
HAL Id: hal-04261371
https://hal.science/hal-04261371v1

Submitted on 21 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Round- and context-bounded control of dynamic
pushdown systems

Benedikt Bollig, Mathieu Lehaut, Nathalie Sznajder

To cite this version:
Benedikt Bollig, Mathieu Lehaut, Nathalie Sznajder. Round- and context-bounded control of dynamic
pushdown systems. Formal Methods in System Design, 2024, 62, pp.41-78. �10.1007/s10703-023-
00431-0�. �hal-04261371�

https://hal.science/hal-04261371v1
https://hal.archives-ouvertes.fr

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of

Dynamic Pushdown Systems

Benedikt Bollig1, Mathieu Lehaut2* and Nathalie Sznajder2

1CNRS, LMF & ENS Paris-Saclay, Université Paris-Saclay,
France.

2*Sorbonne Université, CNRS, LIP6, F-75005 Paris, France.

*Corresponding author(s). E-mail(s): mathieu.lehaut@gmail.com;
Contributing authors: bollig@lsv.fr; nathalie.sznajder@lip6.fr;

Abstract

We consider systems with unboundedly many processes that com-
municate through shared memory. In that context, simple verifica-
tion questions have a high complexity or, in the case of push-
down processes, are even undecidable. Good algorithmic properties
are recovered under round-bounded verification, which restricts the
system behavior to a bounded number of round-robin schedules. In
this paper, we extend this approach to a game-based setting. This
allows one to solve synthesis and control problems and constitutes
a further step towards a theory of languages over infinite alphabets.

Keywords: Parameterized systems, Control, Underapproximation, Pushdown
systems, Games

1 Introduction

Ad-hoc networks, mobile networks, cache-coherence protocols, robot swarms,

and distributed algorithms have (at least) one thing in common: They are

1

Springer Nature 2021 LATEX template

2 Round- and Context-Bounded Control of Dynamic Pushdown Systems

referred to as parameterized systems, as they are usually designed to work

for any number of processes. The last few years have seen a multitude of

approaches to parameterized verification, which aims to ensure that a system

is correct no matter how many processes are involved. We refer to [20] for

an overview. Furthermore, as the number of processes involved in the system

is unbounded, one can distinguish two cases: either for each execution there

is a finite (albeit unknown) set of processes involved (parameterized case), or

potentially infinitely many processes can be generated during the execution

(dynamic case). In this paper, we focus on the latter.

Now, the above-mentioned applications are usually part of an open world,

i.e., they are embedded into an environment that is not completely under the

control of a system. Think of scheduling problems, in which an unspecified

number of jobs have to be assigned to (a fixed number of) resources with

limited capacity. The arrival of a job and its characteristics are typically not

under the control of the scheduler. However, most available verification tech-

niques are only suitable for closed systems: A system is correct if some or every

possible behavior satisfies the correctness criterion, depending on whether one

considers reachability or, respectively, linear-time objectives.

This paper is a step towards a theory of synthesis and control, which pro-

vides a more fine-grained way to reason about parameterized systems. Our

system model is essentially that from [29], but defined in a way that reveals

similarities with data automata/class-memory automata, a certain automata

model over infinite alphabets [9, 8]. More precisely, we consider dynamic push-

down systems, as each process has a dedicated stack to model recursion. A

dynamic pushdown system distinguishes between a finite-state global process

(sometimes referred to as a global store or leader process) and a local process.

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 3

The global process can spawn new local processes. Thus, while a system con-

figuration contains only one global state, the number of instantiations of local

processes is unbounded. Moreover, when a local process takes a transition, it

is allowed to read, and modify, the global store.

So far so good. Now, it is well-known that reachability is undecidable as

soon as two pushdown processes communicate through shared memory. And

even when local processes are finite-state, the problem is at least as hard as

reachability in Petri nets [9]. This led La Torre, Madhusudan, and Parlato to

consider verification of round-bounded parameterized systems, which restricts

system executions to a bounded number of round-robin schedules while still

allowing an unbounded number of processes to be involved in the execution

[29]. Not only did they show that reachability drops to PSPACE, but the cor-

responding fixed-point computation also turned out to be practically feasible.

Moreover, they give a sound method (i.e., a sufficient criterion) for proving

that all reachable states can already be reached within a bounded number of

round-robin schedules. This is done using a game that is different from the one

we introduce here. Actually, we extend their model by adding the possibility

to distinguish, in dynamic pushdown automata, between controllable global

states and uncontrollable ones.

The classical reachability problem then turns into a reachability objective

in an infinite-state game. As our main result, it is shown that the winner of

such a game can be computed, though in (inherently) non-elementary time.

Our proof makes a detour via games on multi-pushdown systems, which are

undecidable in general but decidable under a bound on the number of phases,

each restricting the number of pop operations to a dedicated stack [36, 5]. Note

that round-robin schedules maintain processes in a queue fashion. However,

bounding the number of rounds allows us to store both the states of a local

Springer Nature 2021 LATEX template

4 Round- and Context-Bounded Control of Dynamic Pushdown Systems

process as well as its stack contents in a configuration of a multi-pushdown

system. It is worth noting that multi-pushdown systems have been employed

in [28], too, to solve verification problems involving queues. Finally, we also

prove that relaxing the round-robin schedule restriction by allowing processes

to act in a different order in every round makes the problem undecidable again.

Related Work. Underapproximate verification goes back to Qadeer and Rehof

[34]. In the realm of multi-threaded recursive programs, they restricted the

number of control switches between different threads. The number of processes,

however, was considered to be fixed.

As already mentioned, there is a large body of literature on parameterized

verification, mostly focusing on closed systems (e.g., [20, 2, 19, 4]). As said

earlier, our model is similar to the one from [29], which is also essentially

the one from [12]. Contrary to the latter, we do not model local transitions

explicitly. They correspond to transitions that do not change the global state.

In [12], context-bounded verification is studied. In a context, only one process

can access the global state, but any other process can execute local transitions.

Then, the number of context switches of the whole system is bounded. In [6],

it is argued that this restriction is ill-suited for parameterized systems, and

they change it to a per-process basis. We use a slightly different but closely

related definition for contexts in Section 5 to show an undecidability result in

the game-based setting.

Infinite-state games have been extensively studied over vector addition sys-

tems with states (VASS) (e.g., [24, 15, 3, 7, 13]). However, reachability is

already undecidable for simple subclasses of VASS games, unless coverabil-

ity objectives are considered. Unfortunately, the latter do not allow us to

require that all local processes terminate in a final state. Interestingly, tight

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 5

links between VASS/energy games and games played on infinite domains have

recently been established [22].

We believe that our results will fertilize synthesis of parameterized sys-

tems [23] and more classical questions whose theoretical foundations go back

to the 50s and Church’s synthesis problem. Let us cite Brütsch and Thomas,

who observed a lack of approaches to synthesis over infinite alphabets [14]:

“It is remarkable, however, that a different kind of ‘infinite extension’ of the

Büchi-Landweber Theorem has not been addressed in the literature, namely

the case where the input alphabet over which ω-sequences are formed is infi-

nite.” Indeed, an execution of a parameterized system can be considered as a

sequence of letters, each containing the process identifier of the process involved

in performing the corresponding action. Recall that our model of parameter-

ized systems is also inspired by data automata/class-memory automata [9, 8],

which were originally defined as language acceptors over infinite alphabets.

The automata studied in [14] are quite different. The synthesis problem over

infinite alphabets has also been studied in [17, 26, 21].

Since synthesis problems are often reduced to game-theoretic questions, our

work can be considered as an orthogonal step towards a theory of synthesis

over infinite alphabets.

This work is an extended version of [10] and [11], adding the result of

Section 5 to the previous works and improving the readability of proofs in

Section 4.

Outline. We define parameterized pushdown systems in Section 2, where we

also recall known results on reachability questions. Rounds are defined in

Section 3, and we discuss round-bounded reachability problems. The control

problem is addressed in Section 4, and we discuss a possible relaxation of our

restriction in Section 5. Finally we conclude in Section 6.

Springer Nature 2021 LATEX template

6 Round- and Context-Bounded Control of Dynamic Pushdown Systems

2 Dynamic Pushdown Systems

We start with some preliminary definitions. For n ∈ N, we let [n] = {1, . . . , n}.

Words. Let Σ be a (possibly infinite) set. A word w over Σ is a finite or

(countably) infinite sequence a0a1a2 . . . of elements ai ∈ Σ. Let Σ∗ denote the

set of finite words over Σ, Σω the set of infinite words, and Σ∞ = Σ∗∪Σω. Given

w ∈ Σ∞, we denote by |w| the length of w, i.e., |w| = n if w = a0 . . . an−1 ∈ Σ∗,

and |w| = ω if w ∈ Σω. In particular, the length |ε| of the empty word ε is 0.

Transition Systems. A transition system is a triple T = (V,E, vin) such that

V is a (possibly infinite) set of nodes, E ⊆ V × V is the transition relation,

and vin ∈ V is the initial node. For (u, v) ∈ E, we may also write u → v. We

call v a successor of u.

A partial run of T is a non-empty, finite or infinite sequence ρ =

v0v1v2 . . . ∈ V∞ such that, for all 0 < i < |ρ|, vi is a successor of vi−1. If, in

addition, we have v0 = vin, then we call ρ a run. A (partial) run from u to v is

a finite (partial) run of the form v0v1 . . . vn with v0 = u and vn = v. In partic-

ular, u is a partial run (of length 1) from u to u. By Runs(T), we denote the

set of runs of T .

A set of nodes F ⊆ V , interpreted as a reachability condition, induces the

set of accepting runs

Acc(T ,F) = {ρ = v0v1 . . . ∈ Runs(T) | vi ∈ F for some 0 ≤ i < |ρ|} .

2.1 Dynamic Pushdown Systems

We introduce now dynamic pushdown systems, that model systems in which

processes may be created dynamically. Every process can manipulate a stack

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 7

as well as its local state. Information shared by all the processes is modeled in

terms of a global state.

Definition 2.1 A dynamic pushdown system (DPS) is given by a tuple P =

(S,L,Γ, sin, ℓin,∆, Fglob, Floc) where

� S is the finite set of global states, including the initial global state sin,

� L is the finite set of local states, including the initial local state ℓin,

� Γ is the finite stack alphabet,

� ∆ ⊆ (S × L) × (Act × Γ) × (S × L) is the transition relation with Act =

{push, pop, int} (where int stands for internal), and

� Fglob ⊆ S and Floc ⊆ L are the sets of accepting global states and accepting local

states, respectively. We assume that sin ̸∈ Fglob.

A configuration of P is a tuple c = (s, (ℓ1, γ1), . . . , (ℓk, γk)) where k ∈ N

(possibly k = 0), s ∈ S is the current global state, and, for each p ∈ {1, . . . , k},

ℓp ∈ L and γp ∈ Γ∗ are respectively the local state and stack content of process

p. We let CP denote the set of configurations of P. The initial configuration

is (sin) and a configuration c = (s, (ℓ1, γ1), . . . , (ℓk, γk)) is final if s ∈ Fglob and

{ℓ1, . . . , ℓk} ⊆ Floc. The set of final configurations of P is denoted by FP . We

will interpret this as a reachability condition.

The size |c| of a configuration c is the number k of processes in c.

The semantics of a DPS P is defined as a transition system JPK = (V,E, vin)

where V = CP , vin = (sin), and the transition relation is E =
⋃
p≥1Ep with

Ep defining the transitions of process p. Actually, Ep contains two types of

transitions. The first type corresponds to the activity of a process that has

already been created. Formally, for two configurations (s, (ℓ1, γ1), . . . , (ℓk, γk))

Springer Nature 2021 LATEX template

8 Round- and Context-Bounded Control of Dynamic Pushdown Systems

and (s′, (ℓ′1, γ
′
1), . . . , (ℓ

′
k, γ

′
k)) of size k ≥ 1,

((s, (ℓ1, γ1), . . . , (ℓk, γk)), (s
′, (ℓ′1, γ

′
1), . . . , (ℓ

′
k, γ

′
k))) ∈ Ep

if and only if p ≤ k and there are op ∈ Act and A ∈ Γ such that

� ((s, ℓp), (op, A), (s
′, ℓ′p)) ∈ ∆,

� ℓq = ℓ′q and γq = γ′q for all q ∈ {1, . . . , k} \ {p}, and

� one of the following holds: (i) op = push and γ′p = A·γp, (ii) op = pop and

γp = A ·γ′p, or (iii) op = int and γp = γ′p (in which case A is meaningless).

Note that the topmost stack symbol can be found at the leftmost position of

γp.

The second type of transition is when a new process joins the system. For

a configuration (s, (ℓ1, γ1), . . . , (ℓk, γk)) of size k ≥ 0,

((s, (ℓ1, γ1), . . . , (ℓk, γk)), (s
′, (ℓ1, γ1), . . . , (ℓk, γk), (ℓk+1, γk+1))) ∈ Ep

if and only if p = k + 1 and there are op ∈ Act and A ∈ Γ such that

((s, ℓin), (op, A), (s
′, ℓk+1)) ∈ ∆ and one of the following holds: (i) op = push

and γk+1 = A, or (ii) op = int and γk+1 = ε.

A run of P is a run of the transition system JPK. It is accepting if it is

contained in Acc(JPK,FP), i.e., if it contains some final configuration.

A dynamic finite-state system (DFS) is simply a DPS without stacks. That

is, a DFS is a tuple P = (S,L, sin, ℓin,∆, Fglob, Floc) where ∆ ⊆ (S × L) ×

(S × L) and the rest is defined as in DPS. Configurations in CP are tuples

c = (s, ℓ1, . . . , ℓk) with k ≥ 0. The semantics of P is JPK = (CP , E, (sin)) with

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 9

E =
⋃
p≥1Ep defined as follows:

((s, ℓ1, . . . , ℓk), (s
′, ℓ′1, . . . , ℓ

′
k)) ∈ Ep

if and only if p ≤ k, ((s, ℓp), (s
′, ℓ′p)) ∈ ∆, and ℓq = ℓ′q for all q ̸= p, and

((s, ℓ1, . . . , ℓk), (s
′, ℓ1, . . . , ℓk, ℓk+1)) ∈ Ep

if and only if p = k + 1 and ((s, ℓin), (s
′, ℓk+1)) ∈ ∆. Runs and accepting runs

are defined accordingly.

Example 2.2 Let us study an example for a model of a lock system for a resource

shared by multiple processes. This resource can be read by any process, but must be

locked before being written on so that only one process can modify it at a time. We

give the following implementation of this system (see Figure 1 for an illustration)

and then we will check whether it is a correct one.

Let P = (S,L,Γ, sin, ℓin,∆, Fglob, Floc) with S = {sin, s2, s3, s⊥} three global

states symbolizing the state of the shared resource, as well as an error state s⊥,

L = {ℓin, ℓ1} are two local states, Γ = {Lock} a stack alphabet whose only letter is

used to store locks, Fglob = {s⊥} and Floc = L are the accepting states, and the list of

transitions is illustrated in Figure 1 in the following way: if there is a transition s −→ s′

in the global automaton and a transition ℓ
op A−−−→ ℓ′ in the local automaton with the

same label among {read , lock ,write, unlock}, then ((s, ℓ), (op, A), (s′, ℓ′)) ∈ ∆. We

use this slightly different presentation to help with readability in this example.

The idea is that the global state s⊥ can only be reached if two write actions are

made sequentially, which should not happen as only one process at a time should be

able to modify the shared resource. Therefore, there is a bug in the implementation

if one can find an accepting run of this DPS. An example of such a run is given in

Figure 2.

Springer Nature 2021 LATEX template

10 Round- and Context-Bounded Control of Dynamic Pushdown Systems

sin

s2

s3

s⊥ ℓin ℓ1

read

lock

write

unlock write

read
int −
unlock

pop Lock
lock

push Lock

read

int −

write

int −

Fig. 1 A DPS represented as a global automaton (left) and local automaton (right)
synchronized with labels (in gray)

sin

c0

ℓin ε read sin

c1

ℓ1 ε

ℓin ε

read sin

c2

ℓ1 ε

ℓ1 ε

lock s2

c3

ℓ1 Lock

ℓ1 ε

write s3

c4

ℓin Lock

ℓ1 ε

write s⊥

c5

ℓin Lock

ℓin ε

Fig. 2 An example of an accepting finite run involving two processes

Table 1 Reachability problems

DPS-Reachability

I: DPS P
Q: Acc(JPK,FP) ̸= ∅ ?

DPS-Reachabilityrb

I: DPS P; B ≥ 1 (given in unary)

Q: Acc(JPKB-rb,FB
P) ̸= ∅ ?

DFS-Reachability

I: DFS P
Q: Acc(JPK,FP) ̸= ∅ ?

DFS-Reachabilityrb

I: DFS P; B ≥ 1 (given in unary)

Q: Acc(JPKB-rb,FB
P) ̸= ∅ ?

2.2 Reachability Problems

Consider the problems defined in the left part of Table 1. The problem DPS-

Reachability (respectively, DFS-Reachability) consists in deciding if, in

a given DPS (respectively, DFS), there is an accepting run, starting in the

initial configuration.

In the general case, these problems are already known and we recall here

the results:

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 11

Theorem 2.3 The problem DPS-Reachability is undecidable, while the problem

DFS-Reachability is decidable (and inherently non-elementary).

The undecidability result is folklore (cf. also [35]), as two stacks are already

sufficient to simulate a Turing machine. For the decidability result, we observe

that dynamic systems without stacks are essentially Petri nets (cf. [9]), whose

reachability problem is decidable [32] and not elementary [16].

3 Round-Bounded Reachability in Dynamic

Pushdown Systems

To regain decidability in the case of DPS, we restrict ourselves to runs that

are round bounded.

