜔𝜎) ⊆ ⋃

𝑁 ⊆𝑀 X2

𝑁
.

Constraints and unifiers. Given a set of equations between terms 𝐸 = (𝑢𝑖 =? 𝑣𝑖)𝑖∈𝐼 , a standard
problem is unification, i.e., the existence of (well-typed) substitutions 𝜎 such that 𝑢𝑖𝜎 = 𝑣𝑖𝜎 for all

𝑖 ∈ 𝐼 . When unification is possible, a most general unifier is known to exist. The problem has also

been studied modulo the rewriting system [Comon-Lundh and Delaune 2005]. However, numeric

terms, due to arithmetic operators, are poorly suited for unification in general. In particular, rather

than a substitution, we see in this paper unifiers 𝜎 as conjunctions of equation constraints 𝑢 =? 𝑣 ,

with𝑢, 𝑣 constructor terms. They are used to either characterise substitutions 𝜎 (through constraints

𝑥 =? 𝑥𝜎 for each 𝑥 ∈ dom(𝜎)) or numeric equations (through constraints 𝑒 =?
0, 𝑒 numeric term).

We introduce below a more general notion of constraint, which will be at the core of our symbolic

semantics, and of the different components of our decision procedure as a whole.

Decision and Complexity of Dolev-Yao Hyperproperties (Technical Report) 17

Definition 5.3 (Constraint). A constraint C is of either of the forms:

C ::= 𝑢 =? 𝑣 ∀®𝑥 .∨𝑖 𝑢𝑖 ≠
? 𝑣𝑖 first-order (dis)equation

𝜉 =? 𝜁 ∀ ®𝑋 .
∨

𝑖 𝜉𝑖 ≠
? 𝜁𝑖 second-order (dis)equation

𝑒 <?
0 𝑒 ⩽? 0 numeric inequality

𝜉 ⊢? 𝑢 ∀𝑋 .𝑋 ⊬? 𝑢 (non-)deduction constraint

with 𝑢, 𝑣,𝑢𝑖 , 𝑣𝑖 first-order constructor terms, {®𝑥} ⊆ X1
, { ®𝑋,𝑋 } ⊆ X2

, 𝜉, 𝜉𝑖 , 𝜁𝑖 second-order terms

with 𝜉 not having a constructor symbol at its root, and 𝑒 is a numeric term. Note that the case of

numeric constraints 𝑒 =?
0 is covered as a subcase of first-order equations. We usually write ⊤ and

⊥ trivially (un)satisfiable constraints.

Intuitively, equations represent equalities between terms. We insist on the fact that they are

syntactic: to express that 𝑢 ↓= 𝑣 ↓, the adequate constraint is not 𝑢 =? 𝑣 but
∧

𝑥∈dom(𝜎) 𝑥 =? 𝑥𝜎 for

some 𝜎 such that 𝑢𝜎 ↓= 𝑣𝜎 ↓. More generally, we often see unifiers, or even well-typed substitutions

in general, as conjunctions of constraints, with the interpretation:

𝜎 ≜
∧

𝑥∈dom(𝜎)
𝑥 =? 𝑥𝜎 ¬𝜎 ≜ ∀®𝑧.

∨
𝑥∈dom(𝜎)

𝑥 ≠? 𝑥𝜎 (®𝑧 = img(𝜎) ∖ dom(𝜎)) .

Regarding numeric inequalities, they are similar to their non-symbolic analogue used in protocols

in when conditions, and constraints 𝜉 ⊢? 𝑢 express that 𝑢 is deducible by the adversary using the

computation 𝜉 . As stated earlier, we can then use constraints to define unification (possibly modulo

rewriting) in our numeric context:

Definition 5.4 (Unification modulo rewriting). A unifier modulo rewriting of a set of equations

𝐸 = (𝑢𝑖 =? 𝑣𝑖)𝑖∈𝐼 is a conjunction of constraints 𝛾 = 𝜎 ∧ 𝑁 , with 𝜎 a well-typed substitution

(interpreted as a conjunction of constraints as above), 𝑁 a conjunction of numeric equations, s.t.:

(1) dom(𝜎) ⊆ vars (𝐸) and vars𝑛 (𝑁) ⊆ vars𝑛 (𝐸);
(2) there exists a well-typed substitution 𝜎𝑁 such that dom(𝜎𝑁) = vars (𝑁) and 𝑁𝜎𝑁 holds

when interpreting =?
as the equality on R;

(3) for all 𝜎𝑁 verifying Item (2), for all 𝑖 ∈ 𝐼 , we havemsg (𝑢𝑖𝜎𝜎𝑁 , 𝑣𝑖𝜎𝜎𝑁) and𝑢𝑖𝜎𝜎𝑁 ↓= 𝑣𝑖𝜎𝜎𝑁 ↓.
We say that a set 𝑆 of such unifiers is complete if for all 𝜎 ′ ∧𝑁 ′

unifiers modulo rewriting of 𝐸, there

exist 𝜎 ∧ 𝑁 ∈ 𝑆 and a well-typed substitution 𝜏 such that 𝜎 ′ = 𝜎𝜏 and such that for all well-typed

𝜎𝑁 of domain vars (𝑁, 𝑁 ′), 𝑁 ′𝜎𝑁 ⇒ 𝑁𝜎𝑁 . We writemguR (𝐸) such a complete set of unifiers, with

the convention mguR (𝐸) = ⊥ when none exists.

Definition 5.5 (Syntactic unification). A unifier 𝛾 of 𝐸 is a unifier modulo rewriting of 𝐸, for the

alternative term algebra interpreting all symbols as constructors, and with an empty rewriting

system (i.e., all terms are messages in normal form). Also, 𝛾 is a most general unifier of 𝐸, written
mgu (𝐸), if {𝛾} is a complete set of unifiers of 𝐸 modulo this same theory.

Computing mgu can be done straightforwardly using standard algorithms, adding numeric

constraints instead of regular constraints when unifying a numeric term with another term. The

set mguR (𝐸) is also known to be computable for our class of rewriting systems using narrow-

ing [Comon-Lundh and Delaune 2005], up to minor modifications due to the numeric requirements.

Note also that, regardless of numeric aspects, unifying a term 𝑢 with itself is not always immediate

due to the requirement that 𝑢 is a valid message. Rephrasing, mguR (𝑢 =? 𝑢) ≠ {⊤} in general.

In fact, 𝜎 ∈ mguR (𝑢 =? 𝑢) means msg (𝑢𝜎). Finally, when it comes to (syntactically) unifying

second-order terms, subtle considerations also arise due to the multiplicity of variables. Typically,

when unifying, e.g., two variables 𝑋:𝑀,𝑌 :𝑁 , one should map them to a common fresh variable

𝑍 whose multiplicity is the most general one not breaking well-typing (i.e.,𝑀 ∩ 𝑁). We however

18 Itsaka Rakotonirina, Gilles Barthe, and Clara Schneidewind

omit the details as they are vastly analogue to existing techniques despite the slight differences in

contexts. For the unusual case of second-order unification, we refer to the algorithm and proofs

of [Rakotonirina 2021, Chapter 2, Section 1.2].

5.2 Symbolic Semantics
We now introduce the symbolic semantics we use to give a finite characterisation of traces, using

constraints to reflect the application conditions of the operational semantics −→ . Concretely:

Definition 5.6 (Constraint system). A constraint system is a constraint D ∧ K ∧ E1 ∧ E2 where

(1) D is a set of (non-)deduction constraints of the form 𝑋 ⊢? 𝑢 or ∀𝑋 .𝑋 ⊬? 𝑢 for 𝑋 ∈ X2
;

(2) K is a set of constraints 𝜉 ⊢? 𝑢, 𝜉 ∉ X2
, s.t. the following is a well-defined substitution:

Φ(C) = {ax ↦→ 𝑢 | (ax ⊢? 𝑢) ∈ K, ax ∈ AX}

(3) E1 is a set of first-order (dis)equations and numeric constraints, and E2 of second-order
(dis)equations.

Given a constraint system C, the above decomposition is unique and we write D (C), K (C), Φ(C)
and E𝑖 (C) the underlying components. We also use the notations:

mgu (E𝑖) = mgu ((𝑤 =? 𝑤 ′) ∈ E𝑖) .

A constraint system is therefore a collection of constraints organised accordingly to their roles.

Constraints of D indicate the deductions required from the adversary to reach a certain state of

the proof. Typically, symbolically executing an input in(𝑥) puts a constraint 𝑋 ⊢? 𝑥 in D. On

the contrary, K is a knowledge base available to the attacker to resolve the constraints of D, thus

generalising the notion of a frame. In our procedure, K will undergo a saturation generating

(redundant) entries 𝜉 ⊢? 𝑢 facilitating deducibility checks. Finally, E𝑖 adds syntactic constraints to
the lot. The set E2 in particular is not used in the symbolic semantics, but will be at the core of our

constraint-solving algorithm to store solutions under the form of mgu (E2). Altogether:

Definition 5.7 (Symbolic processes). A symbolic process is a tuple𝐴 = (P, C, 𝜃, 𝑡) with P a multiset

of processes, C a constraint system, 𝜃 a global state, and 𝑡 ∈ XN
. The different components are

referred to as P(𝐴), C(𝐴), 𝜃 (𝐴) and 𝑡 (𝐴), respectively.

Formally, the symbolic semantics is a relation

®𝑤−→ s over symbolic processes, with ®𝑤 a sequence of

actions. Similarly to the operational semantics, it relies on an atomic semantics −→ s-at and sequential

semantics−→ s-seq. For space reasons however, their definitions can be found in Figure 14, Appendix D,

and we only review a couple of rules here. Most often, symbolic processes contain free variables,

as executing inputs in(𝑥) symbolically does not instantiate 𝑥 using a concrete recipe 𝜉 . This is

formalised by Rule (s-In), which freshly renames the input variable 𝑥 (to avoid naming collisions),

and adds a deduction constraint for it:

(in(𝑥) : 𝑆, C, 𝜃, 𝑡) in−→ s-at (𝑆{𝑥 ↦→ 𝑦}, C ∧ 𝑌 ⊢? 𝑦, 𝜃, 𝑡) (s-In)

if 𝑦 ∈ X1
and 𝑌 : dom(Φ(C)) ∈ X2

are fresh. Most other constraints are of the form mguR (𝑢 =? 𝑢),
thus expressing that 𝑢 is a message, and are carried out to subsequent transitions by the unifier

𝜇 = mgu (E1 (C)). The unifier mgu (E2 (C)), however, is not considered as no constraints are added

to E2 (C) by the symbolic semantics. Typically, the symbolic rule for outputs is the following:

(out(𝑢) : 𝑆, C, 𝜃, 𝑡) out−−→ s-at (𝑆, C ∧ 𝜎 ∧ 𝑁 ∧ ax ⊢? 𝑢𝜎 ↓, 𝜃, 𝑡) (s-Out)

if 𝜎 ∧ 𝑁 ∈ mguR (𝑢𝜇 =? 𝑢𝜇) and ax ∈ AX is fresh, and 𝜇 = mgu (E1 (C)) as above.

Decision and Complexity of Dolev-Yao Hyperproperties (Technical Report) 19

5.3 Soundness and Completeness
We now formalise the link between the symbolic semantics and the operational one. This relies on

the following notion of solution, formalising the semantics of constraint systems:

Definition 5.8 (Solution). A solution of a constraint system C is a pair of well-typed substitutions

(Σ, 𝜎) such that:

(1) dom(Σ) = vars2 (C), dom(𝜎) = vars1 (C), img(Σ) only contains recipes, and img(𝜎) ground
constructor terms;

(2) for all (𝑋 ⊢? 𝑥) ∈ D (C), 𝑋ΣΦ(C)𝜎 ↓= 𝑥𝜎 ;

(3) for all (𝑢 =? 𝑣) ∈ E1 (C), 𝑢𝜎 = 𝑣𝜎 ;

(4) for all (𝑒 ∼? 0) ∈ E1 (C) with ∼ ∈ {<, ⩽}, we have 𝑒𝜎 ∈ R and 𝑒𝜎 ∼ 0 in R;
(5) for all (𝜉 =? 𝜁) ∈ E2 (C), 𝜉Σ = 𝜁Σ;
(6) the satisfaction of first-order formulae is recursively defined in the natural way, interpreting

∀𝑥 as a quantifier over ground constructor terms, and ∀𝑋 as a quantifier over recipes.

Example 5.1. As an example of constraints, consider again the attack on fair reward introduced in

Section 2, and the attack trace in the model mentioned in Section 3. A typical constraint modelling

the adversary’s constraints during the attack would be the following:

C = ax ⊢? tx ∧ 𝑋: {ax} ⊢? tx′ ∧ tx′ =? (𝑥, sign(𝑥, 𝑟, sk′)) ∧ 𝑥 =? (pk(sk′), solve, sol) .
Paraphrasing, the honest transaction tx is public (and accessible through the axiom ax), and the

adversary has to compute a transaction tx′ from it, whose validity is expressed by the last to

equation constraints. A second-order solution of this constraint would be the mapping {𝑋 ↦→ 𝜉},
with 𝜉 the attack recipe previously detailed in the description of the attack (Section 3, Example 3.2).

We write Sol (C) the set of solutions of C, and refer to Σ and 𝜎 as second-order and first-order

solutions. This hence formalises the semantics of constraints. Then if we define a symbolic trace

𝑇 : 𝐴0

s
®𝑤1−−→ s · · ·

®𝑤𝑛−−→ s𝐴
𝑛
s

as a sequence of −→ s transitions, and C(𝑇s) = C(𝐴𝑛
s), we can formalise the first property linking the

symbolic semantics with the operational one. It is soundness, intuitively stating that all symbolic

traces yield valid regular traces when instantiating their variables w.r.t. their constraints.

Proposition 5.2 (Soundness). Consider a symbolic trace 𝑇s : 𝐴0

s
®𝑤1−−→ s · · ·

®𝑤𝑛−−→ s𝐴
𝑛
s . Then if (Σ, 𝜎) ∈

Sol (C(𝑇s)), we have: 𝑇 : 𝐴0

®𝑤1Σ−−−→ · · · ®𝑤𝑛Σ−−−→ 𝐴𝑛 with 𝐴𝑖 = (P(𝐴𝑖
s)𝜎, Φ(C(𝐴𝑖

s))𝜎, 𝜃 (𝐴𝑖
s)𝜎, 𝑡 (𝐴𝑖

s)𝜎).

The proof is a straightforward induction on 𝑛 the length of 𝑇s. In the following, we will often

refer to the trace 𝑇 given by the above proposition as the result of applying the solution 𝑆 = (Σ, 𝜎)
to 𝑇𝑠 , and write it 𝑇 = 𝑇s𝑆 . In particular, completeness (“all regular traces can be abstracted by a

symbolic trace”) is formalised as:

Proposition 5.3 (Completeness). Let 𝐴0

s = (P, C, 𝜃, 𝑡) be a symbolic process, (Σ, 𝜎) ∈ Sol (C), and
let us write 𝐴 = (P𝜎,Φ(C)𝜎, 𝜃𝜎, 𝑡𝜎) . Then for all traces 𝑇 of 𝐴, there exists a symbolic trace 𝑇s and
𝑆 = (Σ ∪ Σ′, 𝜎 ′) ∈ Sol (C(𝑇s)) such that 𝑇 = 𝑇s𝑆 .

6 VERIFICATION OF DOLEV-YAO HYPERPROPERTIES
In this section, we built on our symbolic semantics to provide a decision procedure for the veri-

fication of arbitrary, guarded hyperformulae. For readability, we only outline some ideas of the

procedure and leave the full technical details to Appendices D and E.

20 Itsaka Rakotonirina, Gilles Barthe, and Clara Schneidewind

6.1 Hyperconstraints
The first ingredient is a refined notion of constraint. Indeed, although the symbolic semantics

introduces (sound and complete) constraints for characterising traces finitely, some adequate form

of bookkeeping is required when proving hyperproperties due to the multiple path quantifications.

Definition 6.1 (Hyperconstraint system, path projection). A hyperconstraint is defined with the

same grammar as that of constraints, except that deductions are labelled by path variables:

𝜉 ⊢?𝜋 𝑢 ∀𝑋 .𝑋 ⊬?𝜋 𝑢 (non-)deduction hyperconstraint

In particular, if 𝜋 ∈ vars𝑝 (C) we define the projection of C on path 𝜋 as the hyperconstraint proj𝜋 (C)
obtained by removing those labelled 𝜋 ′ ≠ 𝜋 . A hyperconstraint system C is then a hyperconstraint

such that for all 𝜋 ∈ vars𝑝 (C), proj𝜋 (C) is a well-defined constraint system. We also extend the

notations D (C), K (C), E𝑖 (C) in the natural way. Note however that Φ(C) is not a well-defined
substitution in general, but Φ(proj𝜋 (C)) is one for all 𝜋 ∈ vars𝑝 (C).

A hyperconstraint is therefore a collection of constraints across different traces, more suited

than a plain constraint for proving hyperproperties. In particular, we can define:

Definition 6.2 (Solution of a hyperconstraint system). A solution of a hyperconstraint system C
is a pair of well-typed substitutions (Σ, 𝜎) such that: (1) dom(Σ) = vars2 (C), dom(𝜎) = vars1 (C),
img(Σ) only contains recipes, and img(𝜎) ground constructor terms; and (2) for all 𝜋 ∈ vars𝑝 (C),
we have (Σ |vars2 (proj𝜋 (C)) , 𝜎vars1 (proj𝜋 (C))) ∈ Sol (proj𝜋 (C)) .

Furthermore, we define a notion of most general solution (mgs) partly inspired by the analogue

notion introduced in [Cheval et al. 2018] for verifying equivalence properties. Intuitively, similarly

to mgu for terms, mgs’ are partial instantiations of the (second-order) variables of a hyperconstraint

system C that characterise all solutions of C: instantiating the pending second-order variables by

fresh public names results in an actual solution, and all solutions are instances of a mgs.

Definition 6.3 (Most general solution). A set of most general solutions of a hyperconstraint system
C, written mgs (C), is a set of well-typed second-order substitutions such that:

(1) for all (Σ, 𝜎) ∈ Sol (C), there is Σ0 ∈ mgs (C) and a well-typed Σ1 such that Σ = Σ0Σ1;

(2) for all Σ0 ∈ mgs (C), dom(Σ0) ⊆ vars2 (C). Also let𝑉 = vars2 (img(Σ0), C) ∖ (dom(Σ0) ∪𝑉𝑡) .
Also let Σ1 be amapping from𝑉 to fresh constants such that𝑋Σ1 = 𝑌Σ1 iff there exist 𝑧, 𝜋, 𝜋 ′

such that (𝑋 ⊢?𝜋 𝑧), (𝑌 ⊢?
𝜋 ′ 𝑧) ∈ D (C). Then there is a well-typed 𝜎 s.t. (Σ0Σ1, 𝜎) ∈ Sol (C) .

In this paper, mgs (C) = ⊥ expresses that Sol (C) = ∅. Note that verifying the existence of 𝜎 in

Item 2 is straightforward: since the symbolic semantics generates a deduction constraint 𝑋 ⊢? 𝑥 for

each newly-introduced variable 𝑥 ∈ X1
, Σ0Σ1 uniquely determines 𝑥𝜎 provided 𝑥 ∉ XN

. The cases

𝑥 ∈ XN
can then be handled by the black-box time-solving oracle we assume in our procedure

(recall Section 4.3). Ordering constraints are the main difference with the original notion of mgs,

taken from [Cheval et al. 2018]. In particular, most general solutions are not unique in general, and

mgs (C) refers to one arbitrary such set.

6.2 Proof States and Stacks
Hyperconstraints are then part of a bigger structure reflecting the proof skeleton of the desired

security property. For that, we define a notion of proof state, intuitively modelling a current point

in the proof with a list of pending proof obligations, each corresponding to a missing proof to carry

for a certain trace. Proof states are then gathered in proof stacks capturing the interactions between
the different trace quantifications of hyperproperties.

Decision and Complexity of Dolev-Yao Hyperproperties (Technical Report) 21

Definition 6.4 (Proof state). A proof state is a tuple of the form 𝜔 = (Π, C,O), whose components

may be written Π(𝜔), C(𝜔), and O(𝜔), and where

• Π is a mapping from X𝑝
to symbolic traces;

• C is a hyperconstraint system;

• O is a set of proof obligations o = (𝑇, C′), 𝑇 a symbolic trace, C′
a hyperconstraint system.

Besides, we call the domain of 𝜔 the following set:

dom(𝜔) = {𝑋 ∈ X2 | (𝑋 ⊢?𝜋 𝑥) ∈ C(𝜔)} .
This represents, intuitively, a snapshot of the state of a proof of a hyperproperty at a given point

of the proof tree. For example, the hyperconstraint system C (resp. the mapping Π) gathers all
constraints (resp. symbolic traces) generated along the proof so far. Importantly, the set O contains

proof obligations (𝑇, C′), indicating that after concluding the current proof, it should be carried

again with the last quantified trace replaced by 𝑇 , and under the additional constraints C. They are

then gathered into stacks:

Definition 6.5 (Proof stack). A proof stack is a sequence of proof states written 𝜔★ = 𝜔1↣ 𝜔2↣
· · ·↣ 𝜔𝑛 and such that dom(𝜔1) ⊆ · · · ⊆ dom(𝜔𝑛).
Proof states and stacks will undergo forms of constraint solving in order to determine whether

their hyperconstraints have solutions. This includes among others a saturation, relying on the

assumptions on the term algebra to decide deduction hyperconstraints. We give a first intuition of

the goal and behaviour of this saturation step below.

Example 6.1. Consider again our running example (Example 3.2). Once the honest transaction tx
is output to the network, this is reflected as a constraint ax ⊢?𝜋1

txmeaning that the adversary learns

tx. The saturation procedure will then add the new hyperconstraint ax.args ⊢?𝜋1

sol indicating that

the private name sol, modelling the submitted solution, can be extracted using the new recipe

ax.args. Other deductions such as ax.func ⊢?𝜋1

solve are not added as the term solve (a public name)

is already deducible.

More generally, the role of the saturation procedure is to apply as destructors as possible to

already deducible terms, in order to detect potential new adversarial deductions, as in the above

examples. The procedure starts from the outputs leaked during the trace to the adversary, and stops

when applying destructors only yields terms that were previously deduced—we call the result a

saturated knowledge base. This process is guaranteed to terminate due to our restriction to subterm

convergent rewriting systems. The details of this constraint-solving procedure can be found in

Appendix D, and are used between each step of our decision procedure.

Once saturation is over, it offers a simple characterisation of deducible terms. It has indeed the

immediate property that deducible terms need be composed of constructor symbols applied to

entries of the saturated knowledge base—which can easily be checked syntactically. This, in turn,

permits to frame an algorithm to compute most general solutions of hyperconstraints.

6.3 Main procedure
One key point is that proof states aggregate constraints monotonously during the proof of a

hyperproperty. However, some side data are still local during a proof: this is for example the case

of the current time 𝑡 , or the subformula currently being proved. We gather this pieces of local

information under an ephemeral analogue of proof states, discarded when moving on to the next

proof obligation. It contains, as hinted above, a variable 𝑡 representing the current timestamp, the

formula 𝜑 to be proved, but also a mapping Π@ indicating the state of all quantified traces at time 𝑡

(in reference to the notation 𝑇@𝑡 of Section 3.2). Formally:

22 Itsaka Rakotonirina, Gilles Barthe, and Clara Schneidewind

Definition 6.6 (Local proof data). A local proof data is a tuple 𝜔−1 = (Π@, 𝑡, 𝜑), where:
• Π@ is mapping from X𝑝

to pairs (𝐴, 𝐸) where 𝐴 is a symbolic process and 𝐸 is a set of

events;

• 𝑡 ∈ XN
and 𝜑 is a guarded hyperformula.

To prove a hyperproperty 𝜑 , our main procedure then consists of a function HCompute which
computes two sets of proof stacks representing, respectively, all cases resulting in 𝜑 or ¬𝜑 holding.

Exactly one of these sets will be empty when 𝜑 has no free variables, which is the core criterion for

deriving decidability. Formally, this function takes the following form:

HCompute(𝜔★, 𝜔−1) = (Ω𝜑 ,Ω¬𝜑)
where 𝜔★

is a proof stack, 𝜔−1
is a local proof data, and Ω𝜑 and Ω¬𝜑 are two sets of proof stacks.

We also assume that dom(Π@ (𝜔−1)) ⊆ dom(Π(𝜔)) and at least contains 𝜀 and all (non-quantified)

path variables appearing in 𝜑 (𝜔−1).

Overview of the technical details. Let us give a more concrete intuition of howHCompute operates.
For complete technical details, we refer to Appendix E. Consider for example the handling of atomic

formulas. Here the role of HCompute is to rely on the constraint solving procedure to resolve a set

of characteristic constraints. Let us study the case of an equality modulo rewriting, namely:

HCompute(𝜔★↣ 𝜔,𝜔−1) with 𝜑 (𝜔−1) = (𝑢 = 𝑣) .
The first step ofHCompute is to unify𝑢 and 𝑣 modulo rewriting, that is, to compute 𝐸 = mguR (𝑢 =?

𝑣). It then picks a first 𝜎 ∈ 𝐸, and adds it to the constraint of the last stack’s state, i.e., C(𝜔). By
a call to the constraint solving subroutine, it then computes all possible solutions of the updated

hyperconstraint.

The results of this resolution are then applied at each level 𝜔𝑖 of the whole stack 𝜔
★
, directly in

the hyperconstraint C(𝜔𝑖), or filling a queue of pending proof obligations in o(𝜔𝑖) when several

solutions are added. This eventually leads to a new resolved stack 𝜔★
+ . Analogously, a stack 𝜔★

−
can be obtained by considering the negative constraint ¬𝜎 instead. The sets Ω𝑢=𝑣,Ω𝑢≠𝑣 returned

by HCompute are then obtained by computing each of the corresponding stacks 𝜔★
+ and 𝜔★

− , for
all different unifiers 𝜎 ∈ 𝐸. The treatment of other atomic formulas follows the same idea: (1) we

characterise them by a set of unifiers or constraints, (2) they are then added to the last stack level,

and (3) this triggers a constraint solving whose results are propagated to all stack levels.

In the other (non-atomic) cases,HCompute follows the inductive structure of the formula𝜑 (𝜔−1)
to be proved. For example, if 𝜑 (𝜔−1) = 𝜑 ⇒ 𝜓 , one first computes (Ω𝜑 ,Ω¬𝜑) through a recursive

call toHCompute. Subsequently, for each proof stack𝜔★ ∈ Ω𝜑 , another recursive call toHCompute
is used to, overall, aggregate the sets Ω𝜑∧𝜓 and Ω𝜑∧¬𝜓 . The final result of the procedure is then,
using the identity (𝜑 ⇒ 𝜓) = ¬𝜑 ∨𝜓 :

(Ω𝜑⇒𝜓 ,Ω¬(𝜑⇒𝜓)) = (Ω¬𝜑 ∪ Ω𝜑∧𝜓 ,Ω𝜑∧¬𝜓) .
The only notable exception is the case of path quantifiers, which creates, on top of that, a new stack

level (and yields an additional recursive call to the next proof obligation once the proof at more

recent levels are finished).

Correctness. We now state the main correctness property of HCompute. To obtain the desired

EXPH(poly) bound, we consider the naive 𝑛-bounded algorithm NBA𝑛 (𝑃, 𝜑) ∈ {true, false}, which
is the brute force alternating (but incomplete) algorithm for proving 𝑃 |= 𝜑 which bounds the size

of adversarial computations by 𝑛 to obtain a finite set of traces. Its definition is straightforward,

and similar to HCompute but operates on concrete processes and traces, and hence uses concrete

recipes (of size 𝑛 at most) instead of deduction constraints.

Decision and Complexity of Dolev-Yao Hyperproperties (Technical Report) 23

Proposition 6.2 (Complexity and Soundness of NBA). The procedure NBA𝑛 (𝑃, 𝜑) runs in alter-
nating polynomial time in 𝑛 and the sizes of 𝑃 and 𝜑 , and also involves a polynomial number of
alternations. Besides, for some initial parameters 𝜔★, 𝜔−1 (technically defined in Appendix E), let us
write (Ω𝜑 ,Ω¬𝜑) = HCompute(𝜔★, 𝜔−1) and assume

𝑛 ⩾ 𝜇 (Ω𝜑 ∪ Ω¬𝜑) ≜ max

(𝜔★↣𝜔) ∈Ω𝜑∪Ω¬𝜑
𝜋∈vars𝑝 (𝜔)

𝜇𝜋 (C(𝜔))

where 𝜇𝜋 (C) refers to the size of a mgs of C projected on path 𝜋 , i,e., mgs (C) |vars2 (proj𝜋 (C)) . Then
𝑃 |= 𝜑 iff NBA𝑛 (𝑃, 𝜑) accepts.

This states that NBA𝑛 is a sound procedure provided 𝑛 is greater than all (projections of) mgs

generated byHCompute. To justify that the Verif problem is in EXPH(poly) under our assumptions,

it therefore remains to establish a small solution property, that is, that 𝜇𝜋 (C) is bounded by an

exponential in the inputs of the problem. These properties are proved in Appendix E.2.

7 REVIEW OF APPLICATIONS OF DY-HYPERPROPERTIES
To conclude, we review here some potential applications of hyperproperties in the context of

security protocols, in addition to the running example. We present these examples in an informal

style, the translation of the security property in our logic being often straightforward.

7.1 Distribution fairness
We first review a few case studies from [Barthe et al. 2022], which lists examples of hyperprop-

erties in real-time contexts. They feature either trace properties (lacking relevance to our paper),

equivalence properties (out of our scope), or liveness properties in the tidy CTL* fragment. We will

focus on the third kind. Notably, although omitted in this section, similar properties as those listed

below arise in the context of optimistic fair exchange, studied for example in [Backes et al. 2017].

The applications we consider rely on time cryptography, which are primitives that require, by

design, a significant amount of time to be computed. This allows to lock sensitive data from the

adversary during a time window, and corresponds to notions of cost in our calculus term algebra. We

cleared this component from our framework to simplify its already dense presentation, but protocol

variants may rely instead on trusted third parties holding data until predetermined deadlines. This

is used to enforce notions of (distribution) fairness, meaning that either all participants get the

protocol’s output, or none does. This typically involves the following core notions.

(1) Stuck: the agent cannot do anything but wait for some event𝐴 that is, say, out of its control.

(2) Progress: at any point in time, non-stuck agents proceed until being stuck.

(3) Activeness: agents do not get stuck by passively waiting, e.g., that some timeout expires.

formula stuck =

∀pi:trace. F not silentpi =>

silentpi U A

formula progress =

G (not stuck => F stuck)

formula activeness(pi:trace) =

G (not stuck => F not silentpi)

Fig. 10. Progress-related notions

We define these predicates in Figure 10, sticking to the

programming-like syntax of Section 2. Various security prop-

erties of the form ∀𝜋.Progress ⇒ 𝜑 , or ∀𝜋.Progress ⇒
Active𝜋 ⇒ 𝜑 , can then be used to formalise fairness in dif-

ferent contexts. One instance is the organisation of auctions

as described in [Boneh and Naor 2000], where participants

lock their bid until a common date 𝑡 in the future. They

are then expected to reveal their bid at time 𝑡 , but should

have backup solutions to recover those of non-cooperating

parties (typically forceable time cryptography or a trusted

third party). The desired security property is then that, in presence of at least one progressing

agent, the protocol always goes through until the end once the bids have all been submitted.

24 Itsaka Rakotonirina, Gilles Barthe, and Clara Schneidewind

Another example of such properties would be contract signing protocols such as the one of [Boneh

and Naor 2000]. Here two mutually distrusting parties 𝐴 and 𝐵 want to exchange signatures with

some guarantee that they will get the other’s. The main idea is to rely on a locking mechanism

expiring after some (parametric) time 𝑡 . Concretely, 𝐴 and 𝐵 exchange their signatures, locked for

a prohibitive amount of time (say, 𝑡 = 2
𝜂
for some high security parameter 𝜂). They then repeat

this protocol, decrementing 𝜂 at each new round. If both parties cooperate, they get each other’s

signatures in 𝜂 rounds. If one party aborts during round 𝑝 , they will have to wait at least time 2
𝜂−𝑝

to get the signature; meanwhile, the worse-off party waits at most time 2
𝜂−𝑝+1

, i.e., at most twice

as much. The desired security property would therefore read as:

for all trace 𝜋 , if either participant obtains the other’s signature at time 𝑇 , then the
other can get it at time 𝑇 + 2𝑇 = 3𝑇 , provided it is actively progressing.

As a side note, [Barthe et al. 2022] proposes a semi-automated approach to prove real-time

properties specified in their framework, which is however only sound for trace properties. The

examples mentioned above typically fall into the scope of our decidability result but escape the one

of the tool of [Barthe et al. 2022]. Albeit for our lack of experimental results, this highlights the

improvements induced by our procedure in terms of theoretical contributions.

7.2 Atomicity in Smart Contracts
We now give other examples inspired by the domain of smart contracts. Some of the presented

hyperproperties may have some verification support in the literature, but most of them do not

account for scenarios involving an active Dolev-Yao adversary (see related work, Section 8).

Smart contracts are often written in a quasi-Turing-complete language, meaning here that the

language itself is Turing-complete but the number of computation steps for the execution of each

contract is bounded by a resource called gas. When invoking a contract, the caller specifies an upper

bound on the gas to be consumed by the execution. Each instruction consumes (a positive amount

of) gas and halts with an exception when running out of gas, reverting the effects of the contract

execution. However, widely used smart contract languages do not support exception propagation,

meaning that a caller actively needs to read the error code returned by the failed contract invocation

and handle the exception appropriately. This subtlety causes a lot of issues in practice since contract

developers forget to implement checks to ensure that calls have been finished successfully, resulting

in unhandled exceptions and potentially inconsistent state. To give a semantic characterisation of

this property, [Grishchenko et al. 2018] defines a notion called atomicity which intuitively states:

for all executions 𝜋1, 𝜋2 of the contract 𝐶 , if the initial states of 𝜋1, 𝜋2 only differ in the
amount of gas given to them then either 𝜋1 and 𝜋2 have the same final state, or either
𝜋1 or 𝜋2 fully rolled back to the initial state of their executions.

This ensures that no problematic state can arise due to unhandled out-of-gas exceptions. In our

framework, gas can easily be modelled as part of the global state, and thus even referenced in

security properties through the GS atomic formula.

7.3 Reentrancy
Reentrancy bugs are a prominent class of smart contract bugs that have caused tremendous financial

losses in practice. Intuitively, a smart contract is considered reentrant if it can be called again during

its execution—which is usually not part of the desired program logic. It typically occurs if a smart

contract 𝐶 invokes another contract 𝐶′
and this one calls 𝐶 back. This is often not anticipated by

contract developers and may lead to inconsistent states and unwanted behaviours.

For characterising the absence of reentrancy bugs, different approaches have been taken. One

approach, taken in [Grishchenko et al. 2018] is to consider the absence of reentrancy bugs as

Decision and Complexity of Dolev-Yao Hyperproperties (Technical Report) 25

an integrity property focusing on the additional power that an external contract may gain over

the execution of a contract 𝐶 through reentering the contract. Intuitively, call integrity states

that no other contract should be able to influence how contract 𝐶 spends money (money transfer

transactions are considered security-critical actions in the contract setting). Assuming such critical

transactions are identified in the process using an event Critical/1, the property can intuitively be

stated by the hyperproperty, in a non-interference style fashion:

for all executions 𝜋1, 𝜋2 of the contract𝐶 reaching a final state, 𝜋1 and 𝜋2 should trigger
the same events Critical(𝑥) simultaneously.

A different approach is taken in [Grossman et al. 2017]. Here, notions from concurrency theory

(serialisability/linearisability) are leveraged to distinguish between benign and reentrancies and

such that may expose problematic behaviour. The authors introduce the notion of effective callback
freedom that states that a contract 𝐶 is effectively callback free if:

for all executions 𝜋1 that may involve reentering executions (callbacks), there exists
an execution 𝜋2 of 𝐶 not involving any callbacks and with the same initial and final
states.

A model of this property in our framework would typically require to model a callstack, which

again can easily be embedded in our notion of global state.