The notion of round-bounded behaviors was introduced in [29]. Intuitively,

during a round, the first process will do any number of transitions (possi-

bly 0), then the second process will do any number of transitions, and so

on. Once process p + 1 has started performing transitions, process p can-

not act again in this round. A run is then said to be B-bounded if it uses

at most B rounds. Formally, given a natural number B ≥ 1 and a DPS

P = (S,L,Γ, sin, ℓin,∆, Fglob, Floc), we define the B-bounded semantics of P as

the transition system JPKB-rb = (V B , EB , vBin) where

� nodes are extended configurations of the form v = (c, p, r) with c ∈ CP

a configuration, say, of size k, p ∈ {0, . . . , k} represents the last process

that made a transition (or 0 if it is not yet defined), and r ∈ {1, . . . , B}

is the number of the current round,

� the initial node is vBin = ((sin), 0, 1), and

� there is an edge between (c, p, r) and (c′, p′, r′) if, in JPK = (V,E, vin),

there is an edge (c, c′) in Ep′ and either

Springer Nature 2021 LATEX template

12 Round- and Context-Bounded Control of Dynamic Pushdown Systems

– p′ ≥ p and r′ = r, or

– p′ < p, r < B, and r′ = r + 1.

The B-bounded semantics of a DFS is defined accordingly.

A B-bounded run (or simply bounded run if B is understood) of P is a run

of JPKB-rb. As before, a B-bounded run is called accepting if it is contained in

Acc(JPKB-rb,FB
P) where FB

P is the set of extended configurations (c, p, r) such

that c ∈ FP .

Example 3.1 In the run of Figure 2, we use 2 rounds:

Round 1: Process 1 performs a read-transition, then Process 2 takes a read-

transition.

Round 2: Process 1 takes a lock -transition followed by a write-transition, then

process 2 takes a write-transition.

Therefore, this run is a B-bounded run for any B ≥ 2. The corresponding run in

JPKB-rb is: (c0, 0, 1) → (c1, 1, 1) → (c2, 2, 1) → (c3, 1, 2) → (c4, 1, 2) → (c5, 2, 2)

where the ci refer to the configuration depicted in Figure 2.

Consider the problems on the right-hand side of Table 1 (note that B

is encoded in unary). For both DPS and DFS, deciding the existence of an

accepting B-bounded run is PSPACE-complete:

Theorem 3.2 DPS-Reachabilityrb and DFS-Reachabilityrb are both

PSPACE-complete.

The upper bound has been shown in [29] and the lower bound in [30], for a

model that is very similar to ours. Their proof adapted to our setting is rather

straightforward, and can be found in [11].

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 13

4 Round-Bounded Control of Parameterized

Systems

We will extend dynamic pushdown systems to a game-based setting with the

aim of modeling systems with a centralized control that are embedded into an

uncontrollable environment.

4.1 Parameterized Pushdown Games

Games. A game is given by an arena, i.e., a transition system G = (V,E, vin)

where V = V0 ⊎ V1 is partitioned into the set of states controlled by Player 0

and Player 1, respectively.

A play of G is a run of the underlying transition system. A play is maximal

if it is infinite, or ends in a node that has no successor.

Let j ∈ {0, 1}. A strategy for Player j is a partial mapping fj : V
∗Vj → V

such that, for all w ∈ V ∗ and v ∈ Vj , the following hold: if fj(wv) is defined,

then (v, fj(wv)) ∈ E; otherwise, v has no successor.

Fix strategies f0 and f1 for Players 0 and 1, respectively. An (f0, f1)-play of

G is a maximal play ρ = v0v1v2 . . . such that, for all 0 < i < |ρ| and j ∈ {0, 1},

if vi−1 ∈ Vj , then fj(v0 . . . vi−1) = vi. Note that ρ is uniquely determined by

(f0, f1).

It remains to specify when a strategy is winning. For F ⊆ V , we say that

Player 0’s strategy f0 is F-winning if, for all strategies for Player 1 f1, the

unique (f0, f1)-play is F-winning, i.e., it is contained in Acc(G,F). Dually,

strategy f1 of Player 1 is F-winning if there is no strategy f0 of Player 0 such

that the unique (f0, f1)-play is in Acc(G,F).

We will add another type of winning condition. A parity condition is given

by a ranking function α : V → Col where Col ⊆ N is a finite set of colors. It

Springer Nature 2021 LATEX template

14 Round- and Context-Bounded Control of Dynamic Pushdown Systems

induces the set

Parity(G, α) = {ρ ∈ Runs(G) ∩ V ω | min(Infα(ρ)) is even}

where Infα(v0v1v2 . . .) = {m ∈ Col | m appears infinitely often in the sequence

α(v0)α(v1)α(v2) . . .}. That is, Parity(G, α) contains an infinite run if and only

if the minimal color seen infinitely often is even. We say that Player 0’s strategy

f0 is α-winning if, for all strategies f1, the unique (f0, f1)-play is α-winning,

i.e., it is contained in Parity(G, α). Finally, Player 1’s strategy f1 is α-winning

if there is no strategy f0 such that the unique (f0, f1)-play is in Parity(G, α).

Given one of the above winning conditions, a game is determined if either

Player 0 has a winning strategy, or Player 1 has a winning strategy. Further-

more, we say that fj is memoryless if, for all w,w′ ∈ V ∗ and v ∈ Vj , we have

fj(wv) = fj(w
′v), i.e., the strategy only depends on the last node.

Theorem 4.1 (cf. [18, 40]) Games with a reachability or parity winning condition

are determined, and if Player j has a winning strategy, then Player j has a winning

memoryless strategy.

Parameterized Pushdown Games. We now introduce the special case of

games played on the infinite transition system induced by a round-bounded

DPS.

A round-bounded parameterized pushdown game is described by a DPS

P = (S,L,Γ, sin, ℓin,∆, Fglob, Floc) together with a partition S = S0 ⊎S1. For a

bound B ≥ 1, the B-round-bounded parameterized pushdown game induced by

P is the game GP
B-rb given by the transition system JPKB-rb = (V B , EB , vBin)

where a node v = (c, p, r) ∈ V B with c = (s, (ℓ1, γ1), . . . , (ℓk, γk)) belongs to

Player j if s ∈ Sj .

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 15

Theorem 4.1 implies that GP
B-rb is determined.

Example 4.2 Let us take again the example from Figure 1, and partition the global

states in S0 = {sin, s⊥} and S1 = {s2, s3}. Intuitively, this means that Player 0 is in

charge of reads and locks, while Player 1 can decide which process is allowed to write

and unlock the resource after it has been locked. In that case, it is easy to see that

for any bound B, there are no winning strategy for Player 0: any time a process p

makes a lock transition, Player 1 can make a write transition immediately followed

by a unlock transition with the same process p, thus preventing the system to ever

reach s⊥.

If we take the partition S0 = {sin, s3, s⊥} and S1 = {s2} instead, then we have

a winning strategy iff B ≥ 2 that is as follows: First make a read transition with

two different processes, and make a lock transition with the second. Player 1 is then

forced to make a write transition with either of the processes. After that, Player 0

can make a write transition with the other one, reaching s⊥ and thus winning. One

can check that the run created uses 2 rounds whatever Player 1’s choice is.

Parameterized games on DFS are defined similarly as for DPS. Note that,

without a bound on the number of rounds, games on DFS are already unde-

cidable, which is shown by an easy adaptation of the undecidability proof for

VASS games [1]. Therefore, we only define control for round-bounded games:

DPS-Controlrb

I: DPS P = (S0 ⊎ S1, L,Γ, sin, ℓin,∆, Fglob, Floc); B ≥ 1

Q: Does Player 0 have an FB
P -winning strategy in GP

B-rb ?

The problem DFS-Controlrb is defined accordingly, the only difference

being that the input P is a DFS.

We are now ready to present our main results, which are shown in the

remainder of this section:

Springer Nature 2021 LATEX template

16 Round- and Context-Bounded Control of Dynamic Pushdown Systems

� DPS-Controlrb is decidable, and

� DFS-Controlrb is inherently non-elementary.

4.2 Upper bound for round-bounded control

Theorem 4.3 DPS-Controlrb is decidable.

Decidability of DPS-Controlrb comes from decidability of games on

phase-bounded multi-pushdown systems (short: multi-pushdown games),

which were first studied in [36] and rely on the phase-bounded multi-pushdown

automata from [27].

Multi-Pushdown Games. Intuitively, a phase is a sequence of actions in a

run during which only one fixed ”active” stack can be read (i.e., either make

a pop transition or a zero-test transition), but push and internal transitions

are unrestricted. There are no other constraints on the number of transitions

or the order of the transitions done during a phase.

Definition 4.4 A multi-pushdown system (MPS) is a tuple M = (κ,N, S0 ⊎

S1,Γ,∆, sin, α) where the natural number κ ≥ 1 is the phase bound, N ∈ N is the

number of stacks, S = S0 ⊎ S1 is the partitioned finite set of states, Γ is the finite

stack alphabet, ∆ ⊆ S×Actzero ×{1, . . . , N}×Γ×S is the transition relation where

Actzero = {push, pop, int, zero}, sin ∈ S is the initial state, and α : S → Col , with

Col ⊆ N a finite set, is the ranking function.

The associated game GM is then played on the transition system JMK =

(V,E, vin), with V = V0 ⊎ V1, defined as follows.

A node v ∈ V is of the form v = (s, γ1, . . . , γN , st , ph) where s ∈ S, γσ ∈ Γ∗

is the content of stack σ, and st ∈ {0, . . . , N} and ph ∈ {1, . . . , κ} are used to

keep track of the current active stack (0 when it is undefined) and the current

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 17

phase, respectively. For j ∈ {0, 1}, we let Vj = {(s, γ1, . . . , γN , st , ph) ∈ V |

s ∈ Sj}.

Given v = (s, γ1, . . . , γN , st , ph) ∈ V and v′ = (s′, γ′1, . . . , γ
′
N , st

′, ph ′) ∈ V ,

we have an edge (v, v′) ∈ E if and only if there exist op ∈ Actzero, σ ∈

{1, . . . , N}, and A ∈ Γ such that (s, op, σ, A, s′) ∈ ∆ and the following hold:

� γτ = γ′τ for all τ ̸= σ,

� γσ = γ′σ if op = int, γ′σ = A · γσ if op = push, γσ = A · γ′σ if op = pop,

and γσ = γ′σ = ε if op = zero,

� if op ∈ {int, push}, then st = st ′ and ph = ph ′ (the active stack and,

hence, the phase do not change),

� if op ∈ {pop, zero}, then,

– either σ = st (σ is the current active stack), and st = st ′ and ph =

ph ′,

– or st = 0, and st ′ = σ and ph ′ = ph = 1,

– or st /∈ {0, σ} and ph < κ, and st ′ = σ and ph ′ = ph + 1.

Observe that, if st = 0 then, by definition, ph = 1, and σ is the first active

stack to be declared. Moreover, if σ was not the current active stack, then

a new phase starts (if possible).

The initial node is vin = (sin, ε, . . . , ε, 0, 1). The winning condition of GM is

a parity condition given by α : V → Col where, for v = (s, γ1, . . . , γN , st , ph),

we let α(v) = α(s).

The control problem for MPS, denoted by MPS-Control, is defined as

follows: Given an MPS M, does Player 0 have an α-winning strategy in GM?

Theorem 4.5 ([36, 5]) MPS-Control is decidable, and is non-elementary in the

number of phases.

Springer Nature 2021 LATEX template

18 Round- and Context-Bounded Control of Dynamic Pushdown Systems

(s, (ℓ1,
xγ1), . . . , (ℓp−1,

xγp−1), (ℓp,
xγp), (ℓp+1,

xγp+1), . . . , (ℓk,
xγk), p, r)

⇓

((s, ℓp, f1, f2, j, r),

xγp
(ℓp+1, gp+1)xγp+1

...
(ℓk, gk)xγk

,

yγp−1

(ℓp−1, gp−1)
...yγ1

(ℓ1, g1)

, st , ph)

Fig. 3 Encoding of a configuration in GP
B-rb by a configuration in GM

The upper bound was first shown in [36] by adopting the technique from

[39], which reduces pushdown games to games played on finite-state arenas. On

the other hand, [5] proceeds by induction on the number of phases, reducing a

(κ+1)-phase game to a κ-phase game. Similarly, we could try a direct proof of

our Theorem 4.15 by induction on the number of rounds. However, this proof

would be very technical and essentially reduce round-bounded parameter-

ized systems to multi-pushdown systems. Therefore, we proceed by reduction

to multi-pushdown games, providing a modular proof with clearly separated

parts.

We will reduce the problem DPS-Controlrb to MPS-Control. Let P =

(S,L,Γ, sin, ℓin,∆, Fglob, Floc), with S = S0 ⊎ S1, be a DPS and B ≥ 1. We will

build an MPS M such that Player 0 has a winning strategy in GP
B-rb if and

only if Player 0 has a winning strategy in GM. In the following, given s ∈ S,

we let pl(s) ∈ {0, 1} denote the player associated with s, i.e., pl(s) = 0 if and

only if s ∈ S0.

The main idea of the reduction is to represent a configuration of GP
B-rb as

a configuration in GM as depicted in Figure 3.

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 19

Stack contents of process p and of all processes p′ > p are stored in the

first stack of the MPG, while the stack contents of processes p′ < p are stored

in reverse order on the second stack. Component j ∈ {0, 1} of the node’s state

denotes the current player. By default, it is pl(s), that is, Player 0 controls the

node of GM if it simulates a configuration controlled by Player 0 in GP
B-rb, and

vice-versa (we will describe an exception to this rule later). We explain f1 and

f2 further below.

The process p that has moved last is considered as the active process whose

local state ℓp is kept in the state of GM along with s, and whose stack content γp

is accessible on stack 1 (in the correct order). This allows the multi-pushdown

game to simulate transitions of process p, modifying its local state and stack

contents accordingly (see Basic Transitions in the formalization below).

If a player decides to take a transition for some process p′ > p, she will

store ℓp on stack 2 and shift the contents of stack 1 onto stack 2 until she

retrieves the local state ℓp′ of p
′ along with its stack contents γp′ (see Figure 4

and Transitions for Process Change in the formalization of M).

If, on the other hand, the player decides to take a transition for some

process p′ < p, then she will store ℓp on stack 1 and shift the contents of stack

2 onto stack 1 to recover the local state ℓp′ and stack contents γp′ (see Figure 5

and Transitions for Round Change). This may imply two phase switches, one

to shift stack symbols from 2 to 1, and another one to continue simulating the

current process on stack 1. However, 2B − 1 phases are sufficient to simulate

B rounds.

There are a few subtleties: First, at any time, we need to know whether

the current configuration of GM corresponds to a final configuration in GP
B-rb,

which means keeping track of the local states piled in the stacks. To this aim,

the state component (s, ℓp, f1, f2, j, r) of M contains the flags f1, f2 ∈ {✓,✗}

Springer Nature 2021 LATEX template

20 Round- and Context-Bounded Control of Dynamic Pushdown Systems

where, as an invariant, we maintain f1 = ✓ if and only if {ℓp+1, . . . , ℓk} ⊆ Floc

and f2 = ✓ if and only if {ℓ1, . . . , ℓp−1} ⊆ Floc. Thus, Player 0 wins in GM as

soon as she reaches a configuration with global state (s, ℓ, f1, f2, j, r) such that

s ∈ Fglob, ℓ ∈ Floc, and f1 = f2 = ✓. To faithfully maintain the invariant, every

local state ℓq that is pushed on one of the two stacks, comes with an additional

flag gq ∈ {✓,✗}, which is ✓ if and only if all local states strictly below on the

stack are contained in Floc. It is then possible to keep track of a property of

all local states on a given stack simply by inspecting and locally updating the

topmost stack symbols.

Second, one single transition in P is potentially simulated by several tran-

sitions in the multi-pushdown system M that take care of the various stack

shifts necessary to change the active process (see gadgets pictured in Figures 4

and 5). The problem here is that once Player j commits to taking a transition

by entering a gadget, she is not allowed to get stuck. Otherwise, the simula-

tion would end abruptly and Player 1 would win the game (because the play is

finite), while it does not necessarily means that Player 1 wins in P. To ensure

progress, there are transitions from inside a gadget to a state win1−j that is

winning for Player 1− j.

Third, suppose that, in a non-final configuration of GP
B-rb, it is Player 1’s

turn, but no transition is available. Then, Player 1 wins the play. But how

can Player 1 prove in GM that no transition is available in the original game

GP
B-rb? Actually, he will give the control to Player 0, who will eventually get

stuck and, therefore, lose (cf. transitions for Change of Player below).

Let us define the MPS M = (κ,N, S′ = S′
0 ⊎S′

1,Γ
′,∆′, s′in, α) formally. We

let κ = 2B − 1 (the maximal number of phases needed), N = 2 (the number

of stacks), and Γ′ = Γ ⊎ (L× {✓,✗}).

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 21

States. The set of states is S′ = {s′in}⊎Ssim⊎{win0,win1}⊎I where s′in is the

initial state. Moreover, Ssim = S × L× {✓,✗}2 × {0, 1} × {1, . . . , B}. A state

(s, ℓ, f1, f2, j, r) ∈ Ssim stores the global state s and the local state ℓ of the last

process p that executed a transition. The third and fourth component f1 and

f2 tell us whether all processes p′ > p and, respectively, p′ < p of the current

configuration are in a local final state (indicated by ✓). Then, j denotes the

player that is about to play (usually, we have j = pl(s), but as we said there

will be deviations). Finally, r is the current round that is simulated. Recall

that (s, ℓ, f1, f2, j, r) represents a final configuration if and only if s ∈ Fglob,

ℓ ∈ Floc, and f1 = f2 = ✓. Let F ⊆ Ssim be the set of such states. The states

win0 and win1 are self-explanatory. Finally, we use several intermediate states,

contained in I, which will be determined below along with the transitions.

The partition S′ = S′
0⊎S′

1 is defined as follows: First, we have s′in ∈ S′
pl(sin)

.

Concerning states from Ssim, we let (s, ℓ, f1, f2, j, r) ∈ S′
j . The states win0 and

win1 both belong to Player 0 (but this does not really matter). Membership

of intermediate states is defined below. The ranking function α maps win0 to

0, and everything else to 1. In fact, we only need a reachability objective and

use the parity condition to a very limited extent.