7.4 Virtual Channel Stability
Payment channels [Poon andDryja 2016] are cryptographic protocols that help blockchain scalability.
They enable two users to conduct fast payments (called offchain payments) between each other

without registering every single payment on the blockchain. Instead, the parties initially lock

the funds they may want to exchange in a shared account and conduct payments by exchanging

cryptographic guarantees that enable them to withdraw the corresponding amounts from the

shared account upon channel closure. The channel parties can decide to close the channel at any

time using the guarantees obtained before, retrieving their rightful amount from the shared account.

Virtual channels [Dziembowski et al. 2019] generalise payment channels to create new channels

upon existing ones. This comes with the advantage that users do not need to individually lock

funds with each party with who they want to perform off-chain payments. Instead, a user𝐴 can use

a portion of the funds locked with user 𝐵 in channel ch𝐴𝐵 to open a new virtual payment channel

ch𝐴𝐶 with party𝐶 (given that parties 𝐵 and𝐶 also have a payment channel ch𝐵𝐶). This construction
can be used recursively to build hierarchies of virtual channels as depicted in Figure 11.

A B C D

1

2

233

Fig. 11. Recursive construction of virtual payment channels

Some virtual channel constructions [Aumayr et al. 2021] can only guarantee security if the

closure of a virtual payment channel also initiates the closure of all underlying channels. This

property has been identified in [Aumayr et al. 2023] to give rise to the Domino Attack: an attacker

can create a hierarchy of virtual channels and make the whole channel hierarchy collapse—forcing

also the closure of channels between honest users. In the example, in Figure 11, user 𝐴 and 𝐷 can

26 Itsaka Rakotonirina, Gilles Barthe, and Clara Schneidewind

collude to close the channel ch𝐵𝐷 between honest users 𝐵 and 𝐶 . To this end they first create ch𝐴𝐶
based on ch𝐴𝐵 and then channel ch𝐴𝐷 leveraging ch𝐴𝐶 . Closing ch𝐴𝐷 1 will force party 𝐶 to close

ch𝐴𝐶 (and ch𝐶𝐷) 2 and this again will force 𝐵 to close ch𝐵𝐶 (and ch𝐴𝐵) 3 . Even though honest

users are guaranteed not to lose channel funds in such an attack, they still need to cover the cost of

closing and reopening their channels—both of which require the publication of transactions.

The absence of the domino attack, hence, is a desirable property that can be achieved by the virtual

channel construction presented in [Aumayr et al. 2023]. It can be formulated as a hyperproperty

that we call here virtual channel stability:

for all channels ch and all executions 𝜋1 where ch is closed, there exists an execution
𝜋2 closing ch where all channels ch′ (ch ≠ ch′) between honest users remain open.

In our model, at a high level of abstraction, a virtual channel can be seen as a local blockchain only

readable by some participants. We, therefore, refer to the axiomatisation provided in Section 2.

8 RELATEDWORK
Dolev-Yao Models. Symbolic models, inspired by early works of Dolev and Yao [Dolev and Yao

1983], support a large range of languages for specifying protocols and security properties. Among

the most popular protocol languages, one may cite:

(1) the applied 𝜋-calculus as in the ProVerif tool [Blanchet et al. 2020] which is a calculus of

communicating concurrent processes; and

(2) multiset rewrite rules as in the Tamarin tool [Basin et al. 2019] which is a formalism defining

protocols as transition systems.

To make our results mostly independent of the specification language, we designed our framework

to subsume most of their features. Existing tools also usually focus on reachability properties

formalised in variants of (temporal) first-order logics, commonly including a notion of guarded

quantifiers as ours [Basin et al. 2019]. The notable exception is indistinguishability properties,

formalising security as an equivalence between two processes, modelling strong flavours of privacy-

type properties [Rakotonirina 2021]. They may be seen as a variant of the non-interference of

HyperCTL* [Clarkson et al. 2014], although significantly more complex due to non-determinism,

and as the notion is defined for an adversary actively controlling communications. Regarding

automation, the bounded case has seen numerous decidability and complexity results [Chadha

et al. 2016; Cheval et al. 2013, 2018, 2020a; Durgin et al. 2004; Kanovich et al. 2014; Liu and Lin

2012; Rusinowitch and Turuani 2003]. The underlying procedures often rely on an abstraction of

the system using a symbolic semantics, similarly to us.

One may also mention different lines of work such as the DY
★
framework [Bhargavan et al.

2021]. It proposes a method to specify and prove symbolic properties in the F★ proof assistant.

Although some approaches exist to handle relational properties within F★ [Barthe et al. 2014], it is

unclear how to adapt this to DY
★
whose proof machinery (relying on establishing trace invariants)

is heavily specialised in trace properties.

Hyperproperties. Hyperproperties have been increasingly popular in the context of verification,

often expressed in variants of the temporal logic HyperCTL* [Clarkson et al. 2014]. It considers

finite-state systems whose traces are infinite sequences of transitions. The logic can then perform

arbitrary quantifications over traces, and then expresses properties through a classical temporal

logic. This contrasts with standard Dolev-Yao frameworks, which consider traces that are finite

in length, but where each step may branch to infinitely-many potential states due to unbounded

adversary operating in parallel to the system. Our framework is rooted in the latter, but we use a

logic, Hypertidy CTL* [Barthe et al. 2022], whose design is heavily inspired by HyperCTL*.

Decision and Complexity of Dolev-Yao Hyperproperties (Technical Report) 27

An important aspect of logics for specifying protocol properties is how to state facts about the

adversary, typically to express properties such as secrecy (“in any trace of the system, the adversary
has no way to compute a certain secret piece of data 𝑠”). This is usually done using a “knowledge”

predicate K (𝑠) as in this paper. Notions of knowledge have also been considered in finite-state

systems using, e.g., epistemic-logic approaches [Balliu et al. 2011; Coenen et al. 2019], but they do

not account for the active adversary. One may still note that epistemic models of knowledge have

also been marginally studied in Dolev-Yao models [Benevides and Fernandez 2021].

Several other extensions of temporal logics somehow bring them closer to the adversarial

setting needed for our applications, although never accounting for all necessary features. A recent

extension considers for example quantifications over sets of traces [Beutner et al. 2023], thus

capturing more complex epistemic properties as the previously-cited references, such as common

knowledge (which is orthogonal to our contributions). Other extensions also consider limited parts

of what is the basis of Dolev-Yao models. Typically, [Beutner and Finkbeiner 2022] formalises

hyperproperties in the presence of multiple agents (natively included by the concurrent nature of

Dolev-Yao models); [Coenen et al. 2022; Finkbeiner et al. 2023] introduce forms of function symbols

(but do not support mechanisms for specifying cryptographic properties); and [Hsu et al. 2023] adds

support for asynchronous communications (the standard mode of communication in Dolev-Yao

models) and de-synchronised behaviours across multiple traces (implicitly captured by the fact that

the HypertidyCTL* logic for Dolev-Yao hyperproperties supports real-time). They thus capture

applications from concurrency theory such as linearisability, or security properties in the presence

of an adversarial scheduler, but do not support the standard adversary in protocol analysis which

fully controls communications by intercepting, forging, and injecting messages.

Finally, let us mention that existing work on the proof automation of hyperproperties in Hy-

perCTL* tends to be limited to the fragment HyperLTL [Beutner et al. 2023; Coenen et al. 2022;

Finkbeiner et al. 2023]. Some approaches also commonly struggle with quantifier alternation, the

fragment ∀∗∃∗
being a common limit [Finkbeiner et al. 2023]. Our results are not subject to these

restrictions, and support in particular arbitrary alternation of (nested) quantifiers.

Verification of Smart Contracts. As we show several application cases of our decidability result

in the field of blockchain and smart contracts, we briefly review some related results on their

verification. Most existing work on smart contract verification is concerned with functional contract

correctness usually phrased as trace properties [Ahrendt and Bubel 2020; Marescotti et al. 2020;

Permenev et al. 2020; Stephens et al. 2021]. [Grishchenko et al. 2018] defines multiple generic

non-interference-style integrity properties for smart contracts that aim at ruling out prominent

attack classes (see call integrity in Section 7.3). Some of them can be verified with the help of a

local dependency analysis of the contract code that soundly models the contract’s control and

data dependencies [Holler et al. 2023]. The call integrity property does not fall into this class

of properties but is shown in [Grishchenko et al. 2018] to be soundly over-approximated by

a reachability property and two other local dependency properties. Correspondingly, it can be

verified using tools supporting sound local dependency analysis [Holler et al. 2023] and sound

reachability analysis [Schneidewind et al. 2020] for smart contracts. [Grossman et al. 2017] presents

an alternative approach to characterising the absence of reentrancy attacks by defining effective
callback freedom (ECF) (see Section 7.3). [Albert et al. 2020] shows a verification technique for ECF

that relies on the exploitation of commutative properties of contract code segments. The verification

approaches for local dependency properties, call integrity and ECF have in common that they are

tailored to the concrete properties and correspondingly narrow in scope. These techniques, in

particular, overapproximate only those aspects of the attacker’s behaviour that are relevant to the

property under verification. Further, they do not account for the usage of cryptography.

28 Itsaka Rakotonirina, Gilles Barthe, and Clara Schneidewind

[Coenen et al. 2022] provides examples of hyperproperties in the context of smart contracts, and

presents a procedure for synthesising contracts satisfying them. Hyperproperties are expressed in

HyperTSL, a generalisation of temporal stream logic (TSL) to support hyperproperties. Examples

include symmetry and determinism notions for voting and auction contracts. Even though Hy-

perTSL supports uninterpreted function symbols and predicates, there is no support for symbolic

cryptography or real-time. Also, this synthesis technique is restricted to all-quantified formulae.

9 CONCLUSION AND FUTUREWORK
We provided the first decidability and (tight) complexity results for a large fragment of hyper-

properties in contexts involving active adversaries. Our results apply to an expressive class of

processes supporting arithmetic computations, cryptography, concurrency and stateful programs.

The main open problem left by our contribution is the generalisation of our decidability result to

the full Hypertidy CTL* logic, as our fragment (guarded hyperformulae) excludes classical notions

of adversarial indistinguishability. Although such properties are already well-studied, and got a

certain automated support [Blanchet et al. 2020; Cheval et al. 2020b], it is still open how existing

proof techniques would interact with our decision procedure and its complexity.

Another point would be the implementation of our procedure, as we focused here on pinpointing

its exact complexity using a theoretical alternating algorithm. As practical examples (see Section 7)

rarely involve more than 2 or 3 path quantifications, we conjecture the theoretical EXPH(poly) to be

rather pessimistic, compared to how actual verifiers could perform in practice when implementing

our HCompute function. Similarly, the EXPH(poly) hardness proved in [Barthe et al. 2022] relies

on rather degenerate examples, whose term algebra model binary trees to force the adversary

into performing computations of exponential size. On the contrary, although attacks on practical

protocols are tedious to find by hand, the adversarial computations they involve are arguably rather

of linear size in the protocol’s description. The reason is that, most of the time, their objective

is precisely to impersonate or imitate some actions of honest instances of the specification, and

this is done by combining messages from a small number of sessions. Similar observations arose

in related tools such as DeepSec [Cheval et al. 2020b] which, although exhibiting a prohibitive

coNEXP theoretical complexity, performs surprisingly well by relying on practical optimisations

exploiting the relative simplicity of practical examples compared to the fully-general case [Cheval

et al. 2019]. However, at this point, our contribution is mostly theoretical and a non-negligible

engineering effort would still be necessary to design and implement such techniques, leaving the

experimental evaluation of our procedure as a challenging future work.

REFERENCES
Martín Abadi, Bruno Blanchet, and Cédric Fournet. 2018. The Applied Pi Calculus: Mobile Values, New Names, and Secure

Communication. Journal of the ACM (JACM) (2018).
Martín Abadi and Véronique Cortier. 2006. Deciding knowledge in security protocols under equational theories. Theoretical

Computer Science 367, 1-2 (2006), 2–32.
Wolfgang Ahrendt and Richard Bubel. 2020. Functional Verification of Smart Contracts via Strong Data Integrity. In

Leveraging Applications of Formal Methods, Verification and Validation: Applications - 9th International Symposium
on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings, Part III
(Lecture Notes in Computer Science, Vol. 12478), Tiziana Margaria and Bernhard Steffen (Eds.). Springer, 9–24. https:

//doi.org/10.1007/978-3-030-61467-6_2

Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara Rodríguez-Núñez, Albert Rubio, and Mooly Sagiv. 2020. Taming

callbacks for smart contract modularity. Proceedings of the ACM on Programming Languages (2020).
Bowen Alpern and Fred B. Schneider. 1985. Defining Liveness. Inf. Process. Lett. 21, 4 (1985), 181–185. https://doi.org/10.

1016/0020-0190(85)90056-0

Alessandro Armando, Wihem Arsac, Tigran Avanesov, Michele Barletta, Alberto Calvi, Alessandro Cappai, Roberto Carbone,

Yannick Chevalier, Luca Compagna, Jorge Cuéllar, et al. 2012. The AVANTSSAR platform for the automated validation of

https://doi.org/10.1007/978-3-030-61467-6_2
https://doi.org/10.1007/978-3-030-61467-6_2
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1016/0020-0190(85)90056-0

Decision and Complexity of Dolev-Yao Hyperproperties (Technical Report) 29

trust and security of service-oriented architectures. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). Springer, Estonia, 267–282.

Lukas Aumayr, Matteo Maffei, Oğuzhan Ersoy, Andreas Erwig, Sebastian Faust, Siavash Riahi, Kristina Hostáková, and

Pedro Moreno-Sanchez. 2021. Bitcoin-compatible virtual channels. In 2021 IEEE Symposium on Security and Privacy (SP).
IEEE, 901–918.

Lukas Aumayr, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. 2023. Breaking and Fixing Virtual Channels:

Domino Attack and Donner. In Network and Distributed System Security Symposium (NDSS).
Kushal Babel, Vincent Cheval, and Steve Kremer. 2020. On the semantics of communications when verifying equivalence

properties. Journal of Computer Security (2020).

Michael Backes, Jannik Dreier, Steve Kremer, and Robert Künnemann. 2017. A novel approach for reasoning about liveness

in cryptographic protocols and its application to fair exchange. In IEEE European Symposium on Security and Privacy
(EuroS&P).

Musard Balliu, Mads Dam, and Gurvan Le Guernic. 2011. Epistemic temporal logic for information flow security. InWorkshop
on Programming Languages and Analysis for Security (PLAS). ACM, USA.

Gilles Barthe, Ugo Dal Lago, Giulio Malavolta, and Itsaka Rakotonirina. 2022. Tidy: Symbolic Verification of Timed

Cryptographic Protocols. In ACM Conference on Computer and Communications Security (CCS).
Gilles Barthe, Cédric Fournet, Benjamin Grégoire, Pierre-Yves Strub, Nikhil Swamy, and Santiago Zanella-Béguelin. 2014.

Probabilistic relational verification for cryptographic implementations. ACM SIGPLAN Notices 49, 1 (2014), 193–205.
David Basin, Cas Cremers, Jannik Dreier, Simon Meier, Ralf Sasse, and Benedikt Schmidt. 2019. Tamarin prover manual.

https://tamarin-prover.github.io/.

Mathieu Baudet. 2007. Sécurité des protocoles cryptographiques: aspects logiques et calculatoires. Ph. D. Dissertation. École
normale supérieure de Cachan.

Mario RF Benevides and Luiz CF Fernandez. 2021. Tableaux Calculus for Dolev-Yao Multi-Agent Epistemic Logic. Logical
and Semantic Frameworks with Applications (LSFA) (2021).

Raven Beutner and Bernd Finkbeiner. 2022. A Logic for Hyperproperties in Multi-Agent Systems. arXiv preprint
arXiv:2203.07283 (2022).

Raven Beutner, Bernd Finkbeiner, Hadar Frenkel, and Niklas Metzger. 2023. Second-order hyperproperties. arXiv preprint
arXiv:2305.17935 (2023).

Karthikeyan Bhargavan, Abhishek Bichhawat, Quoc Huy Do, Pedram Hosseyni, Ralf Küsters, Guido Schmitz, and Tim

Würtele. 2021. DY
★
: A Modular Symbolic Verification Framework for Executable Cryptographic Protocol Code. In 2021

IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 523–542.
Bruno Blanchet. 2012. Security protocol verification: Symbolic and computational models. In International Conference on

Principles of Security and Trust (POST). Springer, Estonia, 3–29.
Bruno Blanchet, Ben Smyth, Vincent Cheval, and Marc Sylvestre. 2020. Automatic Cryptographic Protocol Verifier, User

Manual and Tutorial. https://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf.

Dan Boneh and Moni Naor. 2000. Timed commitments. In Annual international cryptology conference (CRYPTO). Springer,
Santa Barbara, CA, USA, 236–254.

Rohit Chadha, Vincent Cheval, Ştefan Ciobâcă, and Steve Kremer. 2016. Automated verification of equivalence properties of

cryptographic protocol. ACM Transactions on Computational Logic (2016).
Vincent Cheval, Véronique Cortier, and Stéphanie Delaune. 2013. Deciding equivalence-based properties using constraint

solving. Theoretical Computer Science (2013).
Vincent Cheval, Charlie Jacomme, Steve Kremer, and Robert Künnemann. 2022. Sapic+ : protocol verifiers of the world,

unite!. In USENIX Security Symposium.

Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. 2018. DEEPSEC: Deciding equivalence properties in security

protocols theory and practice. In IEEE Symposium on Security and Privacy (S&P).
Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. 2019. Exploiting symmetries when proving equivalence properties

for security protocols. In ACM Conference on Computer and Communications Security (CCS).
Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. 2020a. The hitchhiker’s guide to decidability and complexity of

equivalence properties in security protocols. In Logic, Language, and Security. Essays Dedicated to Andre Scedrov on the
Occasion of His 65th Birthday (ScedrovFest65).

Vincent Cheval, Steve Kremer, Itsaka Rakotonirina, and Victor Yon. 2020b. DeepSec user manual. https://deepsec-

prover.github.io/.

Michael R Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K Micinski, Markus N Rabe, and César Sánchez. 2014.

Temporal logics for hyperproperties. In International Conference on Principles of Security and Trust (POST). Springer,
Grenoble, France, 265–284.

Michael R Clarkson and Fred B Schneider. 2010. Hyperproperties. Journal of Computer Security 18, 6 (2010), 1157–1210.

https://tamarin-prover.github.io/
https://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf
https://deepsec-prover.github.io/
https://deepsec-prover.github.io/

30 Itsaka Rakotonirina, Gilles Barthe, and Clara Schneidewind

Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hofmann. 2019. The hierarchy of hyperlogics. In ACM/IEEE
Symposium on Logic in Computer Science (LICS).

Norine Coenen, Bernd Finkbeiner, Jana Hofmann, and Julia Tillman. 2022. Smart Contract Synthesis Modulo Hyperproperties.

arXiv preprint arXiv:2208.07180 (2022).
Hubert Comon-Lundh and Stéphanie Delaune. 2005. The finite variant property: How to get rid of some algebraic properties.

In International Conference on Rewriting Techniques and Applications (RTA). Springer, Poland, 294–307.
Danny Dolev and Andrew Yao. 1983. On the security of public key protocols. IEEE Transactions on information theory 29, 2

(1983), 198–208.

Nancy A. Durgin, Patrick Lincoln, and John C. Mitchell. 2004. Multiset rewriting and the complexity of bounded security

protocols. Journal of Computer Security 12, 2 (2004), 247–311.

Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. 2019. Perun: Virtual payment hubs over

cryptocurrencies. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 106–123.
Bernd Finkbeiner, Hadar Frenkel, Jana Hofmann, and Janine Lohse. 2023. Automata-based software model checking of

hyperproperties. In NASA Formal Methods Symposium. Springer, 361–379.

Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. 2015. Algorithms for Model Checking HyperLTL and HyperCTL*. In

Computer Aided Verification (CAV). Springer, San Fransisco, CA, USA, 30–48.

Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. 2018. A Semantic Framework for the Security Analysis of

Ethereum Smart Contracts. In Principles of Security and Trust (POST). Springer.
Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam Rinetzky, Mooly Sagiv, and Yoni Zohar. 2017.

Online detection of effectively callback free objects with applications to smart contracts. Proceedings of the ACM on
Programming Languages (2017).

Sebastian Holler, Sebastian Biewer, and Clara Schneidewind. 2023. HoRStify: Sound Security Analysis of Smart Contracts.

In 2023 2023 IEEE 36th Computer Security Foundations Symposium (CSF)(CSF). IEEE Computer Society, 347–362.

Tzu-HanHsu, Borzoo Bonakdarpour, Bernd Finkbeiner, and César Sánchez. 2023. BoundedModel Checking for Asynchronous

Hyperproperties. arXiv preprint arXiv:2301.07208 (2023).
Max I. Kanovich, Tajana Ban Kirigin, Vivek Nigam, and Andre Scedrov. 2014. Bounded memory protocols. Computer

Languages, Systems & Structures (2014).
Steve Kremer and Robert Künnemann. 2016. Automated analysis of security protocols with global state. Journal of Computer

Security (JCS) (2016).
Jia Liu and Huimin Lin. 2012. A complete symbolic bisimulation for full applied pi calculus. Theoretical Computer Science

458 (2012), 76–112.

Matteo Marescotti, Rodrigo Otoni, Leonardo Alt, Patrick Eugster, Antti E. J. Hyvärinen, and Natasha Sharygina. 2020.

Accurate Smart Contract Verification Through Direct Modelling. In Leveraging Applications of Formal Methods, Verification
and Validation: Applications - 9th International Symposium on Leveraging Applications of Formal Methods, ISoLA 2020,
Rhodes, Greece, October 20-30, 2020, Proceedings, Part III (Lecture Notes in Computer Science, Vol. 12478), Tiziana Margaria

and Bernhard Steffen (Eds.). Springer, 178–194. https://doi.org/10.1007/978-3-030-61467-6_12

Corto Mascle and Martin Zimmermann. 2019. The keys to decidable hyperltl satisfiability: Small models or very simple

formulas. arXiv preprint arXiv:1907.05070.

Marvin Lee Minsky. 1967. Computation. Prentice-Hall Englewood Cliffs, USA. p.255-258.

Anton Permenev, Dimitar K. Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and Martin T. Vechev. 2020. VerX: Safety

Verification of Smart Contracts. In 2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May
18-21, 2020. IEEE, 1661–1677. https://doi.org/10.1109/SP40000.2020.00024

Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning network: Scalable off-chain instant payments. (2016).

Itsaka Rakotonirina. 2021. Efficient verification of observational equivalences of cryptographic processes: theory and practice.
Ph. D. Dissertation. Université de Lorraine.

Michaël Rusinowitch and Mathieu Turuani. 2003. Protocol insecurity with a finite number of sessions, composed keys is

NP-complete. Theoretical Computer Science 299, 1-3 (2003), 451–475.
Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and Matteo Maffei. 2020. eThor: Practical and Provably Sound

Static Analysis of Ethereum Smart Contracts. In CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, USA, November 9-13, 2020, Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.).

ACM, 621–640. https://doi.org/10.1145/3372297.3417250

Jon Stephens, Kostas Ferles, Benjamin Mariano, Shuvendu K. Lahiri, and Isil Dillig. 2021. SmartPulse: Automated Checking

of Temporal Properties in Smart Contracts. In 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA,
USA, 24-27 May 2021. IEEE, 555–571. https://doi.org/10.1109/SP40001.2021.00085

https://doi.org/10.1007/978-3-030-61467-6_12
https://doi.org/10.1109/SP40000.2020.00024
https://doi.org/10.1145/3372297.3417250
https://doi.org/10.1109/SP40001.2021.00085

Decision and Complexity of Dolev-Yao Hyperproperties (Technical Report) 31

A COMPLEXITY THEORY (PRELIMINARIES)
In this section, we recall standard notions of computational complexity theory, used across the

paper. We focus in this paper on worst-case complexity.

A.1 Basic Notions
Time and Space. Given 𝑓 : N→ N, we define TIME(𝑓 (𝑛)) (resp. SPACE(𝑓 (𝑛))) to be the class

of problems decidable by a deterministic Turing machine running in time (resp. in space) at most

𝑓 (𝑛) for input tapes of length 𝑛. In particular:

• P =
⋃

𝑝∈N TIME(𝑛𝑝) is the class of problems decidable in polynomial time;

• PSPACE =
⋃

𝑝∈N SPACE(𝑛𝑝) is the class of problems decidable in polynomial space;

• their exponential analogues areEXP =
⋃

𝑝∈N TIME(2𝑛𝑝),EXPSPACE =
⋃

𝑝∈N SPACE(2𝑛
𝑝).

When considering non-deterministic Turing machines instead of deterministic ones as above,

we add a “N” prefix to the name of the class, leading, e.g., to NP (non deterministic polynomial

time) and NEXP (non deterministic exponential time). Given a (non-deterministic) class C, we call
coC the class of problems whose negation is in C.

Complete Problems. We say that a problem is complete for a class C if any problem of C can be

reduced to this problem. In this paper, the notion of reduction used is the standard many-to-one
polynomial-time reduction. We assume some familiarity of the reader with the underlying notions,

and with the prototypical complete problem for NP (SAT or 3-SAT).

Alternation. We also recall that alternating Turing machines are non-deterministic Turing ma-

chines whose states are partitioned between universal states (or ∀-states) and existential states (or
∃-states). An execution from a universal (resp. existential) state is then accepting iff any (resp. at

least one) execution from this state accepts. In particular, non-deterministic Turing machines are

alternating Turing machines with only existential states, whereas arbitrary alternation of types of

states is allowed in general. We add a “A” prefix to express that we consider alternating Turing

machines, e.g., AP is the class of problems decidable in alternating polynomial time. Typical known

relations between these classes include:

P ⊆ NP,coNP ⊆ PSPACE = NPSPACE = AP ⊆ EXP
EXP ⊆ NEXP,coNEXP ⊆ EXPSPACE = AEXP

A.2 Polynomial and Exponential Hierarchies
The gap between NP and PSPACE = AP is intuitively alternation, as NP may be seen as the

class of problems decidable in polynomial time by alternating machines with only existential

states. Intermediary levels of alternation characterise a whole hierarchy of alternation-bounded

complexity classes between NP and PSPACE, called the polynomial hierarchy PH. We reference

in this paper in the analogue hierarchy between NEXP and EXPSPACE (exponential hierarchy),
the highest level of which being however more refined (depending on whether arbitrary, or only a

polynomial number of, alternations are allowed). For simplicity, we only provide here the usual

characterisation of the class we are interested in, EXPH(poly):

Proposition A.1. EXPH(poly), called the polynomially-bounded exponential hierarchy, is the class
of problems decidable in exponential time by alternating Turing machines with a polynomial number
of alternations. We have:

EXP ⊆ EXPH(poly) ⊆ EXPSPACE

32 Itsaka Rakotonirina, Gilles Barthe, and Clara Schneidewind

B EXPRESSIVITY OF THE FRAMEWORK
Our presentation focuses on expressivity with minimal syntax, to simplify our proofs while making

our decidability results applicable to a large class of protocol features. However, for readability, the

concrete examples presented throughout the paper relied on additional convenient features that

can be encoded in our minimal theoretical core.

formula PEq(pi:trace) =

G (∀x,y:bitstring.
Equal(x,y)pi =>

x = y)

formula PNotEq(pi:trace) =

G (∀x,y:bitstring.
NotEqual(x,y)pi =>

x ≠ y)

Fig. 12. Axiomatisation of tests

For example, conditionals (if) are standardly encoded using

choice and events [Kremer and Künnemann 2016]. A process

if u = v: P else: Q would therefore be encoded as

Equal(u,v): P + NotEqual(u,v): Q

for two events Equal and NotEqual. When proving a hyperproperty

phi, it then suffices to replace all path quantifiers forall pi:trace. psi

appearing in phi by

forall pi:trace. PEq(pi) => PNotEq(pi) => psi

where PEq and PNotEq are defined in Figure 12. Also, as detailed in

Section 3.2, Example 3.1, our original syntax for global state can

encode notions of mutable cells or arrays. Simple note that, given

for example a mutable table 𝑇 encoded this way as in the running example, the state of 𝑇 can be

accessed in hyperproperties by using the GS atomic formula of the logic. It can also be used to

perform pattern matching; given a dedicated symbol match taking two arguments, the following

process:

new k : push match(u,k) : pull match(f(x),k) : P

only proceeds to execute P if the term u is of the form f(x) (assuming a unary function symbol f

in the term algebra), and binds x to the corresponding term in P. This can easily be generalised to

arbitrary pattern matchings of constructors or to patterned let bindings, see [Cheval et al. 2022] for

details of such encodings.

By composing push and pull instructions atomically, one can more generally encode multiset
rewrite rules as used in, e.g., the Tamarin prover. Such rules constitute an alternative specification

formalism for processes, operating on a global state similar to ours through rules of the form:

[𝑢1, . . . , 𝑢𝑛] −[Ev1, . . . , Ev𝑝]→ [𝑣1, . . . , 𝑣𝑞] .
Here 𝑢𝑖 , 𝑣 𝑗 can be seen as terms (except for special cases representing inputs, outputs, or new
operations), and Ev𝑘 event terms. This rule as the effect of removing all terms 𝑢𝑖 from the multiset,

adding all terms 𝑣 𝑗 afterwards, and flagging this operation with the Ev𝑘 events. This can be simulated

in our framework by:

pull 𝑢1 : · · · : pull 𝑢𝑛 : Ev1 : · · · : Ev𝑝 : push 𝑣1 : · · · push 𝑣𝑞 .

In case of special instructions, pull may be substituted by inputs or new instructions, and push
by outputs. Using this, any feature encodable using multiset rewrite rules can be encoded, e.g.

referring to [Cheval et al. 2022; Kremer and Künnemann 2016], associative maps or state passing.

Going further, dialects of the applied 𝜋-calculus [Blanchet et al. 2020] usually offermore communi-

cation features such as explicit communication channels, and internal communications (synchronous
message transfer without adversarial interference). Channels can easily be encoded in our frame-

work by atomically composing events to inputs or outputs. Internal communications can also be

simulated by sending messages through the global state, and thereafter pulling an acknowledg-

ment of receipt before proceeding. This multiple-step encoding is equivalent to fully synchronous

variants, at least in models without real time (see, e.g., the correct translation of [Kremer and

Künnemann 2016]). In our framework, it yields time-desynchronised internal communications, that

Decision and Complexity of Dolev-Yao Hyperproperties (Technical Report) 33

is, the output and the input are not executed at the same timestamp. This is however, in our opinion,

arguably more realistic as it avoids artificial time synchronisations between parallel processes. One

may then also encode within security properties, thanks to our atomic-composition syntax, various

channel and communication features of interest. This includes, e.g., public communications only

allowed on compromised channels, internal communications only with matching channels, resilient

channels [Backes et al. 2017], or variations of the semantics of internal communications [Babel

et al. 2020]. This makes our decidability results largely independent of the framework’s details.

C PROOF OF UNDECIDABILITY
C.1 Reduction From Two-Counter Machines

Restricted Model. In this section, we study the general undecidability of the Verif problem stated

in Section 4.1:

Proposition 4.1 (Verification of arbitrary processes). Verif is undecidable even when Fc = Fpub =

{h/1}, Fd and R are empty, and 𝜑 is a tidy LTL formula.

We prove that under the restrictions of the above proposition, the model can be used to encode

two-counter machines, a classical Turing-complete computation model [Minsky 1967]. In particular,

the verification of tidy LTLwill easily encode (undecidable) reachability problems such as the halting

problem. This may however be seen as a shallow statement, as our calculus notably supports shared

global states (which can trivially encode counters, even without a free symbol h/1). To emphasise

the minimality of this undecidability result, in particular in common models not supporting global

states, real-time, or atomic composition [Cheval et al. 2018], we will strengthen it with the following

restrictions:

(1) we use an untimed model, that is, no when instructions nor timestamps @𝑡 ;

(2) we do not use global states except for simulating internal communications (see, e.g., [Kremer

and Künnemann 2016] for a detailed encoding). We therefore do not use push, pull, and
unfound instructions, except to encode instructions of the form

out(𝑒,𝑢); 𝑃 ≜ Out(𝑒) : push 𝑢;Ack : 𝑃

in(𝑒, 𝑥); 𝑃 ≜ In(𝑒) : pull 𝑥 ; 𝑃
where 𝑒 ∈ Npriv is called a private channel (and should appear in any output messages), and

Out, In ∈ F𝑒 . This models the sending of a message𝑢 on a private communication channel 𝑒 ,

synchronously received as a variable 𝑥 , only after what the outputting process may proceed

(event Ack). Synchronicity is in particular modelled by the following formula:

𝜑sync = G (∀𝑒.Out(𝑒) ⇒ 𝜏𝜋 U In(𝑒)𝜋)
for some path variable 𝜋 (always clear from context in the tidy LTL fragment). In particular,

in reference to naming conventions for internal communications [Barthe et al. 2022; Blanchet

et al. 2020; Cheval et al. 2018], we call “Rule (Comm)” the execution of a Out(𝑒) : push 𝑢,
followed by a In(𝑒) : pull 𝑥 and see it, for simplicity, as a single transition step;

(3) we do not make use of atomic composition, that is, all non-skip instructions are always

followed by a semi-column (i.e., an implicit skip), except in the above encoding.

Reduction. Intuitively, two-counter machines consist of:

• two counters that can be seen as two (unbounded) registers, by convention initialised to 0,

and that may contain arbitrary natural numbers;

• a finite set of labelled instructions, that may increment or decrement counters, test whether

its content is zero, and/or jump to the label of a subsequent instruction.

34 Itsaka Rakotonirina, Gilles Barthe, and Clara Schneidewind

We use the following formalisation of two-counter machines.

Definition C.1 (Two-counter machines). A two-counter machine𝑀 = (𝐿, 𝐼, ℓ0) consists of a finite
set of so-called labels 𝐿 including the initial label ℓ0 ∈ 𝐿, and a finite set of instructions 𝐼 that may

be of either of the following three forms:

halt incr(𝑐, ℓ) zdecr(𝑐, ℓ0, ℓ−)
where ℓ, ℓ0, ℓ− ∈ 𝐿 and 𝑐 is either of the two so-called registers c1, c2. We assume an implicit bijective

mapping between 𝐿 and 𝐼 , and write𝑀 [ℓ] to refer to the instruction mapped to the label ℓ .

Intuitively, halt is a terminated program and incr(𝑐, ℓ) increments the counter 𝑐 and then executes

𝑀 [ℓ]. The instruction zdecr(𝑐, ℓ0, ℓ−) is a compact construction that tests whether the content

of the counter 𝑐 is zero (in which case 𝑀 [ℓ0] is executed), or not (in which case the counter 𝑐 is

decremented, and𝑀 [ℓ−] is executed). This is formalised by the following notion of execution:

Definition C.2 (Termination of a two-counter machine). A state of a two-counter machine𝑀 =

(𝐿, 𝐼, ℓ0) is a tuple (𝑛1, 𝑛2, ℓ) ∈ N ×N × 𝐿. We then define a transition relation→𝑀 over states of𝑀

as the smallest binary relation such that for all ℓ ∈ 𝐿 and 𝑛1, 𝑛2 ∈ N:
• if𝑀 [ℓ] = incr(c1, ℓ ′) then (𝑛1, 𝑛2, ℓ) →𝑀 (𝑛1 + 1, 𝑛2, ℓ

′);
• if𝑀 [ℓ] = incr(c2, ℓ ′) then (𝑛1, 𝑛2, ℓ) →𝑀 (𝑛1, 𝑛2 + 1, ℓ ′);
• if𝑀 [ℓ] = zdecr(c1, ℓ0, ℓ−) then

– (0, 𝑛2, ℓ) →𝑀 (0, 𝑛2, ℓ0);
– (𝑛1 + 1, 𝑛2, ℓ) →𝑀 (𝑛1, 𝑛2, ℓ−);

• if𝑀 [ℓ] = zdecr(c2, ℓ0, ℓ−) then
– (𝑛1, 0, ℓ) →𝑀 (𝑛1, 0, ℓ0);
– (𝑛1, 𝑛2 + 1, ℓ) →𝑀 (𝑛1, 𝑛2, ℓ−);

We say that𝑀 terminates if there exists a sequence of→𝑀 -transitions from (0, 0, ℓ0) to a state of

the form (𝑛1, 𝑛2, ℓ),𝑀 [ℓ] = halt.