Initial Transitions. For all transitions (sin, ℓin)
(op,A)−−−−→ (s′, ℓ′) in P, we

introduce, in M, a transition s′in
(op,1,A)−−−−−−→ (s′, ℓ′,✓,✓, pl(s′), 1).

Final Transitions. For all states (s, ℓ, f1, f2, j, r) ∈ F, we will have a transi-

tion (s, ℓ, f1, f2, j, r)
int−−→ win0 (we omit the stack symbol, as it is meaningless),

which will be the only transition outgoing from (s, ℓ, f1, f2, j, r). Moreover,

win0
int−−→ win0 and win1

int−−→ win1.

Basic Transitions. We now define the transitions of M simulating transitions

of P that do not change the active process. For all (s, ℓ, f1, f2, j, r) ∈ Ssim\F and

Springer Nature 2021 LATEX template

22 Round- and Context-Bounded Control of Dynamic Pushdown Systems

transitions (s, ℓ)
(op,A)−−−−→ (s′, ℓ′) from ∆ (in P), the MPS M has a transition

(s, ℓ, f1, f2, j, r)
(op,1,A)−−−−−−→ (s′, ℓ′, f1, f2, pl(s

′), r).

Change of Player. As we have said, when a player enters a gadget to simulate

a change of process, she is committed to complete the change. If no transition

in the original game is available from a configuration belonging to Player 1, in

the multi-pushdown game, that same player will have no choice but eventually

taking a transition leading to win0, allowing Player 0 to win the game GM.

However, if the blocking configuration was not winning in P, Player 1 should

win the game. To get around this discrepancy, when Player 1 thinks he does

not have an outgoing transition (in P), he can force Player 0 to play instead of

himself. That is, for all (s, ℓ, f1, f2, 1, r) ∈ Ssim \ F, we introduce the transition

(s, ℓ, f1, f2, 1, r)
int−−→ (s, ℓ, f1, f2, 0, r). Note that if Player 1 forced a change of

player when there was actually an outgoing transition in P, then Player 0 wins

immediately after simulating such a transition, as we will describe a bit later.

Transitions for Process Change. We now introduce the transitions needed to

accomplish a process change in the same round. In doing so, we will introduce

the sets of intermediate states I?,INP,INR.

Within the same round

For all (s, ℓ, f1, f2, j, r) ∈ Ssim \ F, we introduce, in M, the gadget given in

Figure 4. As we move to another process, the current local state ℓ is pushed on

stack 2, along with flag f2, which tells us whether, henceforth, all states on stack

2 below the new stack symbol are local accepting states. Afterwards, the value

of f2 kept in the global state has to be updated, depending on whether ℓ ∈ Floc

or not. Actually, maintaining the value of f2 is done in terms of additional (but

finitely many) states. For the sake of readability, however, we rather consider

that f2 is a variable and use upd(f2, ℓ) to update its value. We continue shifting

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 23

s ℓ
f1 f2
j r

np

npA A ∈ Γ

npℓ
′′

ℓ′′ ∈ L

?(
s ℓ̂
f ′1 f2

)
s′ ℓ′

f ′1 f2
pl(s′) r

for all transitions

(s, ℓ̂)
(op,A′)−−−−−→ (s′, ℓ′)
in ∆

push 2 (ℓ, f2) ;
upd(f2, ℓ)

pop 1 A push 2 A

pop 1 (ℓ̂, f ′1)(
ℓ̂ ∈ L

f ′1 ∈ {✓,✗}

)

zero 1

ℓ̂ := ℓin
f ′1 := ✓

op 1 A′

pop 1 (ℓ′′,)
push 2 (ℓ′′, f2) ;
upd(f2, ℓ

′′)

win1−j

Fig. 4 Change from process p to some process p′ > p (staying in the same round). All
intermediate states belong to Player j; from every intermediate state, there is an outgoing
internal transition to win1−j . Moreover, upd(f2, ℓ̄) stands for the update rule If (f2 = ✓ ∧
ℓ̄ ∈ Floc) Then f2 := ✓ Else f2 := ✗.

the contents of stack 1 onto stack 2 (updating f2 when retrieving a local state).

Now, there are two possibilities. We may eventually pop a new current local

state ℓ̂ and then simulate the transition of the corresponding existing process.

Or, when there are no more symbols on stack 1, we create a new process.

Formally, we define the set INP of intermediate states for a process change.

For every A ∈ Γ, s ∈ S, ℓ ∈ L, f1, f2, g ∈ {✓,✗}, j ∈ {0, 1}, and r ≤ B, we

include np(s, f1, f2, j, r), np
A(s, f1, f2, j, r), and npℓ(s, f1, f2, j, r) in INP, and we

add the transitions

1. (s, ℓ, f1, f2, j, r)
push 2 (ℓ,f2)−−−−−−−−→ np(s, f1, upd(f2, ℓ), j, r),

2. np(s, f1, f2, j, r)
pop 1 A−−−−−→ npA(s, f1, f2, j, r),

3. npA(s, f1, f2, j, r)
push 2 A−−−−−−→ np(s, f1, f2, j, r),

4. np(s, f1, f2, j, r)
pop 1 (ℓ,g)−−−−−−−→ npℓ(s, g, f2, j, r),

5. npℓ(s, f1, f2, j, r)
push 2 (ℓ,f2)−−−−−−−−→ np(s, f1, upd(f2, ℓ), j, r),

6. np(s, f1, f2, j, r)
pop 1 (ℓ,g)−−−−−−−→?(s, ℓ, g, f2, j, r), and

Springer Nature 2021 LATEX template

24 Round- and Context-Bounded Control of Dynamic Pushdown Systems

s ℓ
f1 f2
j r

nr

nrA A ∈ Γ

nrℓ
′′

ℓ′′ ∈ L

?(
s ℓ̂
f1 f ′2

)
s′ ℓ′

f1 f ′2
pl(s′) r + 1

for all transitions

(s, ℓ̂)
(op,A′)−−−−−→ (s′, ℓ′)
in ∆

push 1 (ℓ, f1) ;
upd(f1, ℓ)

pop 2 A push 1 A

pop 2 (ℓ̂, f ′2)(
ℓ̂ ∈ L

f ′2 ∈ {✓,✗}

)
op 1 A′

pop 2 (ℓ′′,)
push 1 (ℓ′′, f1) ;
upd(f1, ℓ

′′)

win1−j

Fig. 5 Going from a process p to some process p′ < p (involving a round change). All
intermediate states belong to Player j; from every intermediate state, there is an outgoing
internal transition to win1−j . Moreover, upd(f1, ℓ̄) stands for the update rule If (f1 = ✓ ∧
ℓ̄ ∈ Floc) Then f1 := ✓ Else f1 := ✗.

7. np(s, f1, f2, j, r)
zero 1−−−−→?(s, ℓin,✓, f2, j, r)

where upd(f2, ℓ) = ✓ iff f2 = ✓ ∧ ℓ ∈ Floc. States of the form ?(s, ℓ, g, f2, j, r)

are used to exit this gadget, and will be defined shortly after.

In the next round

For all (s, ℓ, f1, f2, j, r) ∈ Ssim \ F such that r < B, we introduce, in M, the

gadget given in Figure 5. It is similar to the previous gadget. However, we now

shift symbols from stack 2 onto stack 1 and have to update f1 accordingly.

Formally, let INR the set of intermediate states for a round change. For

every A ∈ Γ, s ∈ S, ℓ ∈ L, f1, f2, g ∈ {✓,✗}, j ∈ {0, 1}, and r ≤ B, we include

nr(s, f1, f2, j, r), nr
A(s, f1, f2, j, r), and nrℓ(s, f1, f2, j, r) in INR, together with

the following transitions:

1. (s, ℓ, f1, f2, j, r)
push 1 (ℓ,f1)−−−−−−−−→ nr(s, upd(f1, ℓ), f2, j, r),

2. nr(s, f1, f2, j, r)
pop 2 A−−−−−→ nrA(s, f1, f2, j, r),

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 25

3. nrA(s, f1, f2, j, r)
push 1 A−−−−−−→ nr(s, f1, f2, j, r),

4. nr(s, f1, f2, j, r)
pop 2 (ℓ,g)−−−−−−−→ nrℓ(s, f1, g, j, r),

5. nrℓ(s, f1, f2, j, r)
push 1 (ℓ,f1)−−−−−−−−→ nr(s, upd(f1, ℓ), f2, j, r), and

6. nr(s, f1, f2, j, r)
pop 2 (ℓ,g)−−−−−−−→?(s, ℓ, f1, g, j, r + 1).

To simplify the proof of correctness, we assume that, after a transition of type

6., the first stack becomes the active stack, forcing a phase change so that

the phase number is always incremented by 2 after going in a round change

gadget. This can be done for instance by using intermediate states and doing

a dummy push and pop transition on stack 1.

Exiting the gadgets

First, for all s ∈ S, ℓ ∈ L, f1, f2 ∈ {✓,✗}, j ∈ {0, 1}, and r ≤ B, we have

?(s, ℓ, f1, f2, j, r) ∈ I?. For all such states, there is a transition

1. ?(s, ℓ, f1, f2, j, r)
int−−→ win1−j .

We also add

2. (s, ℓ, f1, f2, j, r)
int−−→ win1−j for all (s, ℓ, f1, f2, j, r) ∈ Ssim \ F.

These two transitions force a player to lose if there is no other transition

available.

Moreover, for all (s, ℓ)
(op,A)−−−−→ (s′, ℓ′) in ∆, there is

3. ?(s, ℓ, f1, f2, j, r)
op 1 A−−−−−→ (s′, ℓ′, f1, f2, pl(s

′), r)

which completes the simulation of a transition from P.

Finally, when j ̸= pl(s), for all transitions (s, ℓ)
(op,A)−−−−→ (s′, ℓ′) in ∆, there

are two additional transitions

4. ?(s, ℓ, f1, f2, j, r)
(op,A)−−−−→ winj , and

5. (s, ℓ, f1, f2, j, r)
(op,A)−−−−→ winj .

These last transitions allow Player 0 to win immediately in the case of a change

of player, if Player 1 forced the change despite having an outgoing transition

Springer Nature 2021 LATEX template

26 Round- and Context-Bounded Control of Dynamic Pushdown Systems

in P. Otherwise, Player 0 will have no other choice but to take the transition

leading to win1.

We can now state correctness of our construction.

Lemma 4.6 Player 0 has a winning strategy in GM if and only if Player 0 has a

winning strategy in GP
B-rb.

The rest of this section is dedicated to the proof of this lemma.

Let JPKB-rb = (V B , EB , vBin) and JMK = (V,E, vin). By construction, every

play of GP
B-rb is closely mirrored by a play of the game GM we built (and vice-

versa). Despite having more intermediate states in the gadgets, the possible

plays in GM are restricted in a way such that basically the only thing a player

can choose is a process and a transition to be executed by that process, which

corresponds to what a player can do in GP
B-rb. Let us formalize this intuition

by giving a mapping π between plays of GP
B-rb and plays of GM.

In the base game GP
B-rb, for all configurations c, c′, round r and pro-

cesses p′ < p, there is a transition (c, p, r) −→ (c′, p′, r + 1) iff there is a

transition (c, p′, r + 1) −→ (c′, p′, r + 1). Similarly, for all p′ > p, there is a

transition (c, p, r) −→ (c′, p′, r) iff there is a transition (c, p′, r) −→ (c′, p′, r).

In GM, a transition from“(c, p, r)” to“(c′, p′, r + 1)” will be simulated by a

sequence of transitions corresponding to a “dummy transition” from “(c, p, r)”

to “(c, p′, r + 1)” followed by an actual transition to “(c′, p′, r + 1)”. This will

be similar for p′ > p.

We first define π on nodes of GP
B-rb. Let c = (s, (ℓ1, γ1) . . . (ℓk, γk)) be a

configuration, and p ∈ {1, . . . , k} a process. We define the following flags

g<(c, p) = ✓ iff ℓ1, . . . , ℓp−1 ∈ Floc

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 27

g>(c, p) = ✓ iff ℓp+1, . . . , ℓk ∈ Floc

and the corresponding two stacks of the multi-pushdown game

τ1(c, p) = γp·(ℓp+1, g
>(c, p+ 1)) · γp+1 · · · (ℓk, g>(c, k)) · γk

τ2(c, p) = γ̃p−1 · (ℓp−1, g
<(c, p− 1)) · · · γ̃1 · (ℓ1, g<(c, 1))

where γ̃ is the mirror word of γ.

Given a round r, we then let

π(c, p, r) = ((s, ℓp, g
>(c, p), g<(c, p), pl(s), r), τ1(c, p), τ2(c, p), 1, 2r − 1).

Now, let (c′, p′, r′) be a successor of (c, p, r) in GP
B-rb. If p

′ ̸= p, π(c′, p′, r′)

will not be a successor of π(c, p, r) in GM, because of the mechanism of pro-

cess or round change that will introduce several intermediate configurations.

We denote by nextp
′

p (π(c, p, r)) the part of the play between π(c, p, r) and

π(c′, p′, r′) in GM. Its exact form depends on whether it involves a round

change or not, and its length depends on the number of processes between p

and p′. To define it precisely, we introduce loopnpi and loopnri that describe the

partial runs that occur inside the process change gadgets (staying in the same

round and involving a round change respectively).

We define recursively the function loopnpi : INP × (Γ′∗)2 × {1} × N → V ∗,

for i ∈ N∗ that gives the portion of the run executed in GM when we transfer

stack contents of i processes from stack 1 to stack 2. Let np(s, f1, f2, j, r) ∈ INP,

A ∈ Γ, ℓ ∈ L, g ∈ {✓,✗}, and γ1, γ2 ∈ Γ′∗.

Then,

Springer Nature 2021 LATEX template

28 Round- and Context-Bounded Control of Dynamic Pushdown Systems

loopnpi (np(s, f1, f2, j, r), A · γ1, γ2, 1, ph) =

(npA(s, f1, f2, j, r), γ1, γ2, 1, ph) · (np(s, f1, f2, j, r), γ1, A · γ2, 1, ph)

· loopnpi (np(s, f1, f2, j, r), γ1, A · γ2, 1, ph) (1)

describes the transfer of the first element of the stack from stack 1 to stack

2.

loopnpi (np(s, f1, f2, j, r), (ℓ, g) · γ1, γ2, 1, ph) =

(npℓ(s, g, f2, j, r)), γ1, γ2, 1, ph) · (np(s, g, upd(f2, ℓ), j, r), γ1, (ℓ, f2) · γ2, 1, ph)

· loopnpi−1(np(s, g, upd(f2, ℓ), j, r), γ1, (ℓ, f2) · γ2, 1, ph) if i > 1, (2)

describes the transfer of the next local state to stack 2 when i > 1, i.e. when

the process we want to simulate is not the next one.

loopnp1 (np(s, f1, f2, j, r), (ℓ, g) · γ1, γ2, 1, ph) = (?(s, ℓ, g, f2, j, r), γ1, γ2, 1, ph)

(3)

describes the fact that the transfer of contents between stack 1 and stack

2 is finished and that we have reached the configuration corresponding to

“(c, p′, r)”.

loopnp1 (np(s, f1, f2, j, r), ε, γ2, 1, ph) = (?(s, ℓin,✓, f2, j, r), ε, γ2, 1, ph) (4)

describes the case where a new process is created.

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 29

If i is smaller than the number of elements from L × {✓,✗} in γ1, it is

easy to see that loopnpi (np(s, f1, f2, j, r), γ1, γ2, 1, ph) is well defined, since the

number of elements of γ1 strictly decreases at each iteration, and since the

index i decreases at each popping of an element of L× {✓,✗}.

Similarly, we define recursively loopnri : INP × (Γ′∗)2 × {2} × N → V ∗, for

i ∈ N∗ to describe the portion of the play executed in GM when we transfer

stack contents of i processes from stack 2 to stack 1, simulating a round change.

Let nr(s, f1, f2, j, r) ∈ INP, A ∈ Γ, ℓ ∈ L, g ∈ {✓,✗}, γ1, γ2 ∈ Γ′∗. Then,

loopnri (nr(s, f1, f2, j, r), γ1, A · γ2, st , ph) =

(nrA(s, f1, f2, j, r), γ1, γ2, 2, 2r) · (nr(s, f1, f2, j, r), A · γ1, γ2, 2, 2r)

· loopnri (nr(s, f1, f2, j, r), A · γ1, γ2, 2, 2r)

(5)

with either st = 1 and ph = 2r − 1 or st = 2 and ph = 2r.

loopnri (nr(s, f1, f2, j, r), γ1, (ℓ, g) · γ2, st , ph) =

(nrℓ(s, f1, g, j, r)), γ1, γ2, 2, 2r) · (nr(s, upd(f1, ℓ), g, j, r), (ℓ, f1) · γ1, γ2, 2, 2r)

· loopnri−1(nr(s, upd(f1, ℓ), g, j, r), (ℓ, f1) · γ1, γ2, 2, 2r) if i > 1

(6)

with either st = 1 and ph = 2r − 1 or st = 2 and ph = 2r.

Springer Nature 2021 LATEX template

30 Round- and Context-Bounded Control of Dynamic Pushdown Systems

loopnr1 (nr(s, f1, f2, j, r), γ1, (ℓ, g) · γ2, st , ph) =

(?(s, ℓ, f1, g, j, r + 1), γ1, γ2, 1, 2r + 1)1 (7)

with either st = 1 and ph = 2r − 1 or st = 2 and ph = 2r.

Again, if i is smaller than the number of elements from L × {✓,✗} in γ2,

one can see that loopnri (nr(s, f1, f2, j, r), γ1, γ2,

2, 2r + 1) is well defined as the number of elements of γ2 strictly decreases at

each iteration and the index i decreases when an element from L × {✓,✗} is

popped.