The undecidability of the termination of two-counter machines easily follows from the Turing-

completeness of this computation model. We will then prove the Proposition 4.1 by constructing,

given a two-counter machine𝑀 , a process 𝑃𝑀 and a tidy LTL formula 𝜑 such that 𝑃𝑀 |= 𝜑 iff 𝑀

does not terminate. Let thus 𝑀 = (𝐿, 𝐼, ℓ0) be an arbitrary two-counter machine. We recall that

the term algebra contains a unary symbol h. For readability, we will write multiple applications

of h to a term h𝑛 (𝑢), that is, h0 (𝑢) = 𝑢 and h𝑛+1 (𝑢) = h(h𝑛 (𝑢)). Intuitively, we will encode each
counter c𝑖 by two terms of the form, respectively, h𝑛 and h𝑝 , 𝑛 ⩾ 𝑝 , the value of the counter being

the difference 𝑛 − 𝑝 . Therefore, applying h to the first term increments the counter, applying h to

the second term decrements the counter, and testing the equality of the two terms tests whether

the counter is null. The four terms (two for each of the two counters) are then carried over the

execution of the program using private channels ℓ corresponding to the labels of 𝐿.

Formally, for each label ℓ ∈ 𝐿, we associate a fresh name 𝑐ℓ ∈ Npriv . We also construct, for each

ℓ ∈ 𝐿, a process (using the previous syntactic sugar for internal communications)

𝑃ℓ = in(𝑐ℓ , 𝑥+1); in(𝑐ℓ , 𝑥−
1
); in(𝑐ℓ , 𝑥+2); in(𝑐ℓ , 𝑥−

2
);𝑄ℓ

where the process 𝑄ℓ is defined in Figure 13, assuming three events Zero/2, Pos/2,Halt/0.
We also define an initialisation process, given a 𝑧 ∈ F0:

𝑃0 = out(𝑐ℓ0 , 𝑧); out(𝑐ℓ0 , 𝑧); out(𝑐ℓ0 , 𝑧); out(𝑐ℓ0 , 𝑧); 0
The overall process is then:

𝑃𝑀 = 𝑃0 |
∏
ℓ∈𝐿

! 𝑃ℓ

Decision and Complexity of Dolev-Yao Hyperproperties (Technical Report) 35

If𝑀 [ℓ] = halt: 𝑄ℓ = event Halt; 0

If𝑀 [ℓ] = incr(c1, ℓ′): 𝑄ℓ = out(𝑐ℓ ′ , h(𝑥+1)); out(𝑐ℓ ′ , 𝑥−
1
); out(𝑐ℓ ′ , 𝑥+2); out(𝑐ℓ ′ , 𝑥−

2
); 0

If𝑀 [ℓ] = incr(c2, ℓ′): 𝑄ℓ = out(𝑐ℓ ′ , 𝑥+1); out(𝑐ℓ ′ , 𝑥−
1
); out(𝑐ℓ ′ , h(𝑥+2)); out(𝑐ℓ ′ , 𝑥−

2
); 0

If𝑀 [ℓ] = zdecr(c1, ℓ0, ℓ−): 𝑄ℓ = 𝑄0

ℓ +𝑄−
ℓ

with 𝑄0

ℓ = event Zero(𝑥+
1
, 𝑥−

1
);

out(𝑐ℓ0 , 𝑥+1); out(𝑐ℓ0 , 𝑥−
1
); out(𝑐ℓ0 , 𝑥+2); out(𝑐ℓ0 , 𝑥−

2
); 0

and 𝑄−
ℓ = event Pos(𝑥+

1
, 𝑥−

1
);

out(𝑐ℓ− , 𝑥+1); out(𝑐ℓ− , h(𝑥−
1
)); out(𝑐ℓ− , 𝑥+2); out(𝑐ℓ− , 𝑥−

2
); 0

If𝑀 [ℓ] = zdecr(c2, ℓ0, ℓ−): 𝑄ℓ = 𝑄0

ℓ +𝑄−
ℓ

with 𝑄0

ℓ = event Zero(𝑥+
2
, 𝑥−

2
);

out(𝑐ℓ0 , 𝑥+1); out(𝑐ℓ0 , 𝑥−
1
); out(𝑐ℓ0 , 𝑥+2); out(𝑐ℓ0 , 𝑥−

2
); 0

and 𝑄−
ℓ = event Pos(𝑥+

2
, 𝑥−

2
);

out(𝑐ℓ− , 𝑥+1); out(𝑐ℓ− , 𝑥−
1
); out(𝑐ℓ− , 𝑥+2); out(𝑐ℓ− , h(𝑥−

2
)); 0

Fig. 13. Encoding of two-counter-machine operations as processes

Let us then define the tidy LTL formula 𝜑 that formalises several properties. First, it expresses the

assumptions behind the events Zero and Pos, namely that Zero(𝑢, 𝑣) should only be triggered when
the terms 𝑢 and 𝑣 are equal (modulo theory), and conversely that Pos(𝑢, 𝑣) can only be triggered

when 𝑢 and 𝑣 are different. This way, the non-deterministic choices in the definition of 𝑄ℓ (cases

zdecr) effectively emulate a conditional testing. Additionally, 𝜑 requires that the halting event never

holds, thus encoding non-termination. Formally, 𝜑 = ∀𝜋. 𝜑sync ⇒ 𝜑Zero ⇒ 𝜑Pos ⇒ G ¬Halt𝜋 with:

𝜑Zero = ∀𝑥,𝑦.Zero(𝑥,𝑦)𝜋 ⇒ 𝑥 = 𝑦

𝜑Pos = ∀𝑥,𝑦. Pos(𝑥,𝑦)𝜋 ⇒ 𝑥 ≠ 𝑦

The correctness of the overall reduction is then stated by:

Proposition C.1 (Correctness of the reduction). 𝑀 does not terminate iff 𝑃𝑀 ⊨ 𝜑 .

C.2 Proof
The rest of this section is dedicated to the proof of Proposition C.1, which will conclude the proof of

Proposition 4.1. For that we establish a correspondence between two-counter machine executions

and a restricted type of trace that we call normal.

Definition C.3 (Normal process). We call a extended process normal when it is of the form (P,∅),
with

P = {{𝑄ℓ𝜎}} ∪ P0 ∪ {{! 𝑃ℓ ′ }}ℓ ′∈𝐿 (regular normal proc.)

or P = P0 ∪ {{! 𝑃ℓ ′ }}ℓ ′∈𝐿 (blank normal proc.)

• 𝑃ℓ , 𝑄ℓ still refer to the previously defined processes;

• P0 only contain processes that are 0 or 𝑃ℓ ′ , ℓ
′ ∈ 𝐿, but at least one copy of each process 𝑃ℓ ′ ,

ℓ ′ ∈ 𝐿;

• 𝜎 is a substitution of domain {𝑥+
1
, 𝑥−

1
, 𝑥+

2
, 𝑥−

2
} and whose image only consists of terms of

the form h𝑚 (𝑧).

Definition C.4 (Normal trace). If 𝐴 is a (normal) extended process, a trace of 𝐴 is normal if it is of
the form 𝑇1 · · ·𝑇𝑛 for traces 𝑇𝑖 , whose first and last extended processes are normal, and of the form

36 Itsaka Rakotonirina, Gilles Barthe, and Clara Schneidewind

𝑇𝑖 = 𝑇 1

𝑖 ·𝑇 2

𝑖 where 𝑇 1

𝑖 ,𝑇
2

𝑖 are non-empty, 𝑇 1

𝑖 contains no (Repl) transitions, and 𝑇 2

𝑖 contains only

(Repl) transitions. Note that this decomposition, when it exists, is unique.

The first step of the proof is to reduce the analysis to normal traces, which is done by the

following result. We write𝜓 the formula such that 𝜑 = ∀𝜋.𝜓 , that is,

𝜓 = 𝜑sync ⇒ 𝜑Zero ⇒ 𝜑Pos ⇒ G ¬Halt𝜋
In the following, we also let P𝑀 = (P,∅) be a normal extended process of the form:

P = {{𝑄ℓ0𝜎0}} ∪ P0 ∪ {{! 𝑃ℓ ′ }}ℓ ′∈𝐿
with the notations of Definition C.3, and 𝑥𝜎0 = 𝑧 for all 𝑥 ∈ {𝑥+

1
, 𝑥−

1
, 𝑥+

2
, 𝑥−

2
}.

Lemma C.2 (Reduction to normal traces). 𝑃𝑀 |= 𝜑 iff for all normal traces 𝑇 of P𝑀 , Π𝑇 |= 𝜓

with Π𝑇 = {𝜀 ↦→ 𝑇, 𝜋 ↦→ 𝑇 }.

Proof. First of all, note that all processes of the form P𝑀 are obtained from 𝑃𝑀 by applying,

up to reordering, Rule (Par) as many times as possible, Rule (Repl) at least |𝐿 | + 1 times, and

Rule (Comm) four times between 𝑃0 and a copy of 𝑃ℓ0 . Conversely, all processes obtained after

applying such transitions from 𝑃𝑀 in any order are of the same form as P𝑀 , up to the addition of

enough (Repl) transitions (and adding such transitions does not prevent subsequent independent

transitions from being executed). We hence obtain that 𝑃𝑀 |= 𝜑 iff for all traces 𝑇 of P𝑀 , Π𝑇 |= 𝜓 .

Without loss of generality, we only consider traces𝑇 that does not start with a (Repl) transition (as

initial (Repl) transitions only yield normal extended processes of the same form as P𝑀).

Our goal is to prove that it is sufficient to limit this quantification to normal traces P𝑀 . For that,

given an arbitrary normal extended process 𝐴0, let us assume par contraposition that there exists a

trace 𝑇 , non-necessarily normal but not starting with a (Repl) transition, written

𝑇 : 𝐴0

𝛼1−−→ · · · 𝛼𝑛−−→ 𝐴𝑛

such that Π𝑇 |= 𝜑sync ∧ 𝜑Zero ∧ 𝜑Pos ∧ F Halt𝜋 . We then have to show that there exists a normal

trace 𝑇𝑁 of 𝐴0 (also not starting with a (Repl) transition) such that

Π𝑇𝑁 |= 𝜑sync ∧ 𝜑Zero ∧ 𝜑Pos ∧ F Halt𝜋 .

We prove the result by well-founded induction on 𝑛 − 𝑖 ⩾ 0, where 𝑛 is the length of the trace,

and 𝑖 is the maximal index such that 𝐴0

𝛼1−−→ · · · 𝛼𝑖−→ 𝐴𝑖 that is a normal trace. If 𝑖 = 𝑛, the conclusion

follows by choosing𝑇𝑁 = 𝑇 . If 𝑖 < 𝑛, let us write the normal process𝐴𝑖 = (P,∅) with the notations

of Definition C.3, in particular, P = S ∪ P0 ∪ {{! 𝑃ℓ ′ }}ℓ ′∈𝐿 for S = {{𝑄ℓ𝜎}} or S = ∅.
First of all, let us exclude the case where the next transition𝐴𝑖

𝛼𝑖+1−−−→ 𝐴𝑖+1 is derived by Rule (Repl).
Indeed in this case, either 𝑖 = 0 and this is in contradiction with the assumption that 𝑇 does not

start with a (Repl) transition, or 𝑖 > 0 and we write the decomposition

(𝐴0

𝛼1−−→ · · · 𝛼𝑖−→ 𝐴𝑖) = 𝑇1 · · ·𝑇𝑘
obtained by Definition C.4, then

𝑇1 · · ·𝑇𝑘−1 ·𝑇 ′
𝑘

with 𝑇 ′
𝑘
= 𝑇𝑘 · (𝐴𝑖

𝛼𝑖+1−−−→ 𝐴𝑖+1)

would be a decomposition of 𝐴0

𝛼1−−→ · · · 𝛼𝑖+1−−−→ 𝐴𝑖+1 proving that it is also a normal trace, which is

in contradiction with the maximality of 𝑖 . Let us thus assume that this transition is derived by

any other rule than (Repl). Additionally, we also emphasise that no event Halt could have been

executed during the normal trace 𝐴0

𝛼1−−→ · · · 𝛼𝑖−→ 𝐴𝑖 . Otherwise, due to the form of normal traces,

Decision and Complexity of Dolev-Yao Hyperproperties (Technical Report) 37

no further

𝛼−→ transitions should have been possible after the execution of this event, except by

Rule (Repl)—case excluded above.

Note that this also excludes the case S = ∅ (blank normal process), since only (Repl) transitions

are possible from such a process. Therefore S = {{𝑄ℓ𝜎}} (regular normal process), and we perform

a case analysis on𝑀 [ℓ].
▶Case 1:𝑀 [ℓ] = halt.
Since the transition 𝐴𝑖

𝛼𝑖+1−−−→ 𝐴𝑖+1 is not derived by Rule (Repl), and due to the form of normal

extended processes, this transition must be the instance of Rule (Event) executing the event Halt
of 𝑄ℓ . In particular, 𝐴𝑖+1 would be a (blank) normal extended process, in contradiction with the

maximality of 𝑖 .

▶Case 2:𝑀 [ℓ] = zdecr(c1, ℓ0, ℓ−).
Since𝐴𝑖

𝛼𝑖+1−−−→𝐴𝑖+1 is not derived by Rule (Repl), and due to the form of normal extended processes,

this transition must be the instance of Rule (Choice) executing either event at toplevel of 𝑄ℓ𝜎

(Zero(𝑥+
1
𝜎, 𝑥−

1
𝜎) or Pos(𝑥+

1
𝜎, 𝑥−

1
𝜎)). Let us assume that the event Zero is executed by this transition

(the argument in the case of Pos is analogue). In this case we have 𝐴𝑖+1 = (Q,∅), with

Q = {{𝑄𝜎}} ∪ P0 ∪ {{! 𝑃ℓ ′ }}ℓ ′∈𝐿
where 𝑄 is defined by 𝑄0

ℓ = event Zero(𝑥+
1
, 𝑥−

1
);𝑄 . In particular, 𝑄𝜎 has four outputs at toplevel

(on the private channel 𝑐ℓ0), while all other processes of Q are either 0, or have either four inputs

or a replication followed by four inputs, all on private channels. In particular, in the trace 𝐴𝑖

𝛼𝑖+1−−−→
· · · 𝛼𝑛−−→ 𝐴𝑛 , if the outputs of 𝑄𝜎 are either not all used in internal communications, or used in

internal communications with inputs of two different processes of Q, it is straightforward to see

that this trace may only contain up to three instances of Rule (Comm) and an arbitrary number

of Rule (Repl) (in particular, no Halt event). This would be in contradiction with the hypothesis

that Π𝑇 ⊨ F Halt𝜋 since, as discussed before case 1, the Halt event cannot occur in the prefix trace

𝐴0

𝛼1−−→ · · · 𝛼𝑖−→ 𝐴𝑖 . But in addition, we already excluded the case where the transition 𝐴𝑖

𝛼𝑖+1−−−→ 𝐴𝑖+1 is
derived by Rule (Repl), meaning that it must be an internal communication, necessarily between

𝑄𝜎 and a copy of 𝑃ℓ0 ∈ P0. As a conclusion, we obtain that there exist four internal communications

between 𝑃ℓ and 𝑄𝜎 in the trace 𝐴𝑖

𝛼𝑖+1−−−→ · · · 𝛼𝑛−−→ 𝐴𝑛 .

Therefore, we can write 𝐴′
𝑖

𝛽𝑖+1−−−→ · · ·
𝛽𝑛+|𝐿 |−−−−→ 𝐴′

𝑛+|𝐿 | the trace obtained from 𝐴𝑖

𝛼𝑖+1−−−→ · · · 𝛼𝑛−−→ 𝐴𝑛 by:

(1) moving the four internal communications between 𝑃ℓ and 𝑄𝜎 in front, i.e., as the first four

actions;

(2) adding, as the 5
th
to 5 + |𝐿 |th actions, instances of Rule (Repl) unfolding one copy of each

𝑃ℓ , ℓ ∈ 𝐿;

(3) from the 6 + |𝐿 |th action onwards, leave all remaining transitions of 𝐴𝑖

𝛼𝑖+1−−−→ · · · 𝛼𝑛−−→ 𝐴𝑛 in

the same order.

Note that the permutation done in the first step is possible due to the form of the processes (see

discussion right above Case 2.1). Overall, we writing 𝑇 ′
the reordered trace

𝑇 ′
: 𝐴0

𝛼1−−→ · · · 𝛼𝑖−→ (𝐴𝑖 = 𝐴′
𝑖)

𝛽𝑖+1−−−→ · · ·
𝛽𝑛+|𝐿 |−−−−→ 𝐴′

𝑛+|𝐿 |

we have Π𝑇 ′ |= 𝜑sync ∧ 𝜑Zero ∧ 𝜑Pos ∧ F Halt𝜋 since this property is preserved by the way the

permutation 𝛽𝑖+1 · · · 𝛽𝑛+|𝐿 | of 𝛼𝑖+1 · · ·𝛼𝑛 is constructed. Additionally, the well-founded measure

decreases by at least 4 for 𝑇 ′
compared to 𝑇 . The conclusion thus easily follows from the induction

hypothesis applied to 𝑇 ′
.

▶Case 3: any other possibility for𝑀 [ℓ].

38 Itsaka Rakotonirina, Gilles Barthe, and Clara Schneidewind

We omit the proofs for all remaining cases, as they are either analogue to case 2 (decrement of

c2), or only require a similar but much simpler argument (increment). □

Building on this characterisation of 𝜑 restricted to normal traces, we prove the proposition by

double implication. For that we introduce a natural mapping between regular normal extended

processes and two-counter-machine states. With the notations of Definition C.3, if 𝐴 = (P,∅) is a
regular normal extended process with

P = {{𝑄ℓ𝜎}} ∪ P0 ∪ {{! 𝑃ℓ ′ }}ℓ ′∈𝐿
then we associate to it the tuple

J𝐴K = (𝑛+
1
− 𝑛−

1
, 𝑛+

2
− 𝑛−

2
, ℓ) with 𝑥𝑠𝑖 𝜎 = h𝑛

𝑠
𝑖 (𝑧)

Note that such a tuple is not necessarily a well-formed two-counter machine state (it is one iff
𝑛+
1
⩾ 𝑛−

1
and 𝑛+

2
⩾ 𝑛−

2
).

Lemma C.3 (Proposition C.1, forward direction). If 𝑃𝑀 |= ∃𝜋.𝜑Zero ∧ 𝜑Pos ∧ F Halt𝜋 then𝑀

terminates.

Proof. Let us assume that there exists a trace𝑇 of 𝑃𝑀 such that Π𝑇 |= 𝜑Zero ∧𝜑Pos ∧ F Halt𝜋 . By
lemma C.2, we can assume that 𝑇 is a normal trace without loss of generality. Let us thus consider

the decomposition𝑇 = 𝑇1 · · ·𝑇𝑛 with the notations of Definition C.4, with in particular𝐴𝑖−1 the first
extended process of𝑇 1

𝑖 . We then prove that for all 𝑖 ∈ J0, 𝑛− 1K, J𝐴𝑖K is a (well-defined) two-counter
machine state that is→𝑀 -reachable from (0, 0, ℓ0). This will conclude the proof since J𝐴𝑛−1K is a
halting configuration.

The conclusion is immediate in the case 𝑖 = 0, since J𝐴0K = (0, 0, ℓ0). In the case 𝑖 > 0, we know

by induction hypothesis that J𝐴𝑖−1K is →𝑀 -reachable from (0, 0, ℓ0), and it therefore suffices to

prove that J𝐴𝑖−1K → J𝐴𝑖K. Since 𝐴𝑖−1 is a by definition a (regular) normal extended process, we

can write 𝐴𝑖−1 = (P,∅) with
P = {{𝑄ℓ𝜎}} ∪ P0 ∪ {{! 𝑃ℓ ′ }}ℓ ′∈𝐿

with the notations of Definition C.3. The conclusion then follows from a quick case analysis on the

instruction𝑀 [ℓ] (using in particular that Π𝑇 |= 𝜑Zero ∧ 𝜑Pos). □

Lemma C.4 (Proposition C.1, converse direction). If 𝑀 terminates then 𝑃𝑀 |= ∃𝜋.𝜑Zero ∧
𝜑Pos ∧ F Halt𝜋 .

Proof. Let us consider a halting run of 𝑀 , that is, a sequence 𝑠0, . . . , 𝑠𝑛−1 of states of 𝑀 such

that 𝑠0 = (0, 0, ℓ0) and 𝑠𝑛−1 is a halting state. It is then straightforward to construct, by induction

on 𝑖 , a (normal) trace 𝑇 = 𝑇1 · · ·𝑇𝑛 (notations of Definition C.4) such that for all 𝑖 ∈ J0, 𝑛 − 1K,
Π𝑇1 · · ·𝑇𝑖+1 |= 𝜑Zero ∧ 𝜑Pos and, if 𝐴𝑖 is the first (normal) extended process of 𝑇𝑖+1, 𝐴𝑖 is regular and

J𝐴𝑖K = 𝑠0. In particular, we also have Π𝑇 |= F Halt𝜋 since J𝐴𝑛−1K = 𝑠𝑛−1 is a halting state and, as

such, the first instruction of 𝑇𝑛 need be the execution of a Halt event. □

D SYMBOLIC CONSTRAINT SOLVING
As a first point of this section, we refer to the full symbolic semantics, which can be found in

Figure 14. We then define in this section the data structures at the core of our decision procedure,

uplifting the notion of constraint systems to a stack of proof states. It intuitively represents a

state of a hyperproperty’s proof in presence of several nested path quantifications. We also then

present various constraint solving algorithm for computing (most general) solutions and a saturated

representation of the attacker’s knowledge.

Decision and Complexity of Dolev-Yao Hyperproperties (Technical Report) 39

▶ In all rules, 𝜇 = mgu (E1 (C)) ≠ ⊥.

symbolic atomic semantics:

(out(𝑢) : 𝑆, C, 𝜃, 𝑡) out−−→ s-at (𝑆, C ∧ 𝜎 ∧ 𝑁 ∧ ax ⊢? 𝑢𝜎 ↓, 𝜃, 𝑡) (s-Out)

if 𝜎 ∧ 𝑁 ∈ mguR (𝑢𝜇 =? 𝑢𝜇) and ax ∈ AX is fresh

(in(𝑥) : 𝑆, C, 𝜃, 𝑡) in−→ s-at (𝑆{𝑥 ↦→ 𝑦}, C ∧ 𝑌 ⊢? 𝑦, 𝜃, 𝑡) (s-In)

if 𝑦 ∈ X1
and 𝑌 : dom(Φ(C)) ∈ X2

are fresh

(new 𝑘 : 𝑆, C, 𝜃, 𝑡) new−−−→ s-at (𝑆{𝑘 ↦→ 𝑘 ′}, C, 𝜃, 𝑡) (s-New)

with 𝑘′ ∈ Npriv fresh

(Ev (®𝑢) : 𝑆, C, 𝜃, 𝑡)
Ev (®𝑢𝜎↓)
−−−−−−→ s-at (𝑆, C ∧ 𝜎 ∧ 𝑁, 𝜃, 𝑡) (s-Event)

if 𝜎 ∧ 𝑁 ∈ mguR (®𝑢𝜇 =? ®𝑢𝜇)

(push 𝑢 : 𝑆, C, 𝜃, 𝑡)
push
−−−→ at (𝑆, C ∧ 𝜎 ∧ 𝑁, 𝜃 ∪ {{𝑢𝜎 ↓}}, 𝑡) (s-Push)

if 𝜎 ∧ 𝑁 ∈ mguR (𝑢𝜇 =? 𝑢𝜇)

(pull 𝑢 : 𝑆, C, 𝜃 ∪ {{𝑣}}, 𝑡)
pull
−−→ at (𝑆𝜎, C ∧ 𝜎 ∧ 𝑁, 𝜃, 𝑡) (s-Pull)

if 𝜎 ∧ 𝑁 ∈ mguR (𝑢𝜇 =? 𝑣𝜇)

(unfound 𝑢 : 𝑆, C, 𝜃, 𝑡) unfound−−−−−−→ at (𝑆, C ∧∧
(𝜎,𝑁) ∈𝑀 ¬𝜎 ∨ ¬𝑁, 𝜃, 𝑡) (s-Unfound)

with𝑀 =
⋃

𝑣∈𝜃 mguR (𝑢𝜇 =? 𝑣𝜇)

(@𝑡0 : 𝑆, C, 𝜃, 𝑡)
stamp
−−−−→ s-at (𝑆{𝑡0 ↦→ 𝑡}, C, 𝜃, 𝑡) (s-Stamp)

(when 𝑒 ∼ 0 : 𝑆, C, 𝜃, 𝑡) when−−−−→ s-at (𝑆, C ∧ 𝑒 ∼ 0, 𝜃, 𝑡) (s-When)

(𝑆0 + 𝑆1, C, 𝜃, 𝑡) −→ s-at (𝑆𝑖 , C, 𝜃, 𝑡) if 𝑖 ∈ {0, 1} (s-Choice)

symbolic sequential semantics:

({{skip ; 𝑃}}, C, 𝜃, 𝑡)
skip
−−−→ s-seq ({{𝑃}}, C, 𝜃, 𝑡) (s-Skip)

({{𝑃 | 𝑄}}, C, 𝜃, 𝑡)
par
−−→ s-seq ({{𝑃,𝑄}}, C, 𝜃, 𝑡) (s-Par)

({{!𝑛 𝑃}}, C, 𝜃, 𝑡)
repl
−−−→ seq ({{!𝑛−1 𝑃, 𝑃}}, C, 𝜃, 𝑡) (s-Repl)

({{𝑃}}, C, 𝜃, 𝑡) 𝛼, ®𝑤−−−→ s-seq (P, C′′ ∧ Φ(C′), 𝜃 ′′, 𝑡) (s-Comp)

if (𝑃, C, 𝜃, 𝑡) 𝛼−→ s-at (𝑃 ′, C ∧ C′, 𝜃 ′, 𝑡),

and ({{𝑃 ′}}, C ∧ (C′ ∖ Φ(C′)), 𝜃 ′, 𝑡) ®𝑤−→ s-seq (P, C′′, 𝜃 ′′, 𝑡)
symbolic semantics:

({{𝑃}} ∪ Q, C, 𝜃, 𝑡) 𝛼, ®𝑤−−−→ s (P ∪ Q, C′, 𝜃 ′, 𝑡 ′) (s-Lift)

with 𝑡 ′ ∈ XN
fresh, and ({{𝑃}}, C ∧ 𝑡 − 𝑡 ′ < 0, 𝜃, 𝑡 ′) ®𝑤−→ s-seq (P, C′, 𝜃 ′, 𝑡 ′)

Fig. 14. Symbolic semantics for verifying timed bounded processes

D.1 Solution Management
We give here some key notions to define the various solving algorithm detailed in the next sections;

these notions are adapted from the algorithm of [Cheval et al. 2018] for computing solutions of

(plain) constraint systems. First of all, computing the solutions of a hyperconstraint system C is

done under the assumption that a saturation procedure has been carried out at a previous step,

ensuring that a the deducibility of a term 𝑢 can be checked syntactically from K (C). Formally:

Definition D.1 (Direct consequence). Given a set of deduction hyperconstraints 𝑆 , a direct conse-
quence of 𝑆 in path 𝜋 is a statement 𝜉 ⊩𝑆,𝜋 𝑢, such that there exists a public constructor context C,

40 Itsaka Rakotonirina, Gilles Barthe, and Clara Schneidewind

and deduction hyperconstraints 𝜉1 ⊢?𝜋 𝑢1, . . . , 𝜉𝑛 ⊢?𝜋 𝑢𝑛 ∈ 𝑆 such that

𝜉 = 𝐶 [𝜉1, . . . , 𝜉𝑛] and 𝑢 = 𝐶 [𝑢1, . . . , 𝑢𝑛] .

If C is a hyperconstraint system, we may write 𝜉 ⊩C,𝜋 𝑢 instead of 𝜉 ⊩D (C)∪K (C),𝜋 𝑢. We also write

conseq𝜋 (C) = {𝜉 | 𝜉 ⊩C,𝜋 𝑢} .

Recalling that, by definition of deduction hyperconstraints 𝜉 ⊢?𝜋 𝑢, 𝜉 does not have a constructor

symbol at its root, the context𝐶 of the above definition is uniquely determined. The saturation of a

hyperconstraint system C then means that ⊩C,𝜋 coincides with deducibility from Φ(proj𝜋 (C)).
The algorithm for solving constraints itself then proceeds by successively computing partial

solutions modelling case analyses. For example, consider a hyperconstraint system C and (𝑋 ⊢?𝜋
f (𝑘)) ∈ C, f ∈ Fc∩Fpub and 𝑘 ∈ Npriv . The constraint solver therefore has to compute a recipe (𝑋Σ)
deducing f (𝑘) in 𝜋 (i.e., such that 𝑋Σ ⊩𝜋 f (𝑘), assuming C is saturated). The solver will, among

others, perform a case analysis on whether the recipe in question has the symbol f at its root or
not. For that, it will generate the substitution

Σf = {𝑋 ↦→ f (𝑌)}

with 𝑌 ∈ X2
fresh and of same multiplicity as 𝑋 . Indeed, interpreted as a second-order constraint,

this results in the following, effectively modelling the expected case analysis:

Σf = 𝑋 =? f (𝑌) ¬Σf = ∀𝑌 .𝑋 ≠? f (𝑌) .

The solver will then attempt to solve two instances of C, one where Σf has been applied, and C∧¬Σf .

In the first case, applying Σf to C will remove the initial constraint 𝑋 ⊢?𝜋 f (𝑘) from C, replace it by
a fresh deduction constraints 𝑌 ⊢?𝜋 𝑦, and add “linking equations” expressing the relations between

𝑋,𝑌,𝑦, namely 𝑋 =? f (𝑌) and 𝑦 =? 𝑘 . We formalise this custom notion of application below.

Definition D.2 (Solution application). Let C be a hyperconstraint system and Σ be a second-order

substitution such that for all 𝑋 ∈ dom(Σ), there exists (𝑋 ⊢?𝜋 𝑢) ∈ D (C), and also for all such

(𝑋 ⊢?𝜋 𝑢) ∈ D (C), 𝑋Σ ∈ conseq𝜋 (C). The hyperconstraint system C : Σ is called the application of

Σ to C, and is defined as follows:

D (C : Σ) = D′ E1 (C : Σ) = E1 (C) ∧ 𝐸Σ

K (C : Σ) = K (C)Σ E2 (C : Σ) = E2 (C)Σ ∧ Σ

where we have D′ = (D (C) ∖ 𝐷dom) ∪ 𝐷fresh as well as the following sets:

(1) deduction constraints resolved by Σ:

𝐷dom = {(𝑌 ⊢?𝜋 𝑢) ∈ D | 𝑌 ∈ dom(Σ)}

(2) deduction constraints introduced by Σ:

𝐷fresh =
{
𝑌 ⊢?𝜋 𝑦 | (𝑋 ⊢?𝜋 𝑢) ∈ 𝐷dom, 𝑦 fresh,

𝑌 ∈ vars2 (𝑋Σ) ∖ vars2 (C)
}

(3) linking equations:

𝐸Σ =
{
𝑢 =? 𝑣 | (𝑌 ⊢?𝜋 𝑢) ∈ 𝐷dom, 𝑌Σ ⊩C : Σ,𝜋 𝑣

}

Decision and Complexity of Dolev-Yao Hyperproperties (Technical Report) 41

D.2 Solving Rules
In our procedure, we will then use several sets of constraint-solving procedure:

• solving rules that are used to compute most general solutions of a hyperconstraint sys-

tem, and more generally put them in a simple form and discard trivial and unsatisfiable

constraints;

• case analysis rules, that build on solving rules to formalise case analyses in proof stacks.

They typically test whether some combinations of constraints have a solution or not, and

saturate the knowledge base of the adversary.

The overall procedure will then proceed by induction on the formula to be verified, using case

analysis rules at each step to introduce all necessary constraints and solve them.

Simplification Rules. We define solving rules in this section. They build on a preliminary set of

simplification rules, defined in Figure 15.

Basic simplifications C ∧ ⊤⇝ C C ∧ ⊥⇝ ⊥

ded. constraints C ∧ 𝑋 ⊢?𝜋 𝑡 ⇝ C if 𝑡 ∈ XN

C ∧ (∀𝑋 .𝑋 ⊬?𝜋 𝑢) ⇝ ⊥
if there is a recipe 𝜉 such that {𝑋 ↦→ 𝜉} is well-typed, and 𝜉 ⊩C,𝜋 𝑢

1st order equations C ∧ 𝑢 =? 𝑣 ⇝ C ∧mgu (𝑢 =? 𝑣)
C ∧ 𝑥 =? 𝑢 ⇝ C𝜎 ∧ 𝑥 =? 𝑢

assuming 𝜎 = {𝑥 ↦→ 𝑢} is well-typed and 𝑥 ∈ vars1 (C) ∖ vars1 (𝑢)

1st order disequations C ∧ ∀𝑆. 𝜙 ⇝
{
C ∧ ∀𝑆.¬𝜎 with 𝜎 = mgu (¬𝜙) ≠ ⊥
C if mgu (¬𝜙) = ⊥

2nd order disequations C ∧ ∀𝑆. 𝜙 ⇝


C ∧ ∀𝑆 ∪ 𝑆 ′ .¬Σ with Σ = mgu (¬𝜙) ≠ ⊥

and 𝑆 ′ = vars2 (img(Σ)) ∖ vars2 (𝜙)

C if mgu (¬𝜙) = ⊥
Time constraints C ∧ C𝑡 ⇝ ⊥

if C𝑡 is a conjunction of numeric constraints with no 𝜎 such that C𝑡𝜎 holds

Fig. 15. Simplification rules for hyperconstraint systems

These basic set of rules are rather standard, albeit from the one for numeric constraints (which

removes deduction constraints involving a numeric variables, as they are always implicitly quanti-

fied in the system). Otherwise, the rules simply put (dis)equational constraints into a simple form

by computing unifiers. Note that no rules are needed for second-order equations, as they will be

specifically handled by the parts of the procedure computing solutions. The simplification rules are

then lifted to hyperconstraint systems C in the natural way, by applying the rules to all compatible

hyperconstraints of C.

Mgs Rules. Building on this set of simplification rules, we define another set of rules used to

compute a complete set of most general solutions of a hyperconstraint system C. The overall

procedure will typically alternate between such mgs computations (which assume that C has been

saturated up to a certain point), and the case analysis rules (using the mgs to perform the said

42 Itsaka Rakotonirina, Gilles Barthe, and Clara Schneidewind

saturation, among others). The goal of the mgs rules is to resolve all deduction constraints 𝑋 ⊢?𝜋 𝑢,

i.e., to find a recipe 𝜉 deducing the constructor term 𝑢 (with the correct multiplicity). Assuming

saturation, we only consider direct deduction instead of arbitrary deductions; there are therefore

only two possible cases:

(1) 𝜉 has a constructor symbol at its root, i.e., is of the form 𝜉 = f (𝜉1, . . . , 𝜉𝑛) for some f/𝑛 ∈
Fpub ∩ Fc; or

(2) 𝜉 is an entry of the knowledge base, that is, 𝜉 ⊢?𝜋 𝑢 ∈ C.
Each of these cases will be formalised by a rule of the form:

C Σ−−−→mgs C : Σ (★)

for some adequate second-order substitution Σmodelling the case in question (with some conditions

on C). The first rule for example models the constructor case by using (★) with:

Σ = {𝑋 ↦→ f (𝑋1, . . . , 𝑋𝑛)} (Mgs-Cons)

if there exists a deduction hyperconstraint𝑋:𝑀 ⊢?𝜋 𝑢 ∈ D (C),𝑢 ∉ X1
, and with f/𝑛 ∈ Fc∩Fpub, and

𝑋𝑖:𝑀 fresh. Then, the case where the deduction is a direct entry of the knowledge base corresponds

to the instantiation of (★) with:

Σ = mgu (𝑋 =? 𝜉) ≠ ⊥ (Mgs-Res)

if there exists two deduction hyperconstraints 𝑋 ⊢?𝜋 𝑢 ∈ D (C), 𝑢 ∉ X1
, and 𝜉 ⊢?𝜋 𝑣 ∈ K (C). The

set of all most general unifiers of C is then obtained by considering all hyperconstraint systems

reachable using these two rules, each application of which being separated by as many simplification

rules as possible. Formally:

Definition D.3 (Solved form). We say that a hyperconstraint system C is solved when it cannot be

reduced by⇝ or −−−→mgs , and when for all 𝑋 ⊢?𝜋 𝑢 ∈ D (C), 𝑢 ∈ X1
.