We first observe the following property:

Lemma 4.7 For all node u = (np(s, f1, f2, j, r), A1 · · ·An · γ1, γ2, 1, 2r − 1), with

A1 · · ·An ∈ Γ∗, γ1 ∈ ((L×{✓, ✗}).Γ∗)∗ and γ2 ∈ Γ′∗, and for all i ∈ N∗, there exists

ρ such that u · loopnpi (u) = u · ρ · loopnpi (v), where u · ρ is a partial play ending in v,

with v = (np(s, f1, f2, j, r), γ1, An · · ·A1 · γ2, 1, 2r − 1).

For all u = (nr(s, f1, f2, j, r), γ1, A1 · · ·An·γ2, st , ph), with γ1 ∈ (Γ′)∗, A1 · · ·An ∈

Γ∗, and γ2 ∈ ((L × {✓, ✗}).Γ∗)∗, and for all i ∈ N∗, there exists ρ such that u ·

loopnri (u) = u · ρ · loopnri (v), where u · ρ is a partial play ending in v, with v =

(nr(s, f1, f2, j, r), An · · ·A1 · γ1, γ2, 2, 2r).

Proof We prove the first part of the lemma. This can be easily shown by induction

on the size of A1 . . . An. If n = 0, it is trivial as it means that v = u and ρ = ε. If

n > 0, then by definition of loopnpi ,

loopnpi (u) =(npA1(s, f1, f2, j, r), A2 · · ·An · γ1, γ2, 1, 2r − 1)

· (np(s, f1, f2, j, r), A2 · · ·An · γ1, A1 · γ2, 1, 2r − 1)

1Normally, the last two elements of the tuple (active stack and current phase) should be 2 and
2r. But as mentioned above, we assume that after the round change, the active stack is again stack
1, which can be achieved by pushing some element on stack 1 and popping it back immediately.
We omit the necessary intermediate states to alleviate notations.

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 31

· loopnpi (np(s, f1, f2, j, r), A2 · · ·An · γ1, A1 · γ2, 1, 2r − 1)

which by induction hypothesis can be rewritten as

loopnpi (u) =(npA1(s, f1, f2, j, r), A2 · · ·An · γ1, γ2, 1, 2r − 1)

· (np(s, f1, f2, j, r), A2 · · ·An · γ1, A1 · γ2, 1, 2r − 1)

· ρ′ · loopnpi (v)

with (np(s, f1, f2, j, r), A2 · · ·An · γ1, A1 · γ2, 1, 2r − 1) · ρ′ a partial play ending in v.

If we let

ρ = (npA1(s, f1, f2, j, r), A2 · · ·An · γ1, γ2, 1, 2r − 1)

·(np(s, f1, f2, j, r), A2 · · ·An · γ1, A1 · γ2, 1, 2r − 1) · ρ′

we have that u · ρ is a valid run of GM (because of transitions of type 2 and 3 given

in the definition of INP) that ends in node v, so the property is proved.

Then we can define nextp
′

p as follows:

nextp
′

p ((s, ℓ, f1, f2, j, r), γ1, γ2, 1, ph)) =

ε if p = p′

(np(s, f1, upd(f2, ℓ), j, r), γ1, (ℓ, f2) · γ2, 1, ph)·

loopnpp′−p(np(s, f1, upd(f2, ℓ), j, r), γ1, (ℓ, f2) · γ2, 1, ph) if p < p′

(nr(s, upd(f1, ℓ), f2, j, r), (ℓ, f1) · γ1, γ2, 2, ph + 1)2·

loopnrp−p′(nr(s, upd(f1, ℓ), f2, j, r), (ℓ, f1) · γ1, γ2, 2, ph + 1) if p′ < p

We are now ready to extend the definition of π on plays. We define

π(((sin), 0, 1) = (s′in, ε, ε, 0, 1)

2Similarly and for simplicity, here we assume that the second stack becomes active.

Springer Nature 2021 LATEX template

32 Round- and Context-Bounded Control of Dynamic Pushdown Systems

and for all transitions (sin, ℓin)
op A−−−−→ (s, ℓ) in ∆, we have

π(((sin), 0, 1) · ((s, (ℓ, γ1)), 1, 1)) = (s′in, ε, ε, 0, 1) · ((s, ℓ,✓,✓, pl(s), 1), γ1, ε, 1, 1)

Let ρ be a finite play of GP
B-rb ending in u = (c, p, r), with p ̸= 0, and

u′ = (c′, p′, r′) a successor of u.

π(ρ · u′) =

π(ρ) if ρ is winning, else

π(ρ) · nextp′p (π(u)) · π(u′) ·Wω
0 if u′ ∈ F , else

π(ρ) · nextp′p (π(u)) · π(u′) · Ch0(u′) ·Wω
1 if u′ /∈ F and has no

successor, else

π(ρ) · nextp′p (π(u)) · π(u′).

where Ch0(u
′) =

((s, ℓ, f1, f2, 0, r), γ1, γ2, 1, ph) if pl(s) = 1 and

π(u′) = ((s, ℓ, f1, f2, 1, r),

γ1, γ2, 1, ph)

ε otherwise.

and Wi = (wini, τ1(c
′, p′), τ2(c

′, p′), 1, 2r′ − 1) for i ∈ {0, 1}.

We extend the mapping to infinite plays in the following way: if ρ is an

infinite play, we let π(ρ) = limρ′⊑ρ π(ρ
′).

The correctness of this mapping relies on the fact that nextp
′

p (π(u)) · π(u′)

is indeed a partial play of GM. This is ensured by the following lemma:

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 33

Lemma 4.8 Given a configuration c = (s, (ℓ1, γ1) . . . (ℓk, γk)) and two processes

p ∈ {1, . . . , k}, p′ ∈ {1, . . . , k + 1} such that p ̸= p′, nextp
′

p (π(c, p, r)) and

nextp
′

p (Ch0(c, p, r)) are partial plays of GM ending respectively in the state

(?(s, ℓp′ , g
>(c, p′), g<(c, p′), pl(s), r′), τ1(c, p

′), τ2(c, p
′), 1, 2r′ − 1).

and

(?(s, ℓp′ , g
>(c, p′), g<(c, p′), 0, r′), τ1(c, p

′), τ2(c, p
′), 1, 2r′ − 1).

Moreover, if p < p′, then r′ = r, if p > p′ then r′ = r + 1, and the entire portion of

the play belongs to the same player.

Proof We show the proof in the case p < p′, and of π(c, p, r), the other cases being

extremely similar.

Let c, p, p′, r defined as stated in the lemma with p < p′ ≤ k + 1, and

let π(c, p, r) = ((s, ℓp, f1, f2, pl(s), r), γ1, γ2, 1, 2r − 1). By definition, we have that

f1 = g>(c, p), f2 = g<(c, p), γ1 = τ1(c, p), and γ2 = τ2(c, p). If we let

u = (np(s, f1, upd(f2, ℓp), j, r), γ1, (ℓp, f2) · γ2, 1, 2r − 1) then nextp
′

p (π(c, p, r)) =

u · loopnpp′−p(u).

We show that for all 0 ≤ i < p′ − p, if we let

ui = (np(s, g>(c, p+ i), g<(c, p+ i+ 1), j, r),

τ1(c, p+ i), (ℓp+i, g
<(c, p+ i)) · τ2(c, p+ i), 1, 2r − 1),

then ui · loopnpp′−p−i(ui) is a valid partial play that ends in node

(?(s, ℓp′ , g
>(c, p′), g<(c, p′), pl(s), r), τ1(c, p

′), τ2(c, p
′), 1, 2r − 1).

Note that the node u defined above is u0, so proving that this property holds for

i = 0 proves the Lemma.

Suppose that i = p′ − p − 1, i.e p + i is the process immediately preceding p′.

There are two different cases to study depending on whether p′ = k + 1 or not.

Springer Nature 2021 LATEX template

34 Round- and Context-Bounded Control of Dynamic Pushdown Systems

1) If p′ = k+1, then p+i = k is the last process of c and therefore τ1(c, p+i) = γk.

In that case, ui = (np(s, g>(c, k), g<(c, k+1), j, r), γk, (ℓk, g
<(c, k))·τ2(c, k), 1, 2r−1).

Thus, from Lemma 4.7, ui · loopnp1 (ui) = ui · ρ · loopnp1 (vi), with vi =

(np(s, g>(c, k), g<(c, k + 1), j, r), ε, γ̃k · (ℓk, g<(c, k)) · τ2(c, k), 1, 2r − 1), and ui · ρ

a partial play ending in vi. By definition, τ2(c, k + 1) = γ̃k · (ℓk, g<(c, k)) · τ2(c, k),

then vi = (np(s, g>(c, k), g<(c, k+1), j, r), ε, τ2(c, k+1), 1, 2r−1), and loopnp1 (vi) =

(?(s, ℓin,✓, g
<(c, k + 1), j, r), ε, τ2(c, k + 1), 1, 2r − 1), by definition (4) describing

loopnp1 . Hence, ui · loopnp1 (ui) = ui · ρ · loopnp1 (vi) is indeed a partial play, because

transition 7 from states from INP allows to go from vi to loopnp1 (vi).

Moreover,

� ℓin = ℓk+1 as every new process starts in state ℓin,

� g>(c, k+1) = ✓ since k+1 is a new process so there are no processes above it,

� ε = τ1(c, k + 1) as every new process starts with an empty stack.

Then, ui · loopnp1 (ui) ends indeed in

(?(s, ℓk+1, g
>(c, k + 1), g<(c, k + 1), pl(s), r), τ1(c, k + 1), τ2(c, k + 1), 1, 2r − 1).

2) If p′ < k + 1, then τ1(c, p + i) = τ1(c, p
′ − 1) = γp′−1 · (ℓp′ , g>(c, p′)) ·

τ1(c, p
′). In that case, ui = (np(s, g>(c, p′ − 1), g<(c, p′), j, r), γp′−1 · (ℓp′ , g>(c, p′)) ·

τ1(c, p
′), (ℓp′−1, g

<(c, p′ − 1)) · τ2(c, p′ − 1), 1, 2r − 1).

By Lemma 4.7, ui · loopnp1 (ui) = ui ·ρ · loopnp1 (vi), with ui ·ρ a partial play ending

in vi and

vi = (np(s, g>(c, p′ − 1), g<(c, p′), j, r), (ℓp′ , g
>(c, p′)) · τ1(c, p′),

γ̃p′−1 · (ℓp′−1, g
<(c, p′ − 1)) · τ2(c, p′ − 1), 1, 2r − 1)

= (np(s, g>(c, p′ − 1), g<(c, p′), j, r), (ℓp′ , g
>(c, p′)) · τ1(c, p′),

τ2(c, p
′), 1, 2r − 1).

By definition,

loopnp1 (vi) = (?(s, ℓp′ , g
>(c, p′), g<(c, p′), j, r), τ1(c, p

′), τ2(c, p
′), 1, 2r − 1).

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 35

and

ui · loopnp1 (ui) is a partial play as announced.

Now suppose the property holds for some 0 < i ≤ p − p′ − 1, and show that it

remains true for i−1. Necessarily, since there is at least one process between p+(i−1)

and p′, τ1(c, p+ (i− 1)) = γp+(i−1) · (ℓp+i, g>(c, p+ i)) · τ1(c, p+ i). Then

ui−1 · loopnp
p′−p−(i−1)

(ui−1) = ui−1 · ρ · loopnp
p′−p−(i−1)

(vi−1)

with ui−1 · ρ a partial play ending in

vi−1 = (np(s, g>(c, p+ i− 1), g<(c, p+ i), j, r), (ℓp+i, g
>(c, p+ i)) · τ1(c, p+ i),

τ2(c, p+ i), 1, 2r − 1).

Moreover, by definition,

loopnp
p′−p−(i−1)

(vi−1) =

(npℓp+i(s, g>(c, p+ i), g<(c, p+ i), j, r)), τ1(c, p+ i), τ2(c, p+ i), 1, 2r − 1) · ui

· loopnpp′−p−i(ui)

Using the induction hypothesis and the definitions of the transitions, we obtain that

ui−1 · loopnp
p′−p−(i−1)

(ui−1) is indeed a partial play ending in

(?(s, ℓp′ , g
>(c, p′), g<(c, p′), pl(s), r), τ1(c, p

′), τ2(c, p
′), 1, 2r − 1).

The proof for loopnr is almost symmetrical and so it will be omitted.

We are now ready to establish that:

Lemma 4.9 If ρ is a play of GP
B-rb, then π(ρ) is a play of GM.

Proof We show it by induction on the size of ρ. If ρ = ((sin), 0, 1), then π(ρ) =

(s′in, ε, ε, 1, 1) which is a play of GM. If ρ = ((sin), 0, 1) · ((s, (ℓ, γ1)), 1, 1), then

π(((sin), 0, 1) ·((s, (ℓ, γ1)), 1, 1)) = (s′in, ε, ε, 0, 1) ·((s, ℓ,✓,✓, pl(s), 1), γ1, ε, 1, 1) which

is also a play of GM. Assume now that ρ is a finite play ending in u = (c, p, r), with

Springer Nature 2021 LATEX template

36 Round- and Context-Bounded Control of Dynamic Pushdown Systems

c = (s, (ℓ1, γ1) . . . (ℓk, γk)) and suppose that π(ρ) is a play of GM. Let u′ = (c′, p′, r′)

with c = (s′, (ℓ′1, γ
′
1) . . . (ℓ

′
k, γ

′
k)) be such that ρ · u′ is a play of GP

B-rb, which means

that (c, c′) ∈ Ep′ . We have then (s, ℓp)
(op,A)−−−−−→ (s′, ℓ′p), and ℓi = ℓ′i and γi = γ′i for

all i ̸= p′.

If u ∈ F , then π(ρ · u′) = π(ρ) and by induction hypothesis, π(ρ · u′) is a play

of GM. Otherwise, π(ρ · u′) starts with π(ρ) · nextp
′

p (π(u)) · π(u′) and π(ρ) ends in

π(u). Let

π(u) = ((s, ℓp, g
>(c, p), g<(c, p), pl(s), r), τ1(c, p), τ2(c, p), 1, 2r − 1)

and

π(u′) = ((s′, ℓ′p′ , g
>(c′, p′), g<(c′, p′), pl(s′), r′), τ1(c

′, p′), τ2(c
′, p′), 1, 2r′ − 1).

There are three cases to consider: either p = p′, p < p′, or p > p′.

� If p = p′, by definition, nextp
′

p (π(u)) = ε. Moreover, (s, ℓp)
(op,A)−−−−−→ (s′, ℓ′p),

hence we have a transition

(s, ℓp, g
>(c, p), g<(c, p), pl(s), r)

(op,1,A)−−−−−−→ (s′, ℓ′p, g
>(c, p), g<(c, p), pl(s′), r).

Observe that in that case g>(c′, p′) = g>(c, p) and g<(c′, p′) = g<(c, p), hence

π(u′) is indeed a successor of π(u) in GM.

� If p < p′, then r = r′ and nextp
′

p (π(u)) starts with

(np(s, g>(c, p), upd(g<(c, p), ℓp), pl(s), r), τ1(c, p), (ℓp, g
<(c, p))·τ2(c, p), 1, 2r−1)

which is a successor of π(u). By Lemma 4.8, nextp
′

p (π(u)) is a play of GM that

ends in

v = (?(s, ℓp′ , g
>(c, p′), g<(c, p′), pl(s), r), τ1(c, p

′), τ2(c, p
′), 1, 2r − 1).

Observe that by definition, ℓ′i = ℓi for all i ̸= p′, so g>(c, p′) = g>(c′, p′)

and g<(c, p′) = g<(c′, p′), and by definition τ2(c, p
′) = τ2(c

′, p′). Then π(u′) is

indeed a successor of v.

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 37

� If p > p′, then r′ = r + 1 and nextp
′

p (π(u)) starts with

(nr(s, upd(g>(c, p), ℓp), g
<(c, p), pl(s), r), (ℓp, g

>(c, p)) · τ1(c, p), τ2(c, p), 2, 2r)

which is also a successor of π(u). Again by Lemma 4.8, nextp
′

p (π(u)) is a play

of GM that ends in

v = (?(s, ℓp′ , g
>(c, p′), g<(c, p′), pl(s), r + 1), τ1(c, p

′), τ2(c, p
′), 1, 2r + 1).

Again, one can check that π(u′) is a successor of v.

In any case, π(ρ) ·nextp
′

p (π(u)) ·π(u′) is a play of GM. Then there are two special

cases to consider:

� If now u′ ∈ F , then by construction, g>(c′, p′) = g<(c′, p′) = ✓, s′ ∈

Fglob, ℓp′ ∈ Floc, hence (s′, ℓ′p′ , g
>(c′, p′), g<(c′, p′), pl(s′), r′) ∈ F and thus

(win0, τ1(c
′, p′), τ2(c

′, p′), 1, 2r′−1) is a successor of π(u′) and π(ρ ·u′) is a play

of GM.

� Otherwise, if u′ has no successor, π(ρ) · nextp
′

p (π(u)) · π(u′) · Ch0 is a play

that ends in a state v ∈ V ′
0 \ F , hence (win1, τ1(c

′, p′), τ2(c
′, p′), 1, 2r′ − 1) is a

successor of v and π(ρ · u′) is a play of GM.

So for any finite play ρ in GP
B-rb, π(ρ) is a play of GM. If ρ is an infinite play,

then π(ρ) is also a play of GM, otherwise we can find a finite prefix ρ′ of ρ such that

π(ρ′) is not a play of GM.

We describe now how to transform a play of GM into a play of GP
B-rb,

through the mapping π̂. We let Vsim = {(sM, γ1, γ2, st , ph) | sM ∈ Ssim},

V? = {(sM, γ1, γ2, st , ph) | sM ∈ I?} and Vwin = Vwin0 ∪ Vwin1, with Vwini =

{(wini, γ1, γ2, st , ph)}.

Let v = (sM, γ1, γ2, 1, ph) ∈ Vsim ∪ V? be a node of GM, with

sM = (s, ℓ, f1, f2, j, r) or sM =?(s, ℓ, f1, f2, j, r)

Springer Nature 2021 LATEX template

38 Round- and Context-Bounded Control of Dynamic Pushdown Systems

γ1 = γp · (ℓp+1, gp+1) · γp+1 · · · (ℓk, gk) · γk

γ2 = γ̃p−1 · (ℓp−1, gp−1) · · · γ̃1 · (ℓ1, g1)

for some ℓ1, . . . , ℓk ∈ L, γ1, . . . , γk ∈ Γ∗, and g1, . . . , gk ∈ {✓,✗}, where γ̃

denotes the mirror word of γ.

We let size(γ1) = k − p and size(γ2) = p − 1 be the number of elements

from L× {✓,✗} in each stack.

We say that v is well-defined if the following conditions are satisfied:

1. For all 1 ≤ i ≤ p− 1, gi = ✓ if and only if for all 1 ≤ p′ < i, ℓp′ ∈ Floc,

2. For all p+ 1 ≤ i ≤ k, gi = ✓ if and only if for all i < p′ ≤ k, ℓp′ ∈ Floc,

3. f1 = ✓ if and only if for all p < p′ ≤ k, ℓp′ ∈ Floc,

4. f2 = ✓ if and only if for all 1 ≤ p′ < p, ℓp′ ∈ Floc,

5. if ℓ = ℓin, then γ1 = ε,

6. ph = 2r − 1.

In that case, we define

π̂(v) = ((s, (ℓ1, γ1) . . . (ℓk, γk)), p, r).

Note that p = size(γ2) + 1.

If v additionnally meets the following requirement :

7. j = pl(s)

we say that v is GP
B-rb-real.

Remark 4.10 It is easy to see that for any GP
B-rb-real node v ∈ Vsim, then π(π̂(v)) = v,

and for any node u ∈ V B in GP
B-rb, π̂(π(u)) = u. Moreover, v ∈ F if and only if

π̂(v) ∈ F .

We also let

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 39

π̂((s′in, ε, ε, 0, 1)) = ((sin), 0, 1)

and, for all plays ρ̂ and nodes v in GM,

π̂(ρ̂ · v) =

π̂(ρ̂) · π̂(v) if v is a GP

B-rb-real node in Vsim,

π̂(ρ̂) otherwise.

To show that the mapping π̂ builds a correct play of GM, we first show

that a play between a node u ∈ Vsim and a node in V? is necessarily of the

form nextpp′(u).

Lemma 4.11 Let ρ̂ = ρ̂1 ·u·ρ̂2 ·v be a finite play of GM such that u is the last state in

Vsim and v ∈ V?. Then, there exists two distinct p and p′ such that ρ̂2 ·v = nextp
′

p (u).

Moreover, if u is well-defined (resp. GP
B-rb-real) and such that π̂(u) = (c, p, r), so is

v and π̂(v) = (c, p′, r′) with r′ = r if p < p′ and r′ = r + 1 if p > p′.

Proof Let u = ((s, ℓ, f1, f2, j, r), γ1, γ2, 1, ph) ∈ Vsim, and p = size(γ2) + 1, and let

v = (?(sv, ℓv, fv1 , f
v
2 , j

v, rv), γv1 , γ
v
2 , st , ph

v). By the transition relation of GM, in order

to reach V? one must go through states either in INP or INR. Since by hypothesis

ρ̂2 contains no node in Vsim, all of ρ̂2 must occur in either INP or INR.

Suppose the former is true (the other case will, again, be extremely similar).

Necessarily, the first node in ρ̂2 is w = (np(s, f1, upd(f2, ℓ), j, r), γ1, (ℓ, f2) · γ2, 1, ph),

as this is the only transition from u that goes in INP (a transition of type 1 in the

description of INP).

Let us show that for all (not strict) suffixes ρ̂′ of ρ̂2 such that ρ̂′ starts in u′ =

(np(s, f′1, f
′
2, j, r), γ1

′, γ2
′, 1, ph) for some f′1, f

′
2, γ1

′, γ2
′ that meet the requirements 1-6

of the definition of well-defined, (i) there exists a k ≥ 1 such that ρ̂′·v = u′·loopnpk (u′),

(ii) v is well-defined, and (iii) γ̃′2 · γ′1 = γ̃v2 · γ, with γ = (ℓv, fv1) · γv1 , if ℓ
v ̸= ℓin, and

γ = ε otherwise. Suppose that ρ̂′ = u′, i.e. the next node is v. Then either a transition

Springer Nature 2021 LATEX template

40 Round- and Context-Bounded Control of Dynamic Pushdown Systems

of type 6 or 7 has been used to go from u′ to v. However, the kind of transition

depends only on γ1
′. If γ1

′ = (ℓ, g) ·γ1′′ then only a transition of type 6 can be used,

and ρ̂′ ·v = u′ · loopnp1 (u′). Moreover, ℓv = ℓ, fv1 = g, fv2 = f′2, γ
v
1 = γ1

′′, and γv2 = γ2
′.

Immediately, v is then well-defined, and γ̃′2 · γ′1 = γ̃v2 · (ℓv, fv1) · γv1 . If γ1
′ = ε, only

the transition of type 7 can be used and we again have that ρ̂′ · v = u′ · loopnp1 (u′).

Moreover, ℓv = ℓin, f
v
1 = ✓, fv2 = f′2, γ

v
1 = γ1

′ = ε, and γv2 = γ2
′. Immediately, v is

then well-defined, and γ̃′2 · γ′1 = γ̃v2 .

Now suppose that |ρ̂′| > 1 and that it starts with u′. Then γ1
′ cannot be empty,

otherwise the only transition available would directly lead to v and ρ̂′ would not be

longer that 1. Therefore there are two cases to consider:

� If γ1
′ = A · γ1′′, then the only available transitions (type 2) give that

ρ̂′ = u′ · (npA(s, f′1, f′2, j, r), γ1′′, γ2′, 1, ph) · ρ̂′′ with ρ̂′′ starting with u′′ =

(np(s, f′1, f
′
2, j, r), γ1

′′, A · γ2′, 1, ph). By induction hypothesis, there exists some

k ≥ 1 such that ρ̂′′ · v = u′′ · loopnpk (u′′). Then, by definition of loopnpk ,

ρ̂′ · v = u′ · loopnpk (u′). Neither f′1 nor f′2 has changed, nor any of the gi, so if

u′ meets all the requirements 1 to 6, so does u′′, and by induction hypothesis,

v is well-defined. Moreover,
∼
γ′2 .γ

′
1 =

∼
γ′2 .A.γ

′′
1 =

∼
A.γ′2 .γ

′′
1 =

∼
γv2 .γ by induction

hypothesis.

� If γ1
′ = (ℓ, g) ·γ1′′, then, since |ρ̂′| > 1, the only possible transition is of type 4.

Hence, ρ̂′ = u′ · (npℓ(s, g, f2, j, r), γ1′′, γ2′, 1, ph) · ρ̂′′ with ρ̂′′ starting with u′′ =

(np(s, g, upd(f′2, ℓ), j, r), γ1
′′, (ℓ, f′2) ·γ2′, 1, ph). By induction hypothesis, ρ̂′′ ·v =

u′′ · loopnpk (u′′) for some k ≥ 1, so ρ̂′ · v = u′ · (npℓ(s, g, f2, j, r), γ1′′, γ2′, 1, ph) ·

u′′ · loopnpk (u′′) = u′ · loopnpk+1(u
′). Moreover, if u′ meets the requirements 1 to 5

of being well-defined, so is u′′, by construction, and by induction hypothesis v

is well-defined. Finally,
∼
γ′2 .γ

′
1 =

∼
γ′2 .(ℓ, g).γ

′′
1 =

∼
(ℓ, g).γ′2 .γ

′′
1 =

∼
γv2 .γ by induction

hypothesis.

Therefore this property holds for ρ̂2, i.e. ρ̂2 · v = w · loopnpk (w) for some k ≥ 1, i.e.

by definition ρ̂2 · v = nextp+kp (u). Moreover, since it is easy to show that if u is well-

defined, w meets the requirements 1 to 6 of being well-defined, then v is well-defined.

If u is GP
B-rb-real, since j and s does not change during this part of the run, so is v.

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 41

Now if π̂(u) = (c, p, r), then since
∼
γ2 .(ℓ, f2).γ1 =

∼
γv2 .γ, then necessarily, π̂(v) =

(c, p′, r′) since the sequence of symbols from Γ and L stayed unchanged. Moreover,

size(γv2) > size(γ2) then p′ > p, and r′ = r because ph has not changed during this

part of the play, and u and v are well-defined.

If all of ρ̂2 must occur in INR, the proof is similar, but p′ < p and r′ = r+1.

Corollary 4.12 Every reachable node v ∈ Vsim ∪ V? is well-defined.

Proof We prove it by induction on the play ρ̂ · v. If ρ̂ = (s′in, ε, ε, 0, 1) then by

construction, v is well-defined. Otherwise, assume that for any finite prefix of ρ̂ ending

in a node of Vsim ∪ V?, the property holds true. Let ρ̂ = ρ̂1 · v1 and v be a successor

of v1.

� If v ∈ Vsim, then by construction, v1 ∈ Vsim ∪ V?. In both cases, the transition

involves no phase change, no modification of f1, f2, nor of any (ℓi, gi), so if the

property holds for v1, it holds for v.

� If v ∈ V?, then ρ̂ ·v = ρ̂1 ·u · ρ̂2 ·v with u the last node in Vsim. By Lemma 4.11,

if u is well-defined, so is v.

Lemma 4.13 If ρ̂ is a play of GM then π̂(ρ̂) is a play of GP
B-rb.

Proof Let ρ̂ be a finite prefix of a play of GM. If ρ̂ = (s′in, ε, ε, 0, 1), then π̂(ρ̂)

is indeed a play of GP
B-rb, by construction. Otherwise, assume that π̂(ρ̂) is a

play of GP
B-rb. Let v be such that ρ̂ · v is a play of GM. If v /∈ Vsim, or if v

is not GP
B-rb-real, then π̂(ρ̂ · v) = π̂(ρ̂) and it is then a play of GP

B-rb. Other-

wise, let v = ((s, ℓ, f1, f2, pl(s), r), γ1, γ2, 1, ph). Since it is in Vsim, by definition of

the transition relation of GM, ρ̂ necessarily ends in u ∈ Vsim ∪ V?. Let π̂(v) =

((s, (ℓ1, γ1) . . . (ℓk, γk)), p, r), with ℓ = ℓp.

Springer Nature 2021 LATEX template

42 Round- and Context-Bounded Control of Dynamic Pushdown Systems

If u ∈ Vsim, then u = ((s′, ℓ′, f1, f2, j, r), γ′1, γ2, 1, ph). There exists a transition

(s′, ℓ′, f1, f2, j, r)
(op,1,A)−−−−−−→ (s, ℓ, f1, f2, pl(s), r). By definition, there is a transi-

tion (s′, ℓ′)
op,A−−−−→ (s, ℓ) in GP

B-rb. Then, if op = push, γ1 = A · γ′1, and if

op = pop, then γ′1 = A · γ1. By Corollary 4.12, u is well-defined, and π̂(u) =

((s′, (ℓ′1, γ
′
1), . . . , (ℓ

′
k, γ

′
k), p, r) with ℓ′i = ℓi, γ

′
i = γi, for all i ̸= p. Moreover, if

op = push, γp = A · γ′p, and if op = pop, then γ′p = A · γp. Hence, π̂(v) is

indeed a successor of π̂(u) in GP
B-rb. If u is GP

B-rb-real, then if we let ρ̂ = ρ̂′ · u,

then π̂(ρ̂ · v) = π̂(ρ̂′) · π̂(u) · π̂(v), which is a play of GP
B-rb. Otherwise, it is

because j = 0 and pl(s′) = 1. In that case, the predecessor of u is necessarily

u′ = ((s′, ℓ′, f1, f2, 1, r), γ′1, γ2, 1, ph), which is GP
B-rb-real, and π̂(u′) = π̂(u). Hence,

as above, π̂(v) is a successor or π̂(u′). Moreover, if we let ρ̂ = ρ̂′ · u′ · u, we have

π̂(ρ̂ · v) = π̂(ρ̂′) · π̂(u′) · π̂(v), which is then a play of GP
B-rb.

In case u ∈ V?, u = (?(s′, ℓ′, f1, f2, j, r), γ′1, γ2, 1, ph) and there exists a transition

(s′, ℓ′)
op,A−−−−→ (s, ℓ). Then again, if op = push, γ′1 = A · γ1, then γ′p = A · γp,

and if op = pop, γ1 = A · γ′1, then γp = A · γ′p. Let ρ̂ = ρ̂1 · u1 · ρ̂2 · u with u1

the last node in Vsim. By construction, π̂(u) = ((s′, (ℓ′1, γ
′
1), . . . , (ℓ

′
k, γ

′
k), p, r) with

ℓ′i = ℓi, γ
′
i = γi, for all i ̸= p. Moreover, by Lemma 4.11, there exists p′ ̸= p, and

r′ such that π̂(u1) = ((s′, (ℓ′1, γ
′
1), . . . , (ℓ

′
k, γ

′
k), p

′, r′) and π̂(v) is also a successor of

π̂(u1). If u1 is GP
B-rb-real, π̂(ρ̂ · v) = π̂(ρ̂1) · π̂(u1) · π̂(v). Otherwise, as above, the

predecessor of u1 is necessarily the GP
B-rb-real node u

′, and π̂(u′) = π̂(u1). Then,

π̂(ρ̂ · v) = π̂(ρ̂1 · u1 · ρ̂2 · u · v) = π̂(ρ̂′1 · u′ · u1 · ρ̂2 · u · v) = π̂(ρ̂′1) · π̂(u′) · π̂(v), which

proves the result.

From the preceding results, we deduce the following correspondence

between the plays of the two games:

Corollary 4.14 Let the run ρ̂ · v be a run ending in a GP
B-rb-real node in Vsim. If

v /∈ F, and if π̂(v) has a successor in GP
B-rb, then π(π̂(ρ̂ · v)) = ρ̂ · v.

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 43

Proof We show it by induction. If ρ̂ is reduced to the initial configuration of the game,

then the result comes directly from the definitions. Consider now a play ρ̂0 ·v0 · ρ̂1 ·v1

with v0, v1 GP
B-rb-real nodes in Vsim, and ρ̂1 containing no GP

B-rb-real node in Vsim.

Assume also that v1 /∈ F. By construction of the game, v0 /∈ F, otherwise the only

continuation of ρ̂0 ·v0 would be in Vwin. Also, π̂(ρ̂0 ·v0 · ρ̂1 ·v1) = π̂(ρ̂0) · π̂(v0) · π̂(v1).

Since it is a play of GP
B-rb by Lemma 4.13, then π̂(v0) has a successor in GP

B-rb. Let

(c, p, r) = π̂(v0) and (c′, p′, r′) = π̂(v1). Then π(π̂(ρ̂0 · v0 · ρ̂1 · v1)) = π(π̂(ρ̂0 · v0) ·

π̂(v1)) = π(π̂(ρ̂0 ·v0)) ·nextp
′

p (v0) ·π(π̂(v1)). By induction hypothesis, π(π̂(ρ̂0 ·v0)) =

ρ̂0 · v0. Moreover, for ρ̂0 · v0 · ρ̂1 · v1 to be a play, ρ̂1 is either ε, or ends in V?. Then,

by Lemma 4.11, ρ̂1 = nextp
′

p (v0). Hence, π(π̂(ρ̂0 · v0 · ρ̂1 · v1)) = ρ̂0 · v0 · ρ̂1 · v1.

Now that we have finally defined the mappings π and π̂ between plays, we

are ready to prove the correctness of our construction, that is Lemma 4.6.

⇒ Let fM be a memoryless winning strategy of GM. Observe that, start-

ing from v ∈ V ′
0 , there is a unique partial fM-play v · ρ · v′ with ρ ∈ V ∗

? ∩ V ′
0
∗

and v′ ∈ Vsim ∪ Vwin. We then let fM(v) = v′.

We can hence define a strategy for Player 0 in GP
B-rb as follows.

fP((sin), 0, 1) = π̂(fM(s′in, ε, ε, 0, 1))

Let (c, p, r) ∈ V0,

fP(c, p, r) =

π̂(fM(π(c, p, r))) if fM(π(c, p, r)) ∈ Vsim

any sucessor of (c, p, r) otherwise.

By Corollay 4.12, if fM(π(c, p, r)) ∈ Vsim, it is well-defined, and

π̂(fM(π(c, p, r)) is correctly defined.

We show that if ρ is an fP -play of GP
B-rb, then π(ρ) is an fM-play. In fact,

by Lemma 4.9, π(ρ) is a GM-run. We then show by induction that for any finite

Springer Nature 2021 LATEX template

44 Round- and Context-Bounded Control of Dynamic Pushdown Systems

prefix ρ of an fP -play ending in u ∈ V0, if fM is winning, then π(ρ · fP(u)) is

an fM-play.

If ρ consists in one node, it is obvious. Let now ρ be an fP -play ending in

u ∈ V0, and assume that π(ρ) is an fM-play. If π(ρ) ∈ V ′∗ · Vwin
ω
1 , then by

definition of π, u /∈ F and has no successor, hence fP(u) is not defined, and ρ

is maximal. If π(ρ) ∈ V ′∗ ·Vwin
ω
0 , then ρ is winning, and π(ρ·fP(u)) = π(ρ) and

it is then an fM-play by induction hypothesis. Otherwise, π(ρ) ends in π(u)

and u /∈ F and has at least one successor. Let fP(u) = u′. Then, π(ρ · u′) =

π(ρ) ·nextp′p (π(u)) ·π(u′) ·Γ, where Γ ∈ {ε}∪V ωwin∪V1V ωwin (by definition of π).