Definition D.4 (Direct solution). We say that a solution (Σ, 𝜎) ∈ Sol (C) is a direct solution of C
if for all 𝑋 ⊢?𝜋 𝑢 ∈ D (C), 𝑋Σ ∈ conseq𝜋 (C). A set of most general direct solutions of C is defined

analogously to the set of most general solutions of C, replacing solutions by direct solutions.

In the following proposition, we write

⇝

the relation applying as many⇝ steps as possible

(which is terminating). The proposition can be proved by a straightforward induction on the size of

the first-order terms appearing in deduction hyperconstraints of C.

Proposition D.1 (Correctness of mgs computations). Let C be a hyperconstraint system. If we
assume that mgu (E2 (C)) ≠ ⊥, writing 𝑆 the set of most general direct solutions of C:

(1) If C is irreducible by⇝ and −−−→mgs , then 𝑆 = {mgu (E2 (C))} if C is solved, and 𝑆 = ∅ otherwise;
(2) otherwise:

{(Σ1 · · · Σ𝑛) |vars2 (C) | C

⇝ Σ1−−−→mgs

⇝

· · · Σ𝑛−−−→mgs

⇝

C′, C′ solved} .

Solving Rules. Finally, relying on the ability to compute most general solutions described in the

previous paragraphs, we can define the set of solving rules
solve
⇝ , that are used to solve hypercon-

straints in general. They are defined below, and enhance the previous rules by adding ways to

remove some unsatisfiable constraints.

Decision and Complexity of Dolev-Yao Hyperproperties (Technical Report) 43

C solve
⇝ C′

if C⇝ C′
(Solve-Simpl)

C solve
⇝ ⊥ if mgs (C) = ⊥ (Solve-Unsat)

C ∧ ∀®𝑥 .𝜙 solve
⇝ C if mgs (C ∧ ¬𝜙) = ⊥ (Solve-Diseq)

D.3 Case Analysis Rules
Resolution. The next rule applies uses most general solutions to perform case analyses in a proof

stack. Given a state𝜔★ = 𝜔1↣ · · ·↣ 𝜔𝑛 , the algorithm will first attempt to compute the solutions

Σ of 𝜔𝑛 . Then, in case Σ imposes additional conditions on previous states 𝜔𝑖 , 𝑖 < 𝑛, a case analysis

will occur, that is, ¬Σ will be added as a proof obligation as well at different levels. Formally, the

rule takes the following form:

(𝜔1↣ · · ·↣ 𝜔𝑛) −−−→case (𝜔 ′
1
↣ · · ·↣ 𝜔 ′

𝑛) (Case-Resolve)

where the following conditions are met. First of all, either Σ ∈ mgs (C(𝜔𝑛)) or Σ ∈ mgs (C′ ∧
mgu (¬𝜙)), writing C(𝜔𝑛) = C′ ∧ ∀®𝑥 .𝜙 . Then for all 𝑖 , writing 𝜔𝑖 = (Π𝑖 , C𝑖 ,O𝑖):

𝜔 ′
𝑖 = (Π𝑖 , C+

𝑖 ,O𝑖 ∪ {(Π(𝜀), C−
𝑖)})

where, with the convention dom(𝜔−1) = ∅:
C+
𝑖 = C𝑖 : Σ |dom(𝜔𝑖) ∧ C𝑡

C−
𝑖 = C𝑖 ∧ (¬Σ |dom(𝜔𝑖)∖dom(𝜔𝑖−1) ∨ ¬C𝑡)

where C𝑡 refers to the numeric constraints of C𝑛 : Σ |dom(𝜔𝑛) .

Saturation. This last rule is then used to saturate the knowledge base of the adversary, i.e., to

ensure that direct deductions (used in particular in the computation of most general solutions)

coincide with regular adversarial deductions. To define the rule, we first introduce a couple of

preliminary notions. First of all, we define the origination property, which is a straightforward

invariant verified by our decision procedure. It intuitively states that we only consider adversarial

computations whose multiplicities are consistent with an actual protocol execution.

Definition D.5 (Origination property). We say that a hyperconstraint system C verifies the

origination property if for all 𝜋 ∈ vars𝑝 (C), the domain of Φ = Φ(proj𝜋 (C)) can be ordered as

dom(Φ) = {ax1, . . . , ax𝑛}
in a way that for all 𝑖 ∈ J1, 𝑛K, for all 𝑥 ∈ vars1 (ax𝑖), there exists 𝑋:𝑀 ⊢?𝜋 𝑥 ∈ D (C) such that

{ax𝑗 } 𝑗<𝑖 ⊆ 𝑀 .

In the following, we will always assume that hyperconstraint systems verify the origination

property. Then, we define the following notion, which characterises the possibility to perform a

new deduction from the knowledge base.

Definition D.6 (New deduction). Let C be a hyperconstraint system. We call (Σ, 𝜁 ⊢?𝜋 𝑣) a new
deduction for C if there exists a rewrite rule f (ℓ1, . . . , ℓ𝑛) → 𝑟 and 𝜉 ⊢?𝜋 𝑢 ∈ K (C) such that the

following conditions are satisfied.

(1) There should not exist 𝜉 ′ such that 𝜉 ′ ⊩C,𝜋 𝑣 .

(2) Consider a hyperconstraint of the form

C′ = C ∧
𝑛∧
𝑖=1

𝑋𝑖:𝑀 ⊢?𝜋 ℓ𝑖 ∧ ℓ ′ =? 𝑢

44 Itsaka Rakotonirina, Gilles Barthe, and Clara Schneidewind

with ℓ ′ subterm of some ℓ𝑖 , and 𝑟 is a subterm of ℓ ′. Then Σ ∈ mgs (C′), 𝜁 = f (𝑋1Σ, . . . , 𝑋𝑛Σ)
and 𝑣 = 𝑟𝜎 , with 𝜎 the non-numeric constraints of mgu (E1 (C′

: Σ)).
(3) In the above item,𝑀 is of the form {ax1, . . . , ax𝑛}, with these axioms numbered as in the

definition of origination property. Besides, there should not exist other new deductions for

a multiplicity𝑀 ′ ⊂ 𝑀 .

Using this notion, the rule can be formalised as follows:

(𝜔1↣ · · ·↣ 𝜔𝑛) −−−→case (𝜔 ′
1
↣ · · ·↣ 𝜔 ′

𝑛) (Case-Saturate)

where the following conditions are met. First of all, there should exists (Σ, 𝜁 ⊢?𝜋 𝑣) a new deduction

for C(𝜔𝑛). Then for all 𝑖 , writing 𝜔𝑖 = (Π𝑖 , C𝑖 ,O𝑖):

𝜔 ′
𝑖 = (Π𝑖 , C+

𝑖 ,O𝑖 ∪ {(Π(𝜀), C−
𝑖)})

where, with the convention dom(𝜔−1) = ∅:

C+
𝑛 = C𝑖 : Σ |dom(𝜔𝑖) ∧ C𝑡 ∧ 𝜁 ⊢?𝜋 𝑣

if 𝑖 < 𝑛: C+
𝑖 = C𝑖 : Σ |dom(𝜔𝑖) ∧ C𝑡

C−
𝑖 = C𝑖 ∧ (¬Σ |dom(𝜔𝑖)∖dom(𝜔𝑖−1) ∨ ¬C𝑡)

where C𝑡 refers to the numeric constraints of C𝑛 : Σ |dom(𝜔𝑛) .

Constraint Solving. Putting everything together, the constraint solving relation
cs
⇝ on proof stacks

𝜔★
is defined by the successive applications of the rules

solve
⇝ and −−−→case , as many times as possible,

with the priority: (1)

solve
⇝ , then (2) −−−→case by Rule (Case-Saturate), and finally (3) −−−→case by Rule

(Case-Resolve).

E VERIFICATION OF HYPERPROPERTIES
E.1 Decision Procedure

Setting. We now present the decision procedure itself, relying on the constraint solving relation

cs
⇝ introduced in the previous section. We describe the behaviour of HCompute in the rest of this

section, by induction on 𝜑 . However, to lighten the presentation of some cases, we first introduce

notations to compose recursive calls to HCompute in a way that reflects logical connectives. First,

we give a notation ⊕ for component-by-component union:

(Ω+
1
,Ω−

1
) ⊕ (Ω+

2
,Ω−

2
) = (Ω+

1
∪ Ω+

2
,Ω−

1
∪ Ω−

2
) .

Another, more involved notion of composition is the one reflecting the verification of implica-

tions 𝜑 ⇒ 𝜓 . First, a split (Ω𝜑 ,Ω¬𝜑) is computed for 𝜑 , and Ω𝜑 is then refined to obtain a split

Ω𝜑∧𝜓 ,Ω𝜑∧¬𝜓 . Formally, we let ℎ+𝑖 , ℎ
−
𝑖 be functions mapping proof stacks to sets of proof stacks, and

let ℎ𝑖 : 𝜔 ↦→ (ℎ+𝑖 (𝜔), ℎ−
𝑖 (𝜔)). In our below definition of HCompute, we will typically have

ℎ𝑖 = HCompute(·, 𝜔−1) .

Then the logical composition of ℎ0 and ℎ1 is defined as the following function:

(ℎ0 ⇒ ℎ1) : 𝜔★ ↦→ (ℎ−
0
(𝜔★),∅) ⊕

⊕
𝜔★′∈ℎ+

0
(𝜔★)

ℎ1 (𝜔★′) .

Using a similar construction, the negation composition of ℎ0 can be defined from it, doing a swap:

(¬ℎ0) (𝜔★) ≜ (ℎ0 ⇒ ℎ⊥) (𝜔★) = (ℎ−
0
(𝜔★), ℎ+

0
(𝜔★))

Decision and Complexity of Dolev-Yao Hyperproperties (Technical Report) 45

where ℎ⊥ (𝜔★) = (∅, {𝜔★}). Similarly, we can define:

ℎ0 ∨ ℎ1 = (¬ℎ0) ⇒ ℎ1 ℎ0 ∧ ℎ1 = ¬(¬ℎ0 ∨ ¬ℎ1) .

Case-By-Case Computation. We can finally formalise the definition ofHCompute. In all incoming

cases, we will use the notations (Ω𝜑 ,Ω¬𝜑) = HCompute(𝜔★, 𝜔−1), with 𝜔★
and 𝜔−1 = (Π@, 𝑡, 𝜑).

First of all, HCompute(𝜔★, 𝜔−1) only applies if 𝜔★
is a non-empty proof stack, and starts by

applying the constraint solving procedure to it, i.e., we write 𝜔★ cs
⇝ 𝜔★

𝑠 , where

𝜔★
𝑠 = 𝜔1↣ · · ·↣ 𝜔𝑛 𝑛 ⩾ 1 .

We then perform the following case analysis. In several cases, we also use the function HRefine,
defined by

HRefine(𝜎,𝜔★) = 𝜔★
𝑠′

with 𝜔★[C(𝜔) ↦→ C(𝜔) ∧ 𝜎] cs
⇝ 𝜔★

𝑠′ , with 𝜔★ = 𝜔★
pref ↣ 𝜔 .

▶Non-concretisable case: C(𝜔𝑛) = ⊥.
Then we simply return Ω𝜑 = {𝜔𝑛} and Ω¬𝜑 = ∅.

▶ Event case: 𝜑 = Ev (®𝑢)𝜋 .
In this case, we interpret event functions F𝑒 as constructor symbols of Fc. We thus consider the

term 𝑣 = Ev (®𝑢), and:
Π@ (𝜋) = (𝐴, 𝐸) and 𝜇 = mgu (E1 (C)) .

Using these notations, we return

Ω𝜑 = {HRefine(𝜎,𝜔★
𝑠) | 𝑤 ∈ 𝐸, 𝜎 ∈ mguR (𝑣𝜇 =? 𝑤𝜇)}

Ω¬𝜑 = {HRefine(¬𝜎,𝜔★
𝑠) | 𝑤 ∈ 𝐸, 𝜎 ∈ mguR (𝑣𝜇 =? 𝑤𝜇)}

▶Non-event action case: 𝜑 = 𝛼𝜋 (𝛼 ∈ {in, out, repl, . . .}).
Analogue to the previous case.

▶ State membership case: 𝜑 = GS𝜋 (𝑢).
Let us write:

Π@ (𝜋) = (𝐴, 𝐸) and 𝜇 = mgu (E1 (C)) .
Using these notations, we return

Ω𝜑 = {HRefine(𝜎,𝜔★
𝑠) | 𝑣 ∈ 𝜃 (𝐴), 𝜎 ∈ mguR (𝑢𝜇 =? 𝑣𝜇)}

Ω¬𝜑 = {HRefine(¬𝜎,𝜔★
𝑠) | 𝑣 ∈ 𝜃 (𝐴), 𝜎 ∈ mguR (𝑢𝜇 =? 𝑣𝜇)}

▶ Equality modulo R case: 𝜑 = (𝑢 = 𝑣).
In this case, it suffices to add a (dis)equality constraint to C and to resolve it using the oracle.

That is, we let:

𝜇 = mgu (E1 (C)) 𝑀 = mguR (𝑢𝜇 =? 𝑣𝜇)
and then return

Ω𝜑 = {HRefine(𝜎,𝜔★
𝑠) | 𝜎 ∈ mguR (𝑢𝜇 =? 𝑣𝜇)}

Ω¬𝜑 = {HRefine(¬𝜎,𝜔★
𝑠) | 𝜎 ∈ mguR (𝑢𝜇 =? 𝑣𝜇)}

▶Adversarial deduction case: 𝜑 = K𝜋 (𝑢).
This case is mostly similar to the equality-modulo case, except that we use (non-)deduction

constraints instead of (dis)equations. We therefore let, this time:

𝜇 = mgu (E1 (C)) 𝑀 = mguR (𝑢𝜇 =? 𝑢𝜇) .

46 Itsaka Rakotonirina, Gilles Barthe, and Clara Schneidewind

One subtlety, however, is that (non-)deduction constraints of a term 𝑢 require that 𝑢 is a constructor

term. In particular, 𝜑 does not hold when either 𝑢 is a message but not deducible, or if it is not
instantiated as a message. With this in mind, we let 𝑋 ∈ X2

be a fresh variable, and:

𝑀+ = {𝜎 ∧ 𝑋 ⊢?𝜋 𝑢𝜎 ↓| 𝜎 ∈ 𝑀}
𝑀− = {𝜎 ∧ ∀𝑋 .𝑋 ⊬?𝜋 𝑢𝜎 ↓| 𝜎 ∈ 𝑀} ∪ {∧𝜎∈𝑀 ¬𝜎}

We then return

Ω𝜑 = {HRefine(𝛾, 𝜔★
𝑠) | 𝛾 ∈ 𝑀+}

Ω¬𝜑 = {HRefine(𝛾, 𝜔★
𝑠) | 𝛾 ∈ 𝑀−}

▶ Implication case: 𝜑 = ∀®𝑥 .𝜑0 ⇒ 𝜑1.
Writing ℎ𝑖 = HCompute(·, 𝜔−1 [𝜑 ↦→ 𝜑𝑖]):

(Ω𝜑 ,Ω¬𝜑) = (ℎ0 ⇒ ℎ1) (𝜔★
𝑠) .

Note that the quantified variables ®𝑥 do not need to be taken into account in the constraint compu-

tation. Indeed, due to the requirement that they are guarded, they can be left as free variables as

they will be unified with process variables during the recursive call ℎ0.

▶ Until case: 𝜑 = 𝜑0 U 𝜑1.
Since timestamps are abstracted by time variables, all possible time projections (notation 𝑇@𝑡 in

the non-symbolic case, Definition 3.7) induce a collection of ordering constraints. These constraints

intuitively represent all potential schedulings of the different traces of Π.
Formally, if 𝑇 is a symbolic trace and 𝑡 ′ ∈ XN

, we define the following set 𝑇@𝑡 ′, intuitively
representing all possible symbolic abstractions of a time projection of𝑇 . Each entry of𝑇@𝑡 ′ is thus
a triple (𝛾,𝐴′, 𝐸′), where 𝛾 models a scheduling constraint for 𝑡 ′, and (𝐴′, 𝐸′) is the corresponding
trace stateΠ@𝑡 ′ for this trace. Formally, if𝑇 : 𝐴0

®𝑤1−−→ s· · ·
®𝑤𝑛−−→ s𝐴𝑛 , and with convention 𝑡 (𝐴𝑛+1) = +∞:

𝑇@𝑡 ′ = {(𝑡 (𝐴𝑖) < 𝑡 ′ < 𝑡 (𝐴𝑖+1), 𝐴𝑖 [𝑡 (𝐴𝑖) ↦→ 𝑡 ′],∅)}𝑖∈J0,𝑛K

∪ {(𝑡 ′ = 𝑡 (𝐴𝑖), 𝐴𝑖 , { ®𝑤𝑖 })}𝑖∈J1,𝑛K

with 𝐴[𝑡 (𝐴) ↦→ 𝑡 ′] the symbolic process 𝐴 with 𝑡 (𝐴) replaced by 𝑡 ′. We generalise this notation to

the whole mapping Π by computing a cartesian product:

Π@𝑡 ′ =


©­«

∧
𝜋∈dom(Π)

𝛾𝜋 , 𝑡
′, {𝜋 ↦→ (𝐴𝜋 , 𝐸𝜋)}𝜋∈dom(Π)

ª®¬
| ∀𝜋 ∈ dom(Π), (𝛾𝜋 , 𝐴𝜋 , 𝐸𝜋) ∈ Π(𝜋)@𝑡 ′


We then consider two sets 𝑅𝜑0

and 𝑅𝜑1
: 𝑅𝜑1

= Π@𝑡1 for some fresh 𝑡1 ∈ XN
, and 𝑅𝜑0

is the set Π@𝑡 ′

where in each 𝑎 ∈ Π@𝑡 ′, 𝑡 ′ is substituted by a different fresh numeric variable 𝑡𝑎 . We also consider

the two functions ℎ∧𝛾 , ℎ
∨
𝛾 , writing 𝜔

★
𝑠 [C(𝜔𝑠,last) ↦→ C(𝜔𝑠,last) ∧𝛾] cs

⇝ 𝜔 ′
with 𝜔𝑠,last the last state of

𝜔★
𝑠 :

ℎ𝑜𝛾 (𝜔, (Π@, 𝑡, 𝜑)) =

({𝜔},∅) if C(𝜔 ′) = ⊥ and 𝑜 = ∧
(∅, {𝜔}) if C(𝜔 ′) = ⊥ and 𝑜 = ∨
HCompute(𝜔 ′,Π@, 𝑡, 𝜑) if 𝜔 ′ ≠ ⊥

With all these notations, the returned value in this case is finally (Ω𝜑 ,Ω¬𝜑) = ℎ(𝜔), where:

ℎ =
∨

(𝛾1,𝑡1,Π1

@
) ∈𝑅𝜑

1

ℎ∨𝛾1 (·, (Π
1

@
, 𝑡1, 𝜑1)) ∧

∧
(𝛾0,𝑡0,Π0

@
) ∈𝑅𝜑

0

ℎ∧𝛾0 (·, (Π
0

@
, 𝑡0, 𝜑0))

▶ Path quantification case: 𝜑 = ∀𝜋.𝜓 .