� If fM(π(u)) ∈ Vwin, then if fM(π(u)) ∈ Vwin1, it implies that fM is not

winning. Otherwise, fM(π(u)) ∈ Vwin0, which is a contradiction with π(ρ)

finite, our last assumption. Indeed, if fM(π(u)) ̸= fM(π(u)), then the

predecessor v of fM(π(u)) in the corresponding fM-play is in V?, and,

by Lemma 4.11, v is GP
B-rb-real. Since π(u) ∈ V ′

0 , so is v. The definition

of GM implies that fM(π(u)) cannot be in Vwin0, a contradiction. Hence,

fM(π(u)) = fM(π(u)) ∈ Vwin0, and π(u) ∈ F (again, because π(u) is

GP
B-rb-real). As a consequence, u ∈ F and π(ρ) is infinite.

� If fM(π(u)) ∈ Vsim, it is necessarily GP
B-rb-real. Indeed, if a well-defined

node of Vsim is not GP
B-rb-real, its predecessor is in Vsim ∩ V ′

1 . The pre-

decessor of fM(π(u)) is either π(u) or a node of V?. Since we have

assumed that u ∈ V0, then π(u) ∈ V ′
0 by definition of π, a contradic-

tion with fM(π(u)) ∈ Vsim not being GP
B-rb-real. Then, by definition of

fP , u
′ = π̂(fM(π(u))), and π(u′) = π(π̂(fM(π(u))) = fM(π(u)), and

we can write that π(ρ · u′) = π(ρ) · nextp′p (π(u)) · fM(π(u)) · Γ, with

π(ρ) · nextp′p (π(u)) · fM(π(u)) being an fM-play by definition of fM.

– If u′ ∈ F , Γ ∈ Vwin
ω
0 . Moreover, π(u′) ∈ F, so its only successor in

GM is in Vwin0 and π(ρ · u′) is an fM-play.

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 45

– If u′ /∈ F and has no successor, then we can show that fM(π(u′)) ∈

Vwin1. Indeed, assume that fM(π(u′)) = v ∈ Vsim. Then v is GP
B-rb-

real since u′ is GP
B-rb-real. Hence, let ρ′ such that π(u′)·ρ′ ·v is a partial

fM-run. In that case, since π(ρ)·nextp′p (π(u))·π(u′)·ρ′·v is an fM-run,

by Lemma 4.13, π̂(π(ρ)·nextp′p (π(u))·π(u′)·ρ′ ·v) = ρ·u′ ·π̂(v) is a play

of GP
B-rb, a contradiction with the fact that u′ has no successor. So

fM(π(u′)) ∈ Vwin. Since u
′ /∈ F , π(u′) /∈ F, and fM(π(u′)) ∈ Vwin1,

which implies that fM is not winning.

– Otherwise, π(ρ · u′) = π(ρ) · nextp′p (π(u)) · π(u′) which is an fM-play.

Now let ρ be a maximal fP -play. Then π(ρ) is an fM-play. Assume that ρ

is not winning. If it is finite, it ends in a node u /∈ F without any successor,

and π(ρ) ∈ V ′∗Vwin
ω
1 , a contradiction with fM being winning. If it is infinite,

then it never visits F , and by construction, π(ρ) is an infinite play that never

visits Vwin0. Hence, π(ρ) is not winning, which again contradicts the fact that

fM is winning. Then ρ is winning, and fP is a winning strategy for Player 0

in GP
B-rb.

⇐ Let fP be a winning strategy of GP
B-rb, and let us build a strategy fM

for GM. Let ρ̂ be a play of GM ending in a node of Player 0, and v̂ be the last

GP
B-rb-real node in Vsim of ρ̂ : ρ̂ = ρ̂1 · v̂ · ρ̂2.

By Lemma 4.13, π̂(ρ̂) is a play of GP
B-rb ending in a node v = π̂(v̂). Let

v = (c, p, r). Observe that if v ∈ V B1 , since the original play ends in V0, it

implies that there has been a change of player. Hence, the successor of v̂ in that

case is Ch0(v). Given such a partial play ρ̂, we give the definition of next(ρ̂),

which describes how to extend ρ̂ to the next GP
B-rb-real node in Vsim, or to

Vwin, by simulating the strategy fP on GP
B-rb. Given a node u ∈ V , we write

wini(u) the successor of u in Vwini. We define next(ρ̂) as follows.

Springer Nature 2021 LATEX template

46 Round- and Context-Bounded Control of Dynamic Pushdown Systems

next(ρ̂) =

ρ̂1 · v̂ · win0(v̂) if v ∈ F

ρ̂1 · v̂ · Ch0(v) · win1(Ch0(v)) if v ∈ V B1 without any

successor in GP
B-rb

ρ̂1 · v̂ · Ch0(v) · nextp
′

p (Ch0(v)).win0(v?) if v ∈ V B1 and

there exists v′ ∈ V B ,

(v, v′) ∈ EBp′ ,

with v? ∈ V? the node

described in Lemma 4.8.

ρ̂1 · v̂ · win1(v̂) if v ∈ V B0 and has

no successor in GP
B-rb

π(π̂(ρ̂) · fP(π̂(ρ̂)) otherwise.

Observe that next(ρ̂) is a partial play of GM, in which all the nodes visited

after v̂ are in V0.

We define fM as follows :

fM(ρ̂ · v̂) =

v̂ if v̂ ∈ Vwin

v̂′ if ρ̂ · v̂ · v̂′ is a prefix of next(ρ̂ · v̂)

w with w any successor of v̂ in GM otherwise.

We show by induction on the length of ρ̂ that if it is a (partial) fM-play,

then π̂(ρ̂) is a (partial) fP -play. When ρ̂ is restricted to the initial node, it is

trivial. Let ρ̂ be an fM-play and suppose that π̂(ρ̂) is an fP -play. Consider

now ρ̂ · v an fM-play. If π̂(ρ̂ · v) = π̂(ρ̂), then obviously π̂(ρ̂ · v) is an fP -play.

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 47

If π̂(ρ̂ · v) = π̂(ρ̂) · π̂(v) and π̂(ρ̂) ends in V B1 , obvisouly π̂(ρ̂ · v) is an fP -play.

Assume then that π̂(ρ̂ · v) = π̂(ρ̂) · π̂(v), i.e. v is a GP
B-rb-real node in Vsim , and

π̂(ρ̂) ends in V B0 . Let v1 be the last GP
B-rb-real node of ρ̂ in Vsim: ρ̂ = ρ̂1 ·v1 · ρ̂2.

Then observe that π̂(ρ̂) = π̂(ρ̂1) · π̂(v1). Then, since π̂(v1) ∈ V B0 , v1 ∈ V0, and

by construction of the game GM, ρ̂2 ∈ V ∗
0 . Then, ρ̂ ends in V0, and v = fM(ρ̂).

We need to show that π̂(v) = fP(π̂(ρ̂)).

By definition, next(ρ̂) = next(ρ̂1 · v1). We show that any prefix ρ̂1 · v1 · ρ̂′2

of ρ̂ is a prefix of next(ρ̂1 · v1). By Corollary 4.14, if next(ρ̂1 · v1) = π(π̂(ρ̂1 ·

v1) · fP(π̂(ρ̂1 · v1))) then next(ρ̂1 · v1) = ρ̂1 · v1 · nextp
′

p (v1) · π(fP(π̂(ρ̂1 · v1))),

with fP(π̂(ρ̂1 · v1)) = (c′, p′, r′). So if ρ̂′2 = ε, ρ̂1 · v1 · ρ̂′2 is obviously a prefix of

next(ρ̂1 · v1).

Let now ρ̂1 · v1 · ρ̂′2 be a prefix of ρ̂, and assume that it is also a prefix of

next(ρ̂1 ·v1). Let ρ̂1 ·v1 ·ρ̂′2 ·v2 be a prefix of ρ̂. Since ρ̂2 ∈ V ∗
0 , v2 = fM(ρ̂1 ·v1 ·ρ̂′2).

We know that no node of ρ̂2 is in Vwin, otherwise, ρ̂ · v with v ∈ Vsim would

not be a play of GM. So, by induction hypothesis and by definition of fM,

ρ̂1 · v1 · ρ̂′2 · v2 is a prefix of next(ρ̂1 · v1).

Then v = fM(ρ̂1 ·v1 · ρ̂2) is such that ρ̂1 ·v1 · ρ̂2 ·v is a prefix of next(ρ̂). Since

v1 ∈ V0 and v ∈ Vsim, the only possibility for next(ρ̂) is that next(ρ̂) = π(π̂(ρ̂) ·

fP(π̂(ρ̂))) = ρ̂1 · v1 · nextp
′

p (v1) · π(fP(π̂(ρ̂1 · v1))). Then, v = π(fP(π̂(ρ̂1 · v1))),

and hence π̂(v) = π̂(π(fP(π̂(ρ̂1 · v1))) = fP(π̂(ρ̂1 · v1)) = fP(π̂(ρ̂)).

Hence if ρ̂ is a finite (partial) fM-play, π̂(ρ̂) is a finite (partial) fP -play.

Moreover, if ρ̂ is an infinite fM-play, then π̂(ρ̂) is a fP -play (otherwise, we

could find a finite prefix ρ̂′ of ρ̂ such that π̂(ρ̂′) is not a fP -play).

Suppose there is an fM-play ρ̂ that is maximal (i.e infinite) and not win-

ning. That means that either it ends in Vwin1, which is a sink state, or ρ̂ visits

Vsim infinitely often (as it is not possible for either player to stay in V? indefi-

nitely). In both cases, ρ̂ does not visit any node in F, because the only successor

Springer Nature 2021 LATEX template

48 Round- and Context-Bounded Control of Dynamic Pushdown Systems

of such nodes are in Vwin0, contradicting the fact that ρ̂ is not winning. If ρ̂

visits infinitely often nodes in Vsim, then π̂(ρ̂) is also infinite, and does not visit

any node in F . Since π̂(ρ̂) is an fP -play, it contradicts the assumption that

fP is winning.

Since Vwin1 is only accessible from nodes in V0, if ρ̂ ends in Vwin1, there is

some prefix ρ̂′ of ρ̂ ending in V0 and fM(ρ̂′) ∈ Vwin1, meaning that next(ρ̂′)

ends in Vwin1. By definition of next, it means that π̂(ρ̂′) ends in a node without

any successor in GP
B-rb. Hence, π̂(ρ̂′) is a maximal fP -play, that is not winning,

which again is a contradiction. Hence, fM is a winning strategy. This concludes

the proof of Lemma 4.6 and this section.

4.3 Lower bound for round-bounded control

Theorem 4.15 DFS-Controlrb is inherently non-elementary.

Our lower-bound proof is inspired by [5], but we reduce from the satisfia-

bility problem for first-order formulas on finite words, which is known to be

non-elementary [37]. Note that the lower bound already holds for DFS.

Let Var be a countably infinite set of variables and Σ a finite alphabet.

Formulas φ are built by the grammar φ ::= a(x) | x < y | ¬(x < y) | φ ∨

φ | φ ∧ φ | ∃x.φ | ∀x.φ where x, y ∈ Var and a ∈ Σ.

Let w = a0 . . . an−1 ∈ Σ∗ be a word. Variables are interpreted as positions

of w, so a valuation is a (partial) function ν : Var → {0, . . . , n − 1}. The

satisfaction relation is defined as follows. We let w, ν |= a(x) if and only if

aν(x) = a. Moreover, w, ν |= x < y if and only if ν(x) < ν(y). Quantification,

negation, disjunction, and conjunction are defined as usual. We refer to [38]

for details. A formula φ without free variables is satisfiable if there is a word

w such that w, ∅ |= φ. We suppose that φ is given in prenex normal form and

that all the quantified variables are pairwise distinct.

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 49

We build a DFS-based round-bounded game that is winning for Player 0

if and only if φ is satisfiable. In the first round of the game, Player 0 chooses

a word w by creating a different process for each letter of w, each of them

holding the corresponding letter in its local state. To prove that w is indeed a

model of φ, the following rounds are devoted to the valuation of the variables

appearing in φ, ν(x) = i being represented by memorizing the variable x in the

local state of the ith process. If x appears in the scope of a universal quantifier,

the choice of the process is made by Player 1, otherwise it is made by Player

0. The last round is used to check the valuation of the variables. To this end,

the players will inductively choose a subformula to check, until they reach an

atomic proposition: If the subformula is a disjunction φ1∨φ2, Player 0 chooses

either φ1 or φ2; if it is a conjunction, Player 1 chooses the next subformula.

Finally, to verify whether a(x) is satisfied, we check that there is a process with

letter a and variable x in its local state. For x < y, we check that the process

with x in its local state is eventually followed by a distinct process with y in its

local state. This check is done during the same round, which guarantees that

the positions corresponding to x and y are in the correct order. The number

of states needed and the number of rounds are linearly bounded in the length

of the formula. Here is the formalization and proof of this idea.

Let φ be a formula, Cl(φ) the set of subformulas (non-strict) of φ, and

Varφ ⊂ Var the set of variables appearing in φ. We define B = |Varφ|+2 and

P = (S0 ⊎ S1, L, sin, ℓin,∆, Fglob, Floc) as follows:

� S = {sin,Guess,Win}∪{Win-if-x | x ∈ Varφ}∪{ψ | ψ ∈ Cl(φ)}∪{ ψ | ψ ∈

Cl(φ)}

A state is in S1 if it is of the form ψ ∧ ψ′ or ∀x.ψ, otherwise it is in S0.

The initial state is sin, and Fglob = {Win}.

� L = {ℓin,first} ∪
(
Σ× 2Varφ

)
, with initial state ℓin and Floc = L.

Springer Nature 2021 LATEX template

50 Round- and Context-Bounded Control of Dynamic Pushdown Systems

� ∆ contains the following transitions:

1. (sin, ℓin) −→ (Guess,first)

2. (Guess, ℓin) −→ (Guess, (a, ∅)), for a ∈ Σ

3. (Guess,first) −→ (φ,first)

4. (ψ ,first) −→ (ψ,first)

5. (?x.ψ, (a, S)) −→ (ψ , (a, S ∪ {x})) for ? ∈ {∃,∀}

6. (ψ1?ψ2,first) −→ (ψi,first) for ? ∈ {∨,∧} and i ∈ {1, 2}

7. (a(x), (a, S)) −→ (Win, (a, S)) if x ∈ S

8. (x < y, (a, S)) −→ (Win-if-y, (a, ∅)) if x ∈ S

9. (¬(x < y), (a, S)) −→ (Win-if-x, (a, S)) if y ∈ S

10. (Win-if-x, (a, S)) −→ (Win, (a, S)) if x ∈ S

The first process to be activated (which will stay in the local state first all

along) constrains the evolution of the play : in a first part, when the global

state is in Guess, the different processes will guess the different letters of the

word, then the first process will force the system to start the verification of

the formula on the word (with transition 3). Then the different transitions of

type 5 will build the valuation of the formula by associating each variable to

a position in the word. Transition 4 ensures that the first process plays after

each transition 5, ensuring a change of round each time.

Lemma 4.16 There is a winning strategy for Player 0 in P if and only if φ is

satisfiable.

Proof Given a configuration c = (s, first, (a1, S1), . . . , (an, Sn)) of size n + 1, we

define the associated (partial) valuation ν(c)(x) = i if x ∈ Si, which is well defined

as there is no possible way in the game to have a single variable x in Si and Sj if

i ̸= j: indeed we have assumed that the quantified variables were pairwise distinct,

and a variable can be added to a local state Si only upon taking a transition of

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 51

type 5, which modify the global state to the immediate subformula. Observe also

that along a run the local state of a process is only slightly modified : once the letter

is chosen, it never changes, and the set S can only grow along the run, until the

last round where it can be set to ∅ again. Hence, if c and c′ are two configurations

occurring along the same play ρ, if ν(c)(x) and ν(c′)(x) are both defined, then

ν(c)(x) = ν(c′)(x). Conversely, given a state s ∈ S, a word w = a1 . . . an and a

valuation ν, the associated configuration is c(s, w, ν) = (s, first, (a, S1), . . . , (a, Sn))

where Si = {x | ν(x) = i}.

⇒ Let f be a winning strategy for Player 0. We fix wf = a1 . . . an. We show

by recursion on the subformula ψ, that for all nodes vψ = (cψ, 1, r) with cψ =

(ψ,first, (a1, S1), . . . , (an, Sn)) visited during an f -play, we have wf , ν(cψ) |= ψ.

First, note that if ψ is a term (or negated term), then necessarily vψ is reached

during the last round r = B = |Varφ|+2 as it takes one round to reach vφ and then

|Varφ| rounds to go through every quantifier of φ.

� If ψ = a(x), then if vψ occurs in an f -play, since f is winning, the transition 7

can be taken, and there is a process with local state (ai, Si) with ai = a and

x ∈ Si. In other words ν(cψ)(x) = i, so we have wf , ν(cψ) |= ψ.

� If ψ = x < y, any f -play will continue with transitions 8 then 10, lead-

ing to v1 = ((Win-if-y, (a1, S1), . . . , (ai, ∅), . . . , (an, Sn)), i + 1, B) and v2 =

((Win, (a1, S1), . . . , (ai, ∅), . . . , (an, Sn))), j +1, B). Then we have ν(cψ)(x) = i

and ν(cψ)(y) = j. Since v1 and v2 are visited in the same round (see note

above), then i ≤ j. And since after v1, Si = ∅, we know that i ̸= j, thus i < j.

� Similarly for ψ = ¬(x < y), we have ν(cψ)(x) = i and ν(cψ)(y) = j with j ≤ i

but this time no strict inequality, since with transition 9, Sj is not emptied.

� If ψ = ψ1 ∨ ψ2, then vψ ∈ S0, and let ρ be an f -play starting with ρ1vψ. Let

vψi
be the successor of vψ in ρ (by transition 6). Since ψi is a subformula of

ψ, by induction hypothesis, wf , ν(cψi
) |= ψi. Moreover, ν(cψi

) = ν(cψ) (as no

Springer Nature 2021 LATEX template

52 Round- and Context-Bounded Control of Dynamic Pushdown Systems

local state is changed during the transition), then wf , ν(cψ) |= ψi, which in

turn means that wf , ν(cψ) |= ψ.

� If ψ = ψ1 ∧ ψ2, then vψ ∈ S1. Let ρ · vψ be a prefix of an f -play. Then both

ρ · vψ · vψ1
and ρ · vψ · vψ2

are prefixes of an f -play. By induction hypothesis,

we obtain that wf , ν(cψi
) |= ψi for i ∈ {1, 2}. Moreover, ν(ψ) = ν(ψi) for

i ∈ {1, 2}, then wf , ν(cψ) |= ψ.

� If ψ = ∃x.ψ′, then vψ ∈ S0. Let ρ be an f -play starting with ρ1 · vψ, and let

v1 = ((ψ′ , first, (a1, S1), . . . , (ai, Si ∪ {x}), . . . , (an, Sn)), i + 1, r) with 1 ≤ i

the successor node of vψ in ρ, and vψ′ = ((ψ′, . . .), 1, r + 1) the successor of

v1 (transitions 5 then 4). By induction hypothesis, wf , ν(cψ′) |= ψ′. Moreover,

ν(cψ′) = ν(cψ) ⊎ {x→ i} by construction. Thus wf , ν(cψ) |= ψ.

� If ψ = ∀x.ψ′, then vψ ∈ S1. Let ρ·vψ be the prefix of an f -play. For all 1 ≤ i ≤ n,

we let vi1 = ((ψ′ , first, (a1, S1), . . . , (ai, Si ∪{x}), . . . , (an, Sn)), i+1, r), ciψ′ =

(ψ′,first, (a1, S1), . . . , (ai, Si∪{x}), . . . , (an, Sn)), viψ′ = (ciψ′ , 1, r+1). Then for

all 1 ≤ i ≤ n, ρ · vψ · vi1 · viψ′ is the prefix of an f -play. By induction hypothesis,

wf , ν(c
i
ψ′) |= ψ′. Moreover, ν(ciψ′) = ν(cψ) ⊎ {x→ i}. Thus wf , ν(cψ) |= ψ.

From this we conclude that wf , ν(cφ) |= φ and as ν(cφ) is the empty valuation,

then wf satisfies φ.

⇐ Now suppose that a1 . . . an, ∅ |= φ. We build a memoryless strategy fφ as

follows. Let ρ be a run ending in v.

� If v = ((Guess, first, (a1, ∅), . . . , (ak, ∅)), k + 1, 1) for 0 ≤ k < n then fφ(ρ) =

((Guess, first, (a1, ∅) . . . , (ak, ∅), (ak+1, ∅)), k + 2, 1). If k = n, then fφ(ρ) =

((φ, first, (a1, ∅), . . . , (ak, ∅)), 1, 2)

� If v = (cψ, 1, r) with cψ = (∃x.ψ′, first, (a1, S1), . . . , (an, Sn)), and if w, ν(cψ) |=

ψ let i ≤ n be the smallest position such that w, ν(cψ) ⊎ {x→ i} |= ψ′ and we

define fφ(ρ) = ((ψ′ , (a1, S
′
1), . . . , (an, S

′
n)), i + 1, r) with S′

i = Si ⊎ {x} and

S′
j = Sj for j ̸= i.

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 53

� If v = (cψ, 1, r) with ψ = ψ1 ∨ ψ2, and if w, ν(cψ) |= ψ, we know that there is

at least one i ∈ {1, 2} such that w, ν(cψ) |= ψi. Let j be the smallest of such i,

and define fφ(ρ) = ((ψj , . . .), 1, r).

� For all other cases, either there is at most one transition available so fφ is

defined unambiguously, or the strategy is defined to be any possible successor.

Let f ′ be a strategy for Player 1, and ρ = v0 . . . vm the resulting (fφ, f
′)-play. We

show that ρ is winning.

By definition of fφ and since v0 to vn are owned by Player 0, we have that

vn+1 = (c(φ,w, ∅), 1, 2). Let k ∈ {n+ 1, n+ 3, . . . , n+ 2 · (|Varφ| − 1)}. We have the

following two properties:

1. If vk = (c(∃x.ψ′, w, ν), 1, r) such that w, ν |= ∃x.ψ′, then by construction of fφ

we have vk+1 = (c(ψ′ , w, ν′), i + 1, r) and vk+2 = (c(ψ′, w, ν′), 1, r + 1) for

some 1 ≤ i ≤ n and ν′ = ν ⊎ {x→ i}, and furthermore w, ν′ |= ψ′.

2. If vk = (c(∀x.ψ′, w, ν), 1, r) such that w, ν |= ∀x.ψ′, then for some 1 ≤ i ≤ n

(defined by f ′) we have ν′ = ν⊎{x→ i} such that vk+1 = (c(ψ′ , w, ν′), i+1, r)

and vk+2 = (c(ψ′, w, ν′), 1, r + 1). By definition since w, ν |= ∀x.ψ′, we deduce

that w, ν′ |= ψ′.

By those two properties, combined with the facts that vn+1 = (c(φ,w, ∅), 1, 2) and

that w, ∅ |= φ, we deduce that vn+2·|Varφ| = (c(ψ′, w, ν), 1, B) where ψ′ is quantifier-

free and w, ν |= ψ′.

For k ≥ n+ 2 · |Varφ|, we have again two similar-looking properties:

1. If vk = (c(ψ1 ∨ ψ2, w, ν), 1, B) and w, ν |= ψ1 ∨ ψ2 then by definition of fφ,

vk+1 = (c(ψi, w, ν), 1, B) with i ∈ {1, 2} and w, ν |= ψi.

2. If vk = (c(ψ1 ∧ ψ2, w, ν), 1, B) and w, ν |= ψ1 ∧ ψ2 then for some i ∈ {1, 2}

defined by f ′, vk+1 = (c(ψi, w, ν), 1, B). By definition of satisfiability, we also

have that w, ν |= ψi.

Using those two properties, we deduce that there exists m′ ≥ n+2 · |Varφ| such that

vm′ = (c(t, w, ν), 1, B) where t is a term or a negated term such that w, ν |= t. Here

Springer Nature 2021 LATEX template

54 Round- and Context-Bounded Control of Dynamic Pushdown Systems

m′ depends not only on φ but also on both strategies fφ and f ′. There are 3 possible

cases for t:

1. t = a(x): as w, ν |= t we know that aν(x) = a, and vm′ = (c(t, w, ν), 1, B) so

vm′+1 = (c(Win, w, ν), ν(x) + 1, B).

2. t = x < y: we know that ν(x) < ν(y) so vm′+1 = (c(Win-if-y, w, ν′), ν(x), B)

where ν′ = ν \ {{x′ → ν(x)} | x′ ∈ Varφ}. Since ν(x) ̸= ν(y), ν′(y) = ν(y) >

ν(x). So vm′+2 = (c(Win, w, ν′), ν(y), B).

3. t = ¬(x < y): in this case ν(y) ≤ ν(x) and we have vm′+1 = (c(Win-if-x,w, ν),

ν(y), B) and vm′+2 = (c(Win, w, ν), ν(x), B).

Every case ends in an accepting node, therefore ρ is winning.

5 Undecidability of context-bounded games

In this section, we show that relaxing the notion of rounds quickly leads to

undecidability. It should be noted that our undecidability proof also applies

to the notion of context bounds introduced in [6].

5.1 Context-Bounded Runs

We now define context-bounded runs. A context is less restrictive than a round.

As with round-bounded runs, each process gets to perform as many transitions

as it wants but cannot act afterwards within the same context. However, within

a context there is no fixed order on processes, as opposed to rounds where

there is one fixed order which is the same for all rounds.

Accordingly, given B ≥ 1 and a DPS P = (S,L,Γ, sin, ℓin,∆, Fglob, Floc), we

define the context-bounded semantics of P as JPKB-cb = (V B , EB , vBin) where

� nodes are of the form v = (c, P, p, r) where c ∈ CP is a configuration, say,

of size k, P ⊆ {1, . . . , k} is the set of processes that made a transition in

the current context, p ∈ P ∪{0} is the last process that made a transition

(or 0 if P = ∅), and r ∈ {1, . . . , B} is the number of the current context,

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 55

� the initial node is vBin = ((sin), ∅, 0, 1), and

� there is an edge between (c, P, p, r) and (c′, P ′, p′, r′) if, in JPK =

(V,E, vin), there is an edge (c, c′) in Ep′ and either

– p′ ̸∈ P \ {p}, P ′ = P ∪ {p′}, and r′ = r, or

– p′ ∈ P \ {p}, P ′ = {p′}, r < B, and r′ = r + 1.

The bounded semantics of a DFS is defined accordingly. We extend the

definition of the acceptance condition FP of the DPS to the nodes of its

context-bounded semantics, and we define (accepting) B-context-bounded runs

as expected.

Relation to round-bounded runs. Note that if a run is B-round bounded for

some B, then it is trivially B-context bounded too. Conversely for any n ∈ N,

there are 2-context bounded runs that are not n-round bounded: for instance,

a run where processes 1 to n+1 do one transition each in the first half, followed

in the second half by one transition from processes n down to 1. Such a run

is 2-context bounded (one for each half), but it needs at least n+1 rounds to

be done (one for the first half, then n rounds for transition from n to 1).

Context-bounded control. Given a bound B ≥ 1, analogously to the round-

bounded case, we define B-context-bounded parameterized pushdown game

induced by P as the game GP
B-cb given by JPKB-cb = (V B , EB , vBin) with nodes

v = (c, p, r) ∈ V B such that c = (s, (ℓ1, γ1), . . . , (ℓk, γk)) belonging to Player j

if s ∈ Sj .

DPS-Controlcb

I: DPS P = (S0 ⊎ S1, L,Γ, sin, ℓin,∆, Fglob, Floc); B ≥ 1

Q: Does Player 0 have an FP -winning strategy in GP
B-cb ?

Springer Nature 2021 LATEX template

56 Round- and Context-Bounded Control of Dynamic Pushdown Systems

5.2 Undecidabilty for Context-Bounded Runs

We show that even for DFS, and even with a fixed bound, the control problem

is undecidable. This shows that relaxing the round-bounded constraint even a

little easily leads to undecidability.

Theorem 5.1 DFS-Controlcb is undecidable, even if we fix B = 2.

The rest of subsection Section 5.2 is devoted to the proof of Theorem 5.1.

We provide a reduction from the halting problem for 2-counter machines,

whose definition is recalled in the following.

A two-counter machine (2CM) with counters c1 and c2 is given by a tuple

M = (Q,T, q0, qh), where Q is the finite set of states and T ⊆ Q × Op ×

Q is the transition relation where the set of operations is defined as Op =

{ci++ , ci– – , ci==0 | i ∈ {1, 2}}. As expected, ci++ increments counter ci,

while ci– – decrements it, and ci==0 checks whether its value is 0. Moreover,

there are a distinguished initial state q0 ∈ Q and a halting state qh ∈ Q.

The behavior ofM is described in terms of a global transition relation over

configurations γ = (q, ν1, ν2) ∈ Q×N×N where q is the current state and ν1, ν2

are the current counter values. Every transition t ∈ T defines a binary relation

⊢t on configurations letting (q, ν1, ν2) ⊢t (q′, ν′1, ν′2) if there is i ∈ {1, 2} such

that ν′3−i = ν3−i and one of the following conditions hold:

� t = (q, ci++, q′) and ν′i = νi + 1,

� t = (q, ci– –, q
′) and ν′i = νi − 1, or

� t = (q, ci==0, q′) and νi = ν′i = 0.

An (M -)run is a sequence of the form γ0 ⊢t1 γ1 ⊢t2 . . . ⊢tn γn where γ0 =

(q0, 0, 0). It is successful if γn ∈ F = {qh} × N × N. Now, the 2CM halting

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 57

problem is to decide whether there is a successful run. It is well known that

this problem is undecidable [33].

Let M = (Q,T, q0, qh) be a 2CM. We define P and a game GP
B-cb with

B = 2, with the following intuition. In the first context, Player 0 will simulate

a run of the 2CM. The global state of the game will be the state of the 2CM.

To encode the values of the counters, there are two local states ℓi and ℓ̄i

for i ∈ {1, 2}, and the value of counter i will be encoded as the number of

processes with local state ℓi minus the number of processes with local state ℓ̄i.

To simulate a transition (q, ci++, q′), Player 0 will change the global state from

q to q′ and create a new process with local state ℓi. Similarly, for a transition

(q, ci– –, q
′), Player 0 will change the global state from q to q′ and create a

new process with local state ℓ̄i. Finally, a transition (q, ci==0, q′) is simulated

by changing the global state from q to q′ and creating a new process with a

dummy local state ℓ⊥ that is not counted in the encoding of the values of c1

and c2. All local states are accepting and only qh is an accepting global state,

so Player 0 wins if she can simulate a run of the 2CM leading to qh.

However, we must ensure that Player 0 does not cheat during the simu-

lation, that is that Player 0 does not decrement counter i if its value is 0 or

takes a zero-test transition when its value is not 0. To that end, whenever

Player 0 simulates a decrement or a zero-test transition, we leave the possibil-

ity for Player 1 to claim that the transition was incorrectly taken. When that

happens, the simulation is stopped and a verification is started. This verifica-

tion phase uses another context, and the game always ends after this phase

(thus 2 contexts are enough for the game). If the transition was a decrement

of counter i, then Player 1 and Player 0 will alternately make a transition with

a process in state ℓ̄i and ℓi respectively, with Player 1 aiming to prove that

there are now more ℓ̄i than ℓi (i.e. that ci became negative as a result of the

Springer Nature 2021 LATEX template

58 Round- and Context-Bounded Control of Dynamic Pushdown Systems

Transition in ∆ Condition

1 (q, ℓin) → (q′, ℓi) (q, ci++, q′) ∈ T

2 (q, ℓin) → (?deci(q,q′), ℓ̄i)

3 (?deci(q,q′), ℓin) → (q′, ℓ⊥) (q, ci– –, q′) ∈ T

4 (?deci(q,q′), ℓin) → (vdeci1, ℓ⊥)

5 (q, ℓin) → (?zeroi(q,q′), ℓ⊥)

6 (?zeroi(q,q′), ℓin) → (q′, ℓ⊥) (q, ci==0, q′) ∈ T

7 (?zeroi(q,q′), ℓin) → (vzeroi1, ℓ⊥)

8 (vdeci1, ℓ̄i) → (vdeci2, ℓ⊥)

9 (vdeci2, ℓi) → (vdeci1, ℓ⊥) i ∈ {1, 2}
10 (vdeci1, ℓin) → (win, ℓ⊥)

11 (vzeroi1, ℓi) → (vzeroi2, ℓ⊥)

12 (vzeroi2, ℓ̄i) → (vzeroi1, ℓ⊥)

13 (vzeroi1, ℓ̄i) → (vzeroi3, ℓ⊥) i ∈ {1, 2}
14 (vzeroi3, ℓi) → (vzeroi1, ℓ⊥)

15 (vzeroi1, ℓin) → (win, ℓ⊥)

Table 2 Transitions of GP
B-cb, illustrated in Figure 6.

transition) and Player 0 aiming to disprove that. Eventually, the player who

cannot make a transition anymore loses the game. Similarly, if the transition

was a zero-test, Player 1 will try to prove that there is an unequal number of

ℓi and ℓ̄i, and Player 0 will try to disprove it. Therefore, Player 0’s only way

to win the game is to correctly simulate an accepting run of the 2CM.

Formally, let us define P = (S,L, sin, ℓin,∆, Fglob, Floc) a DFS as follows:

� S = Q ∪ {win}

∪ {?deci(q,q′), ?zero
i
(q,q′) | i ∈ {1, 2}, q, q′ ∈ Q}

∪ {vdecij | i ∈ {1, 2}, j ∈ {1, 2}}

∪ {vzeroij | i ∈ {1, 2}, j ∈ {1, 2, 3}} ,

� L = {ℓin, ℓ1, ℓ̄1, ℓ2, ℓ̄2, ℓ⊥},

� sin = q0, Fglob = {qh,win}, Floc = L,

� ∆ defined as in Table 2.

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 59

ℓin ℓ⊥

ℓ1

ℓ̄1

ℓ2

ℓ̄2

Local automaton

nop

inc1

dec1

inc2

dec2

v1

v̄1

v2

v̄2

q q′

∀(q, ci++, q′) ∈ T
inci q q′

?deci(q,q′)

vdeci1

∀(q, ci– –, q′) ∈ T

deci nop

nop

q q′

?zeroi(q,q′)

vzeroi1

∀(q, ci==0, q′) ∈ T

nop nop

nop

vdeci1 vdeci2

win

∀i ∈ {1, 2}
v̄i

vinop

vzeroi1vzeroi2 vzeroi3

win

∀i ∈ {1, 2}
v̄i

vi

v̄i

vi nop

Global automaton

Fig. 6 Construction of GP
B-cb. Global states belonging to Player 1 are drawn with a light

gray background. Not pictured: q0 is the initial global state and qh is accepting.

States are partitioned into

S1 = {?deci(q,q′), ?zero
i
(q,q′) | i ∈ {1, 2}, q, q′ ∈ Q} ∪ {vdeci1, vzeroi1 | i ∈ {1, 2}}

and S0 = S \ S1, and we take B = 2. This ends the definition of GP
B-cb. Refer

to Figure 6 for an illustration.

Springer Nature 2021 LATEX template

60 Round- and Context-Bounded Control of Dynamic Pushdown Systems

Lemma 5.2 There is an accepting run in M iff Player 0 has a winning strategy in

GP
B-cb.

Proof To avoid possible confusions, a configuration of the 2CM M may be referred

as an M -configuration and will always be noted γ, whereas a configuration of the

game GP
B-cb will be referred to as c. Moreover, runs ofM are denoted by ρ, and plays

of GP
B-cb are denote by π.