Decision and Complexity of Dolev-Yao Hyperproperties (Technical Report) 47

We first let Π@ (𝜀) = (𝐴, 𝐸), and T be a mapping from fresh path variables to symbolic traces,

where img(T) is the set of all symbolic traces of 𝐴. We also consider the hyperconstraint C(𝜋 ′),
𝜋 ′ ∈ dom(T), obtained from C(T(𝜋 ′)) by labelling (non-)deduction constraints by 𝜋 ′

. We then

define a function ℎ𝜋 ′ , 𝜋 ′ ∈ dom(T), which intuitively attempts to prove𝜓 for the symbolic trace

T(𝜋), assuming this symbolic trace has a solution (otherwise ℎ𝜋 ′ skips the proof). I.e.:

(Ω𝜑 ,Ω¬𝜑) =
(
HCompute(·, (Π′

@
, 𝑡,𝜓 ′)) ∧ RecCall(·)

)
(𝜔 ′)

where:

𝜓 ′ = 𝜓 {𝜋 ↦→ 𝜋 ′}
Π′ = Π[𝜀 ↦→ T(𝜋 ′)] ∪ {𝜋 ′ ↦→ T(𝜋 ′)}
Π′
@
= Π@ [𝜀 ↦→ (𝐴,∅)] ∪ {𝜋 ′ ↦→ (𝐴,∅)}

𝜔 ′ = 𝜔★
𝑠 ↣ (Π′, C(𝜋 ′), {(T(𝜋), C(𝜋)) | 𝜋 ∈ dom(T), 𝜋 ≠ 𝜋 ′})

and RecCall(𝜔★ ↣ 𝜔prelast ↣ 𝜔last) is defined as ({𝜔★ ↣ 𝜔prelast},∅) when O(𝜔prelast) = ∅;
otherwise, for a given (T(𝜋 ′′), C) ∈ O(𝜔prelast):

RecCall(𝜔★↣ 𝜔prelast ↣ 𝜔last) = HCompute(𝜔★↣ 𝜔 ′′, (Π′
@
, 𝑡,𝜓 ′′))

with 𝜓 ′′ = 𝜓 {𝜋 ↦→ 𝜋 ′′}
Π′′ = Π′ [𝜀 ↦→ T(𝜋 ′′)] ∪ {𝜋 ′′ ↦→ T(𝜋 ′′)}
𝜔 ′′ = 𝜔prelast [O ↦→ O ∖ {(T(𝜋 ′′), C)}]

E.2 Correctness and Complexity
Decidability. We state in this section the main properties for the correctness of our decision

procedure, thus leading to the decidability (and tight complexity analysis) of Verif, given as before

an oracle to solve the numeric constraints. The characterisation of HCompute is in particular the

following. First, given a statement 𝑃 |= 𝜑 to prove or disprove, we consider the following parameters

to give as an initial argument to HCompute:

Definition E.1 (Initial parameters of HCompute). Given a process 𝑃 and a guarded hyperformula

𝜑 , let 𝑡 ∈ XN
, and 𝑃s be the symbolic process:

𝑃s = ({{𝑃}}, (𝑡 = 0),∅, 𝑡) .

We call initial parameters of HCompute for 𝑃 and 𝜑 a tuple (𝜔★, 𝜔−1), where 𝜔★
is a proof stack

consisting of the single proof state (Π, (𝑡 = 0),∅), 𝜔−1 = (Π, (𝑡 = 0),∅), Π = {𝜀 ↦→ 𝜀𝑃s } with 𝜀𝑃s
the empty symbolic trace starting from 𝑃s, and Π@ = {𝜀 ↦→ (𝑃s,∅)}.

The specification of HCompute can then be formally stated as the following proposition. Note

that it is only a partial correctness statement, i.e., it proves that HCompute is correct when it

terminates but does not prove termination yet.

Proposition E.1 (Correctness of HCompute). Let 𝑃 be a ground bounded process, and 𝜑 a ground
guarded hyperformula. Given 𝜔★, 𝜔−1 some initial parameters of HCompute for 𝑃 and 𝜑 , if we have

(Ω𝜑 ,Ω¬𝜑) = HCompute(𝜔★, 𝜔−1)

then 𝑃 |= 𝜑 iff Ω¬𝜑 = ∅.

48 Itsaka Rakotonirina, Gilles Barthe, and Clara Schneidewind

Proof. The proof follows from a straightforward, although technical, induction on the formula

𝜑 to be proved. The actual invariant considered during this induction is the following. Given

parameters 𝜔★, 𝜔−1
that are not necessarily initial, but with 𝜔★ = 𝜔★

0
↣ 𝜔 , if

(Ω𝜑 ,Ω¬𝜑) = HCompute(𝜔★, 𝜔−1)
then for all (non-empty) proof stacks (𝜔★↣ 𝜔) ∈ Ω𝜓 , for all solutions 𝑆 = (Σ, 𝜎) of C(𝜔),

Π(𝜔)𝑆, 𝑡 (𝜔−1)𝜎 |= 𝜑𝜎 .

In particular, in the case of a ground process 𝑃 and formula 𝜑 , the emptiness of Ω¬𝜑 is equivalent

to 𝑃 |= 𝜑 . □

Complexity. Albeit for the missing termination arguments, the above proposition justifies that

Verif is decidable for bounded processes and guarded hyperformulae with oracle to numeric-

constraint solving. However, different arguments are necessary to obtain the expected complexity.

Indeed, we recall that EXPH(poly) is a class typically characterised by alternating Turing ma-

chines (the class of problems decidable in exponential time by an alternating procedure with a

polynomial number of alternations), while HCompute is purely deterministic and may run in

double-exponential time.

To obtain an EXPH(poly) bound, we consider the naive 𝑛-bounded algorithm NBA𝑛 (𝑃, 𝜑) ∈
{true, false}, which is the bruteforce alternating (but incomplete) algorithm for proving 𝑃 |= 𝜑

which bounds the size adversarial computations by 𝑛 to obtain a finite set of traces. Its definition

is straightforward, and similar to HCompute but operates on concrete processes and traces, and

hence uses concrete recipes (of size 𝑛 at most) instead of deduction constraints.

Proposition E.2 (Complexity and Soundness ofNBA). The procedureNBA𝑛 (𝑃, 𝜑) runs in alternating
polynomial time in 𝑛 and the sizes of 𝑃 and 𝜑 , and also involves a polynomial number of alternations.
Besides, let

(Ω𝜑 ,Ω¬𝜑) = HCompute(𝜔,𝜔−1)
for initial parameters of HCompute for 𝑃 and 𝜑 with

𝑛 ⩾ 𝜇 (Ω𝜑 ∪ Ω¬𝜑) ≜ max

(𝜔★↣𝜔) ∈Ω𝜑∪Ω¬𝜑
𝜋∈vars𝑝 (𝜔)

𝜇𝜋 (C(𝜔)) .

where 𝜇𝜋 (C) refers to the size of a mgs of C projected on path 𝜋 , i,e., mgs (C) |vars2 (proj𝜋 (C)) . Then
𝑃 |= 𝜑 iff NBA𝑛 (𝑃, 𝜑) accepts.

This states that NBA𝑛 is a sound procedure provided 𝑛 is greater than all (projections of) mgs

generated by HCompute. This last property directly follows from the correctness of HCompute
and the definition of mgs.

Proposition E.3 (Small-solution property). We assume a destructor subterm term algebra A. There
is a polynomial 𝑝 such that for all processes 𝑃 , for all

(Ω𝜑 ,Ω¬𝜑) = HCompute(𝜔,𝜔)
obtained with initial parameters of HCompute for 𝑃 ,

𝜇 (Ω𝜑 ∪ Ω¬𝜑) ⩽ 2
𝑝 (|𝑃 |+|𝜑 |+|A |) in general

𝜇 (Ω𝜑 ∪ Ω¬𝜑) ⩽ 𝑝 (|𝑃 | + |𝜑 | + |A|) if 𝜑 is in tidy LTL

Proof. The proof follows again from an induction on the structure of 𝜑 , proving that a well-

founded (exponential) measure decreases at each recursive call of HCompute and solving and case

analysis rules. The measure itself is simply a lexicographic product of the following parameters:

Decision and Complexity of Dolev-Yao Hyperproperties (Technical Report) 49

(1) the size of the formula 𝜑 to prove (polynomial);

(2) the multiset of the numbers of instructions of symbolic processes appearing in the proof

stack (polynomial);

(3) the multiset of the numbers of deducible term that are not a direct consequence of some

proof state. This parameter is of polynomial size since, for destructor subterm convergent

rewriting systems, all deducible terms from a frame Φ are of the form 𝐶 [𝑢], for 𝐶 a public

constructor context and 𝑢 a subterm of some axΦ ∈ img(Φ) (and there are polynomially-

many in the size of 𝑃);

(4) the multiset of the numbers of most general direct solutions of the constraint system of

some proof stack (polynomial, as we consider only direct solutions);

(5) the multiset of the numbers of proof obligations at each level of the stack (one multiset

for each level, lexicographically ordered by increasing stack level order). This parameter is

polynomial in the number of traces of 𝑃 , which is exponential in the size of 𝑃 and A.

In the case of tidy LTL, 𝜑 = ∀𝜋.𝜓 contains only one trace quantification at the head of the for-

mula. Therefore, the verification of 𝜑 using NBA can be done by initially guessing a trace non-

deterministically, and then verify for the guessed trace that𝜓 holds (which thus does not involve

proof obligations). In particular, in the above measure, only polynomial parameters remain, hence

the result. □

In particular, a trivial combination of the previous two propositions gives the following corollary,

using NBA𝑛 as a decision procedure with some exponential value of 𝑛.

Theorem E.4 (Complexity of Verif). Verif is in EXPH(poly) for destructor subterm term algebras,
bounded processes, and guarded hyperformulae.

F COMPLEXITY OF SUB-FRAGMENTS
Upper Bounds. We prove in this section the side complexity results we provided in Figure 9, and

that apply to sub-fragments of the logic.

First of all, using the polynomial-solution property of the previous section (Theorem E.3), we

already obtain the complexity of the fragments of tidy LTL, again using the naive NBA procedure:

Corollary F.1 (Complexity of tidy LTL). For a destructor subterm convergent term algebra,
bounded processes and guarded hyperformulae, the Verif problem is in PSPACE (resp. NP, coNP) for
tidy LTL (resp. tidy∃-LTL , tidy∀-LTL).

Exhibiting complexity upper bounds for bounded processes of the pure 𝜋-calculus, i.e., with an

empty term algebra, is also straightforward, since there are this time finitely-many traces up to

bijective renaming of fresh public names. The naive NBA𝑛 procedure is therefore trivially sound

for 𝑛 = 1.

Proposition F.2 (Complexity in the pure calculus). For bounded processes and guarded hyperfor-
mulae, the Verif problem is in PSPACE (resp. NP, coNP) in general (resp. for tidy∃-LTL , tidy∀-LTL
).

Lower Bounds. We now prove that all the complexity results of this paper are tight. We already

proved the undecidability results in Section 4.1. Also, the hardness results for the main decision

procedure are already proved in [Barthe et al. 2022]:

Theorem F.3 (Hardness of Verif). For a destructor subterm convergent term algebra, bounded process,
and guarded hyperformulae, the Verif problem is EXPH(poly) hard in tidy CTL* and Hypertidy LTL.

50 Itsaka Rakotonirina, Gilles Barthe, and Clara Schneidewind

This result of [Barthe et al. 2022] is proved in a slightly different context, which however does

not affect the validity of the proof. First, it defines a notion of guard that is much more restrictive

than ours (which even makes the result stronger than what we stated here). Second, the hardness

was only stated for subterm convergent term algebras, i.e., not necessarily destructor. However,

the reduction used to prove the result was trivially verifying the constructor-destructor property.

The corresponding proof of correctness of the reduction can then easily be kept up to minor

modifications to match the destructor setting (i.e., to account for the fact that events and outputs

are only executed when their arguments are messages).

It thus remains to prove tight lower bounds for tidy LTL (PSPACE) and tidy∀-LTL (coNP) in
the pure 𝜋 calculus. The two reductions are conducted below.

Proposition F.4 (Hardness of tidy LTL). For an empty term algebra, bounded processes and guarded
hyperformulae, the Verif problem is PSPACE hard in tidy LTL.

Proof. We prove this result by a reduction from QBF. The encoding is pretty straightforward as

guarded quantifiers easily allow to encode boolean quantifications. Formally, we let 0, 1 ∈ Npub
and:

𝑃 = Bool(0);Bool(1)
Given a quantified boolean formula ∀𝑥1.∃𝑦1. . . .∀𝑥𝑛 .∃𝑦𝑛 .𝜙 , we define the guarded hyperformula:

𝜑 = ∀𝜋.F Bool(1)𝜋 ⇒
∀𝑥1 .F Bool(𝑥1)𝜋 ⇒ ∃𝑦1.F Bool(𝑦1)𝜋∧

...

∀𝑥𝑛 .F Bool(𝑥𝑛)𝜋 ⇒ ∃𝑦𝑛 .F Bool(𝑦𝑛)𝜋∧
𝜙

where 𝜙 is the interpretation of the boolean formula 𝜙 as a guarded hyperformulae, i.e., interpreting

∧ and ∨ as the same symbols of our logic, and interpreting a literal 𝑥 as the hyperformula 𝑥 = 0,
and ¬𝑥 as 𝑥 = 1. It is then straightforward that 𝑃 |= 𝜑 iff ∀𝑥1.∃𝑦1. . . .∀𝑥𝑛 .∃𝑦𝑛 .𝜙 holds. □

Proposition F.5 (Hardness of tidy∀-LTL and tidy∃-LTL). For an empty term algebra, bounded
processes and guarded hyperformulae, the Verif problem is coNP hard (resp. NP hard) in tidy∀-LTL
(resp. tidy∃-LTL).

Proof. It suffices to prove the NP hardness of tidy∃-LTL , as 𝜑 is in tidy∃-LTL iff ¬𝜑 is in

tidy∀-LTL . We proceed by reduction from SAT. Let us thus consider a boolean formula in CNF,

𝜙 =
∧𝑝

𝑖=1
𝐶𝑖 , whose variables are written ®𝑥 = 𝑥1, . . . , 𝑥𝑛 . As before, we let two names 0, 1 ∈ Npub

modelling booleans. For each clause 𝐶𝑖 , we consider an event Sat𝑖 , and we define the following

process:

𝑃𝑖 = (Eq(𝑥𝑖1 , 𝑏𝑖1) : Sat𝑖) | · · · | (Eq(𝑥𝑖ℓ , 𝑏𝑖ℓ) : Sat𝑖)
where 𝑥𝑖1 , . . . , 𝑥𝑖ℓ are the variables of𝐶𝑖 (they are here free variables in Sat𝑖) and 𝑏𝑖1 , . . . , 𝑏𝑖ℓ ∈ {0, 1}
are their respective negation bits. Intuitively, interpreting the event Eq as an equality predicate,

𝑃𝑖 can emit the event Sat𝑖 iff the variables 𝑥1, . . . , 𝑥𝑛 are instantiated in a wy that 𝐶𝑖 holds. In

particular, the satisfiability of the whole boolean 𝜙 is characterised by the following process 𝑃 and

guarded hyperformula 𝜑 :

𝑃 = in(𝑥1) : · · · : in(𝑥𝑛); (𝑃1 | · · · 𝑃𝑛)
𝜑 = ∃𝜋.(G ∀𝑥,𝑦.Eq(𝑥,𝑦) ⇒ 𝑥 = 𝑦) ∧∧𝑛

𝑖=1 F Sat𝑖 .

We then observe that 𝑃 |= 𝜑 iff 𝜙 is satisfiable. □

	Abstract
	1 Introduction
	2 Motivating Example: Fair Reward
	2.1 Blockchain and Smart Contract
	2.2 Fair Reward Contracts
	2.3 Proving Fair Reward

	3 Protocol Model
	3.1 Cryptographic Primitives and Messages
	3.2 Protocols in an Adversarial Environment

	4 Verification of Hyperproperties
	4.1 Hyperproperties
	4.2 Fragments and Restrictions
	4.3 Technical Overview of the Results

	5 Symbolic Abstraction
	5.1 (Refined) Unification Theory
	5.2 Symbolic Semantics
	5.3 Soundness and Completeness

	6 Verification of Dolev-Yao Hyperproperties
	6.1 Hyperconstraints
	6.2 Proof States and Stacks
	6.3 Main procedure

	7 Review of Applications of DY-Hyperproperties
	7.1 Distribution fairness
	7.2 Atomicity in Smart Contracts
	7.3 Reentrancy
	7.4 Virtual Channel Stability

	8 Related Work
	9 Conclusion and Future Work
	References
	A Complexity Theory (Preliminaries)
	A.1 Basic Notions
	A.2 Polynomial and Exponential Hierarchies

	B Expressivity of the Framework
	C Proof of Undecidability
	C.1 Reduction From Two-Counter Machines
	C.2 Proof

	D Symbolic Constraint Solving
	D.1 Solution Management
	D.2 Solving Rules
	D.3 Case Analysis Rules

	E Verification of Hyperproperties
	E.1 Decision Procedure
	E.2 Correctness and Complexity

	F Complexity of Sub-Fragments