For any GP
B-cb-configuration c = (s, ℓ1, . . . , ℓp) and i ∈ {1, 2}, let st(c) = s and

ni(c) = |{1 ≤ j ≤ p | ℓj = ℓi}| − |{1 ≤ j ≤ p | ℓj = ℓ̄i}|. Let also mini(c) = min{j |

ℓj = ℓi} if it exists.

One can build from any M -run ρ a corresponding GP
B-cb-play π(ρ) inductively in

the following way:

� π(γ0) = ((q0), ∅, 0, 1),

� if π(ρ) is defined and ends in (c, [p], p, 1) with c = (q, ℓ1, . . . , ℓp), then π(ρ ⊢t

γ) =

(
π(ρ) · ((q′, ℓ1, . . . , ℓp, ℓi), [p+ 1], p+ 1, 1)

)
if t = (q, ci++, q′) π(ρ) · ((?deci(q,q′), ℓ

1, . . . , ℓp, ℓ̄i), [p+ 1], p+ 1, 1)

· ((q′, ℓ1, . . . , ℓp, ℓ̄i, ℓ⊥), [p+ 2], p+ 2, 1)

 if t = (q, ci– –, q
′)

 π(ρ) · ((?zeroi(q,q′), ℓ
1, . . . , ℓp, ℓ⊥), [p+ 1], p+ 1, 1)

· ((q′, ℓ1, . . . , ℓp, ℓ⊥, ℓ⊥), [p+ 2], p+ 2, 1)

 if t = (q, ci==0, q′).

This construction is such that for any ρ ending in γ = (q, ν1, ν2), we have that π(ρ)

ends in (c, P, p, 1) with st(c) = q such that n1(c) = ν1 and n2(c) = ν2. Remark also

that π(ρ) is winning for Player 0 iff qh is visited in ρ.

We define a strategy fvdec as follows. If c = (vdeci2, ℓ
1, . . . , ℓp) is a GP

B-cb-

configuration such that m = mini(c) exists (that is, there is at least one process in

state ℓi), then fvdec(c, P, p
′, 2) = ((vdeci1, ℓ̂

1, . . . , ℓ̂p), P ∪ {m},m, 2) with ℓ̂m = ℓ⊥,

and ℓ̂j = ℓj for all j ̸= m. In all other cases, fvdec gives an arbitrary successor node.

Springer Nature 2021 LATEX template

Round- and Context-Bounded Control of Dynamic Pushdown Systems 61

Let c be a configuration such that st(c) = vdeci1 and ni(c) ≥ 0, that is there are

at least as many processes in local state ℓi than in local state ℓ̄i. Then it is easy

to see that fvdec is a winning strategy for Player 0 from node (c, {1, . . . , p}, p, 1), as

there will always be at least one process in state ℓi for Player 0 to make a transition

until Player 1 is forced to go from global state vdeci1 to win because there are no

more processes in state ℓ̄i. Conversely, if ni(c) < 0, then Player 0 cannot win from

(c, {1, . . . , p}, p, 1) because Player 1 can force Player 0 to exhaust all processes in

state ℓi until there are no more left and then be stuck in vdeci2.

Similarly, one can build a strategy fvzero such that for all configuration c with

st(c) = vzeroi1, Player 0 is winning from (c, {1, . . . , p}, p, 1) iff ni(c) = 0.

We are now ready to prove Lemma 5.2.

⇒ Let ρ = γ0 ⊢t1 · · · ⊢tk γk be an accepting M -run. We define a (memoryless)

strategy f for Player 0 in GP
B-cb that simulates ρ as follows: let (c, P, p, 1) be a

GP
B-cb-configuration.

� If (c, P, p, 1) is the last node of π(γ0 ⊢t1 · · · ⊢tj γj) for some j ∈ {0, . . . , k− 1},

then f(c, P, p, 1) is its successor in π(ρ).

� If st(c) = vdeci2 then f follows fvdec.

� If st(c) = vzeroi2 or st(c) = vzeroi3 then f follows fvzero.

� Otherwise f gives an arbitrary successor.

Let π be a maximal f -compatible play. There are two cases to study:

If global states vdeci1 and vzeroi1 are not visited in π for both i = 1 and i = 2,

then necessarily π = π(ρ). Since ρ is an accepting M -run, then π(ρ) is winning.

In the other case, suppose that vdeci1 is visited in π. Until visiting vdeci1, the

play simulates a prefix of ρ. Then necessarily π is of the form

π = π(γ0 ⊢t1 · · · ⊢tj γj) · ((?dec
i
(q,q′), ℓ

1, . . . , ℓp, ℓ̄i), {1, . . . , p+ 1}, p+ 1, 1)

· ((vdeci1, ℓ1, . . . , ℓp, ℓ̄i, ℓ⊥), {1, . . . , p+ 2}, p+ 2, 1) · π′

with j < k, tj+1 = (q, ci– –, q
′), and π′ is fvdec-compatible by definition of f . More-

over, if γj = (q, ν1, ν2), then π(γ0 ⊢t1 · · · ⊢tj γj) ends in (c, {1, . . . , p}, p, 1) with

Springer Nature 2021 LATEX template

62 Round- and Context-Bounded Control of Dynamic Pushdown Systems

c = (q, ℓ1, . . . , ℓp) and ni(c) = νi > 0, otherwise tj+1 could not have been taken in

ρ. Therefore, ni(vdec
i
1, ℓ

1, . . . , ℓp, ℓ̄i, ℓ⊥) = ni(c) − 1 ≥ 0. Then because the rest of

the play π′ follows fvdec, we showed that π is winning. Similarly, if vzeroi1 is visited

in π, we show that π is winning.

Thus in any case π is winning, and f is a winning strategy for Player 0.

⇐ Let f be a winning strategy of Player 0 in GP
B-cb. We first show that if π is

an f -compatible play ending in c = (?deci(q,q′), ℓ
1, . . . , ℓp), then ni(c) ≥ 0. Assume

this is not the case and ni(c) < 0. Then let π′ be a maximal f -compatible play such

that π′ = π.((vdeci1, ℓ
1, . . . , ℓp, ℓ⊥), {1, . . . , p, p+1}, 1).π′′. Then, by construction, π′′

ends in a configuration c′ such that st(c′) = vdeci2 and no process in local state ℓi,

which is impossible because f is a winning strategy. Similarly, if π is an f -compatible

play ending in c = (?zeroi(q,q′), ℓ
1, . . . , ℓp), then ni(c) = 0.

Now let π be the f -compatible maximal play when put against the strategy

of Player 1 that never goes to vdeci1 or vzeroi1. Let c0, c1, . . . be the configura-

tions visited during π. For all j such that st(cj) = q, one can build a valid M -run

ρ(c0, . . . , cj) that ends in theM -configuration γ = (q, n1(cj), n2(cj)) in the following

way: first we let ρ(c0) = γ0 = (q0, 0, 0), which satisfies the conditions above. Then

if ρ(c0, . . . , cj) = γ0 ⊢t1 · · · ⊢tk γk has been defined with cj = (q, ℓ1, . . . , ℓp) and

γk = (q, ν1, ν2) which satisfies the conditions, then there are three possible successors

to consider:

� If cj+1 = (q′, ℓ1, . . . , ℓp, ℓi) then there exists t = (q, ci++, q′) ∈ T . We then

define ρ(c0, . . . , cj+1) = ρ(c0, . . . , cj) ⊢t (q′, ν′1, ν′2) with ν′i = νi+1 and ν′3−i =

ν3−i which satisfies the conditions as ni(cj+1) = ni(cj) + 1 = νi + 1 = ν′i and

n3−i(cj+1) = n3−i(cj) = ν3−i = ν′3−i.

� If cj+1 = (?deci(q,q′), ℓ
1, . . . , ℓp, ℓ̄i) and cj+2 = (q′, ℓ1, . . . , ℓp, ℓ̄i, ℓ⊥), then there

exists t = (q, ci– –, q
′) ∈ T . We define ρ(c0, . . . , cj+2) = ρ(c0, . . . , cj) ⊢t

(q′, ν′1, ν
′
2) with ν′i = νi − 1 and ν′3−i = ν3−i. This is a valid M -run as νi > 0,

otherwise we would have ni(cj+1) = ni(cj) − 1 = νi − 1 < 0, which is impos-

sible as showed hereabove. Moreover, ν′i = ni(cj+2) for i ∈ {1, 2}, so this run

satisfies the required conditions.

Springer Nature 2021 LATEX template

REFERENCES 63

� If cj+1 = (?zeroi(q,q′), ℓ
1, . . . , ℓp, ℓ⊥) and cj+2 = (q′, ℓ1, . . . , ℓp, ℓ⊥, ℓ⊥), then

there exists t = (q, ci==0, q′) ∈ T and ρ(c0, . . . , cj+2) = ρ(c0, . . . , cj) ⊢t

(q′, ν1, ν2). Again this is a valid M -run because νi = ni(cj+1) = 0, as showed

hereabove. Since νi = ni(cj) = ni(cj+2) for i ∈ {1, 2}, the conditions are also

satisfied.

Therefore, π is of the form π(ρ) for some valid M -run ρ. As π is winning, we deduce

that ρ is an accepting run of M .

6 Conclusion

We extended the verification of round-bounded parameterized systems to a

game-based setting, which allows us to model an uncontrollable environment.

As games constitute an important approach to verifying branching-time prop-

erties (e.g., [31]), our results may be used for branching-time model checking

of parameterized systems (using a variant of data logics [25] and a reduction

of the model-checking problem to a parameterized pushdown game).

7 Declarations

This work is partly supported by ANR FREDDA (ANR-17-CE40-0013).

One of the authors is, at the time of submission, working with the editor-

in-chief, who will not be involved at any part of the evaluation process.

References

[1] P. A. Abdulla, A. Bouajjani, and J. d’Orso. Deciding monotonic games.

In CSL’03, volume 2803 of LNCS, pages 1–14. Springer, 2003.

[2] P. A. Abdulla and G. Delzanno. Parameterized verification. Int. J. Softw.

Tools Technol. Transf., 18(5):469–473, October 2016.

Springer Nature 2021 LATEX template

64 REFERENCES

[3] P. A. Abdulla, R. Mayr, A. Sangnier, and J. Sproston. Solving parity

games on integer vectors. In CONCUR’13, volume 8052, pages 106–120.

Springer, 2013.

[4] B. Aminof, S. Jacobs, A. Khalimov, and S. Rubin. Parameterized model

checking of token-passing systems. In VMCAI’14, volume 8318 of LNCS,

pages 262–281. Springer, 2014.

[5] M. F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan. Parity

games on bounded phase multi-pushdown systems. In NETYS’17, volume

10299 of LNCS, pages 272–287, 2017.

[6] M. F. Atig, A. Bouajjani, and S. Qadeer. Context-bounded analysis for

concurrent programs with dynamic creation of threads. Log. Methods

Comput. Sci., 7(4), 2011.

[7] B. Bérard, S. Haddad, M. Sassolas, and N. Sznajder. Concurrent games

on VASS with inhibition. In CONCUR’12, volume 7454 of LNCS, pages

39–52. Springer, 2012.

[8] H. Björklund and T. Schwentick. On notions of regularity for data

languages. Theoretical Computer Science, 411(4-5):702–715, 2010.

[9] M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin.

Two-variable logic on data words. ACM Trans. Comput. Log., 12(4):27,

2011.

[10] Benedikt Bollig, Mathieu Lehaut, and Nathalie Sznajder. Round-bounded

control of parameterized systems. In 16th International Symposium

on Automated Technology for Verification and Analysis, Proceedings of

ATVA’18, volume 11138 of Lecture Notes in Computer Science, pages

370–386. Springer, 2018.

Springer Nature 2021 LATEX template

REFERENCES 65

[11] Benedikt Bollig, Mathieu Lehaut, and Nathalie Sznajder. Round-

Bounded Control of Parameterized Systems. Technical Report hal-

01849206, HAL, March 2019.

[12] Ahmed Bouajjani, Javier Esparza, Stefan Schwoon, and Jan Strejcek.

Reachability analysis of multithreaded software with asynchronous com-

munication. In FSTTCS 2005: Foundations of Software Technology and

Theoretical Computer Science, 25th International Conference, Hyderabad,

India, December 15-18, 2005, Proceedings, volume 3821 of Lecture Notes

in Computer Science, pages 348–359. Springer, 2005.

[13] T. Brázdil, P. Jancar, and A. Kucera. Reachability games on extended

vector addition systems with states. In ICALP’10, Part II, volume 6199

of LNCS, pages 478–489. Springer, 2010.

[14] B. Brütsch and W. Thomas. Playing games in the Baire space. In Proc.

Cassting Workshop on Games for the Synthesis of Complex Systems and

3rd Int. Workshop on Synthesis of Complex Parameters, volume 220 of

EPTCS, pages 13–25, 2016.

[15] J.-B. Courtois and S. Schmitz. Alternating vector addition systems with

states. InMFCS’14, volume 8634 of LNCS, pages 220–231. Springer, 2014.

[16] Wojciech Czerwinski, Slawomir Lasota, Ranko Lazic, Jérôme Leroux,

and Filip Mazowiecki. The reachability problem for petri nets is not

elementary. J. ACM, 68(1):7:1–7:28, 2021.

[17] Rüdiger Ehlers, Sanjit A Seshia, and Hadas Kress-Gazit. Synthesis with

identifiers. In International Conference on Verification, Model Checking,

and Abstract Interpretation, pages 415–433. Springer, 2014.

[18] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determi-

nacy. In Proceedings of FOCS’91, pages 368–377. IEEE Computer Society,

1991.

Springer Nature 2021 LATEX template

66 REFERENCES

[19] E. A. Emerson and K. S. Namjoshi. On reasoning about rings. Int. J.

Found. Comput. S., 14(4):527–550, 2003.

[20] J. Esparza. Keeping a crowd safe: On the complexity of parameterized

verification. In STACS’14, volume 25 of Leibniz International Proceedings

in Informatics, pages 1–10. Leibniz-Zentrum für Informatik, 2014.

[21] Léo Exibard, Emmanuel Filiot, and Pierre-Alain Reynier. Synthesis of

data word transducers. In 30th International Conference on Concurrency

Theory, 2019.

[22] D. Figueira and M. Praveen. Playing with repetitions in data words using

energy games. In Proceedings of LICS’18, pages 404–413. ACM, 2018.

[23] S. Jacobs and R. Bloem. Parameterized synthesis. Log. Methods Comput.

Sci., 10(1), 2014.

[24] P. Jancar. On reachability-related games on vector addition systems with

states. In RP’15, volume 9328 of LNCS, pages 50–62. Springer, 2015.

[25] A. Kara. Logics on data words: Expressivity, satisfiability, model checking.

PhD thesis, Technical University of Dortmund, 2016.

[26] Ayrat Khalimov, Benedikt Maderbacher, and Roderick Bloem. Bounded

synthesis of register transducers. In International Symposium on Auto-

mated Technology for Verification and Analysis, pages 494–510. Springer,

2018.

[27] S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-

sensitive languages. In LICS’07, pages 161–170. IEEE Computer Society

Press, 2007.

[28] S. La Torre, P. Madhusudan, and G. Parlato. Context-bounded analysis

of concurrent queue systems. In Proceedings of TACAS’08, volume 4963

of LNCS, pages 299–314. Springer, 2008.

Springer Nature 2021 LATEX template

REFERENCES 67

[29] S. La Torre, P. Madhusudan, and G. Parlato. Model-checking parame-

terized concurrent programs using linear interfaces. In CAV’10, volume

6174 of LNCS, pages 629–644. Springer, 2010.

[30] S. La Torre, P. Madhusudan, and G. Parlato. Model-checking

parameterized concurrent programs using linear interfaces. Techni-

cal Report 2142/15410, University of Illinois, 2010. Available at

http://hdl.handle.net/2142/15410.

[31] M. Lange and C. Stirling. Model checking games for branching time logics.

J. Log. Comput., 12(4):623–639, 2002.

[32] Ernst W. Mayr. An algorithm for the general petri net reachability

problem. SIAM J. Comput., 13(3):441–460, 1984.

[33] Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice

Hall, Upper Saddle River, NJ, USA, 1967.

[34] S. Qadeer and J. Rehof. Context-bounded model checking of concurrent

software. In TACAS’05, volume 3440 of LNCS, pages 93–107. Springer,

2005.

[35] G. Ramalingam. Context-sensitive synchronization-sensitive analysis is

undecidable. ACM Trans. Program. Lang. Syst., 22(2):416–430, 2000.

[36] A. Seth. Games on multi-stack pushdown systems. In LFCS’09, volume

5407 of LNCS, pages 395–408. Springer, 2009.

[37] L. J. Stockmeyer. The Complexity of Decision Problems in Automata

Theory and Logic. PhD thesis, MIT, 1974.

[38] W. Thomas. Languages, automata and logic. In A. Salomaa and

G. Rozenberg, editors, Handbook of Formal Languages, volume 3, pages

389–455. Springer, 1997.

[39] I. Walukiewicz. Pushdown processes: Games and model-checking. Inf.

Comput., 164(2):234–263, 2001.

Springer Nature 2021 LATEX template

68 REFERENCES

[40] W. Zielonka. Infinite games on finitely coloured graphs with applications

to automata on infinite trees. TCS, 200(1-2):135–183, 1998.

	Introduction
	Related Work
	Outline

	Dynamic Pushdown Systems
	Words
	Transition Systems

	Dynamic Pushdown Systems
	Reachability Problems

	Round-Bounded Reachability in Dynamic Pushdown Systems
	Round-Bounded Control of Parameterized Systems
	Parameterized Pushdown Games
	Games
	Parameterized Pushdown Games

	Upper bound for round-bounded control
	Multi-Pushdown Games
	States
	Initial Transitions
	Final Transitions
	Basic Transitions
	Change of Player
	Transitions for Process Change

	Lower bound for round-bounded control

	Undecidability of context-bounded games
	Context-Bounded Runs
	Relation to round-bounded runs
	Context-bounded control

	Undecidabilty for Context-Bounded Runs

	Conclusion
	Declarations

